US20010021095A1 - Dieletric ceramics, multilayer ceramic electric parts and method for the manufacture thereof - Google Patents
Dieletric ceramics, multilayer ceramic electric parts and method for the manufacture thereof Download PDFInfo
- Publication number
- US20010021095A1 US20010021095A1 US09/791,295 US79129501A US2001021095A1 US 20010021095 A1 US20010021095 A1 US 20010021095A1 US 79129501 A US79129501 A US 79129501A US 2001021095 A1 US2001021095 A1 US 2001021095A1
- Authority
- US
- United States
- Prior art keywords
- shell
- core
- ceramic
- batio
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract 20
- 238000004519 manufacturing process Methods 0.000 title claims 2
- 238000000034 method Methods 0.000 title claims 2
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract 3
- 239000002245 particle Substances 0.000 claims 2
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/20—Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
Definitions
- the present invention relates to dielectric ceramics for use in dielectric layers of multilayer ceramic capacitors; and more particularly, to a dielectric ceramics with core-shell grain structures capable of providing favorable B temperature characteristics, wherein various shell portions having different functions can be adaptably arranged around a core in a manner suitable for obtaining desired characteristics.
- Mg and rare earth elements are added simultaneously to the dielectric ceramic material containing therein, e.g., BaTiO 3 as a main component and diffused together into grains to form shells thereof. Moreover, no measure has been taken to control the distribution of Mg and the rare earth elements in the grains, resulting in Mg diffusion substantially deep into the dielectric grains.
- the conventional dielectric ceramics including dielectric grains having core-shell grain structures to improve B temperature characteristics may not be adaptably controlled to have required properties.
- the thickness of the dielectric layers has been continuously reduced to obtain an ever-increasing capacitance of multilayer ceramic capacitors, necessitating various quality requirements in such scaled down dielectric layers.
- the conventional core-shell grain structure cannot effectively meet such various quality requirements for the multilayer ceramic capacitors.
- a dielectric ceramic comprising:
- dielectric ceramic grains having BaTiO 3 as a major component thereof, a portion of the dielectric ceramic grains having a ferroelectric core and a paraelectric shell into which Mg and a rare earth element are diffused, the shell being located at least on a part of a surface of the core,
- the shell includes at least two shell portions having different components diffused thereinto, respectively.
- a multilayer ceramic electric part comprising the dielectric ceramic.
- FIG. 1 schematically shows dielectric ceramic grains in accordance with a first preferred embodiment
- FIG. 2 schematically illustrates dielectric ceramic grains in accordance with a second preferred embodiment
- FIG. 3 schematically describes dielectric ceramic grains in accordance with a third preferred embodiment
- FIG. 4 schematically depicts dielectric ceramic grains in accordance with a third preferred embodiment
- FIG. 5 schematically shows an exemplary core-shell grain structure in accordance with still another preferred embodiment
- FIG. 6 is a partial cutaway view of an exemplary multilayer ceramic capacitor
- FIG. 7 is an exploded perspective view of a sintered body in accordance with the present invention.
- dielectric ceramic grains 1 constituting dielectric ceramic layers of multilayer ceramic capacitors, each dielectric ceramic grain generally having a core-shell grain structure in accordance with a first preferred embodiment of the present invention.
- the dielectric ceramic of the present invention is mainly composed of BaTiO 3 and each of the dielectric ceramic grains 1 generally includes a ferroelectric core 2 , and a paraelectric shell 3 where Mg and one or more rare earth elements are diffused into BaTiO 3 .
- the shell 3 encompassing the core 2 is basically formed of two shell portions, i.e., an outer shell portion 3 a and an inner shell portion 3 b into which different components are diffused.
- the outer shell portion 3 a is formed of BaTiO 3 and Mg and one or more rare earth elements, e.g., Ho, both diffused into BaTiO 3 .
- the inner shell portion 3 b is formed of BaTiO 3 and Mg diffused thereinto.
- the inner shell portion 3 b formed by the diffusion of Mg into BaTiO 3 has a paraelectric phase with a high insulation resistance. Mg therein acts as an acceptor of the main component BaTiO 3 .
- the presence of Mg in the inner shell portion 3 b encompassing the core 2 provides BaTiO 3 with a reductive resistance and therefore the reduction of the ferroelectric core 2 formed of BaTiO 3 is prevented during a sintering process and operating life characteristics can be improved.
- the outer shell portion 3 a is formed of BaTiO 3 into which Mg and rare earth elements, e.g., Ho are diffused and has a paraelectric phase with a high insulation resistance.
- the rare earth element therein acts as a donor of the major component BaTiO 3 . Therefore, the oxygen deficiency in the dielectric grains can be effectively compensated, thereby obtaining a high dielectric constant.
- the shell 3 may include a shell portion into which Zr is diffused in addition to Mg and/or one or more rare earth elements.
- Zr is effective in improving temperature characteristics and can be advantageously employed to obtain required temperature characteristics.
- the shell structure with two separated portions 3 a, 3 b having distinct diffusion components can be obtained as follows: First, MgO powder is added to and mixed with the main component BaTiO 3 powder by a wet method and dispersed and heat-treated until the MgO powder is uniformly distributed in the powder mixture. The powder mixture is then made to obtain BaTiO 3 particles having peripheral portion into which Mg is diffused. Next, the powder of one or more rare earth elements, e.g., Ho 2 O 3 powder, is added to and mixed with the heat-treated powder mixture thus obtained by a wet method until the rare earth powder is uniformly distributed in the mixture. The powder mixture is then heat-treated.
- MgO powder is added to and mixed with the main component BaTiO 3 powder by a wet method and dispersed and heat-treated until the MgO powder is uniformly distributed in the powder mixture.
- the powder mixture is then made to obtain BaTiO 3 particles having peripheral portion into which Mg is diffused.
- the powder of one or more rare earth elements
- each particle in the heat-treated powder generally has a core-shell structure provided with a core portion located at the center portion of the particle and essentially composed of BaTiO 3 , an inner shell portion located outside the core potion and composed of BaTiO 3 and Mg diffused thereinto, and an outer shell portion located outside the inner shell portion and composed of BaTiO 3 into which Mg and a rare earth element, e.g., Ho are diffused.
- water and an organic binder are added to the heat-treated powder to make slurry.
- the slurry is used to produce ceramic green sheets and internal electrode patterns are then printed thereon.
- the pattern printed sheets are stacked against one another and the stack is diced into a multiplicity of chips.
- the chips are then sintered to thereby produce dielectric ceramics having the core-shell grain structure as shown in FIG. 1.
- glassy grain boundary portions 4 at portions of shells 3 adjoining neighboring grains as shown in FIG. 1.
- the glassy grain boundary portions 4 have a large electrical resistance and include a glass component precipitated therein.
