US20010031596A1 - Manufacture of plain bearings - Google Patents
Manufacture of plain bearings Download PDFInfo
- Publication number
- US20010031596A1 US20010031596A1 US09/835,881 US83588101A US2001031596A1 US 20010031596 A1 US20010031596 A1 US 20010031596A1 US 83588101 A US83588101 A US 83588101A US 2001031596 A1 US2001031596 A1 US 2001031596A1
- Authority
- US
- United States
- Prior art keywords
- layer
- polymer
- fluoro
- backing
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 110
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000004811 fluoropolymer Substances 0.000 claims abstract description 33
- 239000002002 slurry Substances 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 239000000945 filler Substances 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 9
- 238000000151 deposition Methods 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 7
- 239000011236 particulate material Substances 0.000 claims abstract description 6
- 238000005728 strengthening Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 5
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 29
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 29
- 239000000853 adhesive Substances 0.000 claims description 19
- 230000001070 adhesive effect Effects 0.000 claims description 19
- -1 polytetrafluoroethylene Polymers 0.000 claims description 13
- 229910000906 Bronze Inorganic materials 0.000 claims description 11
- 229920003235 aromatic polyamide Polymers 0.000 claims description 11
- 239000010974 bronze Substances 0.000 claims description 11
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000701 coagulant Substances 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- 238000005470 impregnation Methods 0.000 claims description 5
- 229920001774 Perfluoroether Polymers 0.000 claims description 4
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000004760 aramid Substances 0.000 claims description 4
- 238000007596 consolidation process Methods 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 125000001174 sulfone group Chemical group 0.000 claims description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000005751 Copper oxide Substances 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims description 2
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 2
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 239000004962 Polyamide-imide Substances 0.000 claims description 2
- 239000004697 Polyetherimide Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- 229910052570 clay Inorganic materials 0.000 claims description 2
- 229910000431 copper oxide Inorganic materials 0.000 claims description 2
- 239000011133 lead Substances 0.000 claims description 2
- 229910000464 lead oxide Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 2
- 229920002312 polyamide-imide Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 229920001601 polyetherimide Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920006324 polyoxymethylene Polymers 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 claims 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 claims 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 1
- 239000012784 inorganic fiber Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 93
- 239000002344 surface layer Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920000271 Kevlar® Polymers 0.000 description 4
- 239000004761 kevlar Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000007761 roller coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical class CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 229920000561 Twaron Polymers 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000004762 twaron Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/35—Polyalkenes, e.g. polystyrene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/18—Sliding surface consisting mainly of wood or fibrous material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/201—Composition of the plastic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/20—Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/26—Polyamides; Polyimides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/38—Inorganic fibres or flakes siliceous
- D21H13/40—Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2942—Plural coatings
- Y10T428/2949—Glass, ceramic or metal oxide in coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/601—Nonwoven fabric has an elastic quality
- Y10T442/602—Nonwoven fabric comprises an elastic strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/659—Including an additional nonwoven fabric
- Y10T442/668—Separate nonwoven fabric layers comprise chemically different strand or fiber material
Definitions
- This invention is concerned with a method of manufacturing plain bearings and with materials and bearings manufactured by such methods.
- bearing surface layer which contains a high proportion of a fluoro-polymer such as polytetrafluoroethylene (PTFE), since such polymers have good low friction properties.
- PTFE polytetrafluoroethylene
- Such bearing surface layers are inherently weak so that they are applied to a supporting substrate which is normally made of metal.
- an intermediate layer is included which is usually made of sintered metal, eg bronze.
- the PTFE is mixed with solvent, and fillers, to form a “mush” which is paste-like and is spread over the surface of the sintered metal before being forced into the interstices of the sintered metal so that the bearing surface layer material is bonded to the sintered metal. Because of the necessity to remove the solvent, the material can only be formed with a relatively thin surface layer (about 50 microns or less) over the sintered metal otherwise solvent induced blistering occurs.
- the thickness of the surface layer produced above the sintered bonding layer is also affected by the fact that the mush is rolled into the interstices of the sinter and to achieve sufficient impregnation to prevent the fluoro-polymer from delaminating from the backing in use, a relatively high pressure may be required which results in a low layer thickness above the sintered bonding layer. Because the surface layer is relatively thin, it cannot normally be machined to improve the surface quality or to perform a sizing operation to form a bearing having a precise wall thickness and bore dimension.
- EP-A-0708892 describes a bearing made from a material comprising a metal backing having a sintered layer thereon and a bearing material lining comprising polytetrafluoroethylene and from 2 to 10 volume % of fibrillated aramid fibres infiltrated into the pores of the sintered bonding layer.
- This document also describes making a sheet of the bearing material by a paper-making type route, fusing and bonding the sheet by heat and pressure to the sintered bonding layer.
- the layer thickness above the sintered bonding layer on the backing material is again only 25 ⁇ m.
- WO97/06204 describes the manufacture of a bearing material in sheet form comprising an aromatic polyamide pulp and a fluororesin as main constituents.
- the method of manufacture is by a paper-making type process.
- any method of attaching the material so formed to a metal backing is obtained by forming a stack of a plurality of layers of the sheet material and sintering them together under an applied pressure.
- a method of manufacturing a bearing material including the steps of forming a water-based slurry having a solids content comprising 30 to 80% by volume of a fluoro-polymer, 5 to 30% by volume of web-forming fibrillated fibres, and 5 to 40% by volume of filler material selected from at least one of the group comprising: inorganic fibres; inorganic particulate material; metal fibres; metal powders; organic fibres; organic particulate material; and, organic matrix strengthening agents, the web-forming and filler materials being resistant to temperatures above the melting point or curing temperature of the fluoro-polymer; depositing a layer of the slurry on to a substrate so that the water drains from the layer and a deposited layer is formed in which the web-forming fibres form a web containing the fluoro-polymer and the filler material; and, heating the deposited layer to a temperature above the melting point of the fluoro-pol
- An important advantage of the method according to the invention is that a relatively thick bearing surface layer can be formed which can, therefore, be machined.
- the thickness of the layer of bearing material so produced may lie in the range from 50 to 400 ⁇ m above any backing or bonding layer.
- a further advantage of the method of the present invention is that the paper-making type route imparts a much lower degree of mechanical working to the fluoro-polymer and consequently results in less hardening thereof allowing the material to be more easily impregnated into porous bonding layers such as sintered bronze at lower impregnation pressures allowing thicker residual layers above the sinter to be obtained.
- the method of preparing the basis deposited layer may be relatively conventional apparatus as used in the paper making industry, a typical example being a well-known Fourdrinier-type paper making machine or a cylinder-type machine.
- the deposited layer on the substrate after the water has drained from the deposited slurry gains its handling strength from the web of fibrillated fibres within and about which the fluoro-polymer and fillers are retained, the deposited layer having a paper-like appearance.
- the need for handling strength for subsequent processing operations results in the need for a minimum of 5 vol % of fibrillated fibres. Above 30 vol % low friction properties begin to deteriorate.
- the content of fibrillated fibres may be in the range from 10 to 30 vol %.
- the fibrillated fibres (frequently referred to as “pulp”) comprise an aramid material such as Kevlar or Twaron (trade names) for example and, more preferably a para-aramid material.
- aramid material such as Kevlar or Twaron (trade names) for example and, more preferably a para-aramid material.
- a primary requirement of the fibrillated fibres is that they are able to withstand the heating step for curing the fluoro-polymer thus, other fibre materials are possible so long as this condition is fulfilled.
