US20010020017A1 - Squaric acid derivatives - Google Patents
Squaric acid derivatives Download PDFInfo
- Publication number
- US20010020017A1 US20010020017A1 US09/742,038 US74203800A US2001020017A1 US 20010020017 A1 US20010020017 A1 US 20010020017A1 US 74203800 A US74203800 A US 74203800A US 2001020017 A1 US2001020017 A1 US 2001020017A1
- Authority
- US
- United States
- Prior art keywords
- group
- optionally substituted
- alk
- groups
- compound according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PWEBUXCTKOWPCW-UHFFFAOYSA-N squaric acid Chemical class OC1=C(O)C(=O)C1=O PWEBUXCTKOWPCW-UHFFFAOYSA-N 0.000 title abstract 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 183
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 35
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 33
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims abstract description 28
- 125000003118 aryl group Chemical group 0.000 claims abstract description 27
- 150000003839 salts Chemical class 0.000 claims abstract description 24
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 12
- 150000001204 N-oxides Chemical class 0.000 claims abstract description 10
- 150000004677 hydrates Chemical class 0.000 claims abstract description 9
- 239000012453 solvate Substances 0.000 claims abstract description 9
- 150000001732 carboxylic acid derivatives Chemical group 0.000 claims abstract description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 125000005549 heteroarylene group Chemical group 0.000 claims abstract description 5
- 241000596110 Biosteres Species 0.000 claims abstract description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims abstract description 4
- -1 homopiperidinyl Chemical group 0.000 claims description 264
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 36
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 29
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 25
- 125000004429 atom Chemical group 0.000 claims description 23
- 125000005843 halogen group Chemical group 0.000 claims description 19
- 235000019260 propionic acid Nutrition 0.000 claims description 16
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 14
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 12
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 9
- 125000004193 piperazinyl group Chemical group 0.000 claims description 9
- 125000003386 piperidinyl group Chemical group 0.000 claims description 9
- 125000000719 pyrrolidinyl group Chemical group 0.000 claims description 9
- 125000002757 morpholinyl group Chemical group 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 125000002950 monocyclic group Chemical group 0.000 claims description 7
- 125000004568 thiomorpholinyl group Chemical group 0.000 claims description 7
- 125000004076 pyridyl group Chemical group 0.000 claims description 6
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 claims description 4
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 4
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 claims description 3
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 125000005650 substituted phenylene group Chemical group 0.000 claims description 2
- 229910006069 SO3H Inorganic materials 0.000 claims 2
- 108010044426 integrins Proteins 0.000 abstract description 22
- 102000006495 integrins Human genes 0.000 abstract description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 12
- 238000011282 treatment Methods 0.000 abstract description 6
- 239000003446 ligand Substances 0.000 abstract description 5
- 208000035475 disorder Diseases 0.000 abstract description 4
- 238000011321 prophylaxis Methods 0.000 abstract description 4
- 208000026278 immune system disease Diseases 0.000 abstract description 2
- 208000027866 inflammatory disease Diseases 0.000 abstract description 2
- 230000005012 migration Effects 0.000 abstract description 2
- 238000013508 migration Methods 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 73
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 69
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 52
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 50
- 239000000543 intermediate Substances 0.000 description 46
- 125000001424 substituent group Chemical group 0.000 description 43
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 38
- 239000000203 mixture Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 28
- 239000002904 solvent Substances 0.000 description 27
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 24
- 229910002092 carbon dioxide Inorganic materials 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 19
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 239000002253 acid Substances 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 14
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 14
- 239000002953 phosphate buffered saline Substances 0.000 description 14
- 150000001408 amides Chemical class 0.000 description 13
- 150000001412 amines Chemical class 0.000 description 13
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 13
- 229910052801 chlorine Inorganic materials 0.000 description 13
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 125000005842 heteroatom Chemical group 0.000 description 12
- 210000002381 plasma Anatomy 0.000 description 12
- 239000002585 base Substances 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 11
- 229910052731 fluorine Inorganic materials 0.000 description 11
- 239000011737 fluorine Substances 0.000 description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- 229910052794 bromium Inorganic materials 0.000 description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 9
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 9
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical class OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 239000007832 Na2SO4 Substances 0.000 description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 description 8
- 210000000265 leukocyte Anatomy 0.000 description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 229910052938 sodium sulfate Inorganic materials 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 0 *CC(C)C Chemical compound *CC(C)C 0.000 description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 7
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 7
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 7
- 235000019439 ethyl acetate Nutrition 0.000 description 7
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 7
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 102000016359 Fibronectins Human genes 0.000 description 6
- 108010067306 Fibronectins Proteins 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000004440 column chromatography Methods 0.000 description 6
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 6
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 6
- 150000008282 halocarbons Chemical class 0.000 description 6
- 230000002440 hepatic effect Effects 0.000 description 6
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 125000003396 thiol group Chemical class [H]S* 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 230000021164 cell adhesion Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 150000004292 cyclic ethers Chemical class 0.000 description 5
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 125000002632 imidazolidinyl group Chemical group 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 125000001984 thiazolidinyl group Chemical group 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 5
- 125000006700 (C1-C6) alkylthio group Chemical group 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- KCZPGGVPQXQGEJ-UHFFFAOYSA-N 3,4-di(propan-2-yloxy)cyclobut-3-ene-1,2-dione Chemical compound CC(C)OC1=C(OC(C)C)C(=O)C1=O KCZPGGVPQXQGEJ-UHFFFAOYSA-N 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- JSDISRNBCTZOBA-UHFFFAOYSA-N CC1=C(N(C)C)C(=O)C1=O Chemical compound CC1=C(N(C)C)C(=O)C1=O JSDISRNBCTZOBA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 229910006074 SO2NH2 Inorganic materials 0.000 description 4
- 239000005864 Sulphur Chemical group 0.000 description 4
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 4
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 4
- 238000005917 acylation reaction Methods 0.000 description 4
- 239000002168 alkylating agent Substances 0.000 description 4
- 229940100198 alkylating agent Drugs 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 150000007529 inorganic bases Chemical class 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 150000007530 organic bases Chemical class 0.000 description 4
- 125000000160 oxazolidinyl group Chemical group 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 3
- 102100028793 Mucosal addressin cell adhesion molecule 1 Human genes 0.000 description 3
- 101710139349 Mucosal addressin cell adhesion molecule 1 Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229940124639 Selective inhibitor Drugs 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000010933 acylation Effects 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 230000029936 alkylation Effects 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 3
- 239000012039 electrophile Substances 0.000 description 3
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 125000004970 halomethyl group Chemical group 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 210000003622 mature neutrocyte Anatomy 0.000 description 3
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 210000004623 platelet-rich plasma Anatomy 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- GPTFURBXHJWNHR-UHFFFAOYSA-N protopine Chemical compound C1=C2C(=O)CC3=CC=C4OCOC4=C3CN(C)CCC2=CC2=C1OCO2 GPTFURBXHJWNHR-UHFFFAOYSA-N 0.000 description 3
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 125000004055 thiomethyl group Chemical group [H]SC([H])([H])* 0.000 description 3
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 3
- BKWVXPCYDRURMK-UHFFFAOYSA-N (2,6-dimethoxyphenyl)boronic acid Chemical compound COC1=CC=CC(OC)=C1B(O)O BKWVXPCYDRURMK-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- 125000006624 (C1-C6) alkoxycarbonylamino group Chemical group 0.000 description 2
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 2
- 125000006590 (C2-C6) alkenylene group Chemical group 0.000 description 2
- 125000006591 (C2-C6) alkynylene group Chemical group 0.000 description 2
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- SZBNZTGCAMLMJY-UHFFFAOYSA-N 3,4-dimethoxycyclobut-3-ene-1,2-dione Chemical compound COC1=C(OC)C(=O)C1=O SZBNZTGCAMLMJY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 125000006577 C1-C6 hydroxyalkyl group Chemical group 0.000 description 2
- ZWSPULNGIJEHBQ-UHFFFAOYSA-N CC.CC1=C(N(C)CC2=NC=CC3=C2C=CN=C3)C(=O)C1=O Chemical compound CC.CC1=C(N(C)CC2=NC=CC3=C2C=CN=C3)C(=O)C1=O ZWSPULNGIJEHBQ-UHFFFAOYSA-N 0.000 description 2
- HSKSTSUXPYLCKG-YGCVIUNWSA-N CC1=C[W]=CC(C)=C1CN(C)C1=C(C)C(=O)C1=O Chemical compound CC1=C[W]=CC(C)=C1CN(C)C1=C(C)C(=O)C1=O HSKSTSUXPYLCKG-YGCVIUNWSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 108060004056 Integrin alpha Chain Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical group O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 239000003875 Wang resin Substances 0.000 description 2
- NERFNHBZJXXFGY-UHFFFAOYSA-N [4-[(4-methylphenyl)methoxy]phenyl]methanol Chemical compound C1=CC(C)=CC=C1COC1=CC=C(CO)C=C1 NERFNHBZJXXFGY-UHFFFAOYSA-N 0.000 description 2
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 2
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 125000006598 aminocarbonylamino group Chemical group 0.000 description 2
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000006254 arylation reaction Methods 0.000 description 2
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004619 benzopyranyl group Chemical group O1C(C=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 125000001589 carboacyl group Chemical group 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000005518 carboxamido group Chemical group 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- NCBFTYFOPLPRBX-UHFFFAOYSA-N dimethyl azodicarboxylate Substances COC(=O)N=NC(=O)OC NCBFTYFOPLPRBX-UHFFFAOYSA-N 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- 125000005879 dioxolanyl group Chemical group 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 125000006260 ethylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 102000017777 integrin alpha chain Human genes 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- NCBFTYFOPLPRBX-AATRIKPKSA-N methyl (ne)-n-methoxycarbonyliminocarbamate Chemical compound COC(=O)\N=N\C(=O)OC NCBFTYFOPLPRBX-AATRIKPKSA-N 0.000 description 2
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical group CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 238000005636 thioacylation reaction Methods 0.000 description 2
- 125000004014 thioethyl group Chemical group [H]SC([H])([H])C([H])([H])* 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- QOZLFNQLIKOGDR-UHFFFAOYSA-N (2,5-dimethoxyphenyl)boronic acid Chemical compound COC1=CC=C(OC)C(B(O)O)=C1 QOZLFNQLIKOGDR-UHFFFAOYSA-N 0.000 description 1
- YISYHZMNRATPRA-UHFFFAOYSA-N (2-formyl-5-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(C=O)C(B(O)O)=C1 YISYHZMNRATPRA-UHFFFAOYSA-N 0.000 description 1
- DGUWACLYDSWXRZ-UHFFFAOYSA-N (2-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1C=O DGUWACLYDSWXRZ-UHFFFAOYSA-N 0.000 description 1
- ROEQGIFOWRQYHD-UHFFFAOYSA-N (2-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC=C1B(O)O ROEQGIFOWRQYHD-UHFFFAOYSA-N 0.000 description 1
- UERNRFHISLXQFU-DFWYDOINSA-N (2S)-5-oxopyrrolidine-2-carboxylic acid pyridine Chemical compound c1ccncc1.OC(=O)[C@@H]1CCC(=O)N1 UERNRFHISLXQFU-DFWYDOINSA-N 0.000 description 1
- DSYINDVURYSIAF-SFHVURJKSA-N (2s)-2-[(2-morpholin-4-yl-3,4-dioxocyclobuten-1-yl)amino]-3-(4-phenylphenyl)propanoic acid Chemical compound C([C@@H](C(=O)O)NC=1C(C(=O)C=1N1CCOCC1)=O)C(C=C1)=CC=C1C1=CC=CC=C1 DSYINDVURYSIAF-SFHVURJKSA-N 0.000 description 1
- AGEDUMLUHJIUSU-SFHVURJKSA-N (2s)-2-[[2-(diethylamino)-3,4-dioxocyclobuten-1-yl]amino]-3-(4-phenylphenyl)propanoic acid Chemical compound O=C1C(=O)C(N(CC)CC)=C1N[C@H](C(O)=O)CC1=CC=C(C=2C=CC=CC=2)C=C1 AGEDUMLUHJIUSU-SFHVURJKSA-N 0.000 description 1
- HYMHWHUYEZXASI-KRWDZBQOSA-N (2s)-2-[[3,4-dioxo-2-(propylamino)cyclobuten-1-yl]amino]-3-(4-phenylphenyl)propanoic acid Chemical compound O=C1C(=O)C(NCCC)=C1N[C@H](C(O)=O)CC1=CC=C(C=2C=CC=CC=2)C=C1 HYMHWHUYEZXASI-KRWDZBQOSA-N 0.000 description 1
- BIWQNIMLAISTBV-UHFFFAOYSA-N (4-methylphenyl)boronic acid Chemical compound CC1=CC=C(B(O)O)C=C1 BIWQNIMLAISTBV-UHFFFAOYSA-N 0.000 description 1
- FMBVAOHFMSQDGT-UHFFFAOYSA-N (5-chloro-2-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(Cl)C=C1B(O)O FMBVAOHFMSQDGT-UHFFFAOYSA-N 0.000 description 1
- NKKNXLPHCRLBDY-UHFFFAOYSA-N (5-formyl-2-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(C=O)C=C1B(O)O NKKNXLPHCRLBDY-UHFFFAOYSA-N 0.000 description 1
- 125000006727 (C1-C6) alkenyl group Chemical group 0.000 description 1
- 125000006717 (C3-C10) cycloalkenyl group Chemical group 0.000 description 1
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 1
- 125000004529 1,2,3-triazinyl group Chemical group N1=NN=C(C=C1)* 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- JPRPJUMQRZTTED-UHFFFAOYSA-N 1,3-dioxolanyl Chemical group [CH]1OCCO1 JPRPJUMQRZTTED-UHFFFAOYSA-N 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- HKDFRDIIELOLTJ-UHFFFAOYSA-N 1,4-dithianyl Chemical group [CH]1CSCCS1 HKDFRDIIELOLTJ-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- HJRJRUMKQCMYDL-UHFFFAOYSA-N 1-chloro-2,4,6-trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(Cl)C([N+]([O-])=O)=C1 HJRJRUMKQCMYDL-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- FQKFPGMGQXQHLP-UHFFFAOYSA-N 1-hydroxytriazole Chemical compound ON1C=CN=N1 FQKFPGMGQXQHLP-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- DFNACHSUIIKLMQ-UHFFFAOYSA-N 3-(diethylamino)-4-propan-2-yloxycyclobut-3-ene-1,2-dione Chemical compound CCN(CC)C1=C(OC(C)C)C(=O)C1=O DFNACHSUIIKLMQ-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- 125000004364 3-pyrrolinyl group Chemical group [H]C1=C([H])C([H])([H])N(*)C1([H])[H] 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- 125000004606 5,6,7,8-tetrahydroisoquinolinyl group Chemical group C1(=NC=CC=2CCCCC12)* 0.000 description 1
- 125000004608 5,6,7,8-tetrahydroquinolinyl group Chemical group N1=C(C=CC=2CCCCC12)* 0.000 description 1
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 125000004649 C2-C8 alkynyl group Chemical group 0.000 description 1
- NNPPMTNAJDCUHE-UHFFFAOYSA-N CC(C)C Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 1
- FQXBTBGVHFEEDP-UHFFFAOYSA-N CC1=C([RaH])C(=O)C1=O Chemical compound CC1=C([RaH])C(=O)C1=O FQXBTBGVHFEEDP-UHFFFAOYSA-N 0.000 description 1
- ZYEBTNZHVJVTGN-UHFFFAOYSA-N CN(C)C1=C([Rb])C(=O)C1=O Chemical compound CN(C)C1=C([Rb])C(=O)C1=O ZYEBTNZHVJVTGN-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 208000027219 Deficiency disease Diseases 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 244000166102 Eucalyptus leucoxylon Species 0.000 description 1
- 235000004694 Eucalyptus leucoxylon Nutrition 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 208000032371 Glanzmann thrombasthenia 1 Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100032818 Integrin alpha-4 Human genes 0.000 description 1
- 102100032825 Integrin alpha-8 Human genes 0.000 description 1
- 108010041012 Integrin alpha4 Proteins 0.000 description 1
- 102000012355 Integrin beta1 Human genes 0.000 description 1
- 108010022222 Integrin beta1 Proteins 0.000 description 1
- 102000008607 Integrin beta3 Human genes 0.000 description 1
- 108010020950 Integrin beta3 Proteins 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- MIPGDLGIANGYOD-UHFFFAOYSA-N O=C1C(=O)C([RaH])=C1[Rb] Chemical compound O=C1C(=O)C([RaH])=C1[Rb] MIPGDLGIANGYOD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- ATTZFSUZZUNHBP-UHFFFAOYSA-N Piperonyl sulfoxide Chemical compound CCCCCCCCS(=O)C(C)CC1=CC=C2OCOC2=C1 ATTZFSUZZUNHBP-UHFFFAOYSA-N 0.000 description 1
- 108010022425 Platelet Glycoprotein GPIIb-IIIa Complex Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 208000035415 Reinfection Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 208000000392 Thrombasthenia Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241000826860 Trapezium Species 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- JNSBEPKGFVENFS-UHFFFAOYSA-N [2-(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC=CC=C1C(F)(F)F JNSBEPKGFVENFS-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- YBCVMFKXIKNREZ-UHFFFAOYSA-N acoh acetic acid Chemical compound CC(O)=O.CC(O)=O YBCVMFKXIKNREZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005278 alkyl sulfonyloxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229960004676 antithrombotic agent Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 150000001543 aryl boronic acids Chemical class 0.000 description 1
- 125000005279 aryl sulfonyloxy group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000005332 diethylamines Chemical class 0.000 description 1
- LMBWSYZSUOEYSN-UHFFFAOYSA-M diethyldithiocarbamate Chemical compound CCN(CC)C([S-])=S LMBWSYZSUOEYSN-UHFFFAOYSA-M 0.000 description 1
- 125000004786 difluoromethoxy group Chemical group [H]C(F)(F)O* 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 125000001891 dimethoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- UZZWBUYVTBPQIV-UHFFFAOYSA-N dme dimethoxyethane Chemical compound COCCOC.COCCOC UZZWBUYVTBPQIV-UHFFFAOYSA-N 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- OLAMWIPURJGSKE-UHFFFAOYSA-N et2o diethylether Chemical compound CCOCC.CCOCC OLAMWIPURJGSKE-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical class CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical group CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000004969 haloethyl group Chemical group 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 125000005946 imidazo[1,2-a]pyridyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 108010024081 integrin alpha8 Proteins 0.000 description 1
- 102000017776 integrin beta chain Human genes 0.000 description 1
- 108060004057 integrin beta chain Proteins 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000004254 isoquinolin-1-yl group Chemical group [H]C1=C([H])C2=C([H])C([H])=C([H])C([H])=C2C(*)=N1 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- MJMDTFNVECGTEM-UHFFFAOYSA-L magnesium dichloride monohydrate Chemical compound O.[Mg+2].[Cl-].[Cl-] MJMDTFNVECGTEM-UHFFFAOYSA-L 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- JZWGAKDJDOFGPF-LBPRGKRZSA-N methyl (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-[4-(trifluoromethylsulfonyloxy)phenyl]propanoate Chemical compound CC(C)(C)OC(=O)N[C@H](C(=O)OC)CC1=CC=C(OS(=O)(=O)C(F)(F)F)C=C1 JZWGAKDJDOFGPF-LBPRGKRZSA-N 0.000 description 1
- YWQDWCAIUHYZTI-SFHVURJKSA-N methyl (2s)-2-[(3,4-dioxo-2-propan-2-yloxycyclobuten-1-yl)amino]-3-(4-phenylphenyl)propanoate Chemical compound C([C@@H](C(=O)OC)NC=1C(C(=O)C=1OC(C)C)=O)C(C=C1)=CC=C1C1=CC=CC=C1 YWQDWCAIUHYZTI-SFHVURJKSA-N 0.000 description 1
- RYYDMSMPNITDHP-RSAXXLAASA-N methyl (2s)-2-amino-3-(4-phenylphenyl)propanoate;hydrochloride Chemical compound Cl.C1=CC(C[C@H](N)C(=O)OC)=CC=C1C1=CC=CC=C1 RYYDMSMPNITDHP-RSAXXLAASA-N 0.000 description 1
- NQIFXJSLCUJHBB-LBPRGKRZSA-N methyl (2s)-3-(4-hydroxyphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound CC(C)(C)OC(=O)N[C@H](C(=O)OC)CC1=CC=C(O)C=C1 NQIFXJSLCUJHBB-LBPRGKRZSA-N 0.000 description 1
- GOQJUXZVSGADLR-UHFFFAOYSA-N methyl 3-(2-amino-4-hydroxyphenyl)propanoate Chemical compound COC(=O)CCC1=CC=C(O)C=C1N GOQJUXZVSGADLR-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- VSEAAEQOQBMPQF-UHFFFAOYSA-N morpholin-3-one Chemical compound O=C1COCCN1 VSEAAEQOQBMPQF-UHFFFAOYSA-N 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- WOOWBQQQJXZGIE-UHFFFAOYSA-N n-ethyl-n-propan-2-ylpropan-2-amine Chemical compound CCN(C(C)C)C(C)C.CCN(C(C)C)C(C)C WOOWBQQQJXZGIE-UHFFFAOYSA-N 0.000 description 1
- 125000005893 naphthalimidyl group Chemical group 0.000 description 1
- 230000023578 negative regulation of cell adhesion Effects 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- PSACHCMMPFMFAJ-UHFFFAOYSA-N nmm n-methylmorpholine Chemical compound CN1CCOCC1.CN1CCOCC1 PSACHCMMPFMFAJ-UHFFFAOYSA-N 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 125000005544 phthalimido group Chemical group 0.000 description 1
- 125000005545 phthalimidyl group Chemical group 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 125000005592 polycycloalkyl group Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000006308 propyl amino group Chemical group 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000005030 pyridylthio group Chemical group N1=C(C=CC=C1)S* 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005932 reductive alkylation reaction Methods 0.000 description 1
- 229940107685 reopro Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- VILMUCRZVVVJCA-UHFFFAOYSA-M sodium glycolate Chemical compound [Na+].OCC([O-])=O VILMUCRZVVVJCA-UHFFFAOYSA-M 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000005651 substituted 1,4-phenylene group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical compound NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003899 tartaric acid esters Chemical class 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000002769 thiazolinyl group Chemical group 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical class CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/34—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/34—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
- C07C229/36—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/04—Systems containing only non-condensed rings with a four-membered ring
Definitions
- This invention relates to a series of biaryl squaric acid derivatives, to compositions containing them, to processes for their preparation, and to their use in medicine.
- the adhesion molecules have been sub-divided into different groups on the basis of their structure.
- One family of adhesion molecules which is believed to play a particularly important role in regulating immune and inflammatory responses is the integrin family.
- This family of cell surface glycoproteins has a typical non-covalently linked heterodimer structure. At least 16 different integrin alpha chains and 8 different integrin beta chains have been identified [Newman, P. et al, Molecular Medicine Today, 304, (1996)].
- the members of the family are typically named according to their heterodimer composition although trivial nomenclature is widespread in the field.
- the integrin ⁇ 4 ⁇ 1 consists of the integrin alpha 4 chain associated with the integrin beta 1 chain, but is also widely referred to as Very Late Antigen 4 or VLA-4. Not all of the potential pairings of integrin alpha and beta chains have yet been observed in nature and the integrin family has been subdivided into a number of subgroups based on the pairings that have been recognised to date [Sonnenberg, A., Current Topics in Microbiology and Immunology, 184, 7, (1993)].
- LAD Leukocyte Adhesion Deficiency
- Glanzman's thrombasthenia a defect in a member of the beta 3 integrin family
- Glanzman's thrombasthenia a defect in a member of the beta 3 integrin family
- blood clotting Hodivala-Dilke, K. M., J. Clin. Invest. 103, 229, (1999)
- Integrins recognize both cell surface and extracellular matrix ligands, and ligand specificity is determined by the particular alpha-beta subunit combination of the molecule [Newman, P., ibid].
- One particular integrin subgroup of interest involves the a4 chain which can pair with two different beta chains ⁇ 1 and ⁇ 7[Sonnenberg, A, ibid].
- the ⁇ 4 ⁇ 1 pairing occurs on many circulating leukocytes (for example lymphocytes, monocytes, eosinophils and basophils) although it is absent or only present at low levels on circulating neutrophils.
- ⁇ 4 ⁇ 1 binds to an adhesion molecule (Vascular Cell Adhesion Molecule-1 also known as VCAM-1) frequently up-regulated on endothelial cells at sites of inflammation [Osborne, L., Cell, 62, 3, (1990)].
- VCAM-1 Vascular Cell Adhesion Molecule-1 also known as VCAM-1
- the molecule has also been shown to bind to at least three sites in the matrix molecule fibronectin [Humphries, M. J. et al, Ciba Foundation Symposium, 189, 177, (1995)].
- fibronectin Humphries, M. J. et al, Ciba Foundation Symposium, 189, 177, (1995)
- LPAM-1 The integrin generated by the pairing of ⁇ 4 and ⁇ 7 has been termed LPAM-1 [Holzmann, B. and Weissman, I. L., EMBO J. 8, 1735, (1989)].
- the ⁇ 4 ⁇ 7 pairing is expressed on certain sub-populations of T and B lymphocytes and on eosinophils [Erle, D. J. et al, J. Immunol. 153, 517 (1994)].
- ⁇ 4 ⁇ 7 binds to VCAM-1 and fibronectin.
- ⁇ 4 ⁇ 7 binds to an adhesion molecule believed to be involved in the homing of leukocytes to mucosal tissue termed MAdCAM-1 [Berlin, C. et al, Cell, 74, 185, (1993)].
- MAdCAM-1 an adhesion molecule believed to be involved in the homing of leukocytes to mucosal tissue termed MAdCAM-1 [Berlin, C. et al, Cell, 74, 185, (1993)].
- MAdCAM-1 adhesion molecule believed to be involved in the homing of leukocytes to mucosal tissue termed MAdCAM-1 [Berlin, C. et al, Cell, 74, 185, (1993)].
- the interaction between ⁇ 4 ⁇ 7 and MAdCAM-1 may also be important sites of inflammation outside of mucosal tissue [Yang, X. -D. et al, PNAS, 91, 12604, (1994)].
- alpha 4 subgroup of integrins are predominantly expressed on leukocytes their inhibition can be expected to be beneficial in a number of immune or inflammatory disease states.
- the ubiquitous distribution and wide range of functions performed by other members of the integrin family it is important to be able to identify selective inhibitors of the alpha 4 subgroup.
- R 1 is a group Ar 1 Ar 2 Alk- in which:
- Ar 1 is an optionally substituted aromatic or heteroaromatic group
- Ar 2 is an optionally substituted phenylene or nitrogen-containing six-membered heteroarylene group; and Alk is a chain
- R is a carboxylic acid (—CO 2 H) or a derivative or biostere thereof;
- R 2 is a hydrogen atom or a C 1-6 alkyl group
- L 1 is a covalent bond or a linker atom or group
- n is zero or the integer 1;
- Alk 1 is an optionally substituted aliphatic chain
- R 3 is a hydrogen atom or an optionally substituted heteroaliphatic, cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group:
- compounds of formula (1) may have one or more chiral centres, and exist as enantiomers or diastereomers.
- the invention is to be understood to extend to all such enantiomers, diastereomers and mixtures thereof, including racemates.
- Formula (1) and the formulae hereinafter are intended to represent all individual isomers and mixtures thereof, unless stated or shown otherwise.
- compounds of formula (1) may exist as tautomers, for example keto (CH 2 C ⁇ O)-enol (CH ⁇ CHOH) tautomers.
- Formula (1) and the formulae hereinafter are intended to represent all individual tautomers and mixtures thereof, unless stated otherwise.
- Optionally substituted aromatic groups represented by Ar 1 when present in the group R 1 include for example optionally substituted monocyclic or bicyclic fused ring C 6-12 aromatic groups, such as phenyl, 1- or 2-naphthyl, 1- or 2-tetrahydronaphthyl, indanyl or indenyl groups.
- Optionally substituted heteroaromatic groups represented by the group Ar 1 when present in the group R 1 include for example optionally substituted C 1-9 heteroaromatic groups containing for example one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms.
- the heteroaromatic groups may be for example monocyclic or bicyclic fused ring heteroaromatic groups.
- Monocyclic heteroaromatic groups include for example five- or six-membered heteroaromatic groups containing one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms.
- Bicyclic heteroaromatic groups include for example eight- to thirteen-membered fused-ring heteroaromatic groups containing one, two or more heteroatoms selected from oxygen, sulphur or nitrogen atoms.
- heteroaromatic groups of these types include pyrrolyl, furyl, thienyl, imidazolyl, N-C 1-6 alkylimidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazole, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, benzofuryl, isobenzofuryl, [2,3-dihydro] benzofuryl, [2,3-dihydro]benzothiazolyl, pyr
- Each aromatic or heteroaromatic group represented by the group Ar 1 may be optionally substituted on any available carbon or, when present, nitrogen atom.