- the grain boundaries 4 can be formed by adding as a sintering additive a glass component, e.g., SiO 2 , to raw materials of the dielectric ceramics and the thickness of the glassy grain boundaries 4 can be adjusted by varying the amount of the sintering additives.
- the grain boundaries 4 have a large electrical resistance, but are in the paraelectric phase having a lower dielectric constant than that of the core 2 .
- the first core-shell grain structure illustrated in FIG. 1 includes the shell 3 having the inner shell portion 3 b formed by BaTiO 3 into which Mg is diffused and the outer shell portion 3 a formed by BaTiO 3 into which rare earth elements, e.g., Ho, and Mg are diffused.
- the second core-shell structure of the present invention includes the shell 3 having an outer shell portion 3 a into which Mg and Ho are diffused as in the first embodiment and an inner shell portion 3 c where one or more rare earth elements, e.g., Ho, are diffused into BaTiO 3 .
- the outer and the inner shell portions 3 a, 3 c respectively exhibit similar properties and therefore function similarly as those of the first preferred embodiment.
- the second core-shell grain structure of the present invention is obtained by inverting the order of adding the MgO powder and the rare earth powder, e.g., Ho 2 O 3 powder to the BaTiO 3 powder.
- the rare earth Ho 2 O 3 powder is first added to and mixed with the main component BaTiO 3 powder and then the mixture is heat-treated, so that the heat-treated powder mixture having BaTiO 3 particles around which rare earth oxide such as Ho 2 O 3 is diffused can be obtained.
- the MgO powder is added to and mixed with the heat-treated powder mixture thus obtained and then the mixture is heat-treated.
- the heat-treated powder obtained includes particles, wherein each particle generally has an outer shell portion including BaTiO 3 into which MgO and Ho 2 O 3 are diffused and an inner shell portion located inside the outer shell portion and including BaTiO 3 into which Ho 2 O 3 is diffused.
- the heat-treated powder thus provided is mixed with water and an organic binder to make slurry.
- the slurry is used to produce ceramic green sheets and then internal electrode patterns are printed thereon.
- the pattern printed sheets are stacked against one another and the stack is diced into a plurality of chips.
- the chips are then sintered to thereby produce dielectric ceramics having the second core-shell grain structure shown in FIG. 2
- the inner shell portion 3 c containing BaTiO 3 and rare earth element such as Ho serves to improve a dielectric loss tangent “tan ⁇ ” of a capacitor.
- the outer shell 3 a formed of BaTiO 3 into which Mg and rare earth such as Ho are diffused functions to increase a dielectric constant.
- FIGS. 3 and 4 there are shown schematic views of two exemplary core-shell grain structures in accordance with a third preferred embodiment of the invention.
- the respective shell portions 3 a, 3 b, 3 c are not radially separated but are unevenly distributed on the surface of the core 2 , exposing some portions of the core 2 .
- the exemplary core-shell grain structures shown in FIGS. 3 and 4 can be obtained by using a slurry formed in a similar manner described above with reference to the first and the second preferred embodiments excepting that the MgO powder and the rare earth powder, e.g., Ho 2 O 3 powder are simultaneously added to the main material BaTiO 3 powder and heat-treated.
- the slurry is ball milled by using large beads so that some parts of the shells are removed, thereby partially exposing some parts of cores.
- the shell portions 3 a, 3 b, 3 c are not radially separated completely but are partially distributed on the surface of the core 2 with some parts of the shell portions overlapping with each other.
- one of the MgO powder and Ho 2 O 3 powder is added to and mixed with the main material BaTiO 3 powder.
- the mixture is sintered and then the other powder is added to and mixed with the heat-treated mixture. manufacturing method thereof will be explained thereafter.
- one of the MgO powder and Ho 2 O 3 powder is added to and mixed with the main material BaTiO 3 powder.
- the mixture is sintered and then the other powder is added to and mixed with the heat-treated mixture.
- the second mixture is also sintered as in the first and the second embodiments.
- the Mgo and the Ho 2 O 3 powder can be mixed with the BaTiO 3 powder and sintered at the same time.
- Other additives can be used together with the MgO powder and/or the Ho 2 O 3 powder.
- the sintered mixture is dispersed uniformly in an organic binder such as ethyl cellulose dissolved in a solvent to produce slurry.
- the slurry is uniformly coated on a base film, e.g., terepthalate film, and dried to produce thin film green sheets.
- the green sheets are cut to obtain ceramic green sheets of a proper size.
- the conductive paste contains a 100 wt % conductive powder of Ni, Cu, Ag, Pd, Ag-Pd and the like; a 3-12 wt % binder of ethyl cellulose, acryl, polyester and etc, and a 80-120 wt % solvent of butyl carbitol, butyl carbitol acetate, terpineol, ethyl cellosolve, hydrocarbon and etc uniformly mixed and dispersed.
- the ceramic green sheets having internal electrodes patterns printed thereon are alternately stacked. Then, dummy sheets, on which the internal electrode patterns are not printed, are stacked on the lower side and the upper side of the stacked green sheets, and pressed together to produce a laminated body.
- the laminated bodies are cut into separate laminated elements.
- the internal electrodes are alternatingly exposed at opposite end surfaces of the laminated elements.
- FIG. 6 A partial cutaway view of an exemplary multilayer ceramic capacitor thus produced is illustrated in FIG. 6, wherein reference numeral 12 represents the external electrodes and 13 represents a sintered body of internal electrodes 15 and 16 and ceramic layers 17 .
- the sintered body 13 is made by stacking the dielectric ceramic layers 17 having the internal electrodes 15 , 16 thereon and several ceramic dummy layers 17 ′ having no internal electrode, on the lower and the upper side of the stacked ceramic layers 17 .
- the internal electrodes 15 , 16 facing each other through a dielectric ceramic layer therebetween are alternatingly exposed at the opposite end surfaces of the sintered body 13 .
- the dielectric ceramic layers 17 , 17 ′ are formed of dielectric ceramic having a core-shell grain structure described in detail with reference to FIGS. 1 - 5 .
- the core-shell grain structure of the present invention could be applied in other types of electric parts than the multilayer ceramic capacitor described by way of illustrating in the present invention.
- the inventive core-shell grain structure can be equally applied to a multilayer ceramic LC hybrid component having a capacitor portion.
- a ceramic powder mixture was prepared by mixing 97.5 wt % of BaTiO 3 powder with a mean diameter of 0.4 ⁇ m, 1.3 wt % of MgO powder and 1.2 wt % of SiO 2 powder as a sintering additive.
- the ceramic powder mixture was ball milled with pure water for 15 hours and then heat-treated at 1200° C. for 2 hours. Thereafter, 1.5 wt % of Ho 2 O 3 powder and 1.5 wt % of SiO 2 powder were added to the 97.0 wt % of the heat-treated ceramic powder mixture thus obtained and this mixture was ball milled with pure water for 15 hours and then heat-treated at 1000° C. for 2 hours. Water and an organic binder were added to the final ceramic powder mixture thus produced to obtain slurry.