- PTFE is the preferred fluoro-polymer for use in this invention
- other fluoro-polymers such as perfluorinated ethylene-propylene, methyl perfluoroalkoxy, perfluoroalkoxy, chlorotrifluoroethylene, tetrafluoroethylene-ethylene and polyvinylidene difluoride, for example may be used instead or in addition to PTFE.
- the fillers are included in the method and material of the present invention to provide strengthening and/or reinforcement of the material matrix and also to improve the actual bearing properties such as wear resistance and friction coefficient for example.
- Suitable inorganic fibres may include for example glass or carbon fibres for example.
- Suitable inorganic particulate or powder material may include calcium fluoride, clay, molybdenum disulphide, tungsten disulphide, graphite, silica, alumina, lead oxide, copper oxide for example.
- Suitable metal fibres and powders may include bronze, brass, lead, tin, zinc for example.
- Organic materials may include fillers such as thermosetting or thermoplastic resins for example which may be employed to provide further strengthening of the matrix.
- additional polymers may include polyphenylene sulphide, polyphenylene sulphone, polyimide, nylon 4.6, polyether ether ketone, polyoxymethylene, polyester, polyurethane, polyamide-imide, polyether sulphone, polyethyleneterephthalate and polyether imide for example.
- the slurry may include latex-type materials to improve the handling strength of the raw deposited material. However, such additions to the slurry will decompose during the heating step to cure the fluoro-polymer but not to the detriment of the resulting cured bearing material.
- the slurry will also contain further additions which are relevant to the formation of the slurry and conducive to the deposition and formation of a layer of solids of the desired composition onto the draining substrate of the paper-making apparatus.
- Such additions may comprise coagulants and flocculants such as colloidal silica, polymer coagulants and alum for example.
- coagulants and flocculants such as colloidal silica, polymer coagulants and alum for example.
- the deposited layer once removed from the draining substrate possesses in the region of around 50 vol % porosity.
- the thickness of the deposited layer of the raw undensified uncured material may be in the range from about 200 ⁇ m to about 2 mm.
- the lower thickness of 200 ⁇ m is a practical limit below which the strength becomes too low for easy handling whilst the upper limit is governed by the de-watering characteristics of the basic paper making process.
- the preferred range may be from 200 to 800 ⁇ m when unconsolidated.
- the deposited layer may, for example, be adhered to a supporting substrate either before or after the heating step to cure the polymer.
- the supporting substrate may be any known in the art such as steel, stainless steel, bronze and aluminium for example.
- the raw deposited layer may be impregnated into the sinter surface followed by heating to cure.
- a backing substrate is normally made of metal so that, if the layer is secured to the substrate before the heating step, the substrate assists in conducting heat to all parts of the layer. This route also effects substantially full consolidation of the porous bearing material layer during the impregnation step.
- the thickness of the bearing material layer above the sintered bonding layer or backing surface after impregnation and consequent consolidation may preferably lie within the range from 50 to 400 ⁇ m and, more preferably within the range from 100 to 250 ⁇ m prior to any machining operation.
- the bearing material layer is attached to a backing by adhesive means: (a) it may first be densified to remove or reduce porosity by rolling for example then cured and finally adhered to the backing material with an adhesive layer; or (b) the porous bearing material layer may be adhered to the backing layer, densified and then cured; or, (c) the porous layer may be densified, adhered to the backing layer and finally cured; or, (d) the bearing material layer may be adhered to the backing layer, cured and then consolidated; or, (e) the bearing material layer may be cured, adhered to the backing layer and consolidated; or, (f) the bearing material layer may be cured, consolidated and adhered to the backing layer.
- the adhesive used must be capable of withstanding the curing temperature and with alternative (b), (d) and (e), the adhesive layer must be capable of withstanding the densifying step which may be by rolling or any other suitable alternative method.
- Alternative (b), (d) and (e) have the advantage that the porosity in the bearing layer may be utilised to enhance the strength of bonding with the adhesive.
- Suitable adhesives may include epoxies, acrylics, cyanoacrylates, polyurethanes, phenolics, isoprenes, styrene butadienes, fluoro-polymers, polyesters and nylons.
- Methods of adhesive application may include roller coating, curtain coating, spray coating or as a film (e.g. hot melt, pressure sensitive, or contact types).
- the bearing material may require a pre-treatment such as chemical etching, plasma pre-treatment, irradiation, or the use of chemical coupling agents or adhesion promoters for example prior to the application of adhesive.
- variable composition within the deposited layer by control of the slurry during the paper making process, ie by having two or more deposition positions where another slurry composition is deposited on a preceding slurry composition.
- individual layers of different compositions may be made, pressed together and cured.
- the layers may be produced with the composition of the slurry varying in each layer.
- the layer intended to form the sliding surface of the bearing may incorporate more of the fluoro-polymer than the stage intended to form the lower surface thereof adjacent the substrate which may incorporate other polymers which bond more effectively to the material of the substrate.
- the composition of the bearing material varies through its thickness from a composition which can more easily bond to the substrate to a composition providing superior bearing properties.
- each deposited layer may be varied according to its intended function within the final bearing. Thus, thinner layers which would not on their own be handlable may be employed, e.g. as the bonding layer between the bearing sliding material layer per se and a strong backing layer.
- the strong backing may have a layer of another polymer, which is compatible with the fluoro-polymer, deposited thereon to promote adhesion between the backing and the deposited layer.
- a filler material is to be hollow and to contain a liquid or other lubricant which is gradually released as the bearing wears.
- a bearing comprising the material of the second aspect of the present invention bonded to a strong backing material.
- This example is of a method of manufacturing a plain bearing.
- the method comprises forming a water-based slurry having a solids content of 2% weight/volume (10 kg solids in 5001 of water).
- the solids content was 73% by volume PTFE (mixed in as PTFE dispersed in water (55% Is PTFE by weight)), 10% by volume fibrillated para-aramid fibres (the fibres were 0.74 mm long on average and 12 to 15 ⁇ m in diameter), 4% by volume graphite powder, and 13% by volume glass fibres (150 ⁇ m long on average and 12 ⁇ m in diameter).
- the graphite was omitted from the slurry, the PTFE content was reduced to 67% by volume, the glass fibre content was kept at 13% by volume, and the para-aramid fibre content was increased to 20% by volume.
- the para-aramid fibres were fibrillated so that they were able to form a web.
- the glass fibres were included as reinforcing fibres. It should be noted that the fibres used are resistant to temperatures above the melting point of the PTFE (which is about 330° C.
- the method also comprises depositing a layer of the slurry on to a wire mesh so that the water in the slurry drains from the layer and a deposited layer is formed in which the para-aramid fibres form a web containing the PTFE, the graphite, and the glass fibres.
- the web formed by the para-aramid fibres has randomly oriented fibres adhering to one another and serves to form a supporting web to enable the deposited layer to be handled.
- the slurry was deposited by spraying it on to the wire mesh as the mesh was moving. The water drained away through the mish leaving a deposited layer which was self-supporting and able to be lifted from the mesh belt, dried and coiled up.
- the deposited layer which was approximately 500 microns thick, was removed from the wire mesh and positioned on a metal substrate.
- the substrate was aluminium sheet 0.3 mm in thickness.
- the substrate was pre-formed with metal tangs projecting about 0.4 mm therefrom. The tangs were formed by the edges of holes punched through the substrate.
- the metal substrate and the layer were passed between compressing rollers to force the tangs into the deposited layer so that the deposited layer was adhered to the substrate.
- the illustrative method also comprises a heating step in which the deposited layer is heated to above the melting point of the PTFE in order to cure the PTFE. In this step, which was carried out after the deposited layer had been adhered to the substrate, heating took place in an oven for 10 minutes at 380° C.