- One, two, three or more of the same or different substituents may be present and each substituent may be selected for example from an atom or group -L 2 (Alk 2 ) t L 3 (R 4 ) u in which L 2 and L 3 which may be the same or different, is each a covalent bond or a linker atom or group, t is zero or the integer 1, u is an integer 1, 2 or 3,
- Alk 2 is an aliphatic or heteroaliphatic chain and
- R 4 is a hydrogen or halogen atom or a group selected from optionally substituted C 1-6 alkyl or C 3-8 cycloalkyl, -Het, [where Het is an optionally substituted monocyclic C 5-7 carbocyclic group optionally containing one or more —O— or —S— atoms or —N(R 5 )— (
- L 2 and/or L 3 is present in these substituents as a linker atom or group it may be any divalent linking atom or group.
- Particular examples include —O— or —S— atoms or —C(O)—, —C(O)O—, —OC(O)—, —C(S)—, —S(O)—, —S(O) 2 —, —N(R 8 )—
- R 8 is a hydrogen atom or an optionally substituted C 1-6 alkyl group
- R 8 is a hydrogen atom or an optionally substituted C 1-6 alkyl group
- R 8 is a hydrogen atom or an optionally substituted C 1-6 alkyl group
- R 8 is a hydrogen atom or an optionally substituted C 1-6 alkyl group
- R 8 is a hydrogen atom or an optionally substituted C 1-6 alkyl group
- R 8 is a hydrogen atom or an optionally substituted C 1-6 alkyl group
- R 4 , R 5 , R 6 , R 7 and/or R 8 is present as a C 1-6 alkyl group it may be a straight or branched C 1-6 alkyl group, e.g. a C 1-4 alkyl group such as a methyl, ethyl, i-propyl or t-butyl group.
- C 3-8 cycloalkyl groups represented by R 4 , R 5 , R 6 , R 7 and/or R 8 include C 3-6 cycloalkyl groups e.g. cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups.
- Optional substituents which may be present on such groups include for example one, two or three substituents which may be the same or different selected from halogen atoms, for example fluorine, chlorine, bromine or iodine atoms, hydroxy or C 1-6 alkoxy e.g. methoxy or ethoxy groups or optionally substituted C 6-12 aryl or optionally substituted C 1-9 heteroaryl.
- halogen atoms for example fluorine, chlorine, bromine or iodine atoms, hydroxy or C 1-6 alkoxy e.g. methoxy or ethoxy groups or optionally substituted C 6-12 aryl or optionally substituted C 1-9 heteroaryl.
- Optionally substituted aryl and heteroaryl groups include those groups just described for the group Ar 1 .
- heterocyclic rings may be optionally interrupted by a further heteroatom selected from —O—, —S— or —N(R 5 )—.
- heterocyclic rings include piperidinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, imidazolidinyl and piperazinyl rings.
- Alk 2 is present as an aliphatic or heteroaliphatic chain it may be for example any divalent chain corresponding to the below-mentioned aliphatic or heteroaliphatic group described for Alk 1 or R 3 respectively.
- Halogen atoms represented by R 4 in the optional Ar 1 substituents include fluorine, chlorine, bromine, or iodine atoms.
- Examples of the substituents represented by -L 2 (Alk 2 ) t L 3 (R 4 ) u when present in Ar 1 groups in compounds of the invention include atoms or groups -L 2 Alk 2 L 3 R 4 , -L 2 Alk 2 R 4 , -L 2 R 4 and -Alk 2 R 4 wherein L 2 , Alk 2 , L 3 and R 4 are as defined above.
- substituents include -L 2 CH 2 L 3 R 4 , -L 2 CH(CH 3 )L 3 R 4 , -L 2 CH(CH 2 ) 3 L 3 R 4 , -L 2 CH 2 R 4 , -L 2 CH(CH 3 )R 4 , -L 2 (CH 2 ) 2 R 4 , —CH 2 R 4 , —CH(CH 3 )R 4 , —(CH 2 ) 2 R 4 and -R 4 groups.
- Ar 1 in compounds of the invention may be optionally substituted for example by one, two, three or more halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, and/or C 1 -6alkyl, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, C 3-8 cycloalkyl, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, C 1-6 hydroxyalkyl, e.g.
- halogen atoms e.g. fluorine, chlorine, bromine or iodine atoms
- C 1 -6alkyl e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, C 3-8 cycloalkyl
- hydroxymethyl, hydroxyethyl or —C(OH)(CF 3 ) 2 pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, oxazolidinyl, carboxy C 1-6 alkyl, e.g. carboxyethyl, C 1-6 alkylthio e.g. methylthio or ethylthio, carboxyC 1-6 alkylthio, e.g. carboxymethylthio, 2-carboxyethylthio or 3-carboxypropylthio, C 1-6 alkoxy, e.g.
- C 1-6 alkylaminoC 1-6 alkyl e.g. ethylaminoethyl, C 1-6 dialkylaminoC 1-6 alkyl, e.g. diethylaminoethyl, aminoC 1-6 alkylamino e.g. aminoethylamino, aminoC 1-6 alkoxy, e.g. aminoethoxy, hydroxyC 1-6 alkylamino e.g. hydroxyethylamino or hydroxyropylamino, C 1-6 alkylaminoC 1-6 alkoxy, e.g.
- methylaminoethoxy C 1-6 dialkylaminoC 1-6 alkoxy, e.g. dimethylaminoethoxy, diethylaminoethoxy, diisopropylaminoethoxy, or dimethylaminopropoxy, nitro, cyano, amidino, hydroxyl (—OH), formyl [HC(O)—], carboxyl (—CO 2 H), —CO 2 Alk 3 [where Alk 3 is as defined below for Alk 7 ], C 1-6 alkanoyl e.g. acetyl, thiol (—SH), thioC 1-6 alkyl, e.g.
- sulphonyl (—SO 3 H), —SO 3 Alk 3 , C 1-6 alkylsulphinyl e.g. methylsulphinyl, ethylsulphinyl or propylsulphinyl, C 1-6 alkylsulphonyl, e.g. methylsulphonyl, aminosulphonyl (—SO 2 NH 2 ), C 1-6 alkylaminosulphonyl, e.g. methylaminosulphonyl or ethylaminosulphonyl, C 1-6 dialkylaminosulphonyl, e.g.
- C 1-6 alkylaminocarbonyl e.g. methylaminocarbonyl or ethylaminocarbonyl
- C 1-6 dialkylaminocarbonyl e.g. dimethylaminocarbonyl or diethylaminocarbonyl
- aminoC 1-6 alkylaminocarbonyl e.g. aminoethylaminocarbonyl
- C 1-6 dialkylaminoC 1-6 alkylaminocarbonyl e.g.
- diethylaminoethylaminocarbonyl aminocarbonylamino, C 1-6 alkylaminocarbonylamino, e.g. methylaminocarbonylamino or ethylaminocarbonylamino, C 1-6 dialkylaminocarbonylamino, e.g. dimethylaminocarbonylamino or diethylaminocarbonylamino, C 1-6 alkylaminocarbonylC 1-6 alkylamino, e.g. methylaminocarbonylmethylamino, aminothiocarbonylamino, C 1-6 alkylaminothiocarbonylamino, e.g.
- C 1-6 dialkylaminothiocarbonylamino e.g. dimethylaminothiocarbonylamino or diethylaminothiocarbonylamino
- C 1-6 alkylaminothiocarbonylC 1-6 alkylamino e.g. ethylaminothiocarbonylmethylamino
- C 1-6 alkylsulphonylamino e.g. methylsulphonylamino or ethylsulphonylamino
- C 1-6 dialkylsulphonylamino e.g.
- dimethylsulphonylamino or diethylsulphonylamino aminosulphonylamino (—NHSO 2 NH 2 ), C 1-6 alkylaminosulphonylamino, e.g. methylaminosulphonylamino or ethylaminosulphonylamino, C 1-6 dialkylaminosulphonylamino, e.g. dimethylaminosulphonylamino or diethylaminosulphonylamino, C 1-6 alkanoylamino, e.g. acetylamino, aminoC 1-6 alkanoylamino e.g.
- aminoacetylamino C 1-6 dialkylaminoC 1-6 alkanoylamino, e.g. dimethylaminoacetylamino, C 1-6 alkanoylaminoC 1-6 alkyl, e.g. acetylaminomethyl, C 1-6 alkanoylaminoC 1-6 alkylamino, e.g. acetamidoethylamino, C 1-6 alkoxycarbonylamino, e.g. methoxycarbonylamino, ethoxycarbonylamino or t-butoxycarbonylamino groups.
- C 1-6 dialkylaminoC 1-6 alkanoylamino e.g. dimethylaminoacetylamino, C 1-6 alkanoylaminoC 1-6 alkyl, e.g. acetylaminomethyl, C 1-6 alkanoylaminoC 1-6 alkylamino, e.g. acet
- two -L 2 (Alk 2 ) t L 3 (R 4 ) u substituents may be linked together to form a cyclic group such as a cyclic ether, e.g. a C 1-6 alkylenedioxy group such as methylenedioxy or ethylenedioxy.
- a cyclic group such as a cyclic ether, e.g. a C 1-6 alkylenedioxy group such as methylenedioxy or ethylenedioxy.
- Optionally substituted nitrogen-containing six-membered heteroarylene groups represented by Ar 2 when present as part of the group R 1 include optionally substituted pyridiyl, pyrimidindiyl, pyridazindiyl, pyrazindiyl and triazindiyl e.g. 1,2,4-triazindiyl groups. Each group may be attached to the remainder of the molecule through any available ring carbon atoms.
- the phenylene and nitrogen-containing heteroarylene groups represented by Ar 2 may be optionally substituted by one or two substituents selected from the atoms or groups -L 3 (Alk 2 ) t L 3 (R 4 ) u described herein. Where two of these atoms or groups are present they may be the same or different.
- R is present in R 1 in compounds of the invention as a derivative of a carboxylic acid it may be for example a carboxylic acid ester or amide. Particular esters and amides include —CO 2 Alk 7 and —CONR 5 R 6 groups as defined herein.
- R is a biostere of a carboxylic acid it may be for example a tetrazole or other acid such as phosphonic acid, phosphinic acid, sulphonic acid, sulphinic acid or boronic acid or an acylsulphonamide group.
- Ester (—CO 2 Alk 7 ) and amide (—CONR 5 R 6 ) derivatives of the carboxylic acid group (—CO 2 H) in compounds of formula (1) may advantageously be used as prodrugs of the active compound.
- Such prodrugs are compounds which undergo biotransformation to the corresponding carboxylic acid prior to exhibiting their pharmacological effects and the invention particularly extends to prodrugs of the acids of formula (1).
- Such prodrugs are well known in the art, see for example International Patent Application No. WO00/23419, Bodor, N. (Alfred Benzon Symposium, 1982, 17, 156-177), Singh, G. et al (J. Sci. Ind. Res., 1996, 55, 497-510) and Bundgaard, H., (Design of Prodrugs, 1985, Elsevier, Amsterdam).
- Esterified carboxyl groups represented by the group —CO 2 Alk 7 include those wherein Alk 7 is a straight or branched optionally substituted C 1-8 alkyl group such as a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl group; an optionally substituted C 2-8 alkenyl group such as a propenyl e.g. 2-propenyl or butenyl e.g.
- 2-butenyl or 3-butenyl group an optionally substituted C 2-8 alkynyl group such as a ethynyl, propynyl e.g. 2-propynyl or butynyl e.g.
- an optionally substituted C 3-8 cycloalkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl group; an optionally substituted C 3-8 cycloalkylC 1-8 alkyl group such as a cyclopentylmethyl, cyclohexylmethyl or cyclohexylethyl group; an optionally substituted C 3-8 heterocycloalkylC 1-6 alkyl group such as a morpholinyl-N-ethyl, thiomorpholinyl-N-methyl, pyrrolidinyl-N-ethyl, pyrrolidinyl-N-propyl, piperidinyl-N-ethyl, pyrazolidinyl-N-methyl or piperazinyl-N-ethyl group; an optionally substituted C 1-6 alkyl group such as a morpholinyl-N-e
- a 2-(cyclohexyloxycarbonyloxy)ethyl group an optionally substituted N-di-C 1-8 alkylaminoC 1-8 alkyl group such as a N-dimethylaminoethyl or N-diethylaminoethyl group; an optionally substituted N—C 6-12 aryl-N—C 1-6 alkylaminoC 1-6 alkyl group such as a N-phenyl-N-methylaminomethyl group; an optionally substituted N-di-C 1-8 alkylcarbamoylC 1-8 alkyl group such as a N-diethylcarbamoylmethyl group; an optionally substituted C 6-10 arylC 1-6 alkyl group such as an optionally substituted benzyl, phenylethyl, phenylpropyl, 1-naphthylmethyl or 2-naphthylmethyl group; a C 6-10 aryl group such as an
- a 1,3-di-C 1-8 alkylglycerol-2-yl group such as a 1,3-diheptylglycerol-2-yl group.
- Optional substituents present on the Alk 7 group include R 13a substituents described above.
- alkyl groups may be replaced by alkenyl or alkynyl groups where such groups are as previously defined for Alk 1 . Additionally these alkyl, alkenyl or alkynyl groups may optionally be interrupted by one, two or three linker atoms or groups where such linker atoms and groups are as previously defined for L 2 .
- group R 2 is present in compounds of the invention as a C 1-6 alkyl group it may be for example a straight or branched C 1-6 alkyl group, e.g. a C 1-4 alkyl group such as a methyl or ethyl group.
- the linker atom or group represented by L 1 in compounds of formula (1) may be any linker atom or group as described above for the linker atom or group L 2 or may represent a covalent bond.
- group Alk 1 is present in compounds of formula (1) as an optionally substituted aliphatic chain it may be an optionally substituted C 1-10 aliphatic chain. Particular examples include optionally substituted straight or branched chain C 1-6 alkylene, C 2-6 alkenylene, or C 2-6 alkynylene chains.
- Particular examples of aliphatic chains represented by Alk 1 include optionally substituted —CH 2 —, —(CH 2 ) 2 —, —CH(CH 3 )CH 2 —, —(CH 2 ) 2 CH 2 —, —(CH 2 ) 3 CH 2 —, —CH(CH 3 )(CH 2 ) 2 —, —CH 2 CH(CH 3 )CH 2 —, —C(CH 3 ) 2 CH 2 —, —CH 2 C(CH 3 ) 2 CH 2 —, —(CH 2 ) 2 CH(CH 3 )CH 2 —, —CH(CH 3 )(CH 2 ) 3 —, —CH(CH 3 )CH 2 CH(CH 3 )CH 2 —, —CH 2 CH(CH 3 )CH 2 CH 2 —, —(CH 2 ) 2 C(CH 3 ) 2 CH 2 —, —(CH 2 ) 4 CH 2 —, —(CH 2 )
- Heteroaliphatic groups represented by the group R 3 in the compounds of formula (1) include the aliphatic chains just described for Alk 1 but with each containing a terminal hydrogen atom and additionally containing one, two, three or four heteroatoms or heteroatom-containing groups.
- Particular heteroatoms or groups include atoms or groups L 4 where L 4 is as defined above for L 2 when L 2 is a linker atom or group.
- Each L 4 atom or group may interrupt the aliphatic group, or may be positioned at its terminal carbon atom to connect the group to an adjoining atom or group.
- Particular examples include optionally substituted -L 4 CH 3 , —CH 2 L 4 CH 3 , -L 4 CH 2 CH 3 , —CH 2 L 4 CH 2 CH 3 , —(CH 2 ) 2 L 4 CH 3 , —(CH 2 ) 3 L 4 CH 3 , -L 4 (CH 2 ) 2 CH 3 and —(CH 2 ) 2 L 4 CH 2 CH 3 groups.
- Substituted amino groups include —NHR 9 and —N(R 9 ) 2 groups . Where two R 9 groups are present in any of the above substituents these may be the same or different.
- Optionally substituted cycloaliphatic groups represented by the group R 3 in compounds of the invention include optionally substituted C 3-10 cycloaliphatic groups.
- Particular examples include optionally substituted C 3-10 cycloalkyl, e.g. C 3-7 cycloalkyl or C 3-10 cycloalkenyl, e.g C 3-7 cycloalkenyl groups.
- Optionally substituted heterocycloaliphatic groups represented by the group R 3 include optionally substituted C 3-10 heterocycloaliphatic groups. Particular examples include optionally substituted C 3-10 heterocycloalkyl, e.g. C 3-7 heterocycloalkyl, or C 3-10 heterocycloalkenyl, e.g. C 3-7 hetercycloalkenyl groups, each of said groups containing one, two, three or four heteroatoms or heteroatom-containing groups L 4 as defined above.
- Optionally substituted polycycloaliphatic groups represented by the group R 3 include optionally substitued C 7-10 bi- or tricycloalkyl or C 7-10 bi- or tricycloalkenyl groups.
- Optionally substituted heteropolycycloaliphatic groups represented by the group R 3 include the optionally substituted polycycloalkyl groups just described, but with each group additionally containing one, two, three or four L 4 atoms or groups.
- cycloaliphatic, polycycloaliphatic, heterocycloaliphatic and heteropolycycloaliphatic groups represented by the group R 3 include optionally substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 2-cyclobuten-1-yl, 2-cyclopenten-1-yl, 3-cyclopenten-1-yl, adamantyl, norbornyl, norbornenyl, tetrahydrofuranyl, pyrroline, e.g.
- the optional substituents which may be present on the cycloaliphatic, polycycloaliphatic, heterocycloaliphatic or heterpolyocycloaliphatic groups represented by the group R 3 include one, two, three or more substituents each selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or C 1-6 alkyl, e.g. methyl or ethyl, haloC 1-6 alkyl, e.g. halomethyl or haloethyl such as difluoromethyl or trifluoromethyl, optionally substituted by hydroxyl, e.g.
- halogen atoms e.g. fluorine, chlorine, bromine or iodine atoms
- C 1-6 alkyl e.g. methyl or ethyl
- haloC 1-6 alkyl e.g. halomethyl or haloethyl such as diflu
- C 1-6 alkoxy e.g. methoxy or ethoxy
- haloC 1-6 alkoxy e.g. halomethoxy or haloethoxy
- difluoromethoxy or trifluoromethoxy —C 1-6 alkoxyC 1-6 alkyl e.g. methoxyethyl-, C 1-6 alkylthio e.g.
- R 10 is a —OH, —SH, —N(R 11 ) 2 (in which R 11 is an atom or group as defined herein for R 8 ) —CN, —CO 2 R 11 , —NO 2 , —CON(R 11 ) 2 , —CSN(R 11 ) 2 , —COR 11 , —CSN(R 11 ) 2 , —N(R 11 )COR 11 , —N(R 11 )CSR 11 , —SO 2 N(R 11 ) 2 , —N(R 11 )SO 2 R 11 , —N(R 11 )CON(R 11 ) 2 , —N(R 11 )CSN(R 11 ), N(R 11 )SO 2 N(
- Alk 4 chains include —CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 — and —CH(CH 3 )CH 2 — chains.
- each nitrogen atom may be optionally substituted by a group -(L 5 ) p (Alk 5 ) q R 12 in which L 5 is —C(O)—, —C(O)O—, —C(S)—, —S(O) 2 —, —CON(R 11 )—, —CSN(R 11 )— or SO 2 N(R 11 )—; p is zero or an integer 1; Alk 5 is an optionally substituted aliphatic or heteroaliphatic chain; q is zero or the integer 1; and R 12 is a hydrogen atom or an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group.
- Optionally substituted aliphatic or heteroaliphatic chains represented by Alk 5 include those optionally substituted chains described above for Alk 1 and R 3 respectively.
- Cycloaliphatic, heterocycloaliphatic, polycycloaliphatic or polyheterocycloaliphatic groups represented by R 12 include those groups just described for the group R 3 .
- Optional substituents which may be present on these groups include those described above in relation to Alk 1 and R 3 aliphatic and heteroaliphatic chains.
- Aromatic and heteroaromatic groups represented by R 10 and R 12 include those groups described hereinbefore for the group Ar 1 .
- Optional substituents which may be present on these groups include those described in relation to R 3 aromatic and heteroaromatic groups.
- group R 3 is an optionally substituted aromatic or heteroaromatic group it may be for example an aromatic or heteroaromatic group as described herein for the group Ar 1 .
- Optional substituents which may be present on the aromatic or heteroaromatic groups represented by the group R 3 include one, two, three or more substituents, each selected from an atom or group R 13 in which R 13 is —R 13a or -Alk 6 (R 13a ) m , where R 13a is a halogen atom, or an amino (—NH 2 ), substituted amino, nitro, cyano, amidino, hydroxyl (—OH), substituted hydroxyl, formyl, carboxyl (—CO 2 H), esterified carboxyl, thiol (—SH), substituted thiol, —COR 14 [where R 14 is an -Alk 6 (R 13a ) m , aryl or heteroaryl group], —CSR 14 , —SO 3 H, —SOR 14 , —SO 2 R 14 , —SO 3 R 14 , —SO 2 NH 2 , —SO 2 NHR 14 SO 2 N(R
- m m is an integer 1, 2 or 3, it is to be understood that the substituent or substituents R 13a may be present on any suitable carbon atom in -Alk 6 . Where more than one R 13a substituent is present these may be the same or different and may be present on the same or different atom in -Alk 6 . Clearly, when m is zero and no substituent R 13a is present the alkylene, alkenylene or alkynylene chain represented by Alk 6 becomes an alkyl, alkenyl or alkynyl group.
- R 13a is a substituted amino group it may be for example a group —NHR 14 [where R 14 is as defined above] or a group —N(R 14 ) 2 wherein each R 14 group is the same or different.
- R 13a is a halogen atom it may be for example a fluorine, chlorine, bromine, or iodine atom.
- R 13a is a substituted hydroxyl or substituted thiol group it may be for example a group —OR 14 or a —SR 14 or —SC( ⁇ NH)NH 2 group respectively.
- Esterified carboxyl groups represented by the group R 13a include groups of formula —CO 2 Alk 7 wherein Alk 7 is a group as defined hereinbefore.
- Alk 6 When Alk 6 is present in or as a substituent it may be for example a methylene, ethylene, n-propylene, i-propylene, n-butylene, i-butylene, s-butylene, t-butylene, ethenylene, 2-propenylene, 2-butenylene, 3-butenylene, ethynylene, 2-propynylene, 2-butynylene or 3-butynylene chain, optionally interrupted by one, two, or three —O— or —S—, atoms or —S(O)—, —S(O) 2 — or —N(R 15 )— groups.
- Cycloaliphatic or heterocycloaliphatic groups represented by the groups R 13a or R 14 include those optionally substituted C 3-10 cycloaliphatic or C 3-10 heterocycloaliphatic groups described above for R 3 .
- Aryl or heteroaryl groups represented by the groups R 13a or R 14 include mono- or bicyclic optionally substituted C 6-12 aromatic or C 1-9 heteroaromatic groups as described above for the group Ar 1 .
- the aromatic and heteroaromatic groups may be attached to the remainder of the compound of formula (1) by any carbon or hetero e.g. nitrogen atom as appropriate.
- each may be for example an optionally substituted pyrrolidinyl, pyrazolidinyl, piperazinyl, imidazolidinyl, morpholinyl, thiomorpholinyl, piperidinyl, oxazolidinyl or thiazolidinyl group.
- Het 2 may represent for example, an optionally substituted cyclopentyl or cyclohexyl group.
- Optional substituents which may be present on —NHet 1 or -Het 2 include those substituents described above in relation to R 3 heterocycloaliphatic groups.
- Particularly useful atoms or groups represented by R 13 include fluorine, chlorine, bromine or iodine atoms, or C 1-6 alkyl, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, optionally substituted phenyl, pyridyl, pyrimidinyl, pyrrolyl, furyl, thiazolyl, thienyl, morpholinyl, thiomorpholinyl, piperazinyl, pyrrolidinyl, dioxolanyl, dioxanyl, piperidinyl, oxazolidinyl, thiazolidinyl or imidazolidinyl, C 1-6 hydroxyalkyl, e.g.
- carboxyC 1-6 alkyl e.g. carboxyethyl, C 1-6 alkylthio e.g. methylthio or ethylthio, carboxyC 1-6 alkylthio, e.g. carboxymethylthio, 2-carboxyethylthio or 3-carboxypropylthio, C 1-6 alkoxy, e.g. methoxy or ethoxy, hydroxyC 1-6 alkoxy, e.g.
- 2-hydroxyethoxy optionally substituted phenoxy, pyridyloxy, thiazolyoxy, phenylthio or pyridylthio, C 4-7 cycloalkyl, e.g. cyclobutyl, cyclopentyl, C 5-7 cycloalkoxy, e.g. cyclopentyloxy, haloC 1-6 alkyl, e.g. trifluoromethyl, haloC 1-6 alkoxy, e.g. trifluoromethoxy, C 1-6 alkylamino, e.g.
- aminoC 1-6 alkyl e.g. aminomethyl or aminoethyl, C 1-6 dialkylamino, e.g. dimethylamino or diethylamino, aminoC 1-6 alkylamino e.g. aminoethylamino or aminopropylamino, optionally substituted Het 1 NC 1-6 alkylamino e.g. morpholinopropylamino, C 1-6 alkylaminoC 1-6 alkyl, e.g. ethylaminoethyl, C 1-6 dialkyl-aminoC 1-6 alkyl, e.g.
- diethylaminoethyl aminoC 1-6 alkoxy, e.g. aminoethoxy, C 1-6 alkylaminoC 1-6 alkoxy, e.g. methylaminoethoxy, C 1-6 dialkylaminoC 1-6 alkoxy, e.g. dimethylaminoethoxy, diethylaminoethoxy, diisopropylaminoethoxy, or dimethylaminopropoxy, hydroxyC 1-6 alkylamino, e.g. hydroxyethylamino, hydroxypropylamino, or hydroxybutylamino, imido, such as phthalimido or naphthalimido, e.g.
- 1,8-naphthalimido nitro, cyano, amidino, hydroxyl (—OH), formyl [HC(O)—], carboxyl (—CO 2 H), —CO 2 Alk 7 [where Alk 7 is as defined above], C 1-6 alkanoyl e.g. acetyl, propyryl or butyryl, optionally substituted benzoyl, thiol (—SH), thioC 1-6 alkyl, e.g. thiomethyl or thioethyl, —SC( ⁇ NH)NH 2 , sulphonyl (—SO 3 H), —SO 3 Alk 7 , C 1-6 alkylsulphinyl, e.g.
- methylaminosulphonyl, ethylaminosulphonyl or propylamiosulphonyl C 1-6 dialkylaminosulphonyl, e.g. dimethylaminosulphonyl or diethylaminosulphonyl, optionally substituted phenylaminosulphonyl, carboxamido (—CONH 2 ), C 1-6 alkylaminocarbonyl, e.g. methylaminocarbonyl, ethylaminocarbonyl or propylaminocarbonyl, C 1-6 dialkylaminocarbonyl, e.g.
- aminoC 1-6 alkylaminocarbonyl e.g. aminoethylaminocarbonyl, C 1-6 alkylaminoC 1-6 alkylaminocarbonyl, e.g. methylaminoethylaminocarbonyl, C 1-6 dialkylaminoC 1-6 alkylaminocarbonyl, e.g. diethylaminoethylaminocarbonyl, aminocarbonylamino, C 1-6 alkylaminocarbonylamino, e.g.
- C 1-6 dialkylaminocarbonylamino e.g. dimethylaminocarbonylamino or diethylaminocarbonylamino
- C 1-6 alkylaminocabonylC 1-6 alkylamino e.g. methylaminocarbonylmethylamino, aminothiocarbonylamino, C 1-6 alkylaminothiocarbonylamino, e.g. methylaminothiocarbonylamino or ethylaminothiocarbonylamino
- C 1-6 dialkylaminothiocarbonylamino e.g.
- C 1-6 alkylaminothiocarbonylC 1-6 alkylamino e.g. ethylaminothiocarbonylmethylamino, —CONHC( ⁇ NH)NH 2
- C 1-6 alkylsulphonylamino e.g. methylsulphonylamino or ethylsulphonylamino
- haloC 1-6 alkylsulphonylamino e.g. trifluoromethylsulphonylamino
- C 1-6 dialkylsulphonylamino e.g.
- dimethylsulphonylamino or diethylsulphonylamino optionally substituted phenylsulphonylamino, aminosulphonylamino (—NHSO 2 NH 2 ), C 1-6 alkylaminosulphonylamino, e.g. methylaminosulphonylamino or ethylaminosulphonylamino, C 1-6 dialkylaminosulphonylamino, e.g.
- dimethylaminosulphonylamino or diethylaminosulphonylamino optionally substituted morpholinesulphonylamino or morpholinesulphonylC 1-6 alkylamino, optionally substituted phenylaminosulphonylamino, C 1-6 alkanoylamino, e.g. acetylamino, aminoC 1-6 alkanoylamino e.g. aminoacetylamino, C 1-6 dialkylaminoC 1-6 alkanoylamino, e.g. dimethylaminoacetylamino, C 1-6 alkanoylaminoC 1-6 alkyl, e.g.