- the slurry was formed into ceramic green sheets with a thickness of 10 ⁇ m by a reverse coater. Then, a conductive paste was coated on the ceramic green sheets to form internal electrode and 10 green sheets thus provided were stacked to produce a laminated body. The laminated body was cut into a plurality of separate laminated elements. Thereafter, external electrodes were formed on two opposite end portions of the laminated elements to produce multilayer ceramic elements.
- the multilayer ceramic elements were sintered at 1200° C. in a reductive atmosphere for 1.5 hours, thereby obtaining multilayer ceramic capacitors of 3.2 mm ⁇ 1.6 mm ⁇ 1.6 mm.
- Dielectric ceramic layers included in the multilayer ceramic capacitors thus fabricated were formed of a plurality of dielectric ceramic grains 1 as schematically shown in FIG. 1.
- Each of the dielectric ceramic grains generally had the core-shell grain structure including ferroelectric core 2 mainly composed of BaTiO 3 at the center of the grain 1 and the paraelectric shell 3 encompassing the core 2 .
- the shell 3 was divided into two layers, i.e., an inner shell portion 3 b where Mg was diffused in BaTiO 3 and an outer shell portion 3 a where Mg and Ho were diffused in BaTiO 3 .
- the core was encompassed by the inner shell portion 3 b, which in turn was surrounded by the outer shell portion 3 a.
- the dielectric ceramic obtained through the process described above had a dielectric constant of 3350, greater than 3000.
- the tan ⁇ of the multilayer ceramic capacitors was about 3.9, less than 4.0. Endurance life of the capacitors obtained by the accelerated life test performed under the condition of 150° C., 100 V was 39860 seconds.
- Example 2 While the 1.3 wt % of MgO was first added to the dielectric ceramic material having BaTiO 3 as a major component thereof in Example 1, the 1.3 wt % of Ho 2 O 3 was first added and the mixture of the both was heat-treated at 1000° C. for 2 hours in Example 2. Thereafter, 1.3 wt % of MgO was added in lieu of 1.3 wt % of Ho 2 O 3 in Example 1 to the heat-treated mixture of Ho 2 O 3 and the BaTiO 3 based ceramic powder. Dielectric ceramic slurry was made by employing the same method as in Example 1 except that the processes described above and multilayer ceramic capacitors were manufactured by using the slurry.
- the dielectric ceramic thus obtained exhibited a dielectric constant of 3210, greater than 3000, and the tan ⁇ of 3.4, not greater than 4.0.
- the endurance life of the capacitors obtained by the accelerated life test performed under the condition of 150° C., 100 V was 52980 seconds.
- the dielectric ceramic thus obtained exhibited a dielectric constant of 3240, not less than 3000, and the tan ⁇ of 3.8, not greater than 4.0.
- the endurance life of the capacitors obtained by means of the accelerated life test performed under the same condition as in Example 1 was 68360 seconds.
- the ceramic capacitors of the comparative example were fabricated in a similar manner as in the Example 3, excepting that large beads were not used in producing the slurry.
- the dielectric ceramic thus obtained exhibited a dielectric constant of 2780, less than 3000, and the tan ⁇ of 4.2, greater than 4.0.
- the endurance life of the capacitors measured by means of accelerated life test performed under the same condition as in Example 1 was 1200 seconds.
- Table shows the test results of the Examples 1-3 and the comparative Example. TABLE Endurance Life Delectric (150° C., Example Constant tan ⁇ 100 V) Remarks Example 3350 3.9 39860 sec. heat treatment of 1 MgO first Example 3210 3.4 52980 sec. heat treatment of 2 Ho 2 O 3 first Example 3240 3.8 68360 sec. simultaneous heat 3 treatment of MgO and Ho 2 O 3 with breaking shells Compara- 2780 4.2 1200 sec. simultaneous heat tive treatment of MgO Example and Ho 2 O 3 without breaking shells
- the shell can be constituted by at least two separate shell portions respectively having different functions of improving, e.g., a reduction resistance characteristic, a breakdown voltage and operating life characteristic, and a temperature, especially B temperature characteristic.
- These shell portions can be adaptively disposed on the surface of the core.
- the shell portions can be disposed radially on the surface of the core as in FIGS. 1 and 2, non-radially but in direct contact with the surface of the core as in FIGS. 3 - 5 .
- some parts of the core can be exposed as shown in FIGS. 3 and 4. Therefore, the properties of the dielectric ceramics and electric parts employing therein such dielectric ceramics can be optimized by adaptively forming shell portions of desired characteristics to have a shell structure suitable for the purpose.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Dielectric ceramic includes dielectric ceramic grains having BaTiO3 as a major component thereof, a portion of the dielectric ceramic grains having a ferroelectric core and a paraelectric shell into which Mg and a rare earth element are diffused. The shell being located at least on a part of a surface of the core, wherein the shell includes at least two shell portions having different components diffused thereinto. The shell portions can be radially disposed on one another or be in direct contact with the surface of the core.
Description
- The present invention relates to dielectric ceramics for use in dielectric layers of multilayer ceramic capacitors; and more particularly, to a dielectric ceramics with core-shell grain structures capable of providing favorable B temperature characteristics, wherein various shell portions having different functions can be adaptably arranged around a core in a manner suitable for obtaining desired characteristics.
- When manufacturing multilayer ceramic capacitors having desired B temperature characteristics by using dielectric ceramics principally composed of barium titanate (BaTiO3) , it has been considered to be essential that crystal grains constituting the dielectric ceramics have a core-shell grain structure, wherein the core-shell grain structure includes a ferroelectric core and a paraelectric shell encompassing the core. The core-shell grain structure in the dielectric ceramics is obtained by using such additives as Mg and rare earth elements.
- In manufacturing conventional dielectric ceramics having the core-shell grain structure, Mg and rare earth elements are added simultaneously to the dielectric ceramic material containing therein, e.g., BaTiO3 as a main component and diffused together into grains to form shells thereof. Moreover, no measure has been taken to control the distribution of Mg and the rare earth elements in the grains, resulting in Mg diffusion substantially deep into the dielectric grains.
- Therefore, the conventional dielectric ceramics including dielectric grains having core-shell grain structures to improve B temperature characteristics may not be adaptably controlled to have required properties. The thickness of the dielectric layers has been continuously reduced to obtain an ever-increasing capacitance of multilayer ceramic capacitors, necessitating various quality requirements in such scaled down dielectric layers. However, the conventional core-shell grain structure cannot effectively meet such various quality requirements for the multilayer ceramic capacitors.