- the completed bearing material had a bearing surface layer which was formed by the deposited layer after curing and which was 250 microns in thickness.
- a slurry was formed in a similar manner to that described with reference to Example 1 but having a final solids content of: 65 vol % PTFE; 20 vol % Kevlar (trade name); and, 15 vol % calcium fluoride (+stabilisers and additives such as coagulants etc.) in the dry deposited material layer which was 0.49 mm in thickness.
- the tensile strength of the unconsolidated material as deposited and prior to curing was 0.7 MPa.
- the unconsolidated material was impregnated into a porous bronze sinter layer of 0.25 mm thickness on a steel backing layer by passing the two materials through rollers. The material is consolidated during this rolling step in addition to being impregnated into the bronze sinter.
- the impregnated bearing material was then heated at 380° C. for 10 minutes to cure the PTFE.
- the final material possessed a layer of bearing material above the sintered bonding layer of 0.165 mm in thickness.
- a slurry was formed in a similar manner to that described with reference to Example 1 but having a final solids content of: 61.8 vol % of PTFE; 20 vol % of Kevlar (trade name); 13 vol % of glass fibre; 3.2 vol % of colloidal silica (as a coagulant); and, 2 vol % of carbon black (as a pigment) and other additives as stabilisers.
- the tensile strength of the unconsolidated material as deposited and prior to curing was 0.9 Mpa.
- the unconsolidated material was impregnated into a bronze sinter layer of 0.25 mm thickness on a steel backing layer by passing the two materials through rollers.
- the material was consolidated during this rolling step in addition to being impregnated into the bronze sinter.
- the impregnated bearing material was then heated to 380° C. for ten minutes to cure the PTFE.
- the cure process was carried out on a factory production line, the material underwent an induction cure for approximately one minute at 380° C.
- the final material possessed a layer of bearing material above the sintered bonding layer of 0.165 mm in thickness.
- the attached Figure shows test results for the new bearing material impregnated into bronze sinter compared with an available mesh-based bearing product. The tests were conducted on flat samples using a block-on-ring wear test apparatus.
- composition was as for Example 3 (61.8% PTFE etc).
- Thickness and strength of material was also as for Example 3.
- the unconsolidated material was impregnated into a bronze mesh of 0.39 mm thickness by passing the two materials through rollers.
- the material was consolidated during this rolling step in addition to being impregnated into the mesh.
- Final thickness of the impregnated mesh was 0.39 mm.
- Cure was at 380° C. for ten minutes.
- a slurry was formed in a similar manner to that described with reference to Example 1 but having a final solids content of: 61.8 vol % of PTFE; 20 vol % of Kevlar (trade name); 13 vol % of glass fibre; 3.2 vol % of colloidal silica (as a coagulant); and, 2 vol % of carbon black (as a pigment) and other additives as stabilisers.
- the thickness of the material prior to densification was 0.53 mm and the strength thereof in the as deposited form was 0.9 MPa.
- a phenolic-type adhesive was applied to the surface of the bearing material by roller coating.
- the coated material was pre-heated to activate the adhesive prior to passing through a calendar nip with a 0.3 mm thick stainless steel backing sheet to form a laminate.
- the laminate was then passed twice through heated rollers to consolidate the bearing material. Following consolidation, the laminate was heated to 160° C. to cure the adhesive and then heated to 380° C. to cure the PTFE.
- the laminate material was then formed into cylindrical bushes for testing. The thickness of the consolidated bearing material following curing was 0.23 mm.
- the phenolic resin adhesive was particularly advantageous in that it was able to maintain a good adhesive bond between the substrate and bearing material after the PTFE curing step.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Sliding-Contact Bearings (AREA)
- Laminated Bodies (AREA)
- Glass Compositions (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Reinforced Plastic Materials (AREA)
- Paper (AREA)
- Rotary Pumps (AREA)
Abstract
Description
- This invention is concerned with a method of manufacturing plain bearings and with materials and bearings manufactured by such methods.
- Many types of plain bearings have a bearing surface layer which contains a high proportion of a fluoro-polymer such as polytetrafluoroethylene (PTFE), since such polymers have good low friction properties. Such bearing surface layers are inherently weak so that they are applied to a supporting substrate which is normally made of metal. However, as fluoro-polymers are difficult to secure to a substrate, in one common type of bearing, an intermediate layer is included which is usually made of sintered metal, eg bronze. In manufacturing this type of bearing, the PTFE is mixed with solvent, and fillers, to form a “mush” which is paste-like and is spread over the surface of the sintered metal before being forced into the interstices of the sintered metal so that the bearing surface layer material is bonded to the sintered metal. Because of the necessity to remove the solvent, the material can only be formed with a relatively thin surface layer (about 50 microns or less) over the sintered metal otherwise solvent induced blistering occurs. The thickness of the surface layer produced above the sintered bonding layer is also affected by the fact that the mush is rolled into the interstices of the sinter and to achieve sufficient impregnation to prevent the fluoro-polymer from delaminating from the backing in use, a relatively high pressure may be required which results in a low layer thickness above the sintered bonding layer. Because the surface layer is relatively thin, it cannot normally be machined to improve the surface quality or to perform a sizing operation to form a bearing having a precise wall thickness and bore dimension.
- EP-A-0708892 describes a bearing made from a material comprising a metal backing having a sintered layer thereon and a bearing material lining comprising polytetrafluoroethylene and from 2 to 10 volume % of fibrillated aramid fibres infiltrated into the pores of the sintered bonding layer. This document also describes making a sheet of the bearing material by a paper-making type route, fusing and bonding the sheet by heat and pressure to the sintered bonding layer. However, the layer thickness above the sintered bonding layer on the backing material is again only 25 μm.
- WO97/06204 describes the manufacture of a bearing material in sheet form comprising an aromatic polyamide pulp and a fluororesin as main constituents. The method of manufacture is by a paper-making type process. However, no mention is made of any method of attaching the material so formed to a metal backing. Indeed, thicker material is obtained by forming a stack of a plurality of layers of the sheet material and sintering them together under an applied pressure. However, this results in only a monolithic block of the material from which a bearing may be formed by machining for example but which lacks the strengthening effect of a supporting metal backing where thin bearing layers or wall thickness' are required.
- It is an object of the present invention to provide a method of manufacturing a plain bearing based on a fluoro-polymer, which method enables a thicker bearing material layer above any supporting or bonding metal layer to be formed.
- According to a first aspect of the present invention there is provided a method of manufacturing a bearing material, the method including the steps of forming a water-based slurry having a solids content comprising 30 to 80% by volume of a fluoro-polymer, 5 to 30% by volume of web-forming fibrillated fibres, and 5 to 40% by volume of filler material selected from at least one of the group comprising: inorganic fibres; inorganic particulate material; metal fibres; metal powders; organic fibres; organic particulate material; and, organic matrix strengthening agents, the web-forming and filler materials being resistant to temperatures above the melting point or curing temperature of the fluoro-polymer; depositing a layer of the slurry on to a substrate so that the water drains from the layer and a deposited layer is formed in which the web-forming fibres form a web containing the fluoro-polymer and the filler material; and, heating the deposited layer to a temperature above the melting point of the fluoro-polymer in order to cure the fluoro-polymer.