- acetylaminomethyl C 1-6 alkanoylaminoC 1-6 alkylamino, e.g. acetamidoethylamino, C 1-6 alkoxycarbonylamino, e.g. methoxycarbonylamino, ethoxycarbonylamino or t-butoxycarbonylamino or optionally substituted benzyloxy, benzylamino, pyridylmethoxy, thiazolylmethoxy, benzyloxycarbonylamino, benzyloxycarbonylaminoC 1-6 alkyl e.g. benzyloxycarbonylaminoethyl, thiobenzyl, pyridylmethylthio or thiazolylmethylthio groups.
- two R 13 substituents may be linked together to form a cyclic group such as a cyclic ether, e.g. a C 1-6 alkylenedioxy group such as methylenedioxy or ethylenedioxy.
- a cyclic group such as a cyclic ether, e.g. a C 1-6 alkylenedioxy group such as methylenedioxy or ethylenedioxy.
- R 13 substituents are present, these need not necessarily be the same atoms and/or groups.
- the substituent(s) may be present at any available ring position in the aromatic or heteroaromatic group represented by R 3 .
- Suitable salts include pharmaceutically acceptable salts, for example acid addition salts derived from inorganic or organic acids, and salts derived from inorganic and organic bases.
- Acid addition salts include hydrochlorides, hydrobromides, hydroiodides, alkylsulphonates, e.g. methanesulphonates, ethanesulphonates, or isothionates, arylsulphonates, e.g. p-toluenesulphonates, besylates or napsylates, phosphates, sulphates, hydrogen sulphates, acetates, trifluoroacetates, propionates, citrates, maleates, fumarates, malonates, succinates, lactates, oxalates, tartrates and benzoates.
- Salts derived from inorganic or organic bases include alkali metal salts such as sodium or potassium salts, alkaline earth metal salts such as magnesium or calcium salts, and organic amine salts such as morpholine, piperidine, dimethylamine or diethylamine salts.
- Particularly useful salts of compounds according to the invention include pharmaceutically acceptable salts, especially acid addition pharmaceutically acceptable salts.
- the group R 1 is preferably an Ar 1 Ar 2 Alk- group in which Ar 1 is an optionally substituted phenyl, monocyclic heteroaromatic or bicyclic heteroaromatic group.
- Ar 1 is an optionally substituted phenyl, monocyclic heteroaromatic or bicyclic heteroaromatic group.
- Particularly useful monocyclic heteroaromatic groups are optionally substituted five- or six-membered heteroaromatic groups as described previously, especially five- or six-membered heteroaromatic groups containing one or two heteroatoms selected from oxygen, sulphur or nitrogen atoms.
- Nitrogen-containing groups are especially useful, particularly pyridyl or pyrimidinyl groups.
- Particularly useful substituents present on these Ar 1 groups include halogen atoms or alkyl, haloalkyl, —OR 5 , —SR 5 , —NR 5 R 6 , —CO 2 H, —CO 2 R 5 , —NO 2 , —SOR 5 , —SO 2 R 5 , —N(R 5 )SO 2 R 6 , —SO 2 N(R 5 )(R 6 ), —N(R 5 )COR 6 , —N(R 5 )CON(R 6 )(R 7 ), —CONR 5 R 6 , —CON(R 5 )SO 2 R 6 or —CN groups as described above in relation to the compounds of formula (1).
- Particularly useful bicyclic heteraromatic groups represented by Ar 1 include optionally substituted ten-membered fused-ring heteroaromatic groups containing one or two heteroatoms, especially nitrogen atoms.
- Particular examples include optionally substituted naphthyridinyl, especially 2,6-naphthyridinyl, quinolinyl and isoquinolinyl, especially isoquinolin-1-yl groups.
- Particular optional substituents include those just described for monocyclic heteroaromatic groups.
- a particularly useful group of compounds according to the invention has the formula (2a):
- R 16 and R 17 which may be the same or different is each a hydrogen atom or an atom or group -L 2 (Alk 2 ) h L 3 (R 4 ) u in which L 2 , Alk 2 , t, L 3 , R 4 and u are as defined previously;
- L 1 , Ar 2 , Alk, R 2 , Alk 1 , n and R 3 are as defined for formula (1);
- R 16 and R 17 in compounds of formula (2a) is each preferably as particularly described above for compounds of formula (1), other than a hydrogen atom.
- Particularly useful R 16 and R 17 substituents include halogen atoms, especially fluorine or chlorine atoms, or methyl, halomethyl, especially —CF 3 , —CHF 2 or —CH 2 F, methoxy or halomethoxy, especially —OCF 3 , —OCHF 2 or —OCH 2 F groups.
- a further particularly useful group of compounds according to the invention has the formula (2b):
- R 16 , L 1 , Ar 2 , Alk, R 2 , Alk 1 , n and R 3 are as defined for formula (2a);
- g is the integer 1,2,3 or 4;
- Each R 16 atom or group in compounds of formula (2b) may be independently selected from an atom or group -L 2 (Alk 3 ) t L 3 (R 7 ) u in which L 2 , Alk 2 , t, L 3 , R 4 and u are as previously defined.
- R 16 substituents when present in compounds of formula (2b) include halogen atoms, especially fluorine, chlorine or bromine atoms, or methyl, halomethyl, especially —CF 3 , methoxy or halomethoxy, especially —OCF 3 , —CN, —CO 2 CH 3 , —NO 2 , amino (—NH 2 ), substituted amino (—NR 5 R 6 ) and —N(R 5 )COCH 3 , especially —NHCOCH 3 groups.
- halogen atoms especially fluorine, chlorine or bromine atoms, or methyl, halomethyl, especially —CF 3 , methoxy or halomethoxy, especially —OCF 3 , —CN, —CO 2 CH 3 , —NO 2 , amino (—NH 2 ), substituted amino (—NR 5 R 6 ) and —N(R 5 )COCH 3 , especially —NHCOCH 3 groups.
- Alk in compounds of the invention is preferably:
- R 2 is preferably a hydrogen atom.
- R is a —CO 2 H group.
- R is an esterified carboxyl group of formula —CO 2 Alk 7 .
- Alk 7 is preferably an optionally substituted C 1-8 alkyl group, especially a methyl, ethyl, propyl or i-propyl group, a C 6-10 aryl group, especially a phenyl group, an optionally substituted C 6-10 arylC 1-6 alkyl group, especially a benzyl group, a C 3-8 heterocycloalkylC 1-6 alkyl group, especially a morpholinyl-N-ethyl group or a C 1-6 alkyloxyC 1-6 alkyl group, especially a methyloxyethyl group.
- Especially preferred esterfied carboxyl groups include —CO 2 CH 3 , —CO 2 CH 2 CH 3 , —CO 2 CH 2 CH 2 CH 3 and —CO 2 CH(CH 3 ) 2
- the group Ar 2 in compounds of formulae (1), (2a) and (2b) is preferably an optionally substituted phenylene group.
- Particularly useful groups include optionally substituted 1,4-phenylene groups.
- the group R 3 may especially be a hydrogen atom or an optionally substituted heteroaliphatic, cycloaliphatic, heterocycloaliphatic, aromatic or heteroaromatic group as defined herein.
- Particularly useful groups of this type include optionally substituted C 2-6 heteroalkyl, particularly C 1-3 alkoxyC 1-3 alkyl, especially methoxypropyl, optionally substituted C 3-7 cycloalkyl, especially optionally substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, optionally substituted C 5-7 heterocycloaliphatic, especially optionally substituted pyrrolidinyl, thiazolidinyl, pyrolidinonyl, piperidinyl, morpholinyl or piperazinyl, optionally substituted C 6-12 aromatic especially optionally substituted phenyl and optionally substituted C 5-7 heteroaromatic, especially optionally substituted pyridyl, triazinyl or imidazolyl groups.
- R 13 atoms or groups where R 3 is an aromatic or heteroaromatic group include in particular R 13 atoms or groups where R 3 is an aromatic or heteroaromatic group.
- Particularly useful R 13 atoms or groups include a halogen atom, especially fluorine or chlorine and C 1-6 alkoxy, especially methoxy.
- R 3 is a nitrogen-containing heterocycloaliphatic group such as a pyrrolidinyl, thiazolidinyl, pyrrolidinonyl, piperidinyl, homopiperidinyl, heptamethyleneiminyl, morpholiny, piperazinyl or homopiperazinyl group
- substituents include in particular -(L 5 ) p (Alk 5 ) q R 12 groups as described earlier.
- L 1 is present as a —N(R 8 )— group.
- Particularly useful —N(R 8 )— groups include —NH—, —N(CH 3 )—, —N(CH 2 CH 3 )— and —N(CH 2 CH 2 CH 3 )— groups.
- n is preferably the integer 1 and Alk 1 is preferably an optionally substituted straight or branched C 1-6 alkylene chain.
- Alk 1 chains include —CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 —, —CH(CH 3 )CH 2 — and —C(CH 3 )CH 2 —.
- R 3 in this group of compounds is preferably a hydrogen atom.
- Alk 1 is present as an aliphatic chain as defined herein (i.e. n is the integer 1) and R 3 is a hydrogen atom.
- L 1 is preferably a covalent bond.
- Alk 1 R 3 is a C 1-6 alkyl group, particularly a methyl, ethyl, propyl, butyl, isopropyl, t-butyl or C 1-6 alkenyl group particularly an allyl group are especially useful.
- a most especially useful Alk 1 R 3 group is a —C(CH 3 ) 3 group.
- L 1 is a covalent bond
- n is zero
- R 3 is an optionally substituted C 5-7 heterocycloaliphatic group.
- Especially useful C 5-7 heterocycloaliphatic groups include optionally substituted piperidinyl, homopiperidinyl, heptamethyleneiminyl, pyrrolidinyl, piperazinyl, homopiperazinyl, morpholinyl and thiomorpholinyl groups.
- Most preferred C 5-7 heterocycloaliphatic groups are those linked via a ring nitrogen atom to the remainder of the compound of formulae (1), (2a) or (2b).
- C 5-7 heterocycloaliphatic groups include optionally substituted pyrolidin-1-yl, piperidin-1-yl and homopiperidin-1-yl groups.
- Especially useful optional substituents on these C 5-7 heterocycloaliphatic groups include optionally substituted C 1-6 alkyl groups, especially methyl, ethyl and i-propyl groups.
- C 5-7 heterocycloaliphatic groups include 2-methylpyrrolidin-1-yl, cis and trans 2,5-dimethylpyrrolidin-1-yl, 2-methylpiperidin-1-yl, cis and trans 2,6-dimethylpiperidin-1-yl, homopiperidin-1-yl, 2-methylhomopiperidin-1-yl and cis and trans 2,7-dimethylhomopiperidin-1-yl groups.
- Particularly useful compounds of the invention include:
- Compounds according to the invention are potent and selective inhibitors of ⁇ 4 integrins and have advantageous clearance properties, especially those compounds where R is a carboxylic ester or amide.
- the ability of the compounds to act in this way may be simply determined by employing tests such as those described in the Examples hereinafter.
- the compounds are of use in modulating cell adhesion and in particular are of use in the prophylaxis and treatment of diseases or disorders involving inflammation in which the extravasation of leukocytes plays a role and the invention extends to such a use and to the use of the compounds for the manufacture of a medicament for treating such diseases or disorders.
- Diseases or disorders of this type include inflammatory arthritis such as rheumatoid arthritis vasculitis or polydermatomyositis, multiple sclerosis, allograft rejection, diabetes, inflammatory dermatoses such as psoriasis or dermatitis, asthma and inflammatory bowel disease.
- inflammatory arthritis such as rheumatoid arthritis vasculitis or polydermatomyositis, multiple sclerosis, allograft rejection, diabetes, inflammatory dermatoses such as psoriasis or dermatitis, asthma and inflammatory bowel disease.
- the compounds according to the invention may be administered as pharmaceutical compositions, and according to a further aspect of the invention we provide a pharmaceutical composition which comprises a compound of formula (1) together with one or more pharmaceutically acceptable carriers, excipients or diluents.
- compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical or rectal administration, or a form suitable for administration by inhalation or insufflation.
- the pharmaceutical compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium glycollate); or wetting agents (e.g. sodium lauryl sulphate).
- binding agents e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
- fillers e.g. lactose, microcrystalline cellulose or calcium hydrogen phosphate
- lubricants e.g. magnesium stearate, talc or silica
- disintegrants e.g. potato starch or sodium glycollate
- Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
- Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles and preservatives.
- the preparations may also contain buffer salts, flavouring, colouring and sweetening agents as appropriate.
- Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
- compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compounds for formula (1) may be formulated for parenteral administration by injection e.g. by bolus injection or infusion.
- Formulations for injection may be presented in unit dosage form, e.g. in glass ampoule or multi dose containers, e.g. glass vials.
- the compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents.
- the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.
- the compounds of formula (1) may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation or by intramuscular injection.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.
- suitable propellant e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.
- compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
- the pack or dispensing device may be accompanied by instructions for administration.
- the quantity of a compound of the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound chosen, and the condition of the patient to be treated. In general, however, daily dosages may range from around 100 ng/kg to 100 mg/kg e.g. around 0.01 mg/kg to 40 mg/kg body weight for oral or buccal administration, from around 10 ng/kg to 50 mg/kg body weight for parenteral administration and around 0.05 mg to around 1000 mg e.g. around 0.5 mg to around 1000 mg for nasal administration or administration by inhalation or insufflation.
- the compounds of the invention may be prepared by a number of processes as generally described below and more specifically in the Examples hereinafter.
- the symbols Ar 1 , Ar 2 , Alk, R 1 , R 2 , R 3 , L 1 , L 2 , Alk 1 and n when used in the formulae depicted are to be understood to represent those groups described above in relation to formula (1) unless otherwise indicated.
- reactive functional groups for example hydroxy, amino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions.
- Conventional protecting groups may be used in accordance with standard practice [see, for example, Green, T. W.
- deprotection may be the final step in the synthesis of a compound of formula (1) and the processes according to the invention described hereinafter are to be understood to extend to such removal of protecting groups.
- the processes described below all refer to a preparation of a compound of formula (1) but clearly the description applies equally to the preparation of compounds of formula (2).
- a compound of formula (1) in which R is a —CO 2 H group may be obtained by hydrolysis of an ester of formula (3):
- Alk represents a group —CH 2 CH(CO 2 R y )—, —CH ⁇ CH(CO 2 R y )—, or
- R y is an alkyl group for example a C 1-6 alkyl group
- the hydrolysis may be performed using either an acid or a base depending on the nature of R y , for example an organic acid such as trifluoroacetic acid or an inorganic base such as lithium, sodium or potassium hydroxide optionally in an aqueous organic solvent such as an amide e.g. a substituted amide such as dimethylformamide, an ether e.g. a cyclic ether such as tetrahydrofuran or dioxane or an alcohol e.g. methanol at a temperature from ambient to the reflux temperature. Where desired, mixtures of such solvents may be used.
- an organic acid such as trifluoroacetic acid or an inorganic base such as lithium, sodium or potassium hydroxide
- an aqueous organic solvent such as an amide e.g. a substituted amide such as dimethylformamide, an ether e.g. a cyclic ether such as tetrahydrofuran or dioxane or an alcohol e.g.
- a compound of formula (3) may be prepared by displacement of a leaving group from a compound of formula (4):
- R a is a leaving group, with an amine R 1 R 2 NH or a salt thereof.
- Suitable leaving groups represented by R a include halogen atoms, especially chlorine and bromine atoms, or alkoxy, e.g. methoxy, ethoxy or isopropoxy, aryloxy, e.g. dinitrophenyloxy, or aralkoxy, e.g. benzyloxy, groups.
- the reaction may be performed in an inert solvent or mixture of solvents, for example a substituted amide such as dimethylformamide, an alcohol such as methanol or ethanol and/or a halogenated hydrocarbon such as dichloromethane, at a temperature from 0° C. to the reflux temperature.
- a substituted amide such as dimethylformamide
- an alcohol such as methanol or ethanol
- a halogenated hydrocarbon such as dichloromethane
- R b is a leaving group as defined for R a using an intermediate R 3 (Alk 1 ) n L 1 H where -L 1 H is a functional group such as an amine (—NH 2 ) using the reaction conditions just described.
- the displacement reaction may also be performed on an intermediate of formulae (4) or (5), R 1 R 2 NH or R 3 (Alk 2 ) n L 1 H which is linked, for example via its R 1 or R 3 group, to a solid support, such as a polystyrene resin.
- a solid support such as a polystyrene resin.
- the desired compound of formula (1) may be displaced from the support by any convenient method, depending on the original linkage chosen. Particular examples of such solid phase synetheses are given in the Examples hereinafter.
- R a and R b are as previously defined and an amine R 1 R 2 NH, R 3 (Alk 1 ) n L 1 H where L 1 H is a functional group such as an amine (—NH 2 ) or alcohol (—OH), alkyllithium or aryllithium by displacement as just described for the preparation of compounds of formula (1).
- intermediates of formula R 1 R 2 NH may be obtained from reaction or intermediates of formula XAr 2 AlkN(R 2 )H [where X is a halogen atom such as bromine or iodine or a sulphonate such as trifluoromethylsulphonate] with a boronic acid Ar 1 B(OH) 2 , optionally in the presence of a base such as a carbonate e.g. sodium or potassium carbonate or an amine e.g. triethylamine or pyridine and a metal complex such as a palladium complex e.g.
- a base such as a carbonate e.g. sodium or potassium carbonate or an amine e.g. triethylamine or pyridine
- a metal complex such as a palladium complex e.g.
- tetrakis(triphenylphosphine)palladium (0) in a solvent such as an aromatic hydrocarbarbon e.g. toluene or an ether e.g. 1,2-dimethyoxyethane or tetrahydrofuran in the presence of water at an elevated temperature e.g. 80°.
- organometallic reagents such as organostannanes of formula Ar 1 Sn(R Z ) 3 (where R Z is a C 1-6 alkyl group), Grignard reagents of formula Ar 1 MgHal (where Hal is a halogen atom such as a chlorine, bromine or iodine atom) or organozinc reagents of formula Ar 1 ZnHal.
- compounds containing a -L 1 H or -L 2 H group may be treated with an alkylating agent R 3 (Alk 1 ) n X 1 or R 4 L 3 (Alk 2 ) t X 1 respectively in which X 1 is a leaving atom or group such as a halogen atom, e.g. a fluorine, bromine, iodine or chlorine atom or a sulphonyloxy group such as an alkylsulphonyloxy, e.g. trifluoromethylsulphonyloxy or arylsulphonyloxy, e.g. p-toluene-sulphonyloxy group.
- a leaving atom or group such as a halogen atom, e.g. a fluorine, bromine, iodine or chlorine atom or a sulphonyloxy group
- a sulphonyloxy group such as an alkylsulphonyl
- the reaction may be carried out in the presence of a base such as a carbonate, e.g. cesium or potassium carbonate, an alkoxide, e.g. potassium t-butoxide, or a hydride, e.g. sodium hydride, or an organic amine e.g. triethylamine or N,N-diisopropylethylamine or a cyclic amine, such as N-methylmorpholine or pyridine, in a dipolar aprotic solvent such as an amide, e.g. a substituted amide such as dimethylformamide or an ether, e.g. a cyclic ether such as tetrahydrofuran.
- a base such as a carbonate, e.g. cesium or potassium carbonate, an alkoxide, e.g. potassium t-butoxide, or a hydride, e.g. sodium hydride, or an organic amine e.g. tri
- compounds containing a -L 1 H or -L 2 H or group as defined above may be functionalised by acylation or thioacylation, for example by reaction with one of the alkylating agents just described but in which X 1 is replaced by a —C(O)X 2 , C(S)X 2 , —N(R 8 )COX 2 or —N(R 8 )C(S)X 2 group in which X 2 is a leaving atom or group as described for X 1 .
- the reaction may be performed in the presence of a base, such as a hydride, e.g. sodium hydride or an amine, e.g.
- a solvent such as a halogenated hydrocarbon, e.g. dichloromethane or carbon tetrachloride or an amide, e.g. dimethylformamide, at for example ambient temperature.
- a halogenated hydrocarbon e.g. dichloromethane or carbon tetrachloride
- an amide e.g. dimethylformamide
- the acylation may be carried out under the same conditions with an acid (for example one of the alkylating agents described above in which X 1 is replaced by a —CO 2 H group) in the presence of a condensing agent, for example a diimide such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide or N,N′-dicyclohexylcarbodiimide, or a benzotriazole such as [0-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium]hexafluorophosphate advantageously in the presence of a catalyst such as a N-hydroxy compound e.g. a N-hydroxytriazole such as 1-hydroxybenzotriazole.
- the acid may be reacted with a chloroformate, for example ethylchloroformate, prior to the desired acylation reaction
- compounds may be obtained by sulphonylation of a compound containing an —OH group by reaction with one of the above alkylating agents but in which X 1 is replaced by a —S(O)Hal or —SO 2 Hal group [in which Hal is a halogen atom such as chlorine atom] in the presence of a base, for example an inorganic base such as sodium hydride in a solvent such as an amide, e.g. a substituted amide such as dimethylformamide at for example ambient temperature.
- a base for example an inorganic base such as sodium hydride in a solvent such as an amide, e.g. a substituted amide such as dimethylformamide at for example ambient temperature.
- compounds containing a -L 1 H or -L 2 H group as defined above may be coupled with one of the alkylation agents just described but in which X 1 is replaced by an —OH group in a solvent such as tetrahydrofuran in the presence of a phosphine, e.g. triphenylphosphine and an activator such as diethyl, diisopropyl- or dimethylazodicarboxylate.
- a phosphine e.g. triphenylphosphine and an activator such as diethyl, diisopropyl- or dimethylazodicarboxylate.
- ester groups —CO 2 R 5 , —CO 2 Alk 3 or —CO 2 Alk 7 in the compounds may be converted to the corresponding acid [—CO 2 H] by acid- or base-catalysed hydrolysis depending on the nature of the groups R 5 , Alk 3 or Alk 7 .
- Acid- or base-catalysed hydrolysis may be achieved for example by treatment with an organic or inorganic acid, e.g. trifluoroacetic acid in an aqueous solvent or a mineral acid such as hydrochloric acid in a solvent such as dioxan or an alkali metal hydroxide, e.g. lithium hydroxide in an aqueous alcohol, e.g. aqueous methanol.
- —OR 5 or —OR 14 groups [where R 5 or R 14 each represents an alkyl group such as methyl group] in compounds of formula (1) may be cleaved to the corresponding alcohol —OH by reaction with boron tribromide in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane at a low temperature, e.g. around ⁇ 78° C.
- a solvent such as a halogenated hydrocarbon, e.g. dichloromethane at a low temperature, e.g. around ⁇ 78° C.
- Alcohol [—OH] groups may also be obtained by hydrogenation of a corresponding —OCH 2 R 14 group (where R 14 is an aryl group) using a metal catalyst, for example palladium on a support such as carbon in a solvent such as ethanol in the presence of ammonium formate, cyclohexadiene or hydrogen, from around ambient to the reflux temperature.
- —OH groups may be generated from the corresponding ester [CO 2 Alk 5 or CO 2 R 5 ] or aidehyde [—CHO] by reduction, using for example a complex metal hydride such as lithium aluminium hydride or sodium borohydride in a solvent such as methanol.
- alcohol —OH groups in the compounds may be converted to a corresponding —OR 5 or —OR 14 group by coupling with a reagent R 5 OH or R 14 OH in a solvent such as tetrahydrofuran in the presence of a phosphine, e.g. triphenylphosphine and an activator such as diethyl-, diisopropyl-, or dimethylazodicarboxylate.
- a phosphine e.g. triphenylphosphine and an activator such as diethyl-, diisopropyl-, or dimethylazodicarboxylate.
- Aminosulphonylamino [—NHSO 2 NHR 3 ] groups in the compounds may be obtained, in another example, by reaction of a corresponding amine [—NH 2 ] with a sulphamide R 3 NHSO 2 NH 2 in the presence of an organic base such as pyridine at an elevated temperature, e.g. the reflux temperature.
- compounds containing a —NHCSR 3 or —CSNHR 3 group may be prepared by treating a corresponding compound containing a —NHCOR 3 or —CONHR 3 group with a thiation reagent, such as Lawesson's Reagent, in an anhydrous solvent, for example a cyclic ether such as tetrahydrofuran, at an elevated temperature such as the reflux temperature.
- a thiation reagent such as Lawesson's Reagent
- amine (—NH 2 ) groups may be alkylated using a reductive alkylation process employing an aldehyde and a borohydride, for example sodium triacetoxyborohyride or sodium cyanoborohydride, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane, a ketone such as acetone, or an alcohol, e.g. ethanol, where necessary in the presence of an acid such as acetic acid at around ambient temperature.
- a halogenated hydrocarbon e.g. dichloromethane
- ketone such as acetone
- alcohol e.g. ethanol
- amine [—NH 2 ] groups in compounds of formula (1) may be obtained by hydrolysis from a corresponding imide by reaction with hydrazine in a solvent such as an alcohol, e.g. ethanol at ambient temperature.
- a nitro [—NO 2 ] group may be reduced to an amine [— NH 2 ], for example by catalytic hydrogenation using for example hydrogen in the presence of a metal catalyst, for example palladium on a support such as carbon in a solvent such as an ether, e.g. tetrahydrofuran or an alcohol e.g. methanol, or by chemical reduction using for example a metal, e.g. tin or iron, in the presence of an acid such as hydrochloric acid.
- a metal catalyst for example palladium on a support such as carbon in a solvent such as an ether, e.g. tetrahydrofuran or an alcohol e.g. methanol
- an acid such as hydrochloric acid
- Aromatic halogen substituents in the compounds may be subjected to halogen-metal exchange with a base, for example a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around ⁇ 78° C., in a solvent such as tetrahydrofuran and then quenched with an electrophile to introduce a desired substituent.
- a base for example, a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around ⁇ 78° C.
- a solvent such as tetrahydrofuran
- an electrophile to introduce a desired substituent.
- a formyl group may be introduced by using dimethylformamide as the electrophile
- a thiomethyl group may be introduced by using dimethyldisulphide as the electrophile.
- sulphur atoms in the compounds may be oxidised to the corresponding sulphoxide or sulphone using an oxidising agent such as a peroxy acid, e.g. 3-chloroperoxybenzoic acid, in an inert solvent such as a halogenated hydrocarbon, e.g. dichloromethane, at around ambient temperature.
- an oxidising agent such as a peroxy acid, e.g. 3-chloroperoxybenzoic acid
- an inert solvent such as a halogenated hydrocarbon, e.g. dichloromethane
- N-oxides of compounds of formula (1) may be prepared for example by oxidation of the corresponding nitrogen base using an oxidising agent such as hydrogen peroxide in the presence of an acid such as acetic acid, at an elevated temperature, for example around 70° C. to 80° C., or alternatively by reaction with a peracid such as peracetic acid in a solvent, e.g. dichloromethane, at ambient temperature.
- an oxidising agent such as hydrogen peroxide in the presence of an acid such as acetic acid
- an elevated temperature for example around 70° C. to 80° C.
- a peracid such as peracetic acid in a solvent, e.g. dichloromethane
- Salts of compounds of formula (1) may be prepared by reaction of a compound of formula (1) with an appropriate base in a suitable solvent or mixture of solvents e.g. an organic solvent such as an ether e.g. diethylether, or an alcohol, e.g. ethanol using conventional procedures.
- a suitable solvent or mixture of solvents e.g. an organic solvent such as an ether e.g. diethylether, or an alcohol, e.g. ethanol using conventional procedures.
- diastereomeric derivatives e.g. salts
- diastereomeric derivatives may be produced by reaction of a mixture of enantiomers of formula (1) e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base.
- the diastereomers may then be separated by any convenient means, for example by crystallisation and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt.
- a racemate of formula (1) may be separated using chiral High Performance Liquid Chromatography.
- a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above.
- Triflic anhydride (5.05 ml, 30 mmol) was added to a mixture of N-BOC tyrosine methyl ester (7.38 g, 25 mmol) and pyridine (10 ml, 125 mmol) in DCM (40 ml) at 0°. After 45 min at 0° water (80 ml) and DCM (100 ml) were added. The organic phase was washed with NaOH aq.
- the resin was treated with a 20% solution of acetic anhydride in DMF for 30 mins at room temperature, then filtered and washed as before.
- the resulting resin was treated with a 20% solution of piperidine in DMF (50 ml) for 30 mins at room temperature, then filtered and washed with DMF, DCM and MeOH.
- the resin was re-suspended in DMF (50 ml) and was treated with 3,4-dimethoxy-3-cyclobutene-1,2-dione (2.50 g, 17.50 mmol) and the mixture agitated at room temperature for 16 h.