- It is, therefore, an object of the present invention to provide multilayer ceramic capacitors with an improved performance and reliability by adaptively tailoring the shell structure of ceramic grains according to the required characteristics.
- In accordance with one aspect of the present invention, there is provided a dielectric ceramic comprising:
- dielectric ceramic grains having BaTiO3 as a major component thereof, a portion of the dielectric ceramic grains having a ferroelectric core and a paraelectric shell into which Mg and a rare earth element are diffused, the shell being located at least on a part of a surface of the core,
- wherein the shell includes at least two shell portions having different components diffused thereinto, respectively.
- In accordance with another aspect of the present invention, there is provided a multilayer ceramic electric part comprising the dielectric ceramic.
- In accordance with still another aspect of the present invention, there is provided a method for manufacturing the multilayer ceramic electric part comprising the steps of:
- producing a ceramic powder mixture having ceramic particles, the producing step including the step of mixing MgO and a substance containing a rare earth element with a BaTiO3 based dielectric ceramic material; and
- removing portions of surfaces of the ceramic particles
- The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which:
- FIG. 1 schematically shows dielectric ceramic grains in accordance with a first preferred embodiment;
- FIG. 2 schematically illustrates dielectric ceramic grains in accordance with a second preferred embodiment;
- FIG. 3 schematically describes dielectric ceramic grains in accordance with a third preferred embodiment;
- FIG. 4 schematically depicts dielectric ceramic grains in accordance with a third preferred embodiment;
- FIG. 5 schematically shows an exemplary core-shell grain structure in accordance with still another preferred embodiment;
- FIG. 6 is a partial cutaway view of an exemplary multilayer ceramic capacitor; and
- FIG. 7 is an exploded perspective view of a sintered body in accordance with the present invention.
- Referring to FIG. 1, there are schematically shown dielectric
ceramic grains 1 constituting dielectric ceramic layers of multilayer ceramic capacitors, each dielectric ceramic grain generally having a core-shell grain structure in accordance with a first preferred embodiment of the present invention. The dielectric ceramic of the present invention is mainly composed of BaTiO3 and each of the dielectricceramic grains 1 generally includes aferroelectric core 2, and aparaelectric shell 3 where Mg and one or more rare earth elements are diffused into BaTiO3. Theshell 3 encompassing thecore 2 is basically formed of two shell portions, i.e., anouter shell portion 3 a and aninner shell portion 3 b into which different components are diffused. Theouter shell portion 3 a is formed of BaTiO3 and Mg and one or more rare earth elements, e.g., Ho, both diffused into BaTiO3. Theinner shell portion 3 b is formed of BaTiO3 and Mg diffused thereinto. - The
inner shell portion 3 b formed by the diffusion of Mg into BaTiO3 has a paraelectric phase with a high insulation resistance. Mg therein acts as an acceptor of the main component BaTiO3. The presence of Mg in theinner shell portion 3 b encompassing thecore 2 provides BaTiO3 with a reductive resistance and therefore the reduction of theferroelectric core 2 formed of BaTiO3 is prevented during a sintering process and operating life characteristics can be improved. - The
outer shell portion 3 a is formed of BaTiO3 into which Mg and rare earth elements, e.g., Ho are diffused and has a paraelectric phase with a high insulation resistance. The rare earth element therein acts as a donor of the major component BaTiO3. Therefore, the oxygen deficiency in the dielectric grains can be effectively compensated, thereby obtaining a high dielectric constant. - Further, the
shell 3 may include a shell portion into which Zr is diffused in addition to Mg and/or one or more rare earth elements. Zr is effective in improving temperature characteristics and can be advantageously employed to obtain required temperature characteristics. - The shell structure with two separated
portions - In the core-shell structured dielectric ceramics, there are also formed glassy
grain boundary portions 4 at portions ofshells 3 adjoining neighboring grains as shown in FIG. 1. The glassygrain boundary portions 4 have a large electrical resistance and include a glass component precipitated therein. Thegrain boundaries 4 can be formed by adding as a sintering additive a glass component, e.g., SiO2, to raw materials of the dielectric ceramics and the thickness of theglassy grain boundaries 4 can be adjusted by varying the amount of the sintering additives. Thegrain boundaries 4 have a large electrical resistance, but are in the paraelectric phase having a lower dielectric constant than that of thecore 2. - Referring to FIG. 2, there is schematically shown dielectric ceramic grains constituting a dielectric ceramic and each having a second core-shell grain structure in accordance with another preferred embodiment of the present invention. The first core-shell grain structure illustrated in FIG. 1 includes the
shell 3 having theinner shell portion 3 b formed by BaTiO3 into which Mg is diffused and theouter shell portion 3 a formed by BaTiO3 into which rare earth elements, e.g., Ho, and Mg are diffused. On the other hand, the second core-shell structure of the present invention includes theshell 3 having anouter shell portion 3 a into which Mg and Ho are diffused as in the first embodiment and aninner shell portion 3 c where one or more rare earth elements, e.g., Ho, are diffused into BaTiO3. The outer and theinner shell portions - The second core-shell grain structure of the present invention is obtained by inverting the order of adding the MgO powder and the rare earth powder, e.g., Ho2O3 powder to the BaTiO3 powder. To be more specific, the rare earth Ho2O3 powder is first added to and mixed with the main component BaTiO3 powder and then the mixture is heat-treated, so that the heat-treated powder mixture having BaTiO3 particles around which rare earth oxide such as Ho2O3 is diffused can be obtained. Next, the MgO powder is added to and mixed with the heat-treated powder mixture thus obtained and then the mixture is heat-treated. Consequently, the heat-treated powder obtained includes particles, wherein each particle generally has an outer shell portion including BaTiO3 into which MgO and Ho2O3 are diffused and an inner shell portion located inside the outer shell portion and including BaTiO3 into which Ho2O3 is diffused. Next, the heat-treated powder thus provided is mixed with water and an organic binder to make slurry. The slurry is used to produce ceramic green sheets and then internal electrode patterns are printed thereon. The pattern printed sheets are stacked against one another and the stack is diced into a plurality of chips. The chips are then sintered to thereby produce dielectric ceramics having the second core-shell grain structure shown in FIG. 2
- The
inner shell portion 3 c containing BaTiO3 and rare earth element such as Ho serves to improve a dielectric loss tangent “tan δ” of a capacitor. Theouter shell 3 a formed of BaTiO3 into which Mg and rare earth such as Ho are diffused functions to increase a dielectric constant. - Referring to FIGS. 3 and 4, there are shown schematic views of two exemplary core-shell grain structures in accordance with a third preferred embodiment of the invention. In this embodiment, the
respective shell portions core 2, exposing some portions of thecore 2. The effect of the improvements of the electrical characteristics due to the fact that shell grains can be formed between shell portions of either a same type or different types as shown in FIG. 3 or between a core and a shell portion or between cores as shown in FIG. 4. - The exemplary core-shell grain structures shown in FIGS. 3 and 4 can be obtained by using a slurry formed in a similar manner described above with reference to the first and the second preferred embodiments excepting that the MgO powder and the rare earth powder, e.g., Ho2O3 powder are simultaneously added to the main material BaTiO3 powder and heat-treated. In addition, the slurry is ball milled by using large beads so that some parts of the shells are removed, thereby partially exposing some parts of cores.