- An important advantage of the method according to the invention is that a relatively thick bearing surface layer can be formed which can, therefore, be machined. The thickness of the layer of bearing material so produced may lie in the range from 50 to 400 μm above any backing or bonding layer. A further advantage of the method of the present invention is that the paper-making type route imparts a much lower degree of mechanical working to the fluoro-polymer and consequently results in less hardening thereof allowing the material to be more easily impregnated into porous bonding layers such as sintered bronze at lower impregnation pressures allowing thicker residual layers above the sinter to be obtained. Conventional “mush” routes impart a relatively high degree of mechanical work to the polymer during formation and spreading of the mush making it stiffer and more resistant to being impregnated into the sinter and thus requiring higher pressure which, in part, contributes to a low layer thickness above the sinter.
- The method of preparing the basis deposited layer may be relatively conventional apparatus as used in the paper making industry, a typical example being a well-known Fourdrinier-type paper making machine or a cylinder-type machine.
- The deposited layer on the substrate after the water has drained from the deposited slurry gains its handling strength from the web of fibrillated fibres within and about which the fluoro-polymer and fillers are retained, the deposited layer having a paper-like appearance. The need for handling strength for subsequent processing operations results in the need for a minimum of 5 vol % of fibrillated fibres. Above 30 vol % low friction properties begin to deteriorate.
- Preferably the content of fibrillated fibres may be in the range from 10 to 30 vol %.
- Preferably, the fibrillated fibres (frequently referred to as “pulp”) comprise an aramid material such as Kevlar or Twaron (trade names) for example and, more preferably a para-aramid material.
- A primary requirement of the fibrillated fibres is that they are able to withstand the heating step for curing the fluoro-polymer thus, other fibre materials are possible so long as this condition is fulfilled.
- In a preferred embodiment of the present invention, the fluoro-polymer may comprises polytetrafluoroethylene (PTFE) which requires a temperature above its melting point, about 330° C., to cure.
- Although PTFE is the preferred fluoro-polymer for use in this invention, other fluoro-polymers such as perfluorinated ethylene-propylene, methyl perfluoroalkoxy, perfluoroalkoxy, chlorotrifluoroethylene, tetrafluoroethylene-ethylene and polyvinylidene difluoride, for example may be used instead or in addition to PTFE.
- The fillers are included in the method and material of the present invention to provide strengthening and/or reinforcement of the material matrix and also to improve the actual bearing properties such as wear resistance and friction coefficient for example.
- Suitable inorganic fibres may include for example glass or carbon fibres for example.
- Suitable inorganic particulate or powder material may include calcium fluoride, clay, molybdenum disulphide, tungsten disulphide, graphite, silica, alumina, lead oxide, copper oxide for example.
- Suitable metal fibres and powders may include bronze, brass, lead, tin, zinc for example.
- Organic materials may include fillers such as thermosetting or thermoplastic resins for example which may be employed to provide further strengthening of the matrix. Such additional polymers may include polyphenylene sulphide, polyphenylene sulphone, polyimide, nylon 4.6, polyether ether ketone, polyoxymethylene, polyester, polyurethane, polyamide-imide, polyether sulphone, polyethyleneterephthalate and polyether imide for example.
- The slurry may include latex-type materials to improve the handling strength of the raw deposited material. However, such additions to the slurry will decompose during the heating step to cure the fluoro-polymer but not to the detriment of the resulting cured bearing material.
- The slurry will also contain further additions which are relevant to the formation of the slurry and conducive to the deposition and formation of a layer of solids of the desired composition onto the draining substrate of the paper-making apparatus. Such additions may comprise coagulants and flocculants such as colloidal silica, polymer coagulants and alum for example. However, such materials to perform the required functions are known to those skilled in the art and will not be elaborated upon further.
- The deposited layer once removed from the draining substrate possesses in the region of around 50 vol % porosity. The thickness of the deposited layer of the raw undensified uncured material may be in the range from about 200 μm to about 2 mm. The lower thickness of 200 μm is a practical limit below which the strength becomes too low for easy handling whilst the upper limit is governed by the de-watering characteristics of the basic paper making process.
- For the purpose of forming a bearing, the preferred range may be from 200 to 800 μm when unconsolidated.
- Once the deposited layer is formed there are potentially several routes which may be taken with respect to attaching the layer to a backing and the heating step to cure the fluoro-polymer. The deposited layer may, for example, be adhered to a supporting substrate either before or after the heating step to cure the polymer. The supporting substrate may be any known in the art such as steel, stainless steel, bronze and aluminium for example.
- Various alternatives exist for attaching the bearing material layer to a strong supporting backing. Essentially, there are two basic attaching alternatives comprising: (i) mechanically attaching the bearing layer to a metal backing wherein the bearing material layer is impregnated into a porous surface or engages with physical features formed on the surface of the backing material such as metal wire mesh or a perforated metal backing; or, (ii) attaching the bearing material layer to a strong backing layer by adhesive means; or, (iii) a combination of mechanical and adhesive attachment. Within each alternative there are options in the process steps available or in the sequence of process steps which are employed.
- Where the bearing material layer is mechanically attached to a porous sintered bonding layer, the raw deposited layer may be impregnated into the sinter surface followed by heating to cure. A backing substrate is normally made of metal so that, if the layer is secured to the substrate before the heating step, the substrate assists in conducting heat to all parts of the layer. This route also effects substantially full consolidation of the porous bearing material layer during the impregnation step.
- The thickness of the bearing material layer above the sintered bonding layer or backing surface after impregnation and consequent consolidation may preferably lie within the range from 50 to 400 μm and, more preferably within the range from 100 to 250 μm prior to any machining operation.
- Where the bearing material layer is attached to a backing by adhesive means: (a) it may first be densified to remove or reduce porosity by rolling for example then cured and finally adhered to the backing material with an adhesive layer; or (b) the porous bearing material layer may be adhered to the backing layer, densified and then cured; or, (c) the porous layer may be densified, adhered to the backing layer and finally cured; or, (d) the bearing material layer may be adhered to the backing layer, cured and then consolidated; or, (e) the bearing material layer may be cured, adhered to the backing layer and consolidated; or, (f) the bearing material layer may be cured, consolidated and adhered to the backing layer. With alternatives (b), (c) and (d), the adhesive used must be capable of withstanding the curing temperature and with alternative (b), (d) and (e), the adhesive layer must be capable of withstanding the densifying step which may be by rolling or any other suitable alternative method. Alternative (b), (d) and (e) have the advantage that the porosity in the bearing layer may be utilised to enhance the strength of bonding with the adhesive.
- Suitable adhesives may include epoxies, acrylics, cyanoacrylates, polyurethanes, phenolics, isoprenes, styrene butadienes, fluoro-polymers, polyesters and nylons. Methods of adhesive application may include roller coating, curtain coating, spray coating or as a film (e.g. hot melt, pressure sensitive, or contact types). Where adhesives are used, the bearing material may require a pre-treatment such as chemical etching, plasma pre-treatment, irradiation, or the use of chemical coupling agents or adhesion promoters for example prior to the application of adhesive.
- It is possible to deposit the layer in several stages, ie one layer on top of another to produce a thicker deposited layer.
- It is possible to form a variable composition within the deposited layer by control of the slurry during the paper making process, ie by having two or more deposition positions where another slurry composition is deposited on a preceding slurry composition. Alternatively, individual layers of different compositions may be made, pressed together and cured.
- Where the material is produced in a plurality of deposited layers, the layers may be produced with the composition of the slurry varying in each layer. For example, the layer intended to form the sliding surface of the bearing may incorporate more of the fluoro-polymer than the stage intended to form the lower surface thereof adjacent the substrate which may incorporate other polymers which bond more effectively to the material of the substrate. In other words, the composition of the bearing material varies through its thickness from a composition which can more easily bond to the substrate to a composition providing superior bearing properties.