- the resin was filtered and washed with DMF, DCM and MEOH, then re-suspended in a mixture of DCM (200 m) and MeOH (50 ml) and treated with 1-propylamine (2.90 ml, 35.00 mmol). The reaction mixture was agitated at room temperature for 4 h. The resin was filtered and washed with DMF, DCM and MeOH, then air-dried to give the title derivatised resin (1).
- n-Propylamine (104 ⁇ l, 1.26 mmol) was added to a solution of Intermediate 1 (412 mg, 1.05 mmol) in MeOH (10 ml). The mixture was stirred at room temperature overnight then the solvent removed in vacuo. The residue was dissolved in DCM (100 ml), washed with HCl (aqueous) (1 M, 30 ml), dried (Na 2 SO 4 ) and evaporated in vacuo to give the title compound as a yellow solid (337 mg).
- N- ⁇ -FMOC-L-4-biphenylylalanine Wang resin (Advanced ChemTech, 200 mg, 0.50 mmol/g, 0.1 mmol equivalent) was treated with a 20% solution of piperidine in DMF (2 ml) for 30 min at room temperature, then filtered and washed with DCM. The resin was re-suspended in DMF (2 ml) and treated with 3,4-dimethoxy-3-cyclobutene-1,2-dione (99 mg, 0.7 mmol). The resulting mixture was heated at 70° for 18 h.
- the resin was filtered and washed with DCM then re-suspended in a mixture of DCM (0.4 ml) and ethanol (1.6 ml) and treated with morpholine (87 mg, 1.0 mmol).
- the resin was agitated at room temperature for 18 h then filtered and washed with DCM.
- the resin was treated with a solution of trifluoroacetic acid/DCM (95:5, 2 ml) for 3 h, then filtered.
- the filtrate was evaporated to afford the crude product which was purified by preparative HPLC to afford the title compound (4 mg).
- a slurry of derivatised resin (1) (200 mg) in anhydrous, degassed DMF (2 ml) was treated with 4-methylbenzeneboronic acid (49 mg, 0.35 mmol), triethylamine (0.1 ml, 0.67 mmol) and tetrakistriphenylphosphine palladium (0) (20 mg, 0.17 mmol).
- the resulting mixture was agitated at 100° for 2 h then cooled to room temperature.
- the resin was filtered and washed with 0.5% (w/w) sodium diethydithiocarbamate solution in DMF, 0.5% (w/w) DIPEA solution in DMF, DMF, DCM and MeOH then air-dried.
- the resin was treated with a solution of trifluoroacetic acid/DMF (95:5, 1 ml) for 1 h, then filtered. The filtrate was evaporated to afford the title compound (1 mg).
- LC-MS Conditions Luna C18(2) 50 ⁇ 2.0 mm (3 ⁇ m) column, running a gradient of 95% [0.1% aqueous formic acid], 5% [0.1% formic acid in acetonitrile] to 10% [0.1% aqueous formic acid], 90% [0.1% formic acid in acetonitrile] over 2 min, then maintaining the mobile phase at that ratio for a further 1 min. Flow rate 0.8 ml/min. MS was acquired by API electrospray in positive ion mode, at 70 V, scanning from 120 to 750 amu.
- the following assays can be used to demonstrate the potency and selectivity of the compounds according to the invention.
- 96 well NUNC plates were coated with F(ab) 2 fragment goat anti-human IgG Fc ⁇ -specific antibody [Jackson Immuno Research 109-006-098: 100 ⁇ l at 2 ⁇ g/ml in 0.1 M NaHCO 3 , pH 8.4], overnight at 4°.
- the plates were washed (3 ⁇ ) in phosphate-buffered saline (PBS) and then blocked for 1 h in PBS/1% BSA at room temperature on a rocking platform. After washing (3 ⁇ in PBS) 9 ng/ml of purified 2 d VCAM-lg diluted in PBS/1% BSA was added and the plates left for 60 minutes at room temperature on a rocking platform.
- the plates were washed (3 ⁇ in PBS) and the assay then performed at 37° for 30 min in a total volume of 200 ⁇ l containing 2.5 ⁇ 10 5 Jurkat cells in the presence or absence of titrated test compounds.
- This assay was performed in the same manner as the ⁇ 4 ⁇ 1 assay except that MAdCAM-lg (150 ng/ml) was used in place of 2 d VCAM-lg and a sub-line of the ⁇ -lympho blastoid cell-line JY was used in place of Jurkat cells.
- the IC 50 value for each test compound was determined as described in the ⁇ 4 ⁇ 1 integrin assay.
- 96 well tissue culture plates were coated with human plasma fibronectin (Sigma F0895) at 51 g/ml in phosphate-buffered saline (PBS) for 2 hr at 37° C.
- the plates were washed (3 ⁇ in PBS) and then blocked for 1 h in 100 ⁇ l PBS/1% BSA at room temperature on a rocking platform.
- the blocked plates were washed (3 ⁇ in PBS) and the assay then performed at 37° C. in a total volume of 200 ⁇ l containing 2.5 ⁇ 10 5 K562 cells, phorbol-12-myristate-13-acetate at 10 ng/ml, and in the presence or absence of titrated test compounds. Incubation time was 30 minutes.
- Each plate was fixed and stained as described in the ⁇ 4 ⁇ 1 assay above.
- 96 well tissue culture plates were coated with RPMI 1640/10% FCS for 2 h at 37° C.
- 2 ⁇ 10 5 freshly isolated human venous polymorphonuclear neutrophils (PMN) were added to the wells in a total volume of 200 ⁇ l in the presence of 10 ng/ml phorbol-12-myristate-13-acetate, and in the presence or absence of test compounds, and incubated for 20 min at 37° C. followed by 30 min at room temperature.
- the plates were washed in medium and 100 ⁇ l 0.1% (w/v) HMB (hexadecyl trimethyl ammonium bromide, Sigma H5882) in 0.05 M potassium phosphate buffer, pH 6.0 added to each well.
- HMB hexadecyl trimethyl ammonium bromide
- TMB tetramethyl benzidine
- Human platelet aggregation was assessed using impedance aggregation on the Chronolog Whole Blood Lumiaggregometer.
- Human platelet-rich plasma (PRP) was obtained by spinning fresh human venous blood anticoagulated with 0.38% (v/v) tri-sodium citrate at 220 xg for 10 min and diluted to a cell density of 6 ⁇ 10 8 /ml in autologous plasma.
- Cuvettes contained equal volumes of PRP and filtered Tyrode's buffer (g/liter: NaCl 8.0; MgCl 2 .H 2 O 0.427; CaCl 2 0.2; KCl 0.2; D-glucose 1.0; NaHCO 3 1.0; NaHPO 4 .2H 2 O 0.065). Aggregation was monitored following addition of 2.5 ⁇ M ADP (Sigma) in the presence or absence of inhibitors.
- the preferred compounds of the invention in which R 1 is an ⁇ 4 integrin binding group such as the compounds of the Examples generally have IC 50 values in the ⁇ 4 ⁇ 1 and ⁇ 4 ⁇ 7 assays of 1 ⁇ M and below.
- the same compounds had IC 50 values of 50 ⁇ M and above thus demonstrating the potency and selectivity of their action against ⁇ 4 integrins.
- Hepatic clearance can make a substantial contribution to the total plasma clearance of a drug.
- the total plasma clearance is a principal parameter of the pharmacokinetic properties of a medicine. It has a direct impact on the dose required to achieve effective plama concentrations and has a major impact on the elimination half-life and therefore the dose-interval. Furthermore, high hepatic clearance is an indicator of high first-pass hepatic clearance after oral administration and therefore low oral bioavailability.
- peptidic and non-peptidic carboxylic acids of therapeutic interest are subject to high hepatic clearance from plasma. Except for drugs which function in the liver, hepatic uptake from blood or plasma is undesirable because it leads to high hepatic clearance if the compound is excreted in bile or metabolised, or if the substance is not cleared from the liver, it may accumulate in the liver and interfere with the normal function of the liver.
- the total plasma clearance of a compound according to the invention can be determined as follows:
- a small dose of the compound in solution is injected into a vein of a test animal. Blood samples are withdrawn from a blood vessel of the animal at several times after the injection, and the concentration of compound in the bleed or plasma is measured using a suitable assay.
- the area under the curve (AUCiv) is calculated by non-compartmental methods (for example, the trapezium method) or by pharmacokinetic modelling.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pain & Pain Management (AREA)
- Pharmacology & Pharmacy (AREA)
- Rheumatology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
- This invention relates to a series of biaryl squaric acid derivatives, to compositions containing them, to processes for their preparation, and to their use in medicine.
- Over the last few years it has become increasingly clear that the physical interaction of inflammatory leukocytes with each other and other cells of the body plays an important role in regulating immune and inflammatory responses [Springer, T. A, Nature, 346, 425, (1990); Springer, T. A, Cell, 76, 301, (1994)]. Specific cell surface molecules collectively referred to as cell adhesion molecules mediate many of these interactions.
- The adhesion molecules have been sub-divided into different groups on the basis of their structure. One family of adhesion molecules which is believed to play a particularly important role in regulating immune and inflammatory responses is the integrin family. This family of cell surface glycoproteins has a typical non-covalently linked heterodimer structure. At least 16 different integrin alpha chains and 8 different integrin beta chains have been identified [Newman, P. et al, Molecular Medicine Today, 304, (1996)]. The members of the family are typically named according to their heterodimer composition although trivial nomenclature is widespread in the field. Thus the integrin α4β1 consists of the integrin alpha 4 chain associated with the integrin beta 1 chain, but is also widely referred to as Very Late Antigen 4 or VLA-4. Not all of the potential pairings of integrin alpha and beta chains have yet been observed in nature and the integrin family has been subdivided into a number of subgroups based on the pairings that have been recognised to date [Sonnenberg, A., Current Topics in Microbiology and Immunology, 184, 7, (1993)].
- The importance of integrin function in normal physiological responses is highlighted by two human deficiency diseases in which integrin function is defective. Thus in the disease termed Leukocyte Adhesion Deficiency (LAD) there is a defect in one of the families of integrins expressed on leukocytes [Marlin, S. D. et al, J. Exp. Med. 164, 855, (1986)]. Patients suffering from this disease have a reduced ability to recruit leukocytes to inflammatory sites and suffer recurrent infections, which in extreme cases may be fatal. In the case of patients suffering from the disease termed Glanzman's thrombasthenia (a defect in a member of the beta 3 integrin family) there is a defect in blood clotting (Hodivala-Dilke, K. M., J. Clin. Invest. 103, 229, (1999)].
- The potential to modify integrin function in such a way as to beneficially modulate cell adhesion has been extensively investigated in animal models using specific antibodies and peptides that block various functions of these molecules [e.g. Issekutz, T. B., J. Immunol. 149, 3394, (1992); Li, Z. et al, Am. J. Physiol. 263, L723, (1992); Mitjans, F. et al, J. Cell Sci. 108, 2825, (1995); Brooks, P. C. et al, J. Clin. Invest. 96, 1815, (1995); Binns, R. M. et al, J. Immunol. 157, 4094, (1996); Hammes, H. -P. et al, Nature Medicine 2, 529, (1996); Srivata, S. et al, Cardiovascular Res. 36, 408 (1997)]. A number of monoclonal antibodies which block integrin function are currently being investigated for their therapeutic potential in human disease, and one, ReoPro, a chimeric antibody against the platelet integrin αIIbβ3 is in use as a potent anti-thrombotic agent for use in patients with cardiovascular complications following coronary angioplasty.
- Integrins recognize both cell surface and extracellular matrix ligands, and ligand specificity is determined by the particular alpha-beta subunit combination of the molecule [Newman, P., ibid]. One particular integrin subgroup of interest involves the a4 chain which can pair with two different beta chains β1 and β7[Sonnenberg, A, ibid]. The α4β1 pairing occurs on many circulating leukocytes (for example lymphocytes, monocytes, eosinophils and basophils) although it is absent or only present at low levels on circulating neutrophils. α4β1 binds to an adhesion molecule (Vascular Cell Adhesion Molecule-1 also known as VCAM-1) frequently up-regulated on endothelial cells at sites of inflammation [Osborne, L., Cell, 62, 3, (1990)]. The molecule has also been shown to bind to at least three sites in the matrix molecule fibronectin [Humphries, M. J. et al, Ciba Foundation Symposium, 189, 177, (1995)]. Based on data obtained with monoclonal antibodies in animal models it is believed that the interaction between α4β1 and ligands on other cells and the extracellular matrix plays an important role in leukocyte migration and activation [Yednock, T. A. et al, Nature, 356, 63, (1992); Podolsky, D. K. et al, J. Clin. Invest. 92, 372, (1993); Abraham, W. M. et al, J. Clin. Invest. 93, 776, (1994)].
- The integrin generated by the pairing of α4 and β7 has been termed LPAM-1 [Holzmann, B. and Weissman, I. L., EMBO J. 8, 1735, (1989)]. The α4β7 pairing is expressed on certain sub-populations of T and B lymphocytes and on eosinophils [Erle, D. J. et al, J. Immunol. 153, 517 (1994)]. Like α4β1, α4β7 binds to VCAM-1 and fibronectin. In addition, α4β7 binds to an adhesion molecule believed to be involved in the homing of leukocytes to mucosal tissue termed MAdCAM-1 [Berlin, C. et al, Cell, 74, 185, (1993)]. The interaction between α4β7 and MAdCAM-1 may also be important sites of inflammation outside of mucosal tissue [Yang, X. -D. et al, PNAS, 91, 12604, (1994)].
- Regions of the peptide sequence recognizeded by α4β1 and α4β7 when they bind to their ligands have been identified. α4β1 seems to recognise LDV, IDA or REDV peptide sequences in fibronectin and a QIDSP sequence in VCAM-1 [Humphries, M. J. et al, ibid] whilst α4β7 recognises a LDT sequence in MAdCAM-1 [Birskin, M. J. et al, J. Immunol. 156, 719, (1996)]. There have been several reports of inhibitors of these interactions being designed from modifications of these short peptide sequences [Cardarelli, P. M. et al, J. Biol. Chem., 269, 18668, (1994); Shorff, H. N. et al, Biorganic Med. Chem. Lett., 6, 2495, (1996); Vanderslice, P. et al, J. Immunol., 158, 1710, (1997)]. It has also been reported that a short peptide sequence derived from the α4β1 binding site in fibronectin can inhibit a contact hypersensitivity reaction in a trinitrochlorobenzene sensitised mouse [Ferguson, T. A., et al, PNAS, 88, 8072, (1991)].
- Since the alpha 4 subgroup of integrins are predominantly expressed on leukocytes their inhibition can be expected to be beneficial in a number of immune or inflammatory disease states. However, because of the ubiquitous distribution and wide range of functions performed by other members of the integrin family it is important to be able to identify selective inhibitors of the alpha 4 subgroup.
- We have now found a group of compounds which are potent and selective inhibitors of α4 integrins. Members of the group are able to inhibit (x4 integrins such as α4β1 and/or α4β7 at concentrations at which they generally have no or minimal inhibitory action on a integrins of other subgroups. These compounds possess the additional advantage of good pharmacokinetic properties, especially low plasma clearance.
-
- wherein
- R1 is a group Ar1Ar2Alk- in which:
- Ar1 is an optionally substituted aromatic or heteroaromatic group;
- Ar2 is an optionally substituted phenylene or nitrogen-containing six-membered heteroarylene group; and Alk is a chain
-
- in which R is a carboxylic acid (—CO2H) or a derivative or biostere thereof;
- R2 is a hydrogen atom or a C1-6 alkyl group;
- L1 is a covalent bond or a linker atom or group;
- n is zero or the integer 1;
- Alk1 is an optionally substituted aliphatic chain;
- R3 is a hydrogen atom or an optionally substituted heteroaliphatic, cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group:
- and the salts, solvates, hydrates and N-oxides thereof.
- It will be appreciated that compounds of formula (1) may have one or more chiral centres, and exist as enantiomers or diastereomers. The invention is to be understood to extend to all such enantiomers, diastereomers and mixtures thereof, including racemates. Formula (1) and the formulae hereinafter are intended to represent all individual isomers and mixtures thereof, unless stated or shown otherwise. In addition, compounds of formula (1) may exist as tautomers, for example keto (CH2C═O)-enol (CH═CHOH) tautomers. Formula (1) and the formulae hereinafter are intended to represent all individual tautomers and mixtures thereof, unless stated otherwise.
- Optionally substituted aromatic groups represented by Ar1 when present in the group R1 include for example optionally substituted monocyclic or bicyclic fused ring C6-12 aromatic groups, such as phenyl, 1- or 2-naphthyl, 1- or 2-tetrahydronaphthyl, indanyl or indenyl groups.
- Optionally substituted heteroaromatic groups represented by the group Ar1 when present in the group R1 include for example optionally substituted C1-9 heteroaromatic groups containing for example one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms. In general, the heteroaromatic groups may be for example monocyclic or bicyclic fused ring heteroaromatic groups. Monocyclic heteroaromatic groups include for example five- or six-membered heteroaromatic groups containing one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms. Bicyclic heteroaromatic groups include for example eight- to thirteen-membered fused-ring heteroaromatic groups containing one, two or more heteroatoms selected from oxygen, sulphur or nitrogen atoms.
- Particular examples of heteroaromatic groups of these types include pyrrolyl, furyl, thienyl, imidazolyl, N-C1-6alkylimidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazole, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, benzofuryl, isobenzofuryl, [2,3-dihydro] benzofuryl, [2,3-dihydro]benzothienyl, benzothienyl, benzotriazolyl, indolyl, indolinyl, isoindolyl, indazolinyl, benzimidazolyl, imidazo[1,2-a] pyridyl, benzothiazolyl, benzoxazolyl, benzoisoxazolyl, benzopyranyl, [3,4-dihydro]benzopyranyl, benzofurazonyl, quinazolinyl, purinyl, quinoxalinyl, naphthyridinyl, especially 2,6-naphthyridinyl, pyrido[3,4-b] pyridyl, phthalazinyl, pyrido[3,2-b]pyridyl, pyrido[4,3-b]-pyridyl, quinolinyl, isoquinolinyl, tetrazolyl, 5,6,7,8-tetrahydroquinolinyl, 5,6,7,8-tetrahydroisoquinolinyl, and imidyl, e.g. succinimidyl, phthalimidyl, or naphthalimidyl such as 1,8-naphthalimidyl.
- Each aromatic or heteroaromatic group represented by the group Ar1 may be optionally substituted on any available carbon or, when present, nitrogen atom. One, two, three or more of the same or different substituents may be present and each substituent may be selected for example from an atom or group -L2(Alk2)tL3(R4)u in which L2 and L3 which may be the same or different, is each a covalent bond or a linker atom or group, t is zero or the integer 1, u is an integer 1, 2 or 3, Alk2 is an aliphatic or heteroaliphatic chain and R4 is a hydrogen or halogen atom or a group selected from optionally substituted C1-6 alkyl or C3-8 cycloalkyl, -Het, [where Het is an optionally substituted monocyclic C5-7 carbocyclic group optionally containing one or more —O— or —S— atoms or —N(R5)— (where R5 is a hydrogen atom or an optionally substitued C1-6 alkyl or C3-8 cycloalkyl group), —C(O)— or —C(S)— groups], —OR5 —SR5, —NR5R6 [where R6 is as just defined for R5 and may be the same or different], —NO2, —CN, —CO2R5, —SO3H, —SOR5, —SO2R5, —SO3R5, —OCO2R5, —CONR5R6, —OCONR5R6, —CSNR5R6, —COR5, —OCOR5, —N(R5)COR6, —N(R5)CSR6, —SO2N(R5)(R6), —N(R5)SO2R6, —CON(R5)SO2R6, —N(R5)CON(R6)(R7) [where R7 is a hydrogen atom or an optionally substituted C1-6 alkyl or C3-8 cycloalkyl group], —N(R5)CSN(R6)(R7) or —N(R5)SO2N(R6)(R7), provided that when t is zero and each of L2 and L3 is a covalent bond then u is the integer 1 and R4 is other than a hydrogen atom
- When L2 and/or L3 is present in these substituents as a linker atom or group it may be any divalent linking atom or group. Particular examples include —O— or —S— atoms or —C(O)—, —C(O)O—, —OC(O)—, —C(S)—, —S(O)—, —S(O)2—, —N(R8)— [where R8 is a hydrogen atom or an optionally substituted C1-6 alkyl group], —CON(R8)—, —OC(O)N(R8)—, —CSN(R8)—, —N(R8)CO—, —N(R8)C(O)O—, —N(R8)CS—, —S(O)2N(R8)—, —N(R8)S(O)2—, —N(R8)CON(R8)—, —N(R8)CSN(R8)—, or —N(R8)SO2N(R8)— groups. Where the linker group contains two R8 substituents, these may be the same or different.
- When R4, R5, R6, R7 and/or R8 is present as a C1-6 alkyl group it may be a straight or branched C1-6 alkyl group, e.g. a C1-4 alkyl group such as a methyl, ethyl, i-propyl or t-butyl group. C3-8 cycloalkyl groups represented by R4, R5, R6, R7 and/or R8 include C3-6 cycloalkyl groups e.g. cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups. Optional substituents which may be present on such groups include for example one, two or three substituents which may be the same or different selected from halogen atoms, for example fluorine, chlorine, bromine or iodine atoms, hydroxy or C1-6 alkoxy e.g. methoxy or ethoxy groups or optionally substituted C6-12 aryl or optionally substituted C1-9 heteroaryl. Optionally substituted aryl and heteroaryl groups include those groups just described for the group Ar1.
- When the groups R5 and R6 or R6 and R7 are both C1-6 alkyl groups these groups may be joined, together with the N atom to which they are attached, to form a heterocyclic ring. Such heterocyclic rings may be optionally interrupted by a further heteroatom selected from —O—, —S— or —N(R5)—. Particular examples of such heterocyclic rings include piperidinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, imidazolidinyl and piperazinyl rings.
- When Alk2 is present as an aliphatic or heteroaliphatic chain it may be for example any divalent chain corresponding to the below-mentioned aliphatic or heteroaliphatic group described for Alk1 or R3 respectively.
- Halogen atoms represented by R4 in the optional Ar1 substituents include fluorine, chlorine, bromine, or iodine atoms.
- Examples of the substituents represented by -L2(Alk2)tL3(R4)u when present in Ar1 groups in compounds of the invention include atoms or groups -L2Alk2L3R4, -L2Alk2R4, -L2R4 and -Alk2R4 wherein L2, Alk2, L3 and R4 are as defined above. Particular examples of such substituents include -L2CH2L3R4, -L2CH(CH3)L3R4, -L2CH(CH2)3L3R4, -L2CH2R4, -L2CH(CH3)R4, -L2(CH2)2R4, —CH2R4, —CH(CH3)R4, —(CH2)2R4 and -R4 groups.
- Thus Ar1 in compounds of the invention may be optionally substituted for example by one, two, three or more halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, and/or C1-6alkyl, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, C3-8 cycloalkyl, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, C1-6 hydroxyalkyl, e.g. hydroxymethyl, hydroxyethyl or —C(OH)(CF3)2, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, oxazolidinyl, carboxy C1-6 alkyl, e.g. carboxyethyl, C1-6 alkylthio e.g. methylthio or ethylthio, carboxyC1-6 alkylthio, e.g. carboxymethylthio, 2-carboxyethylthio or 3-carboxypropylthio, C1-6alkoxy, e.g. methcxy or ethoxy, hydroxy C1-6 alkoxy, e.g. 2-hydroxyethoxy, haloC1-6 alkyl, e.g. —CF3, —CHF2, —CH2F, haloC1-6alkoxy, e.g. —OCF3, —OCHF2, —OCH2F, C1-6alkylamino, e.g. methylamino or ethylamino, amino (—NH2), aminoC1-6alkyl, e.g. aminomethyl or aminoethyl, C1-6dialkylamino, e.g. dimethylamino or diethylamino, C1-6alkylaminoC1-6alkyl, e.g. ethylaminoethyl, C1-6 dialkylaminoC1-6alkyl, e.g. diethylaminoethyl, aminoC1-6alkylamino e.g. aminoethylamino, aminoC1-6alkoxy, e.g. aminoethoxy, hydroxyC1-6alkylamino e.g. hydroxyethylamino or hydroxyropylamino, C1-6alkylaminoC1-6alkoxy, e.g. methylaminoethoxy, C1-6dialkylaminoC1-6alkoxy, e.g. dimethylaminoethoxy, diethylaminoethoxy, diisopropylaminoethoxy, or dimethylaminopropoxy, nitro, cyano, amidino, hydroxyl (—OH), formyl [HC(O)—], carboxyl (—CO2H), —CO2Alk3 [where Alk3 is as defined below for Alk7], C1-6 alkanoyl e.g. acetyl, thiol (—SH), thioC1-6alkyl, e.g. thiomethyl or thioethyl, sulphonyl (—SO3H), —SO3Alk3, C1-6alkylsulphinyl e.g. methylsulphinyl, ethylsulphinyl or propylsulphinyl, C1-6alkylsulphonyl, e.g. methylsulphonyl, aminosulphonyl (—SO2NH2), C1-6 alkylaminosulphonyl, e.g. methylaminosulphonyl or ethylaminosulphonyl, C1-6dialkylaminosulphonyl, e.g. dimethylaminosulphonyl or diethylaminosulphonyl, phenylaminosulphonyl, carboxamido (—CONH2), C1-6alkylaminocarbonyl, e.g. methylaminocarbonyl or ethylaminocarbonyl, C1-6dialkylaminocarbonyl, e.g. dimethylaminocarbonyl or diethylaminocarbonyl, aminoC1-6alkylaminocarbonyl, e.g. aminoethylaminocarbonyl, C1-6dialkylaminoC1-6alkylaminocarbonyl, e.g. diethylaminoethylaminocarbonyl, aminocarbonylamino, C1-6alkylaminocarbonylamino, e.g. methylaminocarbonylamino or ethylaminocarbonylamino, C1-6dialkylaminocarbonylamino, e.g. dimethylaminocarbonylamino or diethylaminocarbonylamino, C1-6alkylaminocarbonylC 1-6alkylamino, e.g. methylaminocarbonylmethylamino, aminothiocarbonylamino, C1-6alkylaminothiocarbonylamino, e.g. methylaminothiocarbonylamino or ethylaminothiocarbonylamino, C1-6dialkylaminothiocarbonylamino, e.g. dimethylaminothiocarbonylamino or diethylaminothiocarbonylamino, C1-6alkylaminothiocarbonylC1-6alkylamino, e.g. ethylaminothiocarbonylmethylamino, C1-6alkylsulphonylamino, e.g. methylsulphonylamino or ethylsulphonylamino, C1-6dialkylsulphonylamino, e.g. dimethylsulphonylamino or diethylsulphonylamino, aminosulphonylamino (—NHSO2NH2), C1-6alkylaminosulphonylamino, e.g. methylaminosulphonylamino or ethylaminosulphonylamino, C1-6dialkylaminosulphonylamino, e.g. dimethylaminosulphonylamino or diethylaminosulphonylamino, C1-6alkanoylamino, e.g. acetylamino, aminoC1-6alkanoylamino e.g. aminoacetylamino, C1-6dialkylaminoC1-6alkanoylamino, e.g. dimethylaminoacetylamino, C1-6alkanoylaminoC1-6alkyl, e.g. acetylaminomethyl, C1-6alkanoylaminoC1-6alkylamino, e.g. acetamidoethylamino, C1-6alkoxycarbonylamino, e.g. methoxycarbonylamino, ethoxycarbonylamino or t-butoxycarbonylamino groups.
- Where desired, two -L2(Alk2)tL3(R4)u substituents may be linked together to form a cyclic group such as a cyclic ether, e.g. a C1-6alkylenedioxy group such as methylenedioxy or ethylenedioxy.
- Optionally substituted nitrogen-containing six-membered heteroarylene groups represented by Ar2 when present as part of the group R1 include optionally substituted pyridiyl, pyrimidindiyl, pyridazindiyl, pyrazindiyl and triazindiyl e.g. 1,2,4-triazindiyl groups. Each group may be attached to the remainder of the molecule through any available ring carbon atoms.
- The phenylene and nitrogen-containing heteroarylene groups represented by Ar2 may be optionally substituted by one or two substituents selected from the atoms or groups -L3(Alk2)tL3(R4)u described herein. Where two of these atoms or groups are present they may be the same or different.
- When the group R is present in R1 in compounds of the invention as a derivative of a carboxylic acid it may be for example a carboxylic acid ester or amide. Particular esters and amides include —CO2Alk7 and —CONR5R6 groups as defined herein. When R is a biostere of a carboxylic acid it may be for example a tetrazole or other acid such as phosphonic acid, phosphinic acid, sulphonic acid, sulphinic acid or boronic acid or an acylsulphonamide group.