- Referring to FIG. 5, there is shown an exemplary core-shell grain structure in accordance with still another preferred embodiment, the
shell portions core 2 with some parts of the shell portions overlapping with each other. - Next, a multilayer ceramic capacitor will be described as an example of multilayer ceramic electrical parts which can be made by using the dielectric ceramics, and a manufacturing method thereof will be explained thereafter.
- First, as described above, one of the MgO powder and Ho2O3 powder is added to and mixed with the main material BaTiO3 powder. The mixture is sintered and then the other powder is added to and mixed with the heat-treated mixture. manufacturing method thereof will be explained thereafter.
- First, as described above, one of the MgO powder and Ho2O3 powder is added to and mixed with the main material BaTiO3 powder. The mixture is sintered and then the other powder is added to and mixed with the heat-treated mixture. The second mixture is also sintered as in the first and the second embodiments. Or, as in the third embodiment of the invention, the Mgo and the Ho2O3 powder can be mixed with the BaTiO3 powder and sintered at the same time. Other additives can be used together with the MgO powder and/or the Ho2O3 powder. Then, the sintered mixture is dispersed uniformly in an organic binder such as ethyl cellulose dissolved in a solvent to produce slurry. The slurry is uniformly coated on a base film, e.g., terepthalate film, and dried to produce thin film green sheets. Then, the green sheets are cut to obtain ceramic green sheets of a proper size.
- Next, a conductive paste is printed on the ceramic green sheets to produce two types of internal electrode patterns. The conductive paste contains a 100 wt % conductive powder of Ni, Cu, Ag, Pd, Ag-Pd and the like; a 3-12 wt % binder of ethyl cellulose, acryl, polyester and etc, and a 80-120 wt % solvent of butyl carbitol, butyl carbitol acetate, terpineol, ethyl cellosolve, hydrocarbon and etc uniformly mixed and dispersed.
- The ceramic green sheets having internal electrodes patterns printed thereon are alternately stacked. Then, dummy sheets, on which the internal electrode patterns are not printed, are stacked on the lower side and the upper side of the stacked green sheets, and pressed together to produce a laminated body. The laminated bodies are cut into separate laminated elements. The internal electrodes are alternatingly exposed at opposite end surfaces of the laminated elements.
- Thereafter, another conductive paste for use in forming external electrodes is applied on surfaces of both end portions of each laminated element. The laminated elements having the conductive paste thus applied are dried to produce multilayer ceramic elements. Then, the multilayer ceramic elements are sintered. During the sintering process, the ceramic layers are sintered and at the same time the internal electrode patterns and the conductive paste applied on the surfaces of the end portions are heat-treated. Thereafter, Sn or solder plating is performed on the conductive layers on the surfaces of the end portions thereby completing a manufacture of the multilayer ceramic capacitor. A partial cutaway view of an exemplary multilayer ceramic capacitor thus produced is illustrated in FIG. 6, wherein
reference numeral 12 represents the external electrodes and 13 represents a sintered body ofinternal electrodes ceramic layers 17. - Referring to FIG. 7, there is illustrated an exemplary view of the
sintered body 13 shown in FIG. 6. As shown, thesintered body 13 is made by stacking the dielectricceramic layers 17 having theinternal electrodes internal electrodes sintered body 13. The dielectricceramic layers - It should be noted that the core-shell grain structure of the present invention could be applied in other types of electric parts than the multilayer ceramic capacitor described by way of illustrating in the present invention. For instance, the inventive core-shell grain structure can be equally applied to a multilayer ceramic LC hybrid component having a capacitor portion.
- The preferred embodiments of the invention will now be described in further detail by way of illustration based on Examples.
- To obtain dielectric ceramics for multilayer ceramic capacitors, a ceramic powder mixture was prepared by mixing 97.5 wt % of BaTiO3 powder with a mean diameter of 0.4 μm, 1.3 wt % of MgO powder and 1.2 wt % of SiO2 powder as a sintering additive. The ceramic powder mixture was ball milled with pure water for 15 hours and then heat-treated at 1200° C. for 2 hours. Thereafter, 1.5 wt % of Ho2O3 powder and 1.5 wt % of SiO2 powder were added to the 97.0 wt % of the heat-treated ceramic powder mixture thus obtained and this mixture was ball milled with pure water for 15 hours and then heat-treated at 1000° C. for 2 hours. Water and an organic binder were added to the final ceramic powder mixture thus produced to obtain slurry.
- The slurry was formed into ceramic green sheets with a thickness of 10 μm by a reverse coater. Then, a conductive paste was coated on the ceramic green sheets to form internal electrode and10 green sheets thus provided were stacked to produce a laminated body. The laminated body was cut into a plurality of separate laminated elements. Thereafter, external electrodes were formed on two opposite end portions of the laminated elements to produce multilayer ceramic elements.
- The multilayer ceramic elements were sintered at 1200° C. in a reductive atmosphere for 1.5 hours, thereby obtaining multilayer ceramic capacitors of 3.2 mm×1.6 mm×1.6 mm.
- Dielectric ceramic layers included in the multilayer ceramic capacitors thus fabricated were formed of a plurality of dielectric
ceramic grains 1 as schematically shown in FIG. 1. Each of the dielectric ceramic grains generally had the core-shell grain structure includingferroelectric core 2 mainly composed of BaTiO3 at the center of thegrain 1 and theparaelectric shell 3 encompassing thecore 2. Theshell 3 was divided into two layers, i.e., aninner shell portion 3 b where Mg was diffused in BaTiO3 and anouter shell portion 3 a where Mg and Ho were diffused in BaTiO3. The core was encompassed by theinner shell portion 3 b, which in turn was surrounded by theouter shell portion 3 a. - The dielectric ceramic obtained through the process described above had a dielectric constant of 3350, greater than 3000. The tan δ of the multilayer ceramic capacitors was about 3.9, less than 4.0. Endurance life of the capacitors obtained by the accelerated life test performed under the condition of 150° C., 100 V was 39860 seconds.
- While the 1.3 wt % of MgO was first added to the dielectric ceramic material having BaTiO3 as a major component thereof in Example 1, the 1.3 wt % of Ho2O3 was first added and the mixture of the both was heat-treated at 1000° C. for 2 hours in Example 2. Thereafter, 1.3 wt % of MgO was added in lieu of 1.3 wt % of Ho2O3 in Example 1 to the heat-treated mixture of Ho2O3 and the BaTiO3 based ceramic powder. Dielectric ceramic slurry was made by employing the same method as in Example 1 except that the processes described above and multilayer ceramic capacitors were manufactured by using the slurry.