- The thickness of each deposited layer may be varied according to its intended function within the final bearing. Thus, thinner layers which would not on their own be handlable may be employed, e.g. as the bonding layer between the bearing sliding material layer per se and a strong backing layer.
- The strong backing may have a layer of another polymer, which is compatible with the fluoro-polymer, deposited thereon to promote adhesion between the backing and the deposited layer.
- Another possibility is for a filler material to be hollow and to contain a liquid or other lubricant which is gradually released as the bearing wears.
- According to a second aspect of the present invention, there is provided a bearing material when produced by the method of the first aspect of the present invention.
- According to a third aspect of the present invention there is provided a bearing comprising the material of the second aspect of the present invention bonded to a strong backing material.
- In order that the present invention may be more fully understood, examples will now be described by way of illustration only with reference to the accompanying graph which shows a comparison of wear vs time of a known impregnated mesh type bearing material and a bearing material according to the present invention.
- This example is of a method of manufacturing a plain bearing. The method comprises forming a water-based slurry having a solids content of 2% weight/volume (10 kg solids in 5001 of water). The solids content was 73% by volume PTFE (mixed in as PTFE dispersed in water (55% Is PTFE by weight)), 10% by volume fibrillated para-aramid fibres (the fibres were 0.74 mm long on average and 12 to 15 μm in diameter), 4% by volume graphite powder, and 13% by volume glass fibres (150 μm long on average and 12 μm in diameter). In a variation of the illustrative method, the graphite was omitted from the slurry, the PTFE content was reduced to 67% by volume, the glass fibre content was kept at 13% by volume, and the para-aramid fibre content was increased to 20% by volume.
- The para-aramid fibres were fibrillated so that they were able to form a web. The glass fibres were included as reinforcing fibres. It should be noted that the fibres used are resistant to temperatures above the melting point of the PTFE (which is about 330° C.
- The method also comprises depositing a layer of the slurry on to a wire mesh so that the water in the slurry drains from the layer and a deposited layer is formed in which the para-aramid fibres form a web containing the PTFE, the graphite, and the glass fibres. The web formed by the para-aramid fibres has randomly oriented fibres adhering to one another and serves to form a supporting web to enable the deposited layer to be handled. The slurry was deposited by spraying it on to the wire mesh as the mesh was moving. The water drained away through the mish leaving a deposited layer which was self-supporting and able to be lifted from the mesh belt, dried and coiled up.
- The deposited layer, which was approximately 500 microns thick, was removed from the wire mesh and positioned on a metal substrate. The substrate was aluminium sheet 0.3 mm in thickness. The substrate was pre-formed with metal tangs projecting about 0.4 mm therefrom. The tangs were formed by the edges of holes punched through the substrate. The metal substrate and the layer were passed between compressing rollers to force the tangs into the deposited layer so that the deposited layer was adhered to the substrate. The illustrative method also comprises a heating step in which the deposited layer is heated to above the melting point of the PTFE in order to cure the PTFE. In this step, which was carried out after the deposited layer had been adhered to the substrate, heating took place in an oven for 10 minutes at 380° C.
- The completed bearing material had a bearing surface layer which was formed by the deposited layer after curing and which was 250 microns in thickness.
- A slurry was formed in a similar manner to that described with reference to Example 1 but having a final solids content of: 65 vol % PTFE; 20 vol % Kevlar (trade name); and, 15 vol % calcium fluoride (+stabilisers and additives such as coagulants etc.) in the dry deposited material layer which was 0.49 mm in thickness. The tensile strength of the unconsolidated material as deposited and prior to curing was 0.7 MPa. The unconsolidated material was impregnated into a porous bronze sinter layer of 0.25 mm thickness on a steel backing layer by passing the two materials through rollers. The material is consolidated during this rolling step in addition to being impregnated into the bronze sinter. The impregnated bearing material was then heated at 380° C. for 10 minutes to cure the PTFE. The final material possessed a layer of bearing material above the sintered bonding layer of 0.165 mm in thickness.
- The above example was made on small scale experimental equipment. Similar material made on a production line was cured by means of induction heating via the metal backing for approximately 1 minute at 380° C.
- A slurry was formed in a similar manner to that described with reference to Example 1 but having a final solids content of: 61.8 vol % of PTFE; 20 vol % of Kevlar (trade name); 13 vol % of glass fibre; 3.2 vol % of colloidal silica (as a coagulant); and, 2 vol % of carbon black (as a pigment) and other additives as stabilisers. The tensile strength of the unconsolidated material as deposited and prior to curing was 0.9 Mpa. The unconsolidated material was impregnated into a bronze sinter layer of 0.25 mm thickness on a steel backing layer by passing the two materials through rollers. The material was consolidated during this rolling step in addition to being impregnated into the bronze sinter. The impregnated bearing material was then heated to 380° C. for ten minutes to cure the PTFE. Alternatively, when the cure process was carried out on a factory production line, the material underwent an induction cure for approximately one minute at 380° C.
- The final material possessed a layer of bearing material above the sintered bonding layer of 0.165 mm in thickness.
- The wear and friction properties of this material is comparable with that found for other bearing products. See Table 1.
TABLE 1 Wear and friction properties of produced bearing material Wear Friction (Microns) coefficient Bearing material of invention 17 0.12 Mush-route polymer bearing comprising 16 0.15 glass-filled PTFE Commercial mesh-based bearing 1 comprising 23 0.12 PTFE filled with glass and graphite Commercial mesh-based bearing 2 comprising 42 0.11 PTFE filled with glass and graphite - Wear was measured on cylindrical bushes using an oscillating bush test operating at PV=0.18 for 130,000 cycles. Friction coefficient was measured using a pin-on-disc tribometer.
- The attached Figure shows test results for the new bearing material impregnated into bronze sinter compared with an available mesh-based bearing product. The tests were conducted on flat samples using a block-on-ring wear test apparatus.
- The composition was as for Example 3 (61.8% PTFE etc).
- Thickness and strength of material was also as for Example 3.
- The unconsolidated material was impregnated into a bronze mesh of 0.39 mm thickness by passing the two materials through rollers. The material was consolidated during this rolling step in addition to being impregnated into the mesh. Final thickness of the impregnated mesh was 0.39 mm. Cure was at 380° C. for ten minutes.
- A slurry was formed in a similar manner to that described with reference to Example 1 but having a final solids content of: 61.8 vol % of PTFE; 20 vol % of Kevlar (trade name); 13 vol % of glass fibre; 3.2 vol % of colloidal silica (as a coagulant); and, 2 vol % of carbon black (as a pigment) and other additives as stabilisers. The thickness of the material prior to densification was 0.53 mm and the strength thereof in the as deposited form was 0.9 MPa. A phenolic-type adhesive was applied to the surface of the bearing material by roller coating. The coated material was pre-heated to activate the adhesive prior to passing through a calendar nip with a 0.3 mm thick stainless steel backing sheet to form a laminate. The laminate was then passed twice through heated rollers to consolidate the bearing material. Following consolidation, the laminate was heated to 160° C. to cure the adhesive and then heated to 380° C. to cure the PTFE. The laminate material was then formed into cylindrical bushes for testing. The thickness of the consolidated bearing material following curing was 0.23 mm. The phenolic resin adhesive was particularly advantageous in that it was able to maintain a good adhesive bond between the substrate and bearing material after the PTFE curing step.