- Ester (—CO2Alk7) and amide (—CONR5R6) derivatives of the carboxylic acid group (—CO2H) in compounds of formula (1) may advantageously be used as prodrugs of the active compound. Such prodrugs are compounds which undergo biotransformation to the corresponding carboxylic acid prior to exhibiting their pharmacological effects and the invention particularly extends to prodrugs of the acids of formula (1). Such prodrugs are well known in the art, see for example International Patent Application No. WO00/23419, Bodor, N. (Alfred Benzon Symposium, 1982, 17, 156-177), Singh, G. et al (J. Sci. Ind. Res., 1996, 55, 497-510) and Bundgaard, H., (Design of Prodrugs, 1985, Elsevier, Amsterdam).
- Esterified carboxyl groups represented by the group —CO2Alk7 include those wherein Alk7 is a straight or branched optionally substituted C1-8alkyl group such as a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl group; an optionally substituted C2-8alkenyl group such as a propenyl e.g. 2-propenyl or butenyl e.g. 2-butenyl or 3-butenyl group, an optionally substituted C2-8alkynyl group such as a ethynyl, propynyl e.g. 2-propynyl or butynyl e.g. 2-butynyl or 3-butynyl group, an optionally substituted C3-8cycloalkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl group; an optionally substituted C3-8cycloalkylC1-8alkyl group such as a cyclopentylmethyl, cyclohexylmethyl or cyclohexylethyl group; an optionally substituted C3-8heterocycloalkylC1-6alkyl group such as a morpholinyl-N-ethyl, thiomorpholinyl-N-methyl, pyrrolidinyl-N-ethyl, pyrrolidinyl-N-propyl, piperidinyl-N-ethyl, pyrazolidinyl-N-methyl or piperazinyl-N-ethyl group; an optionally substituted C1-6alkyloxyC1-6alkyl group such as a methyloxyethyl or propyloxyethyl group; an optionally substituted C1-6alkylthioC1-6alkyl group such as an ethylthioethyl group; an optionally substituted C1-6alkylsulfinylC1-6alkyl group such as an methylsulfinylethyl group; an optionally substituted C1-6alkylsulfonylC1-6alkyl group such as an methylsulfonylmethyl group; an optionally substituted C3-8cycloalkyloxyC1-6alkyl group such as a cyclohexyloxymethyl group; an optionally substituted C3-8cycloalkylthioC1-6alkyl group such as a cyclopentylthiomethyl group; an optionally substituted C3-8cycloalkylsulfinylC1-6 alkyl group such as a cyclopentylsulfinylmethyl group; an optionally substituted C3-8cycloalkylsulfonylC1-6alkyl group such as a cyclopentylsulfonylmethyl group; an optionally substituted C1-6alkyloxycarbonylC1-6alkyl group such as isobutoxycarbonylpropyl group; an optionally substituted C1-6alkyloxycarbonylC1-6alkenyl group such as isobutoxycarbonylpentenyl group; an optionally substituted C1-6alkyloxycarbonyloxyC1-6alkyl group such as an isopropoxycarbonyloxyethyl e.g a 1-(isopropoxycarbonyloxy)-ethyl, 2-(isopropoxycarbonyloxy)ethyl or ethyloxycarbonyloxymethyl group; an optionally substituted C1-6alkyloxycarbonyloxyC1-6alkenyl group such as a isopropoxycarbonyloxybutenyl group, an optionally substituted C3-8cycloalkyloxycarbonyloxyC1-6alkyl group such as a cyclohexyloxycarbonyloxyethyl, e.g. a 2-(cyclohexyloxycarbonyloxy)ethyl group, an optionally substituted N-di-C1-8alkylaminoC1-8alkyl group such as a N-dimethylaminoethyl or N-diethylaminoethyl group; an optionally substituted N—C6-12aryl-N—C1-6alkylaminoC1-6alkyl group such as a N-phenyl-N-methylaminomethyl group; an optionally substituted N-di-C1-8alkylcarbamoylC1-8alkyl group such as a N-diethylcarbamoylmethyl group; an optionally substituted C6-10arylC1-6alkyl group such as an optionally substituted benzyl, phenylethyl, phenylpropyl, 1-naphthylmethyl or 2-naphthylmethyl group; a C6-10aryl group such as an optionally substituted phenyl, 1-naphthyl or 2-naphthyl group; a C6-10aryloxyC1-8alkyl group such as an optionally substituted phenyloxymethyl, phenyloxyethyl, 1-naphthyloxymethyl, or 2-naphthyloxymethyl group; a C6-12arylthioC1-8alkyl group such as an optionally substituted phenylthioethyl group; a C6-12arylsulfinylC1-8alkyl group such as an optionally substituted phenylsulfinylmethyl group; a C6-12arylsulfonylC1-8alkyl group such as an optionally substituted phenylsulfonylmethyl group; an optionally substituted C1-8alkanoyloxyC1-8alkyl group, such as a acetoxymethyl, ethoxycarbonyloxyethyl, pivaloyloxymethyl, propionyloxyethyl or propionyloxypropyl group; an optionally substituted C4-8imidoC1-8alkyl group such as a succinimidomethyl or phthalamidoethyl group; a C6-12aroyloxyC1-8alkyl group such as an optionally substituted benzoyloxyethyl or benzoyloxypropyl group or a triglyceride such as a 2-substituted triglyceride e.g. a 1,3-di-C1-8alkylglycerol-2-yl group such as a 1,3-diheptylglycerol-2-yl group. Optional substituents present on the Alk7 group include R13a substituents described above.
- It will be appreciated that in the forgoing list of Alk7 groups the point of attachment to the remainder of the compound of formula (1) is via the last described part of the Alk7 group. Thus, for example a methoxyethyl group would be attached by the ethyl group, whilst a morpholinyl-N-ethyl group would be attached via the N-ethyl group.
- It will be further appreciated that in the forgoing list of Alk7 groups, where not specifically mentioned, alkyl groups may be replaced by alkenyl or alkynyl groups where such groups are as previously defined for Alk1. Additionally these alkyl, alkenyl or alkynyl groups may optionally be interrupted by one, two or three linker atoms or groups where such linker atoms and groups are as previously defined for L2.
- When the group R2 is present in compounds of the invention as a C1-6alkyl group it may be for example a straight or branched C1-6alkyl group, e.g. a C1-4alkyl group such as a methyl or ethyl group.
- The linker atom or group represented by L1 in compounds of formula (1) may be any linker atom or group as described above for the linker atom or group L2 or may represent a covalent bond.
- When the group Alk1 is present in compounds of formula (1) as an optionally substituted aliphatic chain it may be an optionally substituted C1-10 aliphatic chain. Particular examples include optionally substituted straight or branched chain C1-6 alkylene, C2-6 alkenylene, or C2-6 alkynylene chains.
- Particular examples of aliphatic chains represented by Alk1 include optionally substituted —CH2—, —(CH2)2—, —CH(CH3)CH2—, —(CH2)2CH2—, —(CH2)3CH2—, —CH(CH3)(CH2)2—, —CH2CH(CH3)CH2—, —C(CH3)2CH2—, —CH2C(CH3)2CH2—, —(CH2)2CH(CH3)CH2—, —CH(CH3)(CH2)3—, —CH(CH3)CH2CH(CH3)CH2—, —CH2CH(CH3)CH2CH2—, —(CH2)2C(CH3)2CH2—, —(CH2)4CH2—, —(CH2)5CH2—, —CHCH—, —CHCHCH2—, —CH2CHCH—, —CHCHCH2CH2—, —CH2CHCHCH2—, —(CH2)2CHCH—, —CC—, —CCCH2—, —CH2CC—, —CCCH2CH2—, —CH2CCCH2— or —(CH2)2CCH— groups.
- Heteroaliphatic groups represented by the group R3 in the compounds of formula (1) include the aliphatic chains just described for Alk1 but with each containing a terminal hydrogen atom and additionally containing one, two, three or four heteroatoms or heteroatom-containing groups. Particular heteroatoms or groups include atoms or groups L4 where L4 is as defined above for L2 when L2 is a linker atom or group. Each L4 atom or group may interrupt the aliphatic group, or may be positioned at its terminal carbon atom to connect the group to an adjoining atom or group. Particular examples include optionally substituted -L4CH3, —CH2L4CH3, -L4CH2CH3, —CH2L4CH2CH3, —(CH2)2L4CH3, —(CH2)3L4CH3, -L4(CH2)2CH3 and —(CH2)2L4CH2CH3 groups.
- The optional substituents which may be present on aliphatic or heteroaliphatic chains represented by Alk1 and R3 respectively include one, two, three or more substituents where each substituent may be the same or different and is selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or —OH, —CN, —CO2H, —CO2R9 [where R9 is an optionally substituted straight or branched C1-6alkyl group as defined above for R4], —CONHR9, —CON(R9)2, —COR9, C1-6alkoxy, e.g. methoxy or ethoxy, thiol, —S(O)R9, —S(O)2R9, C1-6alkylthio e.g. methylthio or ethylthio, amino or substituted amino groups or optionally substituted C6-12aryl e.g. phenyl or C1-9heteroaryl e.g. pyridyl. Substituted amino groups include —NHR9 and —N(R9)2 groups . Where two R9 groups are present in any of the above substituents these may be the same or different.
- Optionally substituted cycloaliphatic groups represented by the group R3 in compounds of the invention include optionally substituted C3-10 cycloaliphatic groups. Particular examples include optionally substituted C3-10 cycloalkyl, e.g. C3-7 cycloalkyl or C3-10 cycloalkenyl, e.g C3-7 cycloalkenyl groups.
- Optionally substituted heterocycloaliphatic groups represented by the group R3 include optionally substituted C3-10heterocycloaliphatic groups. Particular examples include optionally substituted C3-10heterocycloalkyl, e.g. C3-7 heterocycloalkyl, or C3-10heterocycloalkenyl, e.g. C3-7 hetercycloalkenyl groups, each of said groups containing one, two, three or four heteroatoms or heteroatom-containing groups L4 as defined above.
- Optionally substituted polycycloaliphatic groups represented by the group R3 include optionally substitued C7-10 bi- or tricycloalkyl or C7-10bi- or tricycloalkenyl groups. Optionally substituted heteropolycycloaliphatic groups represented by the group R3 include the optionally substituted polycycloalkyl groups just described, but with each group additionally containing one, two, three or four L4 atoms or groups.
- Particular examples of cycloaliphatic, polycycloaliphatic, heterocycloaliphatic and heteropolycycloaliphatic groups represented by the group R3 include optionally substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 2-cyclobuten-1-yl, 2-cyclopenten-1-yl, 3-cyclopenten-1-yl, adamantyl, norbornyl, norbornenyl, tetrahydrofuranyl, pyrroline, e.g. 2- or 3-pyrrolinyl, pyrrolidinyl, pyrrolidinone, oxazolidinyl, oxazolidinone, dioxolanyl, e.g. 1,3-dioxolanyl, imidazolinyl, e.g. 2-imidazolinyl, imidazolidinyl, pyrazolinyl, e.g. 2-pyrazolinyl, pyrazolidinyl, thiazolinyl, thiazolidinyl, pyranyl, e.g. 2- or 4-pyranyl, piperidinyl, homopiperidinyl, heptamethyleneiminyl, piperidinone, 1,4-dioxanyl, morpholinyl, morpholinone, 1,4-dithianyl, thiomorpholinyl, piperazinyl, homopiperazinyl, 1,3,5-trithianyl, oxazinyl, e.g. 2H-1,3-, 6H-1,3-, 6H-1,2-, 2H-1,2- or 4H-1,4- oxazinyl, 1,2,5-oxathiazinyl, isoxazinyl, e.g. o- or p-isoxazinyl, oxathiazinyl, e.g. 1,2,5 or 1,2,6-oxathiazinyl, or 1,3,5,-oxadiazinyl groups.
- The optional substituents which may be present on the cycloaliphatic, polycycloaliphatic, heterocycloaliphatic or heterpolyocycloaliphatic groups represented by the group R3 include one, two, three or more substituents each selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or C1-6alkyl, e.g. methyl or ethyl, haloC1-6alkyl, e.g. halomethyl or haloethyl such as difluoromethyl or trifluoromethyl, optionally substituted by hydroxyl, e.g. —C(OH)(CF3)2, C1-6alkoxy, e.g. methoxy or ethoxy, haloC1-6alkoxy, e.g. halomethoxy or haloethoxy such as difluoromethoxy or trifluoromethoxy, —C1-6alkoxyC1-6alkyl e.g. methoxyethyl-, C1-6alkylthio e.g. methylthio or ethylthio, or -(Alk4)vR10 groups in which Alk4 is a straight or branched C1-3alkylene chain, v is zero or an integer 1 and R10 is a —OH, —SH, —N(R11)2 (in which R11 is an atom or group as defined herein for R8) —CN, —CO2R11, —NO2, —CON(R11)2, —CSN(R11)2, —COR11, —CSN(R11)2, —N(R11)COR11, —N(R11)CSR11, —SO2N(R11)2, —N(R11)SO2R11, —N(R11)CON(R11)2, —N(R11)CSN(R11), N(R11)SO2N(R11)2, —SOR11, —SO2R11, —SO3R11 or an optionally substituted aromatic or heteroaromatic group. Where two R11 atoms or groups are present in these substituents these may be the same or different.
- Particular examples of Alk4 chains include —CH2—, —CH2CH2—, —CH2CH2CH2— and —CH(CH3)CH2— chains.
- Additionally, when the group R3 is a heterocycloaliphatic group containing one or more nitrogen atoms each nitrogen atom may be optionally substituted by a group -(L5)p(Alk5)qR12 in which L5 is —C(O)—, —C(O)O—, —C(S)—, —S(O)2—, —CON(R11)—, —CSN(R11)— or SO2N(R11)—; p is zero or an integer 1; Alk5 is an optionally substituted aliphatic or heteroaliphatic chain; q is zero or the integer 1; and R12 is a hydrogen atom or an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group.
- Optionally substituted aliphatic or heteroaliphatic chains represented by Alk5 include those optionally substituted chains described above for Alk1 and R3 respectively.
- Cycloaliphatic, heterocycloaliphatic, polycycloaliphatic or polyheterocycloaliphatic groups represented by R12 include those groups just described for the group R3. Optional substituents which may be present on these groups include those described above in relation to Alk1 and R3 aliphatic and heteroaliphatic chains.
- Aromatic and heteroaromatic groups represented by R10 and R12 include those groups described hereinbefore for the group Ar1. Optional substituents which may be present on these groups include those described in relation to R3 aromatic and heteroaromatic groups.
- When the group R3 is an optionally substituted aromatic or heteroaromatic group it may be for example an aromatic or heteroaromatic group as described herein for the group Ar1.
- Optional substituents which may be present on the aromatic or heteroaromatic groups represented by the group R3 include one, two, three or more substituents, each selected from an atom or group R13 in which R13 is —R13a or -Alk6(R13a)m, where R13a is a halogen atom, or an amino (—NH2), substituted amino, nitro, cyano, amidino, hydroxyl (—OH), substituted hydroxyl, formyl, carboxyl (—CO2H), esterified carboxyl, thiol (—SH), substituted thiol, —COR14 [where R14 is an -Alk6(R13a)m, aryl or heteroaryl group], —CSR14, —SO3H, —SOR14, —SO2R14, —SO3R14, —SO2NH2, —SO2NHR14 SO2N(R14)2, —CONH2, —CSNH2, —CONHR14, —CSNHR14, —CON[R14]2, —CSN(R14)2, —N(R11)SO2R14, —N(SO2R14)2, —NH(R11)SO2NH2, —N(R11)SO2NHR14, —N(R11)SO2N(R14)2, —N(R11)COR14, —N(R11)CONH2, —N(R11)CONHR14, —N(R11)CON(R14)2, —N(R11)CSNH2, —N(R11)CSNHR14, —N(R11)CSN(R14)2, —N(R11)CSR14, —N(R11)C(O)OR14, —SO2NHet1 [where —NHet1 is an optionally substituted C5-7cyclicamino group optionally containing one or more other —O— or —S— atoms or —N(R11)—, —C(O)—, —C(S)—, S(O) or —S(O)2 groups], —CONHet1, —CSNHet1, —N(R11)SO2NHet1, —N(R11)CONHet1, —N(R11)CSNHet1, —SO2N(R11)Het2 [where Het2 is an optionally substituted monocyclic C5-7carbocyclic group optionally containing one or more —O— or —S— atoms or —N(R11)—, —C(O)— or —C(S)— groups], -Het2, —CON(R11)Het2, —CSN(R11)Het2, —N(R11)CON(R11)Het2, —N(R11)CSN(R11)Het2, cycloaliphatic, heterocycloaliphatic, aryl or heteroaryl group; Alk6 is a straight or branched C1-6alkylene, C2-6alkenylene or C2-6alkynylene chain, optionally interrupted by one, two or three —O— or —S— atoms or —S(O)n [where n is an integer 1 or 2] or —N(R15)— groups [where R15 is a hydrogen atom or C1-6alkyl, e.g. methyl or ethyl group]; and m is zero or an integer 1, 2 or 3. It will be appreciated that when two R11 or R14 groups are present in one of the above substituents, the R11 or R14 groups may be the same or different.
- When in the group -Alk6(R13a)m m is an integer 1, 2 or 3, it is to be understood that the substituent or substituents R13a may be present on any suitable carbon atom in -Alk6. Where more than one R13a substituent is present these may be the same or different and may be present on the same or different atom in -Alk6. Clearly, when m is zero and no substituent R13a is present the alkylene, alkenylene or alkynylene chain represented by Alk6 becomes an alkyl, alkenyl or alkynyl group.
- When R13a is a substituted amino group it may be for example a group —NHR14 [where R14 is as defined above] or a group —N(R14)2 wherein each R14 group is the same or different.
- When R13a is a halogen atom it may be for example a fluorine, chlorine, bromine, or iodine atom.
- When R13a is a substituted hydroxyl or substituted thiol group it may be for example a group —OR14 or a —SR14 or —SC(═NH)NH2 group respectively.
- Esterified carboxyl groups represented by the group R13a include groups of formula —CO2Alk7 wherein Alk7 is a group as defined hereinbefore.
- When Alk6 is present in or as a substituent it may be for example a methylene, ethylene, n-propylene, i-propylene, n-butylene, i-butylene, s-butylene, t-butylene, ethenylene, 2-propenylene, 2-butenylene, 3-butenylene, ethynylene, 2-propynylene, 2-butynylene or 3-butynylene chain, optionally interrupted by one, two, or three —O— or —S—, atoms or —S(O)—, —S(O)2— or —N(R15)— groups.
- Cycloaliphatic or heterocycloaliphatic groups represented by the groups R13a or R14 include those optionally substituted C3-10cycloaliphatic or C3-10 heterocycloaliphatic groups described above for R3.
- Aryl or heteroaryl groups represented by the groups R13a or R14 include mono- or bicyclic optionally substituted C6-12 aromatic or C1-9 heteroaromatic groups as described above for the group Ar1. The aromatic and heteroaromatic groups may be attached to the remainder of the compound of formula (1) by any carbon or hetero e.g. nitrogen atom as appropriate.
- When —NHet1 or -Het2 forms part of a substituent R13 each may be for example an optionally substituted pyrrolidinyl, pyrazolidinyl, piperazinyl, imidazolidinyl, morpholinyl, thiomorpholinyl, piperidinyl, oxazolidinyl or thiazolidinyl group. Additionally Het2 may represent for example, an optionally substituted cyclopentyl or cyclohexyl group. Optional substituents which may be present on —NHet1 or -Het2 include those substituents described above in relation to R3 heterocycloaliphatic groups.
- Particularly useful atoms or groups represented by R13 include fluorine, chlorine, bromine or iodine atoms, or C1-6alkyl, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, optionally substituted phenyl, pyridyl, pyrimidinyl, pyrrolyl, furyl, thiazolyl, thienyl, morpholinyl, thiomorpholinyl, piperazinyl, pyrrolidinyl, dioxolanyl, dioxanyl, piperidinyl, oxazolidinyl, thiazolidinyl or imidazolidinyl, C1-6hydroxyalkyl, e.g. hydroxymethyl or hydroxyethyl, carboxyC1-6alkyl, e.g. carboxyethyl, C1-6alkylthio e.g. methylthio or ethylthio, carboxyC1-6alkylthio, e.g. carboxymethylthio, 2-carboxyethylthio or 3-carboxypropylthio, C1-6alkoxy, e.g. methoxy or ethoxy, hydroxyC1-6alkoxy, e.g. 2-hydroxyethoxy, optionally substituted phenoxy, pyridyloxy, thiazolyoxy, phenylthio or pyridylthio, C4-7cycloalkyl, e.g. cyclobutyl, cyclopentyl, C5-7cycloalkoxy, e.g. cyclopentyloxy, haloC1-6alkyl, e.g. trifluoromethyl, haloC1-6alkoxy, e.g. trifluoromethoxy, C1-6alkylamino, e.g. methylamino, ethylamino or propylamino, amino (—NH2), aminoC1-6alkyl, e.g. aminomethyl or aminoethyl, C1-6dialkylamino, e.g. dimethylamino or diethylamino, aminoC1-6alkylamino e.g. aminoethylamino or aminopropylamino, optionally substituted Het1NC1-6alkylamino e.g. morpholinopropylamino, C1-6alkylaminoC1-6alkyl, e.g. ethylaminoethyl, C1-6dialkyl-aminoC1-6alkyl, e.g. diethylaminoethyl, aminoC1-6alkoxy, e.g. aminoethoxy, C1-6alkylaminoC1-6alkoxy, e.g. methylaminoethoxy, C1-6dialkylaminoC1-6alkoxy, e.g. dimethylaminoethoxy, diethylaminoethoxy, diisopropylaminoethoxy, or dimethylaminopropoxy, hydroxyC1-6alkylamino, e.g. hydroxyethylamino, hydroxypropylamino, or hydroxybutylamino, imido, such as phthalimido or naphthalimido, e.g. 1,8-naphthalimido, nitro, cyano, amidino, hydroxyl (—OH), formyl [HC(O)—], carboxyl (—CO2H), —CO2Alk7 [where Alk7 is as defined above], C1-6 alkanoyl e.g. acetyl, propyryl or butyryl, optionally substituted benzoyl, thiol (—SH), thioC1-6alkyl, e.g. thiomethyl or thioethyl, —SC(═NH)NH2, sulphonyl (—SO3H), —SO3Alk7, C1-6alkylsulphinyl, e.g. methylsulphinyl, ethylsulphinyl or propylsulphinyl, C1-6alkylsulphonyl, e.g. methylsulphonyl, ethylsulphonyl, or propylsulphonyl, optionally substituted C6-10arylaminosulphonyl, e.g. phenylsulphonyl or dichlorophenylsulphonyl, aminosulphonyl (—SO2NH2), C1-6alkylaminosulphonyl, e.g. methylaminosulphonyl, ethylaminosulphonyl or propylamiosulphonyl, C1-6dialkylaminosulphonyl, e.g. dimethylaminosulphonyl or diethylaminosulphonyl, optionally substituted phenylaminosulphonyl, carboxamido (—CONH2), C1-6alkylaminocarbonyl, e.g. methylaminocarbonyl, ethylaminocarbonyl or propylaminocarbonyl, C1-6dialkylaminocarbonyl, e.g. dimethylaminocarbonyl or diethylaminocarbonyl, aminoC1-6alkylaminocarbonyl, e.g. aminoethylaminocarbonyl, C1-6alkylaminoC 1-6alkylaminocarbonyl, e.g. methylaminoethylaminocarbonyl, C1-6dialkylaminoC1-6alkylaminocarbonyl, e.g. diethylaminoethylaminocarbonyl, aminocarbonylamino, C1-6alkylaminocarbonylamino, e.g. methylaminocarbonylamino or ethylaminocarbonylamino, C1-6dialkylaminocarbonylamino, e.g. dimethylaminocarbonylamino or diethylaminocarbonylamino, C1-6alkylaminocabonylC1-6alkylamino, e.g. methylaminocarbonylmethylamino, aminothiocarbonylamino, C1-6alkylaminothiocarbonylamino, e.g. methylaminothiocarbonylamino or ethylaminothiocarbonylamino, C1-6dialkylaminothiocarbonylamino, e.g. dimethylaminothiocarbonylamino or diethylaminothiocarbonylamino, C1-6alkylaminothiocarbonylC1-6alkylamino, e.g. ethylaminothiocarbonylmethylamino, —CONHC(═NH)NH2, C1-6alkylsulphonylamino, e.g. methylsulphonylamino or ethylsulphonylamino, haloC1-6alkylsulphonylamino, e.g. trifluoromethylsulphonylamino, C1-6dialkylsulphonylamino, e.g. dimethylsulphonylamino or diethylsulphonylamino, optionally substituted phenylsulphonylamino, aminosulphonylamino (—NHSO2NH2), C1-6alkylaminosulphonylamino, e.g. methylaminosulphonylamino or ethylaminosulphonylamino, C1-6dialkylaminosulphonylamino, e.g. dimethylaminosulphonylamino or diethylaminosulphonylamino, optionally substituted morpholinesulphonylamino or morpholinesulphonylC1-6alkylamino, optionally substituted phenylaminosulphonylamino, C1-6alkanoylamino, e.g. acetylamino, aminoC1-6alkanoylamino e.g. aminoacetylamino, C1-6dialkylaminoC1-6alkanoylamino, e.g. dimethylaminoacetylamino, C1-6alkanoylaminoC1-6alkyl, e.g. acetylaminomethyl, C1-6alkanoylaminoC1-6alkylamino, e.g. acetamidoethylamino, C1-6alkoxycarbonylamino, e.g. methoxycarbonylamino, ethoxycarbonylamino or t-butoxycarbonylamino or optionally substituted benzyloxy, benzylamino, pyridylmethoxy, thiazolylmethoxy, benzyloxycarbonylamino, benzyloxycarbonylaminoC1-6alkyl e.g. benzyloxycarbonylaminoethyl, thiobenzyl, pyridylmethylthio or thiazolylmethylthio groups.
- Where desired, two R13 substituents may be linked together to form a cyclic group such as a cyclic ether, e.g. a C1-6alkylenedioxy group such as methylenedioxy or ethylenedioxy.
- It will be appreciated that where two or more R13 substituents are present, these need not necessarily be the same atoms and/or groups. In general, the substituent(s) may be present at any available ring position in the aromatic or heteroaromatic group represented by R3.
- The presence of certain substituents in the compounds of formula (1) may enable salts of the compounds to be formed. Suitable salts include pharmaceutically acceptable salts, for example acid addition salts derived from inorganic or organic acids, and salts derived from inorganic and organic bases.
- Acid addition salts include hydrochlorides, hydrobromides, hydroiodides, alkylsulphonates, e.g. methanesulphonates, ethanesulphonates, or isothionates, arylsulphonates, e.g. p-toluenesulphonates, besylates or napsylates, phosphates, sulphates, hydrogen sulphates, acetates, trifluoroacetates, propionates, citrates, maleates, fumarates, malonates, succinates, lactates, oxalates, tartrates and benzoates.
- Salts derived from inorganic or organic bases include alkali metal salts such as sodium or potassium salts, alkaline earth metal salts such as magnesium or calcium salts, and organic amine salts such as morpholine, piperidine, dimethylamine or diethylamine salts.
- Particularly useful salts of compounds according to the invention include pharmaceutically acceptable salts, especially acid addition pharmaceutically acceptable salts.
- In the compounds according to the invention the group R1 is preferably an Ar1Ar2Alk- group in which Ar1 is an optionally substituted phenyl, monocyclic heteroaromatic or bicyclic heteroaromatic group. Particularly useful monocyclic heteroaromatic groups are optionally substituted five- or six-membered heteroaromatic groups as described previously, especially five- or six-membered heteroaromatic groups containing one or two heteroatoms selected from oxygen, sulphur or nitrogen atoms. Nitrogen-containing groups are especially useful, particularly pyridyl or pyrimidinyl groups. Particularly useful substituents present on these Ar1 groups include halogen atoms or alkyl, haloalkyl, —OR5, —SR5, —NR5R6, —CO2H, —CO2R5, —NO2, —SOR5, —SO2R5, —N(R5)SO2R6, —SO2N(R5)(R6), —N(R5)COR6, —N(R5)CON(R6)(R7), —CONR5R6, —CON(R5)SO2R6 or —CN groups as described above in relation to the compounds of formula (1). Particularly useful bicyclic heteraromatic groups represented by Ar1 include optionally substituted ten-membered fused-ring heteroaromatic groups containing one or two heteroatoms, especially nitrogen atoms. Particular examples include optionally substituted naphthyridinyl, especially 2,6-naphthyridinyl, quinolinyl and isoquinolinyl, especially isoquinolin-1-yl groups. Particular optional substituents include those just described for monocyclic heteroaromatic groups.
-
- wherein —W═ is =CH═ or —N═;
- R16 and R17, which may be the same or different is each a hydrogen atom or an atom or group -L2(Alk2)hL3(R4)u in which L2, Alk2, t, L3, R4 and u are as defined previously;
- L1, Ar2, Alk, R2, Alk1, n and R3 are as defined for formula (1);
- and the salts, solvates, hydrates and N-oxides thereof.