- The dielectric ceramic thus obtained exhibited a dielectric constant of 3210, greater than 3000, and the tan δ of 3.4, not greater than 4.0. The endurance life of the capacitors obtained by the accelerated life test performed under the condition of 150° C., 100 V was 52980 seconds.
- In this Example, 1.3 wt % of MgO and 1.3 wt % of Ho2O3 were mixed together with the BaTiO3 dielectric ceramic material and the mixture was heat-treated at 1000° C. for 2 hours. When the mixture was ball milled to make slurry, large beads were used to remove some parts of shells. The slurry was made by the same method as in Example 1 except that the processes described above and multilayer ceramic capacitors were manufactured by using the slurry.
- The dielectric ceramic thus obtained exhibited a dielectric constant of 3240, not less than 3000, and the tan δ of 3.8, not greater than 4.0. The endurance life of the capacitors obtained by means of the accelerated life test performed under the same condition as in Example 1 was 68360 seconds.
- The ceramic capacitors of the comparative example were fabricated in a similar manner as in the Example 3, excepting that large beads were not used in producing the slurry.
- The dielectric ceramic thus obtained exhibited a dielectric constant of 2780, less than 3000, and the tan δ of 4.2, greater than 4.0. The endurance life of the capacitors measured by means of accelerated life test performed under the same condition as in Example 1 was 1200 seconds.
- Table shows the test results of the Examples 1-3 and the comparative Example.
TABLE Endurance Life Delectric (150° C., Example Constant tan δ 100 V) Remarks Example 3350 3.9 39860 sec. heat treatment of 1 MgO first Example 3210 3.4 52980 sec. heat treatment of 2 Ho2O3 first Example 3240 3.8 68360 sec. simultaneous heat 3 treatment of MgO and Ho2O3 with breaking shells Compara- 2780 4.2 1200 sec. simultaneous heat tive treatment of MgO Example and Ho2O3 without breaking shells - In accordance with the present invention as described above, the shell can be constituted by at least two separate shell portions respectively having different functions of improving, e.g., a reduction resistance characteristic, a breakdown voltage and operating life characteristic, and a temperature, especially B temperature characteristic. These shell portions can be adaptively disposed on the surface of the core. For instance, the shell portions can be disposed radially on the surface of the core as in FIGS. 1 and 2, non-radially but in direct contact with the surface of the core as in FIGS.3-5. Further, some parts of the core can be exposed as shown in FIGS. 3 and 4. Therefore, the properties of the dielectric ceramics and electric parts employing therein such dielectric ceramics can be optimized by adaptively forming shell portions of desired characteristics to have a shell structure suitable for the purpose.
- While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Claims (9)
1. Dielectric ceramic comprising:
dielectric ceramic grains having BaTiO3 as a major component thereof, a portion of the dielectric ceramic grains having a ferroelectric core and a paraelectric shell into which Mg and a rare earth element are diffused, the shell being located at least on a part of a surface of the core,
wherein the shell includes at least two shell portions having different components diffused thereinto, respectively.
2. The dielectric ceramic of , wherein the shell portions are radially disposed on one another.
claim 1
3. The dielectric ceramic of , wherein the shell portions are unevenly distributed on the surface of the core.
claim 1
4. The dielectric ceramic of , wherein parts of the shell portions overlap with each other.
claim 3
5. A multilayer ceramic electric part comprising the dielectric ceramic of .
claim 1
6. The multilayer ceramic electric part of , wherein the shell portions are radially disposed on one another.
claim 5
7. The multilayer ceramic electric part of , wherein the shell portions are unevenly distributed on the surface of the core.
claim 5
8. The multilayer ceramic electric part of , wherein parts of the shell portions overlap with each other.
claim 7
9. A method for manufacturing the multilayer ceramic electric part of , comprising the steps of:
claim 5
producing a ceramic powder mixture having ceramic particles, the producing step including the step of mixing MgO and a substance containing a rare earth element with a BaTiO3 based dielectric ceramic material; and
removing portions of surfaces of the ceramic particles.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-051029 | 2000-02-28 | ||
JP2000051029A JP2001240466A (en) | 2000-02-28 | 2000-02-28 | Porcelain of dielectrics and electronic parts of laminated ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010021095A1 true US20010021095A1 (en) | 2001-09-13 |
US6437969B2 US6437969B2 (en) | 2002-08-20 |
Family
ID=18572737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/791,295 Expired - Lifetime US6437969B2 (en) | 2000-02-28 | 2001-02-23 | Dielectric ceramics, multilayer ceramic electric parts and method for the manufacture thereof |
Country Status (4)
Country | Link |
---|---|
US (1) | US6437969B2 (en) |
EP (1) | EP1128404B1 (en) |
JP (1) | JP2001240466A (en) |
HK (1) | HK1040000A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060088709A1 (en) * | 2004-10-12 | 2006-04-27 | Tdk Corporation | Dielectric ceramic composition and electronic device |
US20110019333A1 (en) * | 2009-07-22 | 2011-01-27 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
CN102473498A (en) * | 2010-03-30 | 2012-05-23 | Tdk株式会社 | Sintered magnet, motor, automobile, and method for producing sintered magnet |
US8841225B2 (en) | 2010-04-02 | 2014-09-23 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor using the same |
US20180182557A1 (en) * | 2016-12-28 | 2018-06-28 | Samsung Electro-Mechanics Co., Ltd. | Dielectric powder and multilayer capacitor using the same |
CN113161146A (en) * | 2020-01-07 | 2021-07-23 | 三星电机株式会社 | Ceramic electronic component and method for manufacturing ceramic electronic component |
CN113257571A (en) * | 2020-02-07 | 2021-08-13 | 三星电机株式会社 | Ceramic electronic component and method of manufacturing ceramic electronic component |