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/835,881 US6425977B2 (en) | 1997-06-21 | 2001-04-16 | Manufacture of plain bearings |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9713079.3A GB9713079D0 (en) | 1997-06-21 | 1997-06-21 | Manufacture of plain bearings |
GB9713079 | 1997-06-21 | ||
GB9713079.3 | 1997-06-21 | ||
US09/446,303 US6485608B1 (en) | 1997-06-21 | 1998-06-15 | Manufacture of plain bearings |
US09/835,881 US6425977B2 (en) | 1997-06-21 | 2001-04-16 | Manufacture of plain bearings |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/446,303 Division US6485608B1 (en) | 1997-06-21 | 1998-06-15 | Manufacture of plain bearings |
PCT/GB1998/001740 Division WO1998058986A1 (en) | 1997-06-21 | 1998-06-15 | Manufacture of plain bearings |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010031596A1 true US20010031596A1 (en) | 2001-10-18 |
US6425977B2 US6425977B2 (en) | 2002-07-30 |
Family
ID=10814682
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/446,303 Expired - Fee Related US6485608B1 (en) | 1997-06-21 | 1998-06-15 | Manufacture of plain bearings |
US09/835,881 Expired - Fee Related US6425977B2 (en) | 1997-06-21 | 2001-04-16 | Manufacture of plain bearings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/446,303 Expired - Fee Related US6485608B1 (en) | 1997-06-21 | 1998-06-15 | Manufacture of plain bearings |
Country Status (18)
Country | Link |
---|---|
US (2) | US6485608B1 (en) |
EP (1) | EP0991700B1 (en) |
JP (1) | JP2002510347A (en) |
KR (1) | KR20010014028A (en) |
CN (1) | CN1104457C (en) |
AT (1) | ATE214720T1 (en) |
AU (1) | AU737827B2 (en) |
BR (1) | BR9810261A (en) |
CZ (1) | CZ297250B6 (en) |
DE (1) | DE69804307T2 (en) |
DK (1) | DK0991700T3 (en) |
ES (1) | ES2178226T3 (en) |
GB (2) | GB9713079D0 (en) |
PL (1) | PL337611A1 (en) |
RU (1) | RU2199554C2 (en) |
SK (1) | SK285414B6 (en) |
WO (1) | WO1998058986A1 (en) |
ZA (1) | ZA985230B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002099298A1 (en) * | 2001-05-31 | 2002-12-12 | Ks Gleitlager Gmbh | Composite material for a sliding bearing comprising a metallic support layer |
US20050267260A1 (en) * | 2004-05-28 | 2005-12-01 | Arnold Frances | Abrasion resistant fluoropolymer compositions containing micropulp |
US20070269152A1 (en) * | 2001-08-24 | 2007-11-22 | The Boeing Company | Truck Pivot Joint Bearing And Method Of Lubricating |
US20090052822A1 (en) * | 2007-08-24 | 2009-02-26 | Ggb, Inc. | Metal-Backed Plain Bearing |
US20090297859A1 (en) * | 2005-04-01 | 2009-12-03 | Takeyoshi Ohkawa | Sliding Member Forming Composition, Sliding Member, and Fluid Machinery |
CN102391645A (en) * | 2011-09-28 | 2012-03-28 | 洛阳轴研科技股份有限公司 | Preparation method for thermoplastic-polyimide-based compound material for bearing retainer |
CN102441933A (en) * | 2011-09-29 | 2012-05-09 | 洛阳轴研科技股份有限公司 | Method for manufacturing bearing retainer by using carbon/carbon composite material and lubricating and modifying |
JP2013136674A (en) * | 2011-12-28 | 2013-07-11 | Du Pont Mitsui Fluorochem Co Ltd | Fluororesin composition and sliding member |
US20140353602A1 (en) * | 2013-06-04 | 2014-12-04 | Samsung Display Co., Ltd. | Display panel and a method of manufacturing the same |
US9168726B2 (en) | 2010-09-28 | 2015-10-27 | Saint-Gobain Performance Plastics Corporation | Cast fluoropolymer film for bushings |
US20180334755A1 (en) * | 2017-05-22 | 2018-11-22 | Campagnolo S.R.L. | Bicycle gear and method for manufacturing such a gear |
US11286986B2 (en) * | 2019-11-08 | 2022-03-29 | Saint-Gobain Performance Plastics Corporation | Split bearing, assembly, and method of making and using the same |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9713079D0 (en) | 1997-06-21 | 1997-08-27 | T & N Technology Ltd | Manufacture of plain bearings |
US6264369B1 (en) * | 1999-01-29 | 2001-07-24 | General Electric Company | Variable vane seal and washer materials |
FR2825764B1 (en) * | 2001-06-07 | 2003-09-19 | Hispano Suiza Sa | SMOOTH BEARING PROVIDED WITH A FRICTION COATING AND METHOD FOR PRODUCING THE SAME |
US7015159B2 (en) * | 2001-07-24 | 2006-03-21 | E. I. Du Pont De Nemours And Company | Nonwoven material for low friction bearing surfaces |
US7149393B2 (en) * | 2002-12-09 | 2006-12-12 | Eastman Kodak Company | Apparatus and method for forming a fiber optic faceplate |
US7491353B2 (en) * | 2003-03-03 | 2009-02-17 | Glacier Garlock Bearings, Inc. | Boreable plain bearing material |
RU2241719C1 (en) * | 2003-05-05 | 2004-12-10 | Федеральное государственное унитарное предприятие Особое конструкторско-технологическое бюро "ОРИОН" | Composition antifriction material |
US7147378B2 (en) * | 2004-02-19 | 2006-12-12 | Gore Enterprise Holdings, Inc. | Low friction, abrasion-resistant bearing materials |
EP1805251A1 (en) * | 2004-10-04 | 2007-07-11 | Solvay Advanced Polymers, L.L.C. | Overmolded plastic articles, uses thereof, method of making |
US7598308B2 (en) * | 2005-03-30 | 2009-10-06 | The Gates Corporation | Metal—elastomer compound |
JP2006283706A (en) * | 2005-04-01 | 2006-10-19 | Daikin Ind Ltd | Composition for sliding member, sliding member and fluid machine |
KR100580598B1 (en) * | 2005-11-02 | 2006-05-16 | 동양프론테크(주) | Resin composition and manufacturing method of industrial product using same |
RU2305804C1 (en) * | 2005-11-24 | 2007-09-10 | Государственное образовательное учреждение высшего профессионального образования "Брянская государственная инженерно-технологическая академия" | Method of producing sliding bearing |
EP1971712B1 (en) * | 2005-12-28 | 2014-04-02 | Otis Elevator Company | Passenger conveyor handrail sliding layer treatment |
US20070164151A1 (en) * | 2006-01-13 | 2007-07-19 | Luce William E | Aircraft shock strut and improved bearings therefor |
RU2319869C2 (en) * | 2006-02-01 | 2008-03-20 | Смолянинов Владислав Владимирович | Method to increase service life of antifriction bearing |
RU2329279C1 (en) * | 2007-02-12 | 2008-07-20 | Общество с ограниченной ответственностью "Технопласт" | Anti-friction polymer composition |
GB0702795D0 (en) * | 2007-02-13 | 2007-03-28 | Whitford Plastics Ltd | Process for modifying cellulose |
RU2438877C2 (en) * | 2007-04-20 | 2012-01-10 | Сэнт-Гобэн Перформанс Пластикс Пампус Гмбх | Plain bearing and method of its production |