- R16 and R17 in compounds of formula (2a) is each preferably as particularly described above for compounds of formula (1), other than a hydrogen atom. Particularly useful R16 and R17 substituents include halogen atoms, especially fluorine or chlorine atoms, or methyl, halomethyl, especially —CF3, —CHF2 or —CH2F, methoxy or halomethoxy, especially —OCF3, —OCHF2 or —OCH2F groups.
-
- wherein R16, L1, Ar2, Alk, R2, Alk1, n and R3 are as defined for formula (2a);
- g is the integer 1,2,3 or 4;
- and the salts, solvates, hydrates and N-oxides thereof.
- Each R16 atom or group in compounds of formula (2b) may be independently selected from an atom or group -L2(Alk3)tL3(R7)u in which L2, Alk2, t, L3, R4 and u are as previously defined. Particularly useful R16 substituents when present in compounds of formula (2b) include halogen atoms, especially fluorine, chlorine or bromine atoms, or methyl, halomethyl, especially —CF3, methoxy or halomethoxy, especially —OCF3, —CN, —CO2CH3, —NO2, amino (—NH2), substituted amino (—NR5R6) and —N(R5)COCH3, especially —NHCOCH3 groups.
-
- —CH— or, especially, —CH2CH(R)—.
- In general in compounds of formulae (1), (2a) and (2b) R2 is preferably a hydrogen atom.
- In one preferred group of compounds of formulae (1), (2a) and (2b) R is a —CO2H group.
- In another preferred group of compounds of formulae (1), (2a) and (2b) R is an esterified carboxyl group of formula —CO2Alk7. In this group of compounds Alk7 is preferably an optionally substituted C1-8alkyl group, especially a methyl, ethyl, propyl or i-propyl group, a C6-10aryl group, especially a phenyl group, an optionally substituted C6-10arylC1-6alkyl group, especially a benzyl group, a C3-8heterocycloalkylC1-6alkyl group, especially a morpholinyl-N-ethyl group or a C1-6alkyloxyC1-6alkyl group, especially a methyloxyethyl group. Especially preferred esterfied carboxyl groups include —CO2CH3, —CO2CH2CH3, —CO2CH2CH2CH3 and —CO2CH(CH3)2 groups.
- The group Ar2 in compounds of formulae (1), (2a) and (2b) is preferably an optionally substituted phenylene group. Particularly useful groups include optionally substituted 1,4-phenylene groups.
- In general in compounds of formulae (1), (2a) and (2b) when n is zero or the integer 1 the group R3 may especially be a hydrogen atom or an optionally substituted heteroaliphatic, cycloaliphatic, heterocycloaliphatic, aromatic or heteroaromatic group as defined herein. Particularly useful groups of this type include optionally substituted C2-6heteroalkyl, particularly C1-3alkoxyC1-3alkyl, especially methoxypropyl, optionally substituted C3-7cycloalkyl, especially optionally substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, optionally substituted C5-7heterocycloaliphatic, especially optionally substituted pyrrolidinyl, thiazolidinyl, pyrolidinonyl, piperidinyl, morpholinyl or piperazinyl, optionally substituted C6-12aromatic especially optionally substituted phenyl and optionally substituted C5-7heteroaromatic, especially optionally substituted pyridyl, triazinyl or imidazolyl groups. Optional substituents on these groups include in particular R13 atoms or groups where R3 is an aromatic or heteroaromatic group. Particularly useful R13 atoms or groups include a halogen atom, especially fluorine or chlorine and C1-6alkoxy, especially methoxy.
- Where R3 is a nitrogen-containing heterocycloaliphatic group such as a pyrrolidinyl, thiazolidinyl, pyrrolidinonyl, piperidinyl, homopiperidinyl, heptamethyleneiminyl, morpholiny, piperazinyl or homopiperazinyl group optional substituents include in particular -(L5)p(Alk5)qR12 groups as described earlier.
- In one preferred group of compounds of formulae (1), (2a) and (2b) L1 is present as a —N(R8)— group. Particularly useful —N(R8)— groups include —NH—, —N(CH3)—, —N(CH2CH3)— and —N(CH2CH2CH3)— groups. In this class of compounds n is preferably the integer 1 and Alk1 is preferably an optionally substituted straight or branched C1-6alkylene chain. Particularly useful Alk1 chains include —CH2—, —CH2CH2—, —CH2CH2CH2—, —CH2CH2CH2CH2—, —CH(CH3)CH2— and —C(CH3)CH2—. R3 in this group of compounds is preferably a hydrogen atom.
- In another preferred group of compounds of formulae (1), (2a) and (2b) Alk1 is present as an aliphatic chain as defined herein (i.e. n is the integer 1) and R3 is a hydrogen atom. In this class of compounds L1 is preferably a covalent bond. Compounds of this type where Alk1R3 is a C1-6alkyl group, particularly a methyl, ethyl, propyl, butyl, isopropyl, t-butyl or C1-6alkenyl group particularly an allyl group are especially useful. A most especially useful Alk1 R3 group is a —C(CH3)3 group.
- In another preferred group of compounds of formulae (1), (2a) and (2b), L1 is a covalent bond, n is zero and R3 is an optionally substituted C5-7heterocycloaliphatic group. Especially useful C5-7heterocycloaliphatic groups include optionally substituted piperidinyl, homopiperidinyl, heptamethyleneiminyl, pyrrolidinyl, piperazinyl, homopiperazinyl, morpholinyl and thiomorpholinyl groups. Most preferred C5-7heterocycloaliphatic groups are those linked via a ring nitrogen atom to the remainder of the compound of formulae (1), (2a) or (2b). Most especially useful C5-7 heterocycloaliphatic groups include optionally substituted pyrolidin-1-yl, piperidin-1-yl and homopiperidin-1-yl groups. Especially useful optional substituents on these C5-7heterocycloaliphatic groups include optionally substituted C1-6alkyl groups, especially methyl, ethyl and i-propyl groups. Most preferred optionally substitued C5-7heterocycloaliphatic groups include 2-methylpyrrolidin-1-yl, cis and trans 2,5-dimethylpyrrolidin-1-yl, 2-methylpiperidin-1-yl, cis and trans 2,6-dimethylpiperidin-1-yl, homopiperidin-1-yl, 2-methylhomopiperidin-1-yl and cis and trans 2,7-dimethylhomopiperidin-1-yl groups.
- Particularly useful compounds of the invention include:
- (2S)-3-(4-[2′,6′-dimethoxy]biphenylyl)-2{(2-[1-propylamino]-3,4-dioxocyclobut-1-enyl)amino}propanoic acid;
- (2S-)3-(4-[2′,6′-dimethoxy]biphenylyl)-2{(2-[diethylamino]-3,4-dioxocyclobut-1-enyl)amino}propanoic acid;
- and the salts, solvates, hydrates, N-oxides and carboxylic acid esters, particularly the methyl, ethyl, propyl and i-propyl esters thereof.
- Compounds according to the invention are potent and selective inhibitors of α4 integrins and have advantageous clearance properties, especially those compounds where R is a carboxylic ester or amide. The ability of the compounds to act in this way may be simply determined by employing tests such as those described in the Examples hereinafter.
- The compounds are of use in modulating cell adhesion and in particular are of use in the prophylaxis and treatment of diseases or disorders involving inflammation in which the extravasation of leukocytes plays a role and the invention extends to such a use and to the use of the compounds for the manufacture of a medicament for treating such diseases or disorders.
- Diseases or disorders of this type include inflammatory arthritis such as rheumatoid arthritis vasculitis or polydermatomyositis, multiple sclerosis, allograft rejection, diabetes, inflammatory dermatoses such as psoriasis or dermatitis, asthma and inflammatory bowel disease.
- For the prophylaxis or treatment of disease the compounds according to the invention may be administered as pharmaceutical compositions, and according to a further aspect of the invention we provide a pharmaceutical composition which comprises a compound of formula (1) together with one or more pharmaceutically acceptable carriers, excipients or diluents.
- Pharmaceutical compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical or rectal administration, or a form suitable for administration by inhalation or insufflation.
- For oral administration, the pharmaceutical compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium glycollate); or wetting agents (e.g. sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles and preservatives. The preparations may also contain buffer salts, flavouring, colouring and sweetening agents as appropriate.
- Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
- For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.
- The compounds for formula (1) may be formulated for parenteral administration by injection e.g. by bolus injection or infusion. Formulations for injection may be presented in unit dosage form, e.g. in glass ampoule or multi dose containers, e.g. glass vials. The compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.
- In addition to the formulations described above, the compounds of formula (1) may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation or by intramuscular injection.
- For nasal administration or administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.
- The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack or dispensing device may be accompanied by instructions for administration.
- The quantity of a compound of the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound chosen, and the condition of the patient to be treated. In general, however, daily dosages may range from around 100 ng/kg to 100 mg/kg e.g. around 0.01 mg/kg to 40 mg/kg body weight for oral or buccal administration, from around 10 ng/kg to 50 mg/kg body weight for parenteral administration and around 0.05 mg to around 1000 mg e.g. around 0.5 mg to around 1000 mg for nasal administration or administration by inhalation or insufflation.
- The compounds of the invention may be prepared by a number of processes as generally described below and more specifically in the Examples hereinafter. In the following process description, the symbols Ar1, Ar2, Alk, R1, R2, R3, L1, L2, Alk1 and n when used in the formulae depicted are to be understood to represent those groups described above in relation to formula (1) unless otherwise indicated. In the reactions described below, it may be necessary to protect reactive functional groups, for example hydroxy, amino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups may be used in accordance with standard practice [see, for example, Green, T. W. in “Protective Groups in Organic Synthesis”, John Wiley and Sons, 1991 and the Examples hereinafter]. In some instances, deprotection may be the final step in the synthesis of a compound of formula (1) and the processes according to the invention described hereinafter are to be understood to extend to such removal of protecting groups. For convenience the processes described below all refer to a preparation of a compound of formula (1) but clearly the description applies equally to the preparation of compounds of formula (2).
-
-
- [where Ry is an alkyl group for example a C1-6alkyl group]
- The hydrolysis may be performed using either an acid or a base depending on the nature of Ry, for example an organic acid such as trifluoroacetic acid or an inorganic base such as lithium, sodium or potassium hydroxide optionally in an aqueous organic solvent such as an amide e.g. a substituted amide such as dimethylformamide, an ether e.g. a cyclic ether such as tetrahydrofuran or dioxane or an alcohol e.g. methanol at a temperature from ambient to the reflux temperature. Where desired, mixtures of such solvents may be used.
-
- where Ra is a leaving group, with an amine R1R2NH or a salt thereof. Suitable leaving groups represented by Ra include halogen atoms, especially chlorine and bromine atoms, or alkoxy, e.g. methoxy, ethoxy or isopropoxy, aryloxy, e.g. dinitrophenyloxy, or aralkoxy, e.g. benzyloxy, groups.
- The reaction may be performed in an inert solvent or mixture of solvents, for example a substituted amide such as dimethylformamide, an alcohol such as methanol or ethanol and/or a halogenated hydrocarbon such as dichloromethane, at a temperature from 0° C. to the reflux temperature. Where necessary, for example when a salt of an amine R1R2NH is used, an organic base such as diisopropylethylamine can be added.
-
- where Rb is a leaving group as defined for Ra using an intermediate R3(Alk1)nL1H where -L1H is a functional group such as an amine (—NH2) using the reaction conditions just described.
- Where desired the displacement reaction may also be performed on an intermediate of formulae (4) or (5), R1R2NH or R3(Alk2)nL1H which is linked, for example via its R1 or R3 group, to a solid support, such as a polystyrene resin. After the reaction the desired compound of formula (1) may be displaced from the support by any convenient method, depending on the original linkage chosen. Particular examples of such solid phase synetheses are given in the Examples hereinafter.
-
- where Ra and Rb are as previously defined and an amine R1R2NH, R3(Alk1)nL1H where L1H is a functional group such as an amine (—NH2) or alcohol (—OH), alkyllithium or aryllithium by displacement as just described for the preparation of compounds of formula (1).
- Intermediates of formulae R1R2NH and R3(Alk1)nL1H may be obtained from simpler, known compounds by one or more standard synthetic methods employing substitution, oxidation, reduction or cleavage reactions. Particular substitution approaches include conventional alkylation, arylation, heteroarylation, acylation, thioacylation, halogenation, sulphonylation, nitration, formylation and coupling procedures. It will be appreciated that these methods may also be used to obtain or modify other compounds of formulae (1), (2a), (2b) and (3) where appropriate functional groups exist in these compounds.
- Thus compounds of the invention and intermediates thereto may be prepared by alkylation, arylation or heteroarylation. For example intermediates of formula R1R2NH may be obtained from reaction or intermediates of formula XAr2AlkN(R2)H [where X is a halogen atom such as bromine or iodine or a sulphonate such as trifluoromethylsulphonate] with a boronic acid Ar1B(OH)2, optionally in the presence of a base such as a carbonate e.g. sodium or potassium carbonate or an amine e.g. triethylamine or pyridine and a metal complex such as a palladium complex e.g. tetrakis(triphenylphosphine)palladium (0) in a solvent such as an aromatic hydrocarbarbon e.g. toluene or an ether e.g. 1,2-dimethyoxyethane or tetrahydrofuran in the presence of water at an elevated temperature e.g. 80°.
- In the reaction as just described for the synthesis of intermediates of formula R1R2NH boronic acids of formula Ar1B(OH)2 may be replaced by organometallic reagents such as organostannanes of formula Ar1Sn(RZ)3 (where RZ is a C1-6alkyl group), Grignard reagents of formula Ar1MgHal (where Hal is a halogen atom such as a chlorine, bromine or iodine atom) or organozinc reagents of formula Ar1ZnHal. In any reaction involving such reagents water is omitted from the reaction conditions as just described, Intermediates of formula XAr2AlkN(R2)H [where X is a sulphonate] may be obtained from intermediates of formula XAr2AlkN(R2)H [where X is a hydroxyl (—OH) group] by reaction with an anhydride such as a sulphonic anhydride e.g. trifluoromethanesulphonic anhydride in the presence of a base such as an amine e.g. triethylamine or pyridine in a solvent such as a halogenated hydrocarbon e.g. dichloromethane, at for example 0° C.
- In another example, compounds containing a -L1H or -L2H group (where L1 and L2 is each a linker atom or group) may be treated with an alkylating agent R3(Alk1)nX1 or R4L3(Alk2)tX1 respectively in which X1 is a leaving atom or group such as a halogen atom, e.g. a fluorine, bromine, iodine or chlorine atom or a sulphonyloxy group such as an alkylsulphonyloxy, e.g. trifluoromethylsulphonyloxy or arylsulphonyloxy, e.g. p-toluene-sulphonyloxy group.
- The reaction may be carried out in the presence of a base such as a carbonate, e.g. cesium or potassium carbonate, an alkoxide, e.g. potassium t-butoxide, or a hydride, e.g. sodium hydride, or an organic amine e.g. triethylamine or N,N-diisopropylethylamine or a cyclic amine, such as N-methylmorpholine or pyridine, in a dipolar aprotic solvent such as an amide, e.g. a substituted amide such as dimethylformamide or an ether, e.g. a cyclic ether such as tetrahydrofuran.
- In another example, compounds containing a -L1H or -L2H or group as defined above may be functionalised by acylation or thioacylation, for example by reaction with one of the alkylating agents just described but in which X1 is replaced by a —C(O)X2, C(S)X2, —N(R8)COX2 or —N(R8)C(S)X2 group in which X2 is a leaving atom or group as described for X1. The reaction may be performed in the presence of a base, such as a hydride, e.g. sodium hydride or an amine, e.g. triethylamine or N-methyl-morpholine, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane or carbon tetrachloride or an amide, e.g. dimethylformamide, at for example ambient temperature. Alternatively, the acylation may be carried out under the same conditions with an acid (for example one of the alkylating agents described above in which X1 is replaced by a —CO2H group) in the presence of a condensing agent, for example a diimide such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide or N,N′-dicyclohexylcarbodiimide, or a benzotriazole such as [0-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium]hexafluorophosphate advantageously in the presence of a catalyst such as a N-hydroxy compound e.g. a N-hydroxytriazole such as 1-hydroxybenzotriazole. Alternatively the acid may be reacted with a chloroformate, for example ethylchloroformate, prior to the desired acylation reaction
- In a further example compounds may be obtained by sulphonylation of a compound containing an —OH group by reaction with one of the above alkylating agents but in which X1 is replaced by a —S(O)Hal or —SO2Hal group [in which Hal is a halogen atom such as chlorine atom] in the presence of a base, for example an inorganic base such as sodium hydride in a solvent such as an amide, e.g. a substituted amide such as dimethylformamide at for example ambient temperature.
- In another example, compounds containing a -L1H or -L2H group as defined above may be coupled with one of the alkylation agents just described but in which X1 is replaced by an —OH group in a solvent such as tetrahydrofuran in the presence of a phosphine, e.g. triphenylphosphine and an activator such as diethyl, diisopropyl- or dimethylazodicarboxylate.
- In a further example, ester groups —CO2R5, —CO2Alk3 or —CO2Alk7 in the compounds may be converted to the corresponding acid [—CO2H] by acid- or base-catalysed hydrolysis depending on the nature of the groups R5, Alk3 or Alk7. Acid- or base-catalysed hydrolysis may be achieved for example by treatment with an organic or inorganic acid, e.g. trifluoroacetic acid in an aqueous solvent or a mineral acid such as hydrochloric acid in a solvent such as dioxan or an alkali metal hydroxide, e.g. lithium hydroxide in an aqueous alcohol, e.g. aqueous methanol.
- In a further example, —OR5 or —OR14 groups [where R5 or R14 each represents an alkyl group such as methyl group] in compounds of formula (1) may be cleaved to the corresponding alcohol —OH by reaction with boron tribromide in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane at a low temperature, e.g. around −78° C.
- Alcohol [—OH] groups may also be obtained by hydrogenation of a corresponding —OCH2R14 group (where R14 is an aryl group) using a metal catalyst, for example palladium on a support such as carbon in a solvent such as ethanol in the presence of ammonium formate, cyclohexadiene or hydrogen, from around ambient to the reflux temperature. In another example, —OH groups may be generated from the corresponding ester [CO2Alk5 or CO2R5] or aidehyde [—CHO] by reduction, using for example a complex metal hydride such as lithium aluminium hydride or sodium borohydride in a solvent such as methanol.
- In another example, alcohol —OH groups in the compounds may be converted to a corresponding —OR5 or —OR14 group by coupling with a reagent R5OH or R14OH in a solvent such as tetrahydrofuran in the presence of a phosphine, e.g. triphenylphosphine and an activator such as diethyl-, diisopropyl-, or dimethylazodicarboxylate.
- Aminosulphonylamino [—NHSO2NHR3] groups in the compounds may be obtained, in another example, by reaction of a corresponding amine [—NH2] with a sulphamide R3NHSO2NH2 in the presence of an organic base such as pyridine at an elevated temperature, e.g. the reflux temperature.
- In another example compounds containing a —NHCSR3 or —CSNHR3 group may be prepared by treating a corresponding compound containing a —NHCOR3 or —CONHR3 group with a thiation reagent, such as Lawesson's Reagent, in an anhydrous solvent, for example a cyclic ether such as tetrahydrofuran, at an elevated temperature such as the reflux temperature.
- In a further example amine (—NH2) groups may be alkylated using a reductive alkylation process employing an aldehyde and a borohydride, for example sodium triacetoxyborohyride or sodium cyanoborohydride, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane, a ketone such as acetone, or an alcohol, e.g. ethanol, where necessary in the presence of an acid such as acetic acid at around ambient temperature.
- In a further example, amine [—NH2] groups in compounds of formula (1) may be obtained by hydrolysis from a corresponding imide by reaction with hydrazine in a solvent such as an alcohol, e.g. ethanol at ambient temperature.
- In another example, a nitro [—NO2] group may be reduced to an amine [— NH2], for example by catalytic hydrogenation using for example hydrogen in the presence of a metal catalyst, for example palladium on a support such as carbon in a solvent such as an ether, e.g. tetrahydrofuran or an alcohol e.g. methanol, or by chemical reduction using for example a metal, e.g. tin or iron, in the presence of an acid such as hydrochloric acid.
- Aromatic halogen substituents in the compounds may be subjected to halogen-metal exchange with a base, for example a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around −78° C., in a solvent such as tetrahydrofuran and then quenched with an electrophile to introduce a desired substituent. Thus, for example, a formyl group may be introduced by using dimethylformamide as the electrophile; a thiomethyl group may be introduced by using dimethyldisulphide as the electrophile.
- In another example, sulphur atoms in the compounds, for example when present in a linker group L1 or L2 may be oxidised to the corresponding sulphoxide or sulphone using an oxidising agent such as a peroxy acid, e.g. 3-chloroperoxybenzoic acid, in an inert solvent such as a halogenated hydrocarbon, e.g. dichloromethane, at around ambient temperature.
- N-oxides of compounds of formula (1) may be prepared for example by oxidation of the corresponding nitrogen base using an oxidising agent such as hydrogen peroxide in the presence of an acid such as acetic acid, at an elevated temperature, for example around 70° C. to 80° C., or alternatively by reaction with a peracid such as peracetic acid in a solvent, e.g. dichloromethane, at ambient temperature.
- Salts of compounds of formula (1) may be prepared by reaction of a compound of formula (1) with an appropriate base in a suitable solvent or mixture of solvents e.g. an organic solvent such as an ether e.g. diethylether, or an alcohol, e.g. ethanol using conventional procedures.
- Where it is desired to obtain a particular enantiomer of a compound of formula (1) this may be produced from a corresponding mixture of enantiomers using any suitable conventional procedure for resolving enantiomers.
- Thus for example diastereomeric derivatives, e.g. salts, may be produced by reaction of a mixture of enantiomers of formula (1) e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base. The diastereomers may then be separated by any convenient means, for example by crystallisation and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt.
- In another resolution process a racemate of formula (1) may be separated using chiral High Performance Liquid Chromatography. Alternatively, if desired a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above.
- Chromatography, recrystallisation and other conventional separation procedures may also be used with intermediates or final products where it is desired to obtain a particular geometric isomer of the invention. The following Examples illustrate the invention. All temperatures are in ° C. The following abbreviations are used:
NMM - N-methylmorpholine; EtOAc - ethyl acetate; MeOH - methanol; BOC - butoxycarbonyl; DCM - dichloromethane; AcOH - acetic acid; DIPEA - diisopropylethylamine; EtOH - ethanol; Pyr - pyridine; Ar - aryl; DMSO - dimethylsulphoxide; iPr - isopropyl; Et2O - diethylether; Me - methyl; THF - tetrahydrofuran; DMF - N,N-dimethylformamide; FMOC - 9-fluorenylmethoxycarbonyl; DME -1,2-dimethoxyethane; aq. - aqueous; - INTERMEDIATE 1
- Methyl (2S)-3-(4-biphenylyl )-2-[(2-isopropoxy-3,4-dioxocyclobut-1-enyl)amino]propanoate
- A mixture of methyl (2S)-2-amino-3-(4-biphenylyl)-propanoate hydrochloride (415 mg, 1142 mmol),3,4-diisopropoxy-3-cyclobutene-1,2-dione (281 mg, 1.42 mmol), DIPEA (247 μl, 1.42 mmol) and MeOH (10 ml) was stirred at room temperature overnight. The solvent was removed in vacuo and the residue purified by column chromatography (SiO2; DCM/MeOH, 98:2) to give the title compound (358 mg). δH (DMSO-d6, 390K) 8.50 (1H, d, J 8.0 Hz), 7.63-7.56 (4H, m), 7.47-7.42 (2H, m), 7.36-7.32 (3H, m), 5.24-5.18 (1H, m), 4.80-4.75 (1H, m), 3.74 (3H, s), 3.31 (1H, dd, J 14.2, 5.2 Hz), 3.13 (1H, dd, J, 14.2, 9.4 Hz), 1.38 (3H, d, J 6.0 Hz), 1.37 (3H, d, J 6.1 Hz); m/z (ES+, 70 V) 394 (MH+).
- INTERMEDIATE 2
- Methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3-(4-{[trifluoromethylsulphonyl]oxy}phenyl)propanoate
- Triflic anhydride (5.05 ml, 30 mmol) was added to a mixture of N-BOC tyrosine methyl ester (7.38 g, 25 mmol) and pyridine (10 ml, 125 mmol) in DCM (40 ml) at 0°. After 45 min at 0° water (80 ml) and DCM (100 ml) were added. The organic phase was washed with NaOH aq. (0.5 M, 60 ml), water (60 ml), citric acid (10%, 2×80 ml) and water (60 ml), dried (Na2SO4) and concentrated in vacuo to give the title compound as a yellow oil which solidified on standing (10.6 g). δH (CDCl3) 7.26-7.18 (4H, m), 5.05 (1H, v br d), 4.59 (1H, v br q), 3.70 (3H, s), 3.16 (1H, dd, J 13.7, 5.7 Hz), 3.02 (1H, dd, J 13.8, 6.5 Hz), 1.40 (9H, s); m/z (ES+, 70 V) 450 (M++ Na).
- INTERMEDIATE 3
- Methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3-(4-[2′,6′-dimethoxy] biphenylyl)propanoate
- A mixture of the Intermediate 2 (4.27 g, 10 mmol), 2,6-dimethoxybenzene boronic acid (4.55 g, 25 mmol), potassium carbonate (6.9 g, 50 mmol) tetrakis(triphenylphosphine)palladium(0) (2.31 g) in DME (45 ml) and water (5 ml) was heated at 80° overnight. The mixture was diluted with EtOAc, washed with dilute HCl, NaHCO3 (aq.), water and brine, dried (Na2SO4) and concentrated in vacuo. Column chromatography (SiO2; EtOAc/hexane, 20:80-30:70) gave the title compound (2.27 g). δH (DMSO-d6) 7.33 (1H, d, J 8.2 Hz), 7.27 (1H, t, J 8.3 Hz), 7.20 (2H, d, J 8.1 Hz), 7.10 (2H, d, J 8.0 Hz), 6.71 (2H, d, J 8.4 Hz), 4.2 (1H, m), 3.63 (9H, s), 3.01 (1H, dd, J 13.9, 4.5 Hz), 2.84 (1H, dd, J 13.7, 10.3 Hz), 1.34 (9H, s); m/z (ES+, 70 V) 438 (M++ Na).
- INTERMEDIATE 4
- Methyl (2S)-2-amino-3-(4-[2′,6′-dimethoxy]biphenylyl)propanoate hydrochloride
- Anhydrous HCl was bubbled through a solution of Intermediate 3 (1.30 g, 3.13 mmol) in EtOAc (30 ml) for a few seconds. The mixture was stirred at room temperture for 1 h. Some solvent was removed in vacuo until material began to precipitate. The precipitate was filtered off and dried to give the title compound as pale yellow crystals (888 mg, 81%). δH (DMSO-d6) 8.7 (2H, br s), 7.28 (1H, t, J 8.4 Hz), 7.21 (2H, d, J 8.4 Hz), 7.17 (2H, d, J 8.3 Hz), 6.73 (2H, d, J 8.4 Hz), 4.30 (1H, t, J 6.6 Hz), 3.69 (3H, s), 3.64 (6H, s), 3.18 (1H, dd, J 14.1, 6.2 Hz), 3.10 (1H, dd, J 14.1, 7.1 Hz); m/z (ES+, 70 V) 316 (MH+).
- INTERMEDIATE 5
- Methyl (2S)-3-(4-[2′,6′-dimethoxy]biphenylyl)-2-[(2-isopropoxy-3,4-dioxo-cyclobut-1-enyl)amino]propanoate
- A mixture of Intermediate 4 (325 mg, 1.0 mmol) 3,4-diisopropoxy-3-cyclobutene-1,2-dione (208 mg, 1.05 mmol), NMM (115 μl, 1.05 mmol) and MeOH (10 ml) was heated at reflux overnight. The solvent was removed in vacuo. The residue was dissolved in DCM, washed with dilute HCl, dried (Na2SO4) and concentrated in vacuo. Column chromatography (SiO2; MeOH/DCM, 3:97) gave the title compound as a yellow gum (425 mg). δH (DMSO-d6, 390 K), 8.50 (1H, br d, J 8.5 Hz), 7.26 (1H, t, J 8.3 Hz), 7.22 (2H, d, J 8.3 Hz), 7.16 (2H, d, J 8.4 Hz), 6.73 (2H, d, J 8.3 Hz), 5.22 (1H, sept, J 6.2 Hz), 4.81-4.75 (1H, br m), 3.74 (3H, s), 3.65 (6H, s), 3.29 (1H, dd, J 14.2, 5.1 Hz), 3.10 (1H, dd, J 14.2, 9.6 Hz), 1.39 (3H, d, J 6.3 Hz), 1.38 (3H, d, J 6.2 Hz); m/z (ES+, 70 V) 454 (MH+).