US20220199326A1 (en) * | 2020-12-18 | 2022-06-23 | Samsung Electro-Mechanics Co., Ltd. | Ceramic electronic component |
US11538630B2 (en) * | 2019-11-27 | 2022-12-27 | Samsung Electro-Mechanics Co., Ltd. | Method of producing core-shell particles and multilayer ceramic electronic component including core-shell particles |
US11791098B2 (en) | 2020-12-16 | 2023-10-17 | Samsung Electro-Mechanics Co., Ltd. | Dielectric and multilayer capacitor including the same |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1178240C (en) * | 2000-02-03 | 2004-12-01 | 太阳诱电株式会社 | Stached ceramic capacitor and making method thereof |
JP5046432B2 (en) * | 2000-06-29 | 2012-10-10 | 京セラ株式会社 | Dielectric porcelain and multilayer electronic components |
JP2002020166A (en) * | 2000-06-30 | 2002-01-23 | Taiyo Yuden Co Ltd | Dielectric porcelain composition and porcelaneous capacitor |
JP3705141B2 (en) * | 2001-03-19 | 2005-10-12 | 株式会社村田製作所 | Dielectric ceramic, manufacturing method and evaluation method thereof, and multilayer ceramic electronic component |
JP2002293627A (en) * | 2001-04-04 | 2002-10-09 | Taiyo Yuden Co Ltd | Dielectric ceramic composition and ceramic capacitor |
US20030059366A1 (en) * | 2001-09-21 | 2003-03-27 | Cabot Corporation | Dispersible barium titanate-based particles and methods of forming the same |
DE60335427D1 (en) | 2002-01-15 | 2011-02-03 | Tdk Corp | Dielectric ceramic composition and electronic device |
KR20030062931A (en) * | 2002-01-21 | 2003-07-28 | 주식회사 바티오테크 | High temperature stability compound for integrated ceramic capacitor |
US20030215606A1 (en) * | 2002-05-17 | 2003-11-20 | Clancy Donald J. | Dispersible dielectric particles and methods of forming the same |
US20040052721A1 (en) * | 2002-09-13 | 2004-03-18 | Kerchner Jeffrey A. | Dielectric particles having passivated surfaces and methods of forming same |
JP4552419B2 (en) * | 2002-11-29 | 2010-09-29 | 株式会社村田製作所 | Dielectric ceramic and multilayer ceramic capacitors |
US20040121153A1 (en) * | 2002-12-20 | 2004-06-24 | Sridhar Venigalla | High tetragonality barium titanate-based compositions and methods of forming the same |
JP2005277393A (en) * | 2004-02-25 | 2005-10-06 | Kyocera Corp | Laminated ceramic capacitor and its manufacturing method |
JP4661203B2 (en) * | 2004-12-15 | 2011-03-30 | Tdk株式会社 | Ceramic electronic component and manufacturing method thereof |
JP4720193B2 (en) * | 2005-01-24 | 2011-07-13 | 株式会社村田製作所 | Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor |
JP4779689B2 (en) * | 2005-03-22 | 2011-09-28 | Tdk株式会社 | Powder manufacturing method, powder and multilayer ceramic capacitor using the powder |
JP4937522B2 (en) * | 2005-04-04 | 2012-05-23 | Tdk株式会社 | Electronic component, dielectric ceramic composition and method for producing the same |
JP2006290675A (en) * | 2005-04-11 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
JP4725957B2 (en) * | 2005-08-01 | 2011-07-13 | セルミ医療器株式会社 | Voltage converter |
WO2007074731A1 (en) * | 2005-12-26 | 2007-07-05 | Kyocera Corporation | Multilayer ceramic capacitor |
US8107221B2 (en) * | 2006-10-27 | 2012-01-31 | Kyocera Corporation | Dielectric ceramic and capacitor |
US8059388B2 (en) * | 2006-11-29 | 2011-11-15 | Kyocera Corporation | Multilayered ceramic capacitor |
JP4863007B2 (en) * | 2007-01-23 | 2012-01-25 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
TW200839814A (en) * | 2007-03-14 | 2008-10-01 | Tdk Corp | Dielectric ceramic composition and electronic device |
WO2009001690A1 (en) * | 2007-06-27 | 2008-12-31 | Murata Manufacturing Co., Ltd. | Semiconductor ceramic powder, semiconductor ceramic, and laminated semiconductor capacitor |
JP4925958B2 (en) * | 2007-07-27 | 2012-05-09 | 京セラ株式会社 | Multilayer ceramic capacitor |
JP4920520B2 (en) * | 2007-07-31 | 2012-04-18 | 太陽誘電株式会社 | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor using the same |
JP5067572B2 (en) * | 2008-07-24 | 2012-11-07 | Tdk株式会社 | Dielectric porcelain composition |
JP5316353B2 (en) * | 2009-10-09 | 2013-10-16 | 株式会社村田製作所 | Dielectric ceramic and multilayer ceramic capacitors |
JP5531863B2 (en) * | 2010-08-31 | 2014-06-25 | Tdk株式会社 | Dielectric ceramic composition and ceramic electronic component |
KR101548771B1 (en) * | 2011-06-23 | 2015-09-01 | 삼성전기주식회사 | Chip type laminated capacitor |
KR102064008B1 (en) * | 2013-01-15 | 2020-02-17 | 삼성전기주식회사 | Multi-layered capacitor and circuit board mounted multi-layered capacitor |
KR101681358B1 (en) * | 2013-04-08 | 2016-11-30 | 삼성전기주식회사 | A multilayer ceramic capacitor and a method for manufactuaring the same |
JP6415337B2 (en) * | 2015-01-28 | 2018-10-31 | 太陽誘電株式会社 | Multilayer ceramic capacitor |
KR102642908B1 (en) * | 2016-05-12 | 2024-03-04 | 삼성전기주식회사 | Multilayered Capacitor and Manufacturing Method the Same |
JP6795422B2 (en) | 2017-02-16 | 2020-12-02 | 太陽誘電株式会社 | Multilayer ceramic capacitors and their manufacturing methods |
KR102469184B1 (en) * | 2017-10-27 | 2022-11-18 | 삼성전자주식회사 | Ceramic electronic component and method of manufacturing the same and electronic device |
JP7476477B2 (en) * | 2018-12-12 | 2024-05-01 | 太陽誘電株式会社 | Ceramic raw material powder, multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor |
KR102653210B1 (en) * | 2020-12-16 | 2024-04-01 | 삼성전기주식회사 | Multilayer capacitor |
KR20240150097A (en) * | 2023-04-07 | 2024-10-15 | 삼성전기주식회사 | Multilayer electronic component |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118431B2 (en) * | 1991-03-16 | 1995-12-18 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
DE4220681C2 (en) * | 1991-06-27 | 1995-09-14 | Murata Manufacturing Co | Non-reducing, dielectric, ceramic composition |
DE19546237A1 (en) * | 1995-12-12 | 1997-06-19 | Philips Patentverwaltung | Multi-layer capacitor with dielectric made of modified barium strontium titanate |
DE69701294T2 (en) * | 1996-03-08 | 2000-07-06 | Murata Mfg. Co., Ltd. | Ceramic dielectric and monolithic ceramic electronic component using this |
JP3487539B2 (en) * | 1997-05-06 | 2004-01-19 | 太陽誘電株式会社 | Dielectric porcelain |
JP3418091B2 (en) * | 1997-05-30 | 2003-06-16 | 太陽誘電株式会社 | Dielectric porcelain and manufacturing method thereof |