CN201972923U (en) * | 2007-10-24 | 2011-09-14 | 艾默生环境优化技术有限公司 | Scroll machine |
CN101747570B (en) * | 2008-12-18 | 2013-12-18 | 株式会社阪上制作所 | Sliding part and sealing device |
CN102245943A (en) * | 2008-12-24 | 2011-11-16 | 美国圣戈班性能塑料公司 | Polymer material and seals formed thereof for high pressure pump applications |
JP5407994B2 (en) * | 2009-08-11 | 2014-02-05 | 栗田工業株式会社 | Water treatment method and water treatment flocculant |
JP5814254B2 (en) | 2009-12-18 | 2015-11-17 | サン−ゴバン パフォーマンス プラスチックス パンプス ゲゼルシャフト ミット ベシュレンクテル ハフツング | System, method and apparatus for tolerance ring with functional layer |
US8746981B2 (en) * | 2009-12-18 | 2014-06-10 | Saint-Gobain Performance Plastics Pampus, Gmbh | System, method and apparatus for bearings and tolerance rings with fuctional layers |
CA2786848C (en) | 2010-01-19 | 2015-03-31 | Saint-Gobain Performance Plastics Pampus Gmbh | Maintenance-free bearing with tolerance compensation properties against wear and misalignment |
US20120251021A1 (en) * | 2011-04-04 | 2012-10-04 | Swei Gwo S | Self-lubricating structure and method of manufacturing same |
US20120251020A1 (en) * | 2011-04-04 | 2012-10-04 | Swei Gwo S | Self-Lubricating Structure and Method of Manufacturing the Same |
US9187682B2 (en) | 2011-06-24 | 2015-11-17 | Emerson Climate Technologies, Inc. | Refrigeration compressor lubricant |
CN103182808A (en) | 2011-12-28 | 2013-07-03 | 圣戈班高功能塑料集团 | Multilayer complex comprising fluorine-containing polymer surface layer and non-fluorinated polymer transition layer |
CN103998652A (en) * | 2011-12-28 | 2014-08-20 | 美国圣戈班性能塑料公司 | Multilayer composite comprising a fluoropolymer surface with a non-fluorinated polymer transition layer |
FR2985215B1 (en) | 2011-12-28 | 2014-09-19 | Saint Gobain Performance Plast | POLYMERIC COATINGS DEPOSITED ON SUBSTRATES BY THERMAL PROJECTION TECHNIQUES |
RU2493241C1 (en) * | 2012-03-30 | 2013-09-20 | Федеральное государственное унитарное предприятие "Особое конструкторско-технологическое бюро "ОРИОН" | Composition of antifriction solid lubricating coating |
RU2586217C1 (en) * | 2012-04-26 | 2016-06-10 | Минебеа Ко., Лтд. | Uv curable polymer composition, sliding coupling and manufacturing method of sliding coupling |
CN102643529B (en) * | 2012-04-27 | 2013-10-16 | 中国科学院长春应用化学研究所 | Polymer composite for bearing and preparation method thereof |
US20140010484A1 (en) | 2012-06-29 | 2014-01-09 | Olaf Schmitjes | Slide bearing comprising a primer system as adhesion promoter |
JP5992236B2 (en) * | 2012-07-12 | 2016-09-14 | Ntn株式会社 | Resin sliding material for machine tools |
EP2901031B1 (en) | 2012-09-28 | 2022-02-23 | Saint-Gobain Performance Plastics Pampus GmbH | Maintenance-free slide bearing with a combined adhesive sliding layer |
WO2015044458A1 (en) * | 2013-09-30 | 2015-04-02 | Saint-Gobain Performance Plastics Pampus Gmbh | Laminates with fluoropolymer cloth |
DE112014005493T5 (en) * | 2013-12-31 | 2016-08-18 | Saint-Gobain Performance Plastics Corporation | A composite bearing comprising a polyimide matrix |
RU2596820C1 (en) * | 2015-04-22 | 2016-09-10 | Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) | Lubricant composition |
JP6708109B2 (en) * | 2016-12-08 | 2020-06-10 | 王子ホールディングス株式会社 | Fiber-reinforced thermoplastic resin sheet, method for producing the same, metal-clad laminated sheet, and composite |
DE102017218592A1 (en) * | 2017-10-18 | 2019-04-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing a sliding bearing and a plain bearing produced by the method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1002140B (en) * | 1973-11-30 | 1976-05-20 | Pirelli | DEFLATION SIGNAL FOR TIRES |
JPH0624356B2 (en) | 1989-12-21 | 1994-03-30 | 株式会社東芝 | Data transfer method |
US5300366A (en) | 1990-05-09 | 1994-04-05 | Oiles Corporation | Fluororesin composition for a sliding member and a sliding member |
JPH05117476A (en) * | 1991-10-24 | 1993-05-14 | Sumitomo Chem Co Ltd | Resin composition for sliding materials |
GB2279998B (en) | 1993-07-14 | 1997-04-09 | T & N Technology Ltd | Plain bearing |
JP3467328B2 (en) * | 1994-08-23 | 2003-11-17 | オイレス工業株式会社 | Sliding member |
EP0842214B1 (en) | 1995-08-03 | 2001-02-28 | Akzo Nobel N.V. | Fluororesin sheet, process for producing the same, and the use of same |
GB9713079D0 (en) | 1997-06-21 | 1997-08-27 | T & N Technology Ltd | Manufacture of plain bearings |
-
1997
- 1997-06-21 GB GBGB9713079.3A patent/GB9713079D0/en active Pending
-
1998
- 1998-06-15 DE DE69804307T patent/DE69804307T2/en not_active Expired - Fee Related
- 1998-06-15 CN CN98806387A patent/CN1104457C/en not_active Expired - Fee Related
- 1998-06-15 BR BR9810261-3A patent/BR9810261A/en not_active IP Right Cessation
- 1998-06-15 WO PCT/GB1998/001740 patent/WO1998058986A1/en active IP Right Grant
- 1998-06-15 AU AU79268/98A patent/AU737827B2/en not_active Ceased
- 1998-06-15 DK DK98929562T patent/DK0991700T3/en active
- 1998-06-15 RU RU2000101280/04A patent/RU2199554C2/en not_active IP Right Cessation
- 1998-06-15 SK SK1672-99A patent/SK285414B6/en not_active IP Right Cessation
- 1998-06-15 AT AT98929562T patent/ATE214720T1/en not_active IP Right Cessation
- 1998-06-15 GB GB9929426A patent/GB2341426B/en not_active Revoked
- 1998-06-15 EP EP98929562A patent/EP0991700B1/en not_active Expired - Lifetime
- 1998-06-15 PL PL98337611A patent/PL337611A1/en unknown
- 1998-06-15 KR KR19997012057A patent/KR20010014028A/en not_active Ceased
- 1998-06-15 US US09/446,303 patent/US6485608B1/en not_active Expired - Fee Related
- 1998-06-15 ES ES98929562T patent/ES2178226T3/en not_active Expired - Lifetime
- 1998-06-15 CZ CZ0459199A patent/CZ297250B6/en not_active IP Right Cessation
- 1998-06-15 JP JP50395999A patent/JP2002510347A/en active Pending
- 1998-06-17 ZA ZA985230A patent/ZA985230B/en unknown
-
2001
- 2001-04-16 US US09/835,881 patent/US6425977B2/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040142199A1 (en) * | 2001-05-31 | 2004-07-22 | Wolfgang Bickle | Composite material for a sliding bearing comprising a metallic support layer |
WO2002099298A1 (en) * | 2001-05-31 | 2002-12-12 | Ks Gleitlager Gmbh | Composite material for a sliding bearing comprising a metallic support layer |
US20070269152A1 (en) * | 2001-08-24 | 2007-11-22 | The Boeing Company | Truck Pivot Joint Bearing And Method Of Lubricating |
US7480996B2 (en) * | 2001-08-24 | 2009-01-27 | The Boeing Company | Truck pivot joint bearing and method of lubricating |
US20050267260A1 (en) * | 2004-05-28 | 2005-12-01 | Arnold Frances | Abrasion resistant fluoropolymer compositions containing micropulp |
WO2005118714A1 (en) * | 2004-05-28 | 2005-12-15 | E.I. Dupont De Nemours And Company | Abrasion resistant fluoropolymer compositions containing micropulp |
US7531113B2 (en) | 2004-05-28 | 2009-05-12 | E.I. Du Pont De Nemours And Company | Abrasion resistant fluoropolymer compositions containing micropulp |
US20090297859A1 (en) * | 2005-04-01 | 2009-12-03 | Takeyoshi Ohkawa | Sliding Member Forming Composition, Sliding Member, and Fluid Machinery |
US8931957B2 (en) * | 2007-08-24 | 2015-01-13 | Ggb, Inc. | Metal-backed plain bearing |
US20090052822A1 (en) * | 2007-08-24 | 2009-02-26 | Ggb, Inc. | Metal-Backed Plain Bearing |
US10119567B2 (en) | 2007-08-24 | 2018-11-06 | Ggb, Inc. | Metal-backed plain bearing |
KR101565425B1 (en) * | 2010-09-28 | 2015-11-03 | 생-고뱅 퍼포먼스 플라스틱스 코포레이션 | Cast fluoropolymer film for bushings |
US9168726B2 (en) | 2010-09-28 | 2015-10-27 | Saint-Gobain Performance Plastics Corporation | Cast fluoropolymer film for bushings |
EP2621722B1 (en) * | 2010-09-28 | 2018-03-14 | Saint-Gobain Performance Plastics Corporation | Cast fluoropolymer film for bushings |
CN102391645A (en) * | 2011-09-28 | 2012-03-28 | 洛阳轴研科技股份有限公司 | Preparation method for thermoplastic-polyimide-based compound material for bearing retainer |
CN102441933A (en) * | 2011-09-29 | 2012-05-09 | 洛阳轴研科技股份有限公司 | Method for manufacturing bearing retainer by using carbon/carbon composite material and lubricating and modifying |
JP2013136674A (en) * | 2011-12-28 | 2013-07-11 | Du Pont Mitsui Fluorochem Co Ltd | Fluororesin composition and sliding member |
US20140353602A1 (en) * | 2013-06-04 | 2014-12-04 | Samsung Display Co., Ltd. | Display panel and a method of manufacturing the same |
US20180334755A1 (en) * | 2017-05-22 | 2018-11-22 | Campagnolo S.R.L. | Bicycle gear and method for manufacturing such a gear |
CN108930778A (en) * | 2017-05-22 | 2018-12-04 | 坎培诺洛有限公司 | Bicycle drive and method for manufacturing the transmission device |
US10900139B2 (en) * | 2017-05-22 | 2021-01-26 | Campagnolo S.R.L. | Bicycle gear and method for manufacturing such a gear |
TWI760492B (en) * | 2017-05-22 | 2022-04-11 | 義大利商坎帕克諾羅公司 | Bicycle gear and method for manufacturing such a gear |
US11286986B2 (en) * | 2019-11-08 | 2022-03-29 | Saint-Gobain Performance Plastics Corporation | Split bearing, assembly, and method of making and using the same |
Also Published As
Publication number | Publication date |
---|---|
BR9810261A (en) | 2000-09-19 |
WO1998058986A1 (en) | 1998-12-30 |
US6425977B2 (en) | 2002-07-30 |
GB2341426B (en) | 2001-01-03 |
KR20010014028A (en) | 2001-02-26 |
DE69804307T2 (en) | 2002-11-07 |
GB2341426A (en) | 2000-03-15 |
PL337611A1 (en) | 2000-08-28 |
ES2178226T3 (en) | 2002-12-16 |
EP0991700B1 (en) | 2002-03-20 |
DE69804307D1 (en) | 2002-04-25 |
AU7926898A (en) | 1999-01-04 |
GB9713079D0 (en) | 1997-08-27 |
SK285414B6 (en) | 2007-01-04 |
CN1261386A (en) | 2000-07-26 |
CN1104457C (en) | 2003-04-02 |
DK0991700T3 (en) | 2002-07-15 |
SK167299A3 (en) | 2000-07-11 |
RU2199554C2 (en) | 2003-02-27 |
CZ9904591A3 (en) | 2001-01-17 |
ZA985230B (en) | 1998-10-05 |
CZ297250B6 (en) | 2006-10-11 |
JP2002510347A (en) | 2002-04-02 |
GB9929426D0 (en) | 2000-02-09 |
AU737827B2 (en) | 2001-08-30 |
EP0991700A1 (en) | 2000-04-12 |
US6485608B1 (en) | 2002-11-26 |
ATE214720T1 (en) | 2002-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6425977B2 (en) | Manufacture of plain bearings | |
US3231460A (en) | Sheet material | |
RU2000101280A (en) | METHOD FOR MANUFACTURING SLIDING BEARINGS | |
US3950599A (en) | Low-friction laminate liner for bearings | |
RU2538457C2 (en) | Manufacturing method of composite structures, and sleeve made from them (versions) | |
US5858883A (en) | Fibrous lining material comprising a primary layer having less fibrillated aramid fibers and synthetic graphite and a secondary layer comprising carbon particles | |
US20080248271A1 (en) | Flat Sealing Material in the Form of a Reinforced Composite Film | |
US5958507A (en) | Carbon deposit friction lining material | |
US5911514A (en) | Plain bearing with polytetrafluoroethylene-based lining | |
KR20110099707A (en) | Sliding element and method of manufacturing the same | |
WO1999061130A1 (en) | Phase-separation member | |
EP0766019A1 (en) | Fibrous friction lining material comprising a less fibrillated aramid and synthetic graphite | |
JPH04225037A (en) | Fiber reinforced material and its manufacture and use | |
KR100899062B1 (en) | Nonwoven material for low friction bearing surface | |
US4006051A (en) | Method of preparing a low-friction laminate liner for bearings | |
EP0470155B1 (en) | Wear-resistant laminated articles | |
US20040239046A1 (en) | Flat packing and method for the production thereof | |
RU2215654C2 (en) | Method of manufacture of sliding bearing | |
JP2002147510A (en) | Wet friction material and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GIB HOLDINGS, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANA CORPORATION;REEL/FRAME:012918/0501 Effective date: 20010901 Owner name: GLACIER GARLOCK BEARINGS, INC., DELAWARE Free format text: CHANGE OF NAME;ASSIGNOR:GIB HOLDINGS, INC.;REEL/FRAME:012918/0509 Effective date: 20011026 Owner name: DANA CORPORATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCDONALD, JULIE ANN;WHEATLEY, JOHN EDWARD;LATKOWSKI, ANTHONY;AND OTHERS;REEL/FRAME:012918/0519;SIGNING DATES FROM 19990212 TO 19991130 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS AGENT, GEORGIA Free format text: SECURITY AGREEMENT;ASSIGNOR:GLACIER GARLOCK BEARINGS, INC.;REEL/FRAME:013269/0866 Effective date: 20020531 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100730 |
|
AS | Assignment |
Owner name: GGB, INC. (F/K/A GLACIER GARLOCK BEARINGS INC., N/K/A GGB U.S. HOLDCO LLC), NEW JERSEY Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS AGENT;REEL/FRAME:061882/0313 Effective date: 20221104 |