- INTERMEDIATE 6
- Methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3-(4-[2′-methoxy]biphenylyl)propanoate
- The title compound (944 mg) was prepared from Intermediate 2 (2.14 g, 5 mmol) and 2-methoxybenzeneboronic acid (1.52 g, 10 mmol) by a similar method to that used to prepare Intermediate 3. δH (DMSO-d6) 7.67-7.23 (6H, m), 7.10-6.97 (3H, m), 4.20 (1H, m), 3.74 (3H, s), 3.63 (3H, s), 3.02 (1H, dd, J 13.7, 4.9 Hz), 2.85 (1H, dd, J 14.0, 10.2 Hz), 1.33 (9H, s); m/z (ES+, 70 V) 408 (M++ Na).
- INTERMEDIATE 7
- Methyl (2S)-2-amino-3-(4-[2′-methoxy[biphenylyl)propanoate hydrochloride
- The title compound was obtained from Intermediate 6 by the method used to prepare Intermediate 4. δH (DMSO-d6) 8.68 (2H, br s), 7.44 (2H, d, J 8.2 Hz), 7.36-7.24 (2H, m), 7.26 (2H, d, J 8.4 Hz), 7.10 (1H, d, J 7.6 Hz), 7.02 (1H, dt, J 7.4, 1.0 Hz), 4.30 (1H, t, J 6.5 Hz), 3.75 (3H, s), 3.71 (3H, s), 3.23-3.10 (2H, m); m/z (ES+, 70 V) 286 (MH+).
- INTERMEDIATE 8
- Methyl (2S)-3-(4-[2′-methoxy]biphenylyl)-2-([2-isopropoxy-3,4-dioxocyclobut-1-enyl]amino)propanoate
- The title compound was obtained from Intermediate 7 by the method used to prepare Intermediate 5. δH (DMSO-d6, 390 K) 8.48 (1H, br d, J 8.6 Hz), 7.41 (2H, d, J 8.3 Hz), 7.34-7.25 (4H, m), 7.10 (1H, dd, J 8.3, 1.0 Hz), 7.02 (1H, dt, J 7.4, 1.1 Hz), 5.21 (1H, sept, J 6.2 Hz), 4.80-4.75 (1H, m), 3.76 (3H, s), 3.75 (3H, s), 3.31 (1H, dd, J 14.2, 5.1 Hz), 3.12 (1H, dd, J 14.3, 9.5 Hz), 1.39 (3H, d, J 6.2 Hz), 1.38 (3H, d, J 6.1 Hz); m/z (ES+, 70 V) 424 (MH+).
- INTERMEDIATE 9
- 3(Diethylamino)-4-isopropoxy-3-cyclobutene-1,2-dione
- A mixture of 3,4-diisopropoxy-3-cyclobutene-1,2-dione (1.0 g, 5.05 mmol) and diethylamine (549 μl, 5.30 mmol) in EtOH (25 ml) was stirred overnight at room temperature. The solvent was removed in vacuo to give the title compound as a yellow oil (1.0 g). δH (DMSO-d6, 390 K) 5.33-5.27 (1H, m), 3.58 (4H, q, J 7.1 Hz), 1.42 (6H, d, J 6.1 Hz), 1.23 (6H, t, J 7.2 Hz); m/z (ES+, 70 V) 212 (MH+).
- INTERMEDIATE 10
- Methyl (R)-3-[(tert-butoxycarbonyl)amino]-3-(4-hydroxyphenyl)] propionate
- Methyl 3-[(amino)(4-hydroxyphenyl)]propionate [Davies S. G. and Ichihara, O. Tet. Asym 2, 3, 183-186 (1991)] (870 mg, 4.5 mmol) was dissolved in dioxan (5 ml) and aqueous sodium hydrogen carbonate solution (5 ml). di-tert-butrylcarbonate (877 mg) in dioxan (2 ml) was added and the reaction stirred at room temperature for 16 h. Water was added and the solution extracted into EtOAc (×3), dried over Na2SO4, filtered and concentrated to give the crude product. Column chromatography (silica; DCM/MeOH 20:1) gave the title compound (900 mg, 68%) as a white solid. δH (DMSO-d6, 300 K) 9.27 (1H, s), 7.09 (2H, d, J 8.5 Hz), 6.68 (2H, d, J 8.5 Hz), 4.82 (1H, m), 3.54 (3H,s), 2.70 (1H, dd, J 15.2, 8.7 Hz), 2.61 (1H, dd, J 15.2, 6.5 Hz) and 1.35 (9H, s); m/z (ES+, 70 V) 318 (M+Na).
- INTERMEDIATE 11
- Methyl (R)-3-[(tert-butoxycarbonyl)amino[-3-(4-trifluoromethyl-sulphonyloxyphenyl)] propionate
- Intermediate 10 (450 mg, 1.53 mmol) in DCM (5 ml) and pyridine (0.62 ml) was cooled to 0° and trifluoromethylsulphonylanhydride (0.24 ml) added. The solution was stirred at 0° for 30 min then quenched with saturated NaHCO3 solution, washed with water, dried over Na2SO4, filtered and concentrated to give the title compound (430 mg, 66%) as a colourless oil. δH (DMSO-d6, 400 MHz), 7.40-7.20 (4H, m), 4.98 (1H, br m), 3.56 (3H, s), 2.85 (2H, m) and 1.35 (9H, s). m/z (ES+, 70 V) 450 (M+Na).
- INTERMEDIATE 12
- Methyl (R)-3-[(tert-butoxycarbonyl)amino]-3-(4-[2′,6′-dimethoxy]biphenylyl)propionate
- Intermediate 11 (430 mg, 1 mmol) was dissolved in DMF (3 ml) and triethylamine (0.28 ml), 2,6-dimethoxybenzeneboronic acid (367 mg), tetrakis(triphenylphosphine) palladium (O) (146 mg) added and the mixture heated at 120° for 1 h. The mixture was cooled, concentrated, dissolved into EtOAc, wash with water (×3), brine, dried (Na2SO4), filtered and concentrated. Column chromatograpy (SiO2; DCM/MeOH 50:1) gave the title compound (270 mg, 63%) as a pale brown solid. AH (DMSO-d6) 7.30 (5H, m), 6.65 (2H, d, J 8.4 Hz), 5.30 (1H, br m), 5.18 (1H, br m), 3.72 (6H, s), 3.66 (3H, s), 2.89 (2H, m), 1.44 (9H, s); m/z (ES+, 70 V) 438 (M+Na).
- INTERMEDIATE 13
- Methyl (R)-3-amino-3-(4-[2′,6′-dimethoxy]biphenylyl)propionate
- Intermediate 12 (270 mg) in EtOAc (5 ml) was treated with excess HCl gas then stirred for 30 min. The precipitate was filtered to give the title compound (211 mg, 95%) as a pale brown solid. δH (DMSO-d6) 8.73 (2H, br m), 7.50 (2H, d, J 8.2 Hz), 7.30 (1H, t, J 8.4 Hz), 7.25 (2H, d, J 8.2 Hz), 6.74 (2H, d, J 8.4 Hz), 4.60 (1H, t, J 7.8 Hz), 3.65 (6H, s), 3.60 (3H,s ), 3.23 (1H, dd, J 16.5, 6.3 Hz) and 3.04 (1H, dd, J 16.5, 8.1 Hz); m/z (ES+, 70 V) 299 (M-NH3).
- INTERMEDIATE 14
- Derivatised Resin (1)
- Resin bound (S)-3-(4-lodophenyl)-2-(2-([-propylamino]-3,4-dioxocyclobut-1-enylamino)propanoic acid (1)
- Wang resin (Advanced ChemTech, 5.0 g, 0.70 mmol/g, 3.50 mmol equivalent) in a mixture of DMF (20 ml) and DCM (20 ml) was treated with N-α-FMOC-4-lodo-L-phenylalanine (4.51 g, 8.75 mmol), 1,3-diisopropylcarbodiimide (1.40 ml, 8.75 mmol) and 4-N,N-dimethylaminopyridine (0.43 g, 0.35 mmol) and the mixture was agitated at room temperature for 16 h. The resin was filtered and washed with DMF, DCM and MeOH, then air-dried. The resin was treated with a 20% solution of acetic anhydride in DMF for 30 mins at room temperature, then filtered and washed as before. The resulting resin was treated with a 20% solution of piperidine in DMF (50 ml) for 30 mins at room temperature, then filtered and washed with DMF, DCM and MeOH. The resin was re-suspended in DMF (50 ml) and was treated with 3,4-dimethoxy-3-cyclobutene-1,2-dione (2.50 g, 17.50 mmol) and the mixture agitated at room temperature for 16 h. The resin was filtered and washed with DMF, DCM and MEOH, then re-suspended in a mixture of DCM (200 m) and MeOH (50 ml) and treated with 1-propylamine (2.90 ml, 35.00 mmol). The reaction mixture was agitated at room temperature for 4 h. The resin was filtered and washed with DMF, DCM and MeOH, then air-dried to give the title derivatised resin (1).
- Methyl (2S)-3-(4-biphenylyl-2{(2-[1-propylamino-3,4-dioxo-cyclobut-1-enyl)amino}propanoate
- n-Propylamine (104 μl, 1.26 mmol) was added to a solution of Intermediate 1 (412 mg, 1.05 mmol) in MeOH (10 ml). The mixture was stirred at room temperature overnight then the solvent removed in vacuo. The residue was dissolved in DCM (100 ml), washed with HCl (aqueous) (1 M, 30 ml), dried (Na2SO4) and evaporated in vacuo to give the title compound as a yellow solid (337 mg). δH (DMSO-d6, 390 K) 7.69 (1H, br), 7.65-7.59 (4H, m), 7.55 (1H, br), 7.47-7.44 (2H, m), 7.37-7.33 (1H, m), 7.26 (2H, d, J 7.5 Hz), 5.06 (1H, br), 3.73 (3H, s), 3.45 (2H, br), 3.24 (1H, br),3.73 (3H, s), 3.45 (2H, br), 3.24 (1H, dd, J 14.2, 5.2 Hz), 3.12 (1H, dd, J 13.8, 7.7 Hz), 1.55-1.48 (2H, m), 0.87 (3H, t, J 7.3Hz).
- (2S)-3-(4-Biphenylyl)-2-{(2-[1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino} propanoic acid
- Lithium hydroxide monohydrate (1.03 mmol, 43 mg) was added to the compound of Example 1 (337 mg, 0.86 mmol) in THF (10 ml) and water (10 ml). The mixture was stirred at room temperature overnight. The THF was removed in vacuo and the aqueous residue acidified to pH1-2 with HCl (1 M). The precipitate was filtered off, washed with water and ether and dried to give the title compound as a brown solid (191 mg). δH (DMSO-d6, 390 K) 7.64-7.59 (2H, m), 7.55-7.52 (2H, m,), 7.47-7.46 (2H, m), 7.45-7.31 (3H, m), 7.50-7.20 (2H, br), 5.13-5.11 (1H, br), 3.54-3.46 (2H, m), 3.32 (1H, dd, J 14.0, 5.3 Hz), 3.18 (1H, dd, J 14.0, 7.1 Hz),1.59-1.53 (2H, m), 0.92 (3H, t, J 7.4 Hz); m/z (ES+, 70 V) 379 (MH+).
- Methyl (2S)-3-(4-[2′,6′-dimethoxy]biphenylyl)-2{(2-[1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoate
- The title compound (327 mg, 78%) was prepared from Intermediate 5 (420, g. 0.93 mmol) by the method used to prepared the compound of Example 1. δH (DMSO-d6, 390 K), 7.27 (1H, t, J 8.3 Hz), 7.18 (4H, s), 6.74 (2H, d, J 8.3 Hz), 7.35-7.10 (2H, br), 5.08 (1H, m), 3.73 (3H, s), 3.65 (6H, s), 3.49-3.47 (2H, m), 3.24 (1H, dd, J 14.2, 5.9 Hz), 3.14 (1H, dd, J 14.2, 7.8 Hz), 1.63-1.55 (2H, m), 0.93 (3H, t, J 7.4 Hz); m/z (ES+, 70 V) 453 (MH+).
- (2S)-3-(4-[2′,6′-dimethoxy]biphenylyl)-2{(2-[1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoic acid
- The title compound was prepared from the compound of Example 3 by a similar method to that used to prepare the compound of Example 2. δH (DMSO6, 390 K) 7.26 (1H, t, J 8.3 Hz), 7.21 (2H, d, J 8.3 Hz), 7.16 (2H, d, 8.4 Hz), 6.74 (2H, d, J 8.3 Hz), 7.35-7.20 (2H, br), 4.99 (11H, br m), 3.65 (6H, s), 3.51-3.47 (2H, m), 3.26 (1H, dd, J 14.2, 5.6 Hz), 3.11 (1H, dd, J 14.2, 7.5 Hz), 1.63-1.54 (2H, m), 0.93 (3H, t, J 7.4 Hz); m/z (ES+, 70 V) 439 (MH+).
- Methyl (2S-3-(4-[2′,6′-dimethoxy]biphenylyl)-2-{(2-[diethylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoate
- Diethylamine (84 μl, 0.82 mmol) was added to a solution of Intermediate 5 (185 mg, 0.408 mmol) in MeOH (5 ml). The mixture was heated at 50° for 3 h. The solvent was removed in vacuo. The residue was purified by column chromatography (SiO2;MeOH/DCM, 2:98) to give the title compound as a colourless gum (164 mg, 86%). δH (DMSO-d6) 7.77 (1H, d, J 8.9 Hz), 7.26 (1H, t, J 8.3 Hz), 7.22 (2H, d, J 8.3 Hz), 7.10 (2H, d, J 8.2 Hz), 6.70 (2H, d, J 8.4 Hz), 5.23-5.15 (1H, m), 3.71 (3H, s), 3.61 (6H, s), 3.51 (4H, br m), 3.30-3.20 (CHAHBAr, under HOD signal), 3.06 (1H, dd, J 13.9, 10.9 Hz), 1.08 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 467 (MH+).
- (2S-)3-(4-[2′,6′-dimethoxy]biphenylyl)-2-{(2-[diethylamino]-3,4 dioxo-cyclobut-1-enyl)amino}propanoic acid
- The title compound was prepared from the compound of Example 5 by a similar method to that used to prepare the compound of Example 2. δH (DMSO-d6, 390 K) 7.39-7.30 (3H, m), 7.22 (2H, d, J 8.3 Hz), 7.01 (1H, br d, J 7.3 Hz), 6.79 (2H, d, J 8.0 Hz), 5.27-5.23 (1H, m), 3.70 (6H, s), 3.68-3.52 (3H, m), 3.38 (1H, dd, J 14.3, 5.1 Hz), 3.21 (1H, dd, J 14.2, 9.1 Hz), 1.22 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 453 (MH+).
- Methyl (2S)-3-(4-[2′-methoxy]biphenylyl)-2-{(2-[diethylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoate
- The title compound was obtained from intermediate 8 by the method used to prepare the compound of Example 5. δH (DMSO-d6) 7.77 (1H, d, J 9.0 Hz), 7.37 (2H, d, J 8.2 Hz), 7.34-7.21 (2H, m), 7.27 (2H, d, J 8.1 Hz), 7.08 (1H, d, J 7.6 Hz), 6.99 (1H, t, J 7.4 Hz), 5.18 (1H, m), 3.72 (3H, s), 3.71 (3H, s), 3.50 (4H), ˜3.30 (1H), 3.07 (1H, dd, J 13.9, 10.8 Hz), 1.07 (6H, t, J 7.1 Hz), m/z (ES+, 70 V) 437 (MH+).
- (2S)-3-(4-[2′-Methoxy]biphenylyl)-2-{(2-[diethylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoic acid
- The title compound was obtained from the compound of Example 7 by the method used to prepare the compound of Example 2. δH (DMSO-d6, 390 K) 7.40 (2H, d, J 8.4 Hz), 7.33-7.25 (2H, m), 7.30 (2H, d, J 8.3 Hz), 7.09 (1H, dd, J 8.2, 1.0 Hz), 7.02 (1H, dt, J 7.4, 1.1 Hz), 6.95 (1H, br d), 5.21-5.17 (1H, m), 3.75 (3H, s), 3.58-3.52 (4H, m), 3.32 (1H, dd, J 14.2, 5.2 Hz), 3.17 (1H, dd, J 14.2, 9.2 Hz), 1.16 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 423 (MH+).
- Methyl (2S)-3-(4-[2′-methoxy]biphenylyl)-2-{(2-[1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoate
- The title compound was obtained from Intermediate 8 by the method used to prepare the compound of Example 3. δH (DMSO-d6, 390 K) 7.42 (2H, d, J 8.3 Hz), 7.34-7.24 (2H, m), 7.30 (2H, br), 7.23 (2H, d, J 8.2 Hz), 7.10 (1H, dd, J 8.2, 0.9 Hz), 7.02 (1H, dt, J 7.4, 1.1 Hz), 5.08 (1H, t, J 6.7 Hz), 3.76 (3H, s), 3.74 (3H, s), 3.49 (2H, t, J 6.8 Hz), 3.26 (1H, dd, J 14.1, 5.8 Hz), 3.14 (1H, dd, J 14.1, 7.7 Hz), 1.59 (2H, sext, J 7.1 Hz), 0.93 (3H, t, J 7.4 Hz), m/z (ES+, 70 V) 423 (MH+).
- (2S)-3-(4-[2′-Methoxy]biphenylyl)-2-{(2-[1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoic acid
- The title compound was obtained from the compound of Example 9 by the method used to prepare the compound of Example 2. δH (DMSO-d6, 390 K) 7.41 (2H, d, J 8.3 Hz), 7.34-7.23 (6H, m, ArH), 7.10 (1H, dd, J 8.2, 1.0 Hz), 7.02 (1H, dt, J 7.4, 1.1 Hz, 5.01-4.98 (1H, m), 3.76 (3H, s), 3.49 (1H, br t, J 6.7 Hz), 3.27 (1H, dd, J 14.2, 5.6 Hz), 3.13 (1H, dd, J 14.2, 7.5 Hz), 1.58 (2H, sext, J 7.2 Hz), 0.93 (3H, t, J 7.4 Hz); m/z (ES+, 70 V) 409 (MH+.).
- Methyl (2S)-3-(4-biphenylyl)-2-{(2-[diethylamino-3,4-dioxo-cyclobut-1-enyl)amino}propanoate
- A mixture of (2S)-2-amino-3-[4-biphenylyl)propanoate hydrochloride (437 mg, 1.5 mmol), Intermediate 9 (275 mg, 1.5 mmol) and DIPEA (261 g, 1.5 mmol) in MeOH (10 ml) was stirred at room temperature overnight. The solvent was removed in vacuo. The residue was dissolved in DCM, washed with dilute HCl, dried (Na2SO4) and concentrated in vacuo. Crystallisation (EtOAc) gave the title compound as yellow crystals (308 mg). δH (DMSO-d6, 390 K) 7.61-7.58 (2H, m), 7.56-7.44 (2H, m), 7.42-7.40 (2H, m), 7.35-7.30 (3H, m), 7.10 (1H, d, J 8.7 Hz), 5.29-5.24 (1H, m), 3.73 (3H, s), 3.57-3.56 (4H, m), 3.32 (1H, dd, J 14.2, 5.4 Hz), 3.17 (1H, dd, J 14.2, 9.2 Hz), 1.14 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 407 (MH+).
- (2S)-3-(4-Biphenylyl)-2-{(2-[diethylamino]-3,4-dioxo-cyclobut-1-enyl)amino} propanoic acid
- The title compound was obtained from the compound of Example 11 by the method used to prepare the compound of Example 2. δH (DMSO-d6, 390 K) 7.52-7.49 (2H, m), 7.46-7.43 (2H, m), 7.35-7.31 (2H, m), 7.27-7.21 (3H, m), 5.10-5.07 (1H, m), 3.47-3.39 (4H, m), 3.22 (1H, dd, J 14.2, 5.2 Hz), 3.07 (1H, dd, J 14.2, 9.1 Hz), 1.05 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 393 (MH+).
- Methyl (R)-3-[4-(2′,6′-dimethoxy)biphenylyl]-3-[(2-isopropoxy-3,4-dioxo-cyclobut-1-enyl)amino]propionate
- Intermediate 13 (211 mg, 0.6 mmol) in MeOH (3 ml) was treated with DIPEA (0.23 ml) and 3,4-diisopropoxy-3-cyclobutene-1,2-dione (130 mg) at room temperature for 16 h. The mixture was concentrated then purified by column chromatography (silica; DCM/MeOH 50:1) gave the title compound (196 mg, 72%) as a pale yellow oil. δH (DMSO-d6) 9.34 (1H, m), 7.29 (3H, m), 7.19 (2H, d, J 7.9 Hz), 6.71 (2H, d, J 8.4 Hz), 5.74 (1H, m), 5.24 (1H, m), 3.64 (6H, m), 3.92 (3H, s), 3.0 (2H, m), 1.35 (6H, m). m/z (ES+, 70 V) 454 (MH+).
- Methyl (R)-3-{[2-(diethylamino)-3,4-dioxo-cyclobut-1-enyl]-3-[4-(2′,6′dimethoxy)biphenylyl]propionate
- The compound of Example 13 (190 mg, 0.42 mmol) in MeOH (4 ml) was treated with diethylamine (0.065 ml) and stirred at room temperature for 1 h. The precipitate was filtered and dried to give the title compound (169 mg, 87%) as a white solid. δH (DMSO-d6) 7.37 (2H, d, J 8.2 Hz), 7.28 (1H, t, J 8.3 Hz), 7.18 (2H, d, J 8.2 Hz), 6.71 (2H, d, J 8.3 Hz), 5.90 (1H, m), 3.64 (3H, s), 3.60 (3H, s), 3.50 (4H, m), 3.30 (3H, s), 3.00 (2H, m) and 1.23 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 467 (MH+).
- (R)-3-{[2-(Diethylamino)-3,4-dioxo-cyclobut-1-enyl]amino-3-[4-(2′,6′-dimethoxy)biphenylyl] propionic acid
- The compound of Example 14 in THF (2 ml) and H2O (2 ml) was treated with lithium hydroxide (22 mg) and stirred at room temperatue for 2 h. The THF was removed in vacuo and the remaining solution acidified with dilute HCl solution to give a white precipitate which was filtered and dried to give the title compound (99 mg, 63%) . δH (DMSO-d6, 400 K) 7.42 (2h, d, J 8.1 Hz), 7.25 (3H, m), 6.75 (2H, d, J 8.1 Hz), 5.92 (1H, m), 3.68 (6H, s), 3.60 (2H, q, J 7.1 Hz), 3.58 (2H, q, J 7.1 Hz), 3.04 (1H, dd, J 15.7, 8.3 Hz), 2.95 (1H, dd, J 15.7, 5.9 Hz) and 1.21 (6H, t, J 7.1 Hz); m/z (ES+, 70 V) 453 (MH+).
- (2S)-3-(4-Biphenylyl)-2-[(2-morpholino-3,4-dioxocyclobut-1-enyl)amino] propanoic acid
- N-α-FMOC-L-4-biphenylylalanine Wang resin (Advanced ChemTech, 200 mg, 0.50 mmol/g, 0.1 mmol equivalent) was treated with a 20% solution of piperidine in DMF (2 ml) for 30 min at room temperature, then filtered and washed with DCM. The resin was re-suspended in DMF (2 ml) and treated with 3,4-dimethoxy-3-cyclobutene-1,2-dione (99 mg, 0.7 mmol). The resulting mixture was heated at 70° for 18 h. The resin was filtered and washed with DCM then re-suspended in a mixture of DCM (0.4 ml) and ethanol (1.6 ml) and treated with morpholine (87 mg, 1.0 mmol). The resin was agitated at room temperature for 18 h then filtered and washed with DCM. The resin was treated with a solution of trifluoroacetic acid/DCM (95:5, 2 ml) for 3 h, then filtered. The filtrate was evaporated to afford the crude product which was purified by preparative HPLC to afford the title compound (4 mg).
- HPLC-MS Retention time 2.44 min 407 (MH+).
- (2S)-3-[4-(4′-Methoxy)biphenylyl]-2-{(2-[propylamino)]3,4-dioxocyclobut-1-enyl)amino}propanoic acid
- A slurry of derivatised resin (1) (200 mg) in anhydrous, degassed DMF (2 ml) was treated with 4-methylbenzeneboronic acid (49 mg, 0.35 mmol), triethylamine (0.1 ml, 0.67 mmol) and tetrakistriphenylphosphine palladium (0) (20 mg, 0.17 mmol). The resulting mixture was agitated at 100° for 2 h then cooled to room temperature. The resin was filtered and washed with 0.5% (w/w) sodium diethydithiocarbamate solution in DMF, 0.5% (w/w) DIPEA solution in DMF, DMF, DCM and MeOH then air-dried. The resin was treated with a solution of trifluoroacetic acid/DMF (95:5, 1 ml) for 1 h, then filtered. The filtrate was evaporated to afford the title compound (1 mg).
- HPLC-MS Retention time 2.62 min 393 (MH+).
- LC-MS Conditions: Luna C18(2) 50×2.0 mm (3 μm) column, running a gradient of 95% [0.1% aqueous formic acid], 5% [0.1% formic acid in acetonitrile] to 10% [0.1% aqueous formic acid], 90% [0.1% formic acid in acetonitrile] over 2 min, then maintaining the mobile phase at that ratio for a further 1 min. Flow rate 0.8 ml/min. MS was acquired by API electrospray in positive ion mode, at 70 V, scanning from 120 to 750 amu.
- The compounds of Examples 18 to 23 were prepared from derivatised resin (1) in a similar manner to the compound of Example 17, using the arylboronic acid shown.
- (2S)-3-[4-(2′-(Trifluoromethyl)biphenylyl]-2-{(2-(1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoic acid
- 2-(Trifluoromethyl)benzeneboronic acid gave the title compound (1 mg) HPLC-MS Retention time 2.62 min 447 (MH+).
- (sS)-3-[4-(2′-Formyl)biphenylyl]-2-{(2-(1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoic acid
- 2-Formylbenzeneboronic acid gave the title compound (2 mg) HPLC-MS Retention time 2.45 min 407 (MH+).
- (2S)-3-[4-(2′,5′-Dimethoxy)biphenylyl]-2-(2-(1-propylamino)-3,4-dioxocyclobut-1-enylamino)propanoic acid
- 2,5-Dimethoxybenzeneboronic acid gave the title compound (2 mg) HPLC-MS Retention time 2.53 min 439 (MH+).
- (2S)-3-[4-(2′-Formyl-5′-methoxy)biphenylyl]-2-(2-(1-propylamino)-3,4-dioxocyclobut-1-enylamino)propanoic acid
- 2-Formyl-5-methoxybenzeneboronic acid gave the title compound (5 mg) HPLC-MS Retention time 2.46 min 437 (MH+).
- (2S)-3-[4-(5′-Chloro-2′-methoxy)biphenylyl]-2-{(2-(1-propylamino]-3,4-dioxo-cyclobut-1-enyl)amino}propanoic acid
- 5-Chloro-2-methoxybenzeneboronic acid gave the title compound (3 mg) HPLC-MS Retention time 2.64 min 443 (MH+).
- (2S)-3-[4-(5′-Formyl-2′-methoxy)biphenylyl]-2-(2-(1-propylamino)-3,4-dioxocyclobut-1-enylamino)propanoic acid
- 5-Formyl-2-methoxybenzeneboronic acid gave the title compound (5 mg) HPLC-MS Retention time 2.42 min 437 (MH+).
- The following assays can be used to demonstrate the potency and selectivity of the compounds according to the invention. In each of these assays an IC50 value was determined for each test compound and represents the concentration of compound necessary to achieve 50% inhibition of cell adhesion where 100%=adhesion assessed in the absence of the test compound and 0%=absorbance in wells that did not receive cells.
- α4β1 lntefln-dependent Jurkat cell adhesion to VCAM-lg
- 96 well NUNC plates were coated with F(ab)2 fragment goat anti-human IgG Fcγ-specific antibody [Jackson Immuno Research 109-006-098: 100 μl at 2 μg/ml in 0.1 M NaHCO3, pH 8.4], overnight at 4°. The plates were washed (3×) in phosphate-buffered saline (PBS) and then blocked for 1 h in PBS/1% BSA at room temperature on a rocking platform. After washing (3× in PBS) 9 ng/ml of purified 2 d VCAM-lg diluted in PBS/1% BSA was added and the plates left for 60 minutes at room temperature on a rocking platform. The plates were washed (3× in PBS) and the assay then performed at 37° for 30 min in a total volume of 200 μl containing 2.5×105 Jurkat cells in the presence or absence of titrated test compounds.
- Each plate was washed (2×) with medium and the adherent cells were fixed with 100 μl methanol for 10 minutes followed by another wash. 100 μl 0.25% Rose Bengal (Sigma R4507) in PBS was added for 5 minutes at room temperature and the plates washed (3×) in PBS. 100 μpl 50% (v/v) ethanol in PBS was added and the plates left for 60 min after which the absorbance (570 nm) was measured.
- α4β7 Inteprin-dependent JY cell adhesion to MAdCAM-Ic
- This assay was performed in the same manner as the α4β1 assay except that MAdCAM-lg (150 ng/ml) was used in place of 2 d VCAM-lg and a sub-line of the β-lympho blastoid cell-line JY was used in place of Jurkat cells. The IC50 value for each test compound was determined as described in the α4β1 integrin assay.
- α5β1 Intearin-dependent K562 cell adhesion to fibronectin
- 96 well tissue culture plates were coated with human plasma fibronectin (Sigma F0895) at 51 g/ml in phosphate-buffered saline (PBS) for 2 hr at 37° C. The plates were washed (3× in PBS) and then blocked for 1 h in 100 μl PBS/1% BSA at room temperature on a rocking platform. The blocked plates were washed (3× in PBS) and the assay then performed at 37° C. in a total volume of 200 μl containing 2.5×105 K562 cells, phorbol-12-myristate-13-acetate at 10 ng/ml, and in the presence or absence of titrated test compounds. Incubation time was 30 minutes. Each plate was fixed and stained as described in the α4β1 assay above.
- αmβ2-dependent human oolvmorphonuclear neutrophils adhesion to inastic
- 96 well tissue culture plates were coated with RPMI 1640/10% FCS for 2 h at 37° C. 2×105 freshly isolated human venous polymorphonuclear neutrophils (PMN) were added to the wells in a total volume of 200 μl in the presence of 10 ng/ml phorbol-12-myristate-13-acetate, and in the presence or absence of test compounds, and incubated for 20 min at 37° C. followed by 30 min at room temperature. The plates were washed in medium and 100 μl 0.1% (w/v) HMB (hexadecyl trimethyl ammonium bromide, Sigma H5882) in 0.05 M potassium phosphate buffer, pH 6.0 added to each well. The plates were then left on a rocker at room temperature for 60 min. Endogenous peroxidase activity was then assessed using tetramethyl benzidine (TMB) as follows: PMN lysate samples mixed with 0.22% H2O2 (Sigma) and 50 μg/ml TMB (Boehringer Mannheim) in 0.1 M sodium acetate/citrate buffer, pH 6.0 and absorbance measured at 630 nm. αllb/β3-dependent human platelet aggregation
- Human platelet aggregation was assessed using impedance aggregation on the Chronolog Whole Blood Lumiaggregometer. Human platelet-rich plasma (PRP) was obtained by spinning fresh human venous blood anticoagulated with 0.38% (v/v) tri-sodium citrate at 220 xg for 10 min and diluted to a cell density of 6×108/ml in autologous plasma. Cuvettes contained equal volumes of PRP and filtered Tyrode's buffer (g/liter: NaCl 8.0; MgCl2.H2O 0.427; CaCl2 0.2; KCl 0.2; D-glucose 1.0; NaHCO3 1.0; NaHPO4.2H2O 0.065). Aggregation was monitored following addition of 2.5 μM ADP (Sigma) in the presence or absence of inhibitors.
- In the above assays the preferred compounds of the invention in which R1 is an α4 integrin binding group, such as the compounds of the Examples generally have IC50 values in the α4β1 and α4β7 assays of 1 μM and below. In the other assays featuring α integrins of other subgroups the same compounds had IC50 values of 50 μM and above thus demonstrating the potency and selectivity of their action against α4 integrins.
- The advantageous clearance properties of compounds according to the invention may be demonstrated as follows:
- Hepatic clearance, whether metabolic or biliary, can make a substantial contribution to the total plasma clearance of a drug. The total plasma clearance is a principal parameter of the pharmacokinetic properties of a medicine. It has a direct impact on the dose required to achieve effective plama concentrations and has a major impact on the elimination half-life and therefore the dose-interval. Furthermore, high hepatic clearance is an indicator of high first-pass hepatic clearance after oral administration and therefore low oral bioavailability.
- Many peptidic and non-peptidic carboxylic acids of therapeutic interest are subject to high hepatic clearance from plasma. Except for drugs which function in the liver, hepatic uptake from blood or plasma is undesirable because it leads to high hepatic clearance if the compound is excreted in bile or metabolised, or if the substance is not cleared from the liver, it may accumulate in the liver and interfere with the normal function of the liver.
- The total plasma clearance of a compound according to the invention can be determined as follows:
- a small dose of the compound in solution is injected into a vein of a test animal. Blood samples are withdrawn from a blood vessel of the animal at several times after the injection, and the concentration of compound in the bleed or plasma is measured using a suitable assay. The area under the curve (AUCiv) is calculated by non-compartmental methods (for example, the trapezium method) or by pharmacokinetic modelling. The total plasma clearance (CLp) is calculated by dividing the intravenous dose(Div) by the AUCiv for the blood plasma concentration—time course of a drug administered by the intravenous route: CLp=Div÷AUCiv
- When tested in this manner, compounds according to the invention are not rapidly or extensively extracted by the liver and have low total plasma clearance where low is defined as less than 10 ml/min/kg in the laboratory rat (Sprague Dawley CD). This compares favourably with functionally equivalent integrin binding compounds in which the square acid framework and/or the carboxylic ester or amide R group of compounds of formula (1) is not present.
Claims (18)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9930558.3A GB9930558D0 (en) | 1999-12-23 | 1999-12-23 | Chemical compounds |
GB9930558.3 | 1999-12-23 | ||
GB0002872A GB0002872D0 (en) | 2000-02-08 | 2000-02-08 | Chemical compounds |
GB0002872.0 | 2000-02-08 | ||
GB0028838.1 | 2000-11-27 | ||
GB0028838A GB0028838D0 (en) | 2000-11-27 | 2000-11-27 | Chemical compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010020017A1 true US20010020017A1 (en) | 2001-09-06 |
US6455539B2 US6455539B2 (en) | 2002-09-24 |
Family
ID=27255523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/742,038 Expired - Fee Related US6455539B2 (en) | 1999-12-23 | 2000-12-21 | Squaric acid derivates |
Country Status (7)
Country | Link |
---|---|
US (1) | US6455539B2 (en) |
EP (1) | EP1244611B1 (en) |
AT (1) | ATE270266T1 (en) |
AU (1) | AU2382201A (en) |
DE (1) | DE60011940T2 (en) |
ES (1) | ES2223639T3 (en) |
WO (1) | WO2001047867A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110156844A (en) * | 2012-05-21 | 2019-08-23 | 安捷伦科技有限公司 | The method of composition and conjugation oligonucleotides |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6939855B2 (en) * | 1997-07-31 | 2005-09-06 | Elan Pharmaceuticals, Inc. | Anti-inflammatory compositions and method |
WO2002004426A1 (en) * | 2000-07-07 | 2002-01-17 | Celltech R & D Limited | Squaric acid derivatives containing a bicyclic heteroaromatic ring as integrin antagonists |
DE60336986D1 (en) | 2002-03-05 | 2011-06-16 | Sumitomo Chemical Co | PROCESS FOR THE PRODUCTION OF BIARYL COMPOUNDS |
DE102004043363A1 (en) * | 2004-09-08 | 2006-03-09 | Bayer Materialscience Ag | Separator free-curing blocked polyisocyanates for dual cure systems |
US8450348B2 (en) | 2007-02-21 | 2013-05-28 | Forma Tm, Llc | Derivatives of squaric acid with anti-proliferative activity |
WO2008125210A1 (en) * | 2007-04-12 | 2008-10-23 | Ucb Pharma, S.A. | Quinoline and naphthalene derivatives, processes for their preparation and their use in treatment of inflammatory diseases |
EP2318369A1 (en) | 2008-06-24 | 2011-05-11 | TopoTarget A/S | Squaric acid derivatives as inhibitors of the nicotinamide |
US8901144B2 (en) | 2013-02-07 | 2014-12-02 | Scifluor Life Sciences, Llc | Fluorinated 3-(2-oxo-3-(3-arylpropyl)imidazolidin-1-yl)-3-arylpropanoic acid derivatives |
BR112015019039B1 (en) | 2013-02-07 | 2022-03-03 | Scifluor Life Sciences, Inc | Fluorinated integrin antagonist compounds and pharmaceutical composition comprising said compounds |
BR112017017888A2 (en) | 2015-02-19 | 2018-04-10 | Scifluor Life Sciences Inc | fluorinated derivatives of tetrahydronaphthyridinyl nonanoic acid derivatives and uses of these |
WO2018200571A1 (en) | 2017-04-25 | 2018-11-01 | Arbutus Biopharma Corporation | Substituted 2,3-dihydro-1h-indene analogs and methods using same |
WO2019191624A1 (en) | 2018-03-29 | 2019-10-03 | Arbutus Biopharma, Inc. | Substituted 1,1'-biphenyl compounds, analogues thereof, and methods using same |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1437781A (en) | 1972-04-04 | 1976-06-03 | Beecham Group Ltd | Pyridine derivatives having hypoglycaemic activity |
JPS609718B2 (en) | 1977-08-25 | 1985-03-12 | 塩野義製薬株式会社 | Thiadiazolylthiosephalosporin related antibiotics |
JPS5683483A (en) | 1979-12-13 | 1981-07-08 | Santen Pharmaceut Co Ltd | Thiazolidine compound |
JPS5690045A (en) | 1979-12-25 | 1981-07-21 | Tokuyama Soda Co Ltd | Alpha*alpha**di substituted amino phenylenediacetic acid |
JPS56139455A (en) | 1980-04-02 | 1981-10-30 | Santen Pharmaceut Co Ltd | Sulfur-containing acylaminoacid |
US4470973A (en) | 1982-07-19 | 1984-09-11 | E. R. Squibb & Sons, Inc. | Substituted peptide compounds |
FR2540871B1 (en) | 1983-02-16 | 1986-01-10 | Lipha | AMINO-2 PHENYL-5 BENZODIAZEPINES-1,3; PREPARATION PROCESS AND MEDICINES CONTAINING THEM |
GB8332704D0 (en) | 1983-12-07 | 1984-01-11 | Pfizer Ltd | Growth promotants for animals |
IT1176983B (en) | 1984-10-16 | 1987-08-26 | Zambon Spa | DIPEPTIDES WITH PHARMACOLOGICAL ACTIVITY |
CN1030415A (en) | 1987-02-20 | 1989-01-18 | 山之内制药株式会社 | Saturated heterocycle carboxamide derivatives and its preparation method |
JPH0784424B2 (en) | 1987-04-15 | 1995-09-13 | 味の素株式会社 | Tyrosine derivative and its use |
US5510346A (en) | 1987-12-07 | 1996-04-23 | Hoechst Marion Roussel, Inc. | 4-heteroaryl-1,3-benzodiazepines and 2-substituted-gamma-(heteroaryl)benzeneethanamines |
IT1223565B (en) | 1987-12-21 | 1990-09-19 | Zambon Spa | THIAZOLIDIN 4 CARBOXYLIC ACID DERIVATIVES FOR PHARMACEUTICAL ACTIVITIES |
US5256812A (en) | 1989-01-31 | 1993-10-26 | Hoffmann-La Roche Inc. | Carboxamides and sulfonamides |
US5164372A (en) | 1989-04-28 | 1992-11-17 | Fujisawa Pharmaceutical Company, Ltd. | Peptide compounds having substance p antagonism, processes for preparation thereof and pharmaceutical composition comprising the same |
JPH07121917B2 (en) | 1989-07-31 | 1995-12-25 | 四国化成工業株式会社 | 4 (5) -thiocarbamoyl-imidazole compound and method for synthesizing the same |
US5260277A (en) | 1990-09-10 | 1993-11-09 | Tanabe Seiyaku Co., Ltd. | Guanidinyl and related cell adhesion modulation compounds |
IT1244548B (en) | 1991-02-06 | 1994-07-15 | Poli Ind Chimica Spa | 5-OXO-L-PROLIN DERIVATIVES AND THEIR PHARMACEUTICAL APPLICATIONS |
NZ243326A (en) | 1991-06-28 | 1995-10-26 | Smithkline Beecham Corp | Benzodiazepine, benzazepine; benzothiazepine and benzoxazepine derivatives; pharmaceutical compositions |
US5296486A (en) | 1991-09-24 | 1994-03-22 | Boehringer Ingelheim Pharmaceuticals, Inc. | Leukotriene biosynthesis inhibitors |
US5250679A (en) | 1991-10-18 | 1993-10-05 | Genentech, Inc. | Nonpeptidyl platelet aggregation inhibitors having specificity for the GPIIb III.sub. receptor |
US5352667A (en) | 1991-11-22 | 1994-10-04 | Ofer Lider | Non-peptidic surrogates of the Arg-Gly-Asp sequence and pharmaceutical compositions comprising them |
US5227490A (en) | 1992-02-21 | 1993-07-13 | Merck & Co., Inc. | Fibrinogen receptor antagonists |
AU686115B2 (en) | 1992-11-02 | 1998-02-05 | Fujisawa Pharmaceutical Co., Ltd. | Imidazo (I,2-a) pyridine derivatives as bradykinin antagonists, pharmaceuticals and processes for their preparation |
FR2700167B1 (en) | 1993-01-07 | 1995-02-03 | Rhone Poulenc Rorer Sa | Pyrrolidine and thiazolidine derivatives, their preparation and the drugs containing them. |
FR2700168B1 (en) | 1993-01-07 | 1995-02-03 | Rhone Poulenc Rorer Sa | Thiazolidine derivatives, their preparation and the drugs containing them. |
GB9311661D0 (en) | 1993-06-05 | 1993-07-21 | Smithkline Beecham Plc | Novel compounds |
AU678503B2 (en) | 1993-09-24 | 1997-05-29 | Takeda Chemical Industries Ltd. | Condensed heterocyclic compounds and their use as squalene synthetase inhibitors |
AU8107694A (en) | 1993-11-17 | 1995-06-06 | Byk Nederland Bv | Use of substituted thiazolidine derivatives in the treatment of raised intraocular pressure |
AU693143B2 (en) | 1993-12-06 | 1998-06-25 | Cytel Corporation | CS-1 peptidomimetics, compositions and methods of using the same |
JP2973271B2 (en) | 1994-01-18 | 1999-11-08 | 参天製薬株式会社 | Endopeptidase 24.15 inhibitor |
FR2721608B1 (en) | 1994-06-22 | 1996-07-19 | Rhone Poulenc Rorer Sa | Thiazolidine derivatives, their preparation and the drugs containing them. |
ATE237342T1 (en) | 1994-07-11 | 2003-05-15 | Athena Neurosciences Inc | LEUKOCYTE ADHESION INHIBITORS |
ES2123889T3 (en) | 1994-11-02 | 1999-01-16 | Merck Patent Gmbh | ADHESION RECEPTOR ANTAGONISTS. |
TW403748B (en) | 1994-11-02 | 2000-09-01 | Takeda Chemical Industries Ltd | An oxazolidinedione derivative, its production and a pharmaceutical composition for lowering blood sugar and lipid in blood comprising the same |
US6306840B1 (en) | 1995-01-23 | 2001-10-23 | Biogen, Inc. | Cell adhesion inhibitors |
WO1996026190A1 (en) | 1995-02-22 | 1996-08-29 | Smithkline Beecham Corporation | Integrin receptor antagonists |
US6248713B1 (en) | 1995-07-11 | 2001-06-19 | Biogen, Inc. | Cell adhesion inhibitors |
GB9515073D0 (en) | 1995-07-22 | 1995-09-20 | Blair Neil | Securement device and method |
PL186370B1 (en) | 1995-08-30 | 2003-12-31 | Searle & Co | Methaguanidine, urea, thiourea or azacyclic derivatives of aminobenzoic acid as antagonists of integrin |
US5714488A (en) | 1995-10-03 | 1998-02-03 | Abbott Laboratories | Bis-heteroarylylmethoxyphenyl ketone derivatives as inhibitors of leukotriene biosynthesis |
AU1345697A (en) | 1995-12-22 | 1997-07-17 | Du Pont Merck Pharmaceutical Company, The | Novel integrin receptor antagonists |
JP2000502704A (en) | 1995-12-29 | 2000-03-07 | スミスクライン・ビーチャム・コーポレイション | Vitronectin receptor antagonist |
GB9604242D0 (en) | 1996-02-28 | 1996-05-01 | Glaxo Wellcome Inc | Chemical compounds |
PT889876E (en) | 1996-03-29 | 2001-11-30 | Searle & Co | META-REPLACED PHENYLENESULFONAMID DERIVATIVES |
DK0889875T3 (en) | 1996-03-29 | 2001-09-03 | Searle & Co | Cycloproylalkanoic acid derivatives |
JP2000515493A (en) | 1996-03-29 | 2000-11-21 | ジー.ディー.サール アンド カンパニー | Para-substituted phenylene derivatives |
EP0889877B1 (en) | 1996-03-29 | 2001-08-29 | G.D. Searle & Co. | META-SUBSTITUTED PHENYLENE DERIVATIVES AND THEIR USE AS ALPHAvBETA3 INTEGRIN ANTAGONISTS OR INHIBITORS |
DE19620041A1 (en) | 1996-05-17 | 1998-01-29 | Merck Patent Gmbh | Adhesion receptor antagonists |
WO1997047618A1 (en) | 1996-06-10 | 1997-12-18 | Merck & Co., Inc. | Substituted imidazoles having cytokine inhibitory activity |
DE19654483A1 (en) | 1996-06-28 | 1998-01-02 | Merck Patent Gmbh | Phenylalanine derivatives |
EP0907637A1 (en) | 1996-06-28 | 1999-04-14 | MERCK PATENT GmbH | Phenylalamine derivatives as integrin inhibitors |
CZ298080B6 (en) | 1996-07-25 | 2007-06-13 | Biogen Idec Ma Inc. | Cell adhesion inhibitors, process of their preparation and pharmaceutical compositions in which the cell adhesion inhibitors are comprised |
JP2001503060A (en) | 1996-10-30 | 2001-03-06 | メルク エンド カンパニー インコーポレーテッド | Integrin antagonist |
DE19647381A1 (en) | 1996-11-15 | 1998-05-20 | Hoechst Ag | New heterocycles as leukocyte adhesion inhibitors and VLA-4 antagonists |
DE19647380A1 (en) | 1996-11-15 | 1998-05-20 | Hoechst Ag | 5-ring heterocycles as inhibitors of leukocyte adhesion and VLA-4 antagonists |
JP2001506632A (en) | 1996-12-09 | 2001-05-22 | イーライ リリー アンド カンパニー | Integrin antagonist |
AU729869B2 (en) | 1997-01-17 | 2001-02-15 | Merck & Co., Inc. | Integrin antagonists |
US6034136A (en) | 1997-03-20 | 2000-03-07 | Novartis Ag | Certain cyclic thio substituted acylaminoacid amide derivatives |
WO1998053814A1 (en) | 1997-05-29 | 1998-12-03 | Merck & Co., Inc. | Heterocyclic amide compounds as cell adhesion inhibitors |
CA2291762A1 (en) | 1997-05-29 | 1998-12-03 | Merck & Co., Inc. | Biarylalkanoic acids as cell adhesion inhibitors |
AU728435B2 (en) | 1997-05-29 | 2001-01-11 | Merck & Co., Inc. | Sulfonamides as cell adhesion inhibitors |
AU7667498A (en) | 1997-05-30 | 1998-12-30 | Celltech Therapeutics Limited | Anti-inflammatory tyrosine derivatives |
PT991619E (en) | 1997-06-23 | 2004-02-27 | Upjohn Co | INHIBITORS OF THE CELLULAR ADHESION MEDIATED BY ALFA4BETA1 |
JP2001512134A (en) | 1997-07-31 | 2001-08-21 | エラン・ファーマシューティカルズ・インコーポレーテッド | Substituted phenylalanine-type compounds that inhibit VLA-4-mediated leukocyte adhesion |
IL133641A0 (en) | 1997-07-31 | 2001-04-30 | Elan Pharm Inc | Compounds which inhibit leukocyte adhesion mediated by vla-4 |
PL338373A1 (en) | 1997-07-31 | 2000-10-23 | Elan Pharm Inc | Dipeptide and its affinite compounds inhibiting adhesion of leucocytes occurring through mediation of vla-4 |
EP1001974B1 (en) | 1997-07-31 | 2006-05-24 | Elan Pharmaceuticals, Inc. | 4-amino-phenylalanine type compounds which inhibit leukocyte adhesion mediated by vla-4 |
PL338510A1 (en) | 1997-07-31 | 2000-11-06 | Elan Pharm Inc | Benzyl compounds inhinbiting the adhesion of leucocytes occurring through the mediation of vla-4 |
AR016133A1 (en) | 1997-07-31 | 2001-06-20 | Wyeth Corp | CARBAMILOXI COMPOUND INHIBITING THE ADHESION OF LEUKOCYTES THROUGH VLA-4, COMPOUNDS THAT ARE DRUGS OF THESE COMPOUNDS, PHARMACEUTICAL COMPOSITION, METHOD FOR SETTING VLA-4 TO A BIOLOGICAL SAMPLE, METHOD FOR THE TREATMENT OF A TREATMENT |
JP2001512137A (en) | 1997-07-31 | 2001-08-21 | エラン・ファーマシューティカルズ・インコーポレーテッド | Dipeptide compounds that inhibit leukocyte adhesion mediated by VLA-4 |
PL338457A1 (en) | 1997-07-31 | 2000-11-06 | Elan Pharm Inc | Sulphonylated dipeptidic compounds capable to inhibit adhesion of leucocytes through the mediation of vla-4 |
AU742928C (en) | 1997-08-22 | 2003-02-20 | F. Hoffmann-La Roche Ag | N-alkanoylphenylalanine derivatives |
HU229362B1 (en) | 1997-08-22 | 2013-11-28 | Hoffmann La Roche | N-alkanoylphenylalanine derivatives |
AU1361499A (en) | 1997-10-21 | 1999-05-10 | Merck & Co., Inc. | Azapeptide acids as cell adhesion inhibitors |
AU1463499A (en) | 1997-11-21 | 1999-06-15 | Merck & Co., Inc. | Substituted pyrrole derivatives as cell adhesion inhibitors |
CA2309341A1 (en) | 1997-11-24 | 1999-06-03 | Merck & Co., Inc. | Substituted .beta.-alanine derivatives as cell adhesion inhibitors |
IL136267A0 (en) | 1997-11-26 | 2001-05-20 | Du Pont Pharm Co | 1,3,4-THIADIZOLES AND 1,3,4-OXADIAZOLES AS αVβ3 ANTAGONISTS |
IL136495A0 (en) | 1997-12-17 | 2001-06-14 | Merck & Co Inc | Integrin receptor antagonists |
ES2243016T3 (en) | 1997-12-17 | 2005-11-16 | MERCK & CO., INC. | INTEGRINE RECEIVER ANTAGONISTS. |
WO1999030709A1 (en) | 1997-12-17 | 1999-06-24 | Merck & Co., Inc. | Integrin receptor antagonists |
EP0933367A1 (en) | 1997-12-19 | 1999-08-04 | Hoechst Marion Roussel Deutschland GmbH | Novel acylguanidine derivates as inhibitors of bone resorption and as vitronectin receptor antagonists |
US6197794B1 (en) | 1998-01-08 | 2001-03-06 | Celltech Therapeutics Limited | Phenylalanine derivatives |
MY153569A (en) | 1998-01-20 | 2015-02-27 | Mitsubishi Tanabe Pharma Corp | Inhibitors of ?4 mediated cell adhesion |
US6329372B1 (en) | 1998-01-27 | 2001-12-11 | Celltech Therapeutics Limited | Phenylalanine derivatives |
AU3260399A (en) | 1998-02-26 | 1999-09-15 | Celltech Therapeutics Limited | Phenylalanine derivatives as inhibitors of alpha4 integrins |
ZA994406B (en) | 1998-03-04 | 2000-02-11 | Searle & Co | Meta-azacyclic amino benzoic acid and derivatives thereof. |
US6521626B1 (en) | 1998-03-24 | 2003-02-18 | Celltech R&D Limited | Thiocarboxamide derivatives |
JP2002511462A (en) | 1998-04-10 | 2002-04-16 | ジー・ディー・サール・アンド・カンパニー | Heterocyclic glycyl β-alanine derivatives as vitronectin antagonists |
AU3561099A (en) | 1998-04-14 | 1999-11-01 | American Home Products Corporation | Acylresorcinol derivatives as selective vitronectin receptor inhibitors |
PL343770A1 (en) | 1998-04-16 | 2001-09-10 | Texas Biotechnology Corp | N,n-disubstituted amides that inhibit the binding of integrins to their receptors |
DE19821483A1 (en) | 1998-05-14 | 1999-11-18 | Hoechst Marion Roussel De Gmbh | New imidazolidine derivatives useful as leukocyte adhesion and migration inhibitors and/or VLA-4 receptor antagonists for treating E.G. inflammatory and allergic disorders |
GB9811159D0 (en) | 1998-05-22 | 1998-07-22 | Celltech Therapeutics Ltd | Chemical compounds |
AU8059598A (en) | 1998-06-11 | 1999-12-30 | Merck & Co., Inc. | Heterocyclic amide compounds as cell adhesion inhibitors |
TW591026B (en) | 1998-06-23 | 2004-06-11 | Upjohn Co | Inhibitors of alpha4beta1 mediated cell adhesion |
-
2000
- 2000-12-21 US US09/742,038 patent/US6455539B2/en not_active Expired - Fee Related
- 2000-12-22 DE DE60011940T patent/DE60011940T2/en not_active Expired - Fee Related
- 2000-12-22 EP EP00987574A patent/EP1244611B1/en not_active Expired - Lifetime
- 2000-12-22 AT AT00987574T patent/ATE270266T1/en not_active IP Right Cessation
- 2000-12-22 WO PCT/GB2000/004995 patent/WO2001047867A1/en active IP Right Grant
- 2000-12-22 AU AU23822/01A patent/AU2382201A/en not_active Abandoned
- 2000-12-22 ES ES00987574T patent/ES2223639T3/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110156844A (en) * | 2012-05-21 | 2019-08-23 | 安捷伦科技有限公司 | The method of composition and conjugation oligonucleotides |
Also Published As
Publication number | Publication date |
---|---|
AU2382201A (en) | 2001-07-09 |
EP1244611A1 (en) | 2002-10-02 |
DE60011940D1 (en) | 2004-08-05 |
ES2223639T3 (en) | 2005-03-01 |
US6455539B2 (en) | 2002-09-24 |
ATE270266T1 (en) | 2004-07-15 |
EP1244611B1 (en) | 2004-06-30 |
WO2001047867A1 (en) | 2001-07-05 |
DE60011940T2 (en) | 2005-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6362204B1 (en) | Phenylalanine derivatives | |
EP1084119B1 (en) | Aromatic amine derivatives as pharmaceutical agents | |
US6953798B1 (en) | β-alanine derivates | |
US20030119853A1 (en) | Thiocarboxamide derivatives | |
US6780874B2 (en) | Enamine derivatives | |
US6455539B2 (en) | Squaric acid derivates | |
US6469025B1 (en) | 3-substituted isoquinolin-1-yl derivatives | |
US6593338B2 (en) | 3-substituted 2,7-naphthyridin-1-yl derivatives | |
US6534513B1 (en) | Phenylalkanoic acid derivatives | |
EP1066316B1 (en) | Cinnamic acid derivatives having cell adhesion modulating activity | |
US7557130B2 (en) | Bicyclic heteroaromatic alanines | |
EP1117646A1 (en) | Phenylalkanoic acid derivatives as inhibitors of alpha4 integrins | |
US6545013B2 (en) | 2,7-naphthyridine derivatives | |
US6740654B2 (en) | Squaric acid derivatives | |
US6603041B2 (en) | Bicyclic enamide derivatives | |
US6403608B1 (en) | 3-Substituted isoquinolin-1-yl derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELLTECH CHIROSCIENCE LIMITED, ENGLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANGHAN, BARRY JOHN;ALEXANDER, RIKKI PETER;HEAD, JOHN CLIFFORD;AND OTHERS;REEL/FRAME:011649/0936;SIGNING DATES FROM 20010125 TO 20010204 |
|
AS | Assignment |
Owner name: CELLTECH CHIROSCIENCE LIMITED, ENGLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE FIRST INVENTOR'S NAME PREVIOUSLY RECORDED AT REEL 011649 FRAME 0936;ASSIGNORS:LANGHAM, BARRY JOHN;ALEXANDER, RIKKI PETER;HEAD, JOHN CLIFFORD;AND OTHERS;REEL/FRAME:012091/0095;SIGNING DATES FROM 20010125 TO 20010204 |
|
AS | Assignment |
Owner name: CELLTECH CHIROSCIENCE LIMITED, ENGLAND Free format text: CHANGE OF NAME;ASSIGNOR:CELLTECH THERAPEUTICS LIMITED;REEL/FRAME:013035/0824 Effective date: 20000516 Owner name: CELLTECH R&D LIMITED, ENGLAND Free format text: CHANGE OF NAME;ASSIGNOR:CELLTECH CHIROSCIENCE LIMITED;REEL/FRAME:013035/0702 Effective date: 20020402 |
|
CC | Certificate of correction | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060924 |