JP3391268B2 (en) * | 1998-01-20 | 2003-03-31 | 株式会社村田製作所 | Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method |
TW434600B (en) * | 1998-02-17 | 2001-05-16 | Murata Manufacturing Co | Dielectric ceramic composition, laminated ceramic capacitor, and method for producing the laminate ceramic capacitor |
-
2000
- 2000-02-28 JP JP2000051029A patent/JP2001240466A/en not_active Withdrawn
-
2001
- 2001-02-23 US US09/791,295 patent/US6437969B2/en not_active Expired - Lifetime
- 2001-02-26 EP EP01104725.5A patent/EP1128404B1/en not_active Expired - Lifetime
-
2002
- 2002-02-27 HK HK02101504.5A patent/HK1040000A1/en unknown
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060088709A1 (en) * | 2004-10-12 | 2006-04-27 | Tdk Corporation | Dielectric ceramic composition and electronic device |
US7297403B2 (en) | 2004-10-12 | 2007-11-20 | Tdk Corporation | Dielectric ceramic composition and electronic device |
US20110019333A1 (en) * | 2009-07-22 | 2011-01-27 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
US8320103B2 (en) * | 2009-07-22 | 2012-11-27 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
CN102473498A (en) * | 2010-03-30 | 2012-05-23 | Tdk株式会社 | Sintered magnet, motor, automobile, and method for producing sintered magnet |
US20130009503A1 (en) * | 2010-03-30 | 2013-01-10 | Tdk Corporation | Sintered magnet, motor, automobile, and method for producing sintered magnet |
US9548157B2 (en) * | 2010-03-30 | 2017-01-17 | Tdk Corporation | Sintered magnet, motor, automobile, and method for producing sintered magnet |
US8841225B2 (en) | 2010-04-02 | 2014-09-23 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor using the same |
US20200176191A1 (en) * | 2016-12-28 | 2020-06-04 | Samsung Electro-Mechanics Co., Ltd. | Dielectric powder and multilayer capacitor using the same |
US10593482B2 (en) * | 2016-12-28 | 2020-03-17 | Samsung Electro-Mechanics Co., Ltd. | Dielectric powder and multilayer capacitor using the same |
US20180182557A1 (en) * | 2016-12-28 | 2018-06-28 | Samsung Electro-Mechanics Co., Ltd. | Dielectric powder and multilayer capacitor using the same |
US10903013B2 (en) | 2016-12-28 | 2021-01-26 | Samsung Electro-Mechanics Co., Ltd. | Dielectric powder and multilayer capacitor using the same |
US11574775B2 (en) | 2016-12-28 | 2023-02-07 | Samsung Electro-Mechanics Co., Ltd. | Dielectric powder and multilayer capacitor using the same |
US11538630B2 (en) * | 2019-11-27 | 2022-12-27 | Samsung Electro-Mechanics Co., Ltd. | Method of producing core-shell particles and multilayer ceramic electronic component including core-shell particles |
CN113161146A (en) * | 2020-01-07 | 2021-07-23 | 三星电机株式会社 | Ceramic electronic component and method for manufacturing ceramic electronic component |
CN113257571A (en) * | 2020-02-07 | 2021-08-13 | 三星电机株式会社 | Ceramic electronic component and method of manufacturing ceramic electronic component |
US11581146B2 (en) | 2020-02-07 | 2023-02-14 | Samsung Electro-Mechanics Co., Ltd. | Ceramic electronic component comprising dielectric grains having a core-dual shell structure and method of manufacturing the same |
US11842857B2 (en) | 2020-02-07 | 2023-12-12 | Samsung Electro-Mechanics Co., Ltd. | Ceramic electronic component comprising dielectric grains having a core-dual shell structure and method of manufacturing the same |
US11791098B2 (en) | 2020-12-16 | 2023-10-17 | Samsung Electro-Mechanics Co., Ltd. | Dielectric and multilayer capacitor including the same |
US20220199326A1 (en) * | 2020-12-18 | 2022-06-23 | Samsung Electro-Mechanics Co., Ltd. | Ceramic electronic component |
US11791097B2 (en) * | 2020-12-18 | 2023-10-17 | Samsung Electro-Mechanics Co., Ltd. | Ceramic electronic component |
Also Published As
Publication number | Publication date |
---|---|
EP1128404A2 (en) | 2001-08-29 |
EP1128404B1 (en) | 2015-04-01 |
HK1040000A1 (en) | 2002-05-17 |
EP1128404A3 (en) | 2003-08-06 |
JP2001240466A (en) | 2001-09-04 |
US6437969B2 (en) | 2002-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6437969B2 (en) | Dielectric ceramics, multilayer ceramic electric parts and method for the manufacture thereof | |
US7859823B2 (en) | Multi-layered ceramic electronic component | |
KR101771728B1 (en) | Laminated ceramic electronic parts and fabricating method thereof | |
US6721167B2 (en) | Multilayer ceramic capacitor and method for the manufacture thereof | |
US6884308B2 (en) | Method of manufacturing monolithic ceramic electronic part and monolithic ceramic electronic part | |
JP2001220224A (en) | Dielectric ceramic and laminated ceramic electric part | |
US6514603B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP3681900B2 (en) | Multilayer ceramic capacitor | |
JP2872838B2 (en) | Multilayer ceramic capacitor and method of manufacturing the same | |
JPH025019B2 (en) | ||
JPH05190375A (en) | Manufacture of copper multilayer ceramics substrate and copper paste used therefor | |
JP4802353B2 (en) | Multilayer piezoelectric ceramic electronic component and manufacturing method thereof | |
JP2001291634A (en) | Laminated ceramic capacitor and method of manufacturing the same | |
JP2004179349A (en) | Laminated electronic component and method of manufacturing the same | |
JPH07263272A (en) | Manufacture of laminated electronic component | |
KR20010030501A (en) | Electroconductive paste, laminated ceramic capacitor, and method for manufacturing the same | |
JPH05226154A (en) | Manufacture of laminated ceramic inductor | |
KR20010050826A (en) | Sintered ferrite body and laminated ferrite component | |
JPH1012478A (en) | Multilayer ceramic capacitors | |
JP4416342B2 (en) | Circuit board and manufacturing method thereof | |
JPS63219115A (en) | Manufacture of laminated semiconductor porcelain electronic component | |
JP2002260953A (en) | Multilayer electronic components | |
JP2000182832A (en) | Ferrite inductor and its manufacture | |
JPH0562859A (en) | Manufacture of laminated ceramic capacitor | |
JP2001044058A (en) | Multilayer ceramic capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TAIYO YUDEN CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIZUNO, YOUICHI;OKINO, YOSHIKAZU;SAITO, KENJI;AND OTHERS;REEL/FRAME:011597/0220;SIGNING DATES FROM 20010214 TO 20010219 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |