US20010018212A1 - Protein which induces interferon-gamma production by immunocompetent cell - Google Patents
Protein which induces interferon-gamma production by immunocompetent cell Download PDFInfo
- Publication number
- US20010018212A1 US20010018212A1 US09/752,510 US75251001A US2001018212A1 US 20010018212 A1 US20010018212 A1 US 20010018212A1 US 75251001 A US75251001 A US 75251001A US 2001018212 A1 US2001018212 A1 US 2001018212A1
- Authority
- US
- United States
- Prior art keywords
- cells
- protein
- interleukin
- ifn
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 172
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 172
- 230000014828 interferon-gamma production Effects 0.000 title claims description 5
- 210000004027 cell Anatomy 0.000 claims abstract description 169
- 201000010099 disease Diseases 0.000 claims abstract description 44
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 44
- 210000005260 human cell Anatomy 0.000 claims abstract description 31
- 210000004698 lymphocyte Anatomy 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 59
- 241000282414 Homo sapiens Species 0.000 claims description 29
- 201000011510 cancer Diseases 0.000 claims description 27
- 102000000588 Interleukin-2 Human genes 0.000 claims description 25
- 108010002350 Interleukin-2 Proteins 0.000 claims description 25
- 210000003810 lymphokine-activated killer cell Anatomy 0.000 claims description 17
- 230000003013 cytotoxicity Effects 0.000 claims description 15
- 231100000135 cytotoxicity Toxicity 0.000 claims description 15
- 210000000822 natural killer cell Anatomy 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- 206010028980 Neoplasm Diseases 0.000 claims description 10
- 230000000644 propagated effect Effects 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 230000003612 virological effect Effects 0.000 claims description 9
- 238000012258 culturing Methods 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 239000003381 stabilizer Substances 0.000 claims description 6
- 102000013462 Interleukin-12 Human genes 0.000 claims description 5
- 108010065805 Interleukin-12 Proteins 0.000 claims description 5
- 229940117681 interleukin-12 Drugs 0.000 claims description 5
- 102000000646 Interleukin-3 Human genes 0.000 claims description 4
- 108010002386 Interleukin-3 Proteins 0.000 claims description 4
- 229940076264 interleukin-3 Drugs 0.000 claims description 4
- 210000001124 body fluid Anatomy 0.000 claims description 3
- 239000010839 body fluid Substances 0.000 claims description 3
- 210000005087 mononuclear cell Anatomy 0.000 claims description 3
- 210000005259 peripheral blood Anatomy 0.000 claims description 3
- 239000011886 peripheral blood Substances 0.000 claims description 3
- 230000001902 propagating effect Effects 0.000 claims description 3
- 208000012657 Atopic disease Diseases 0.000 claims description 2
- 208000035473 Communicable disease Diseases 0.000 claims description 2
- 108010010803 Gelatin Proteins 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 239000008273 gelatin Substances 0.000 claims description 2
- 229920000159 gelatin Polymers 0.000 claims description 2
- 235000019322 gelatine Nutrition 0.000 claims description 2
- 235000011852 gelatine desserts Nutrition 0.000 claims description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 2
- 201000002364 leukopenia Diseases 0.000 claims description 2
- 231100001022 leukopenia Toxicity 0.000 claims description 2
- 206010043554 thrombocytopenia Diseases 0.000 claims description 2
- 102000009027 Albumins Human genes 0.000 claims 1
- 108010088751 Albumins Proteins 0.000 claims 1
- 239000004480 active ingredient Substances 0.000 claims 1
- 239000003937 drug carrier Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 210000004881 tumor cell Anatomy 0.000 claims 1
- 108010074328 Interferon-gamma Proteins 0.000 abstract description 76
- 102100037850 Interferon gamma Human genes 0.000 abstract description 75
- 238000004519 manufacturing process Methods 0.000 abstract description 42
- 210000001616 monocyte Anatomy 0.000 abstract description 4
- 210000003714 granulocyte Anatomy 0.000 abstract description 2
- 210000002540 macrophage Anatomy 0.000 abstract description 2
- 210000003003 monocyte-macrophage precursor cell Anatomy 0.000 abstract description 2
- 210000001167 myeloblast Anatomy 0.000 abstract description 2
- 210000003887 myelocyte Anatomy 0.000 abstract description 2
- 125000003275 alpha amino acid group Chemical group 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 153
- 238000002474 experimental method Methods 0.000 description 39
- 150000001413 amino acids Chemical group 0.000 description 35
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 24
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 241000699800 Cricetinae Species 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000012980 RPMI-1640 medium Substances 0.000 description 11
- 239000000872 buffer Substances 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 230000004071 biological effect Effects 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 241000282412 Homo Species 0.000 description 9
- 239000008363 phosphate buffer Substances 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- 102000007079 Peptide Fragments Human genes 0.000 description 8
- 108010033276 Peptide Fragments Proteins 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 239000000411 inducer Substances 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000002504 physiological saline solution Substances 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000003226 mitogen Substances 0.000 description 6
- 206010033675 panniculitis Diseases 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 210000004304 subcutaneous tissue Anatomy 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 208000035143 Bacterial infection Diseases 0.000 description 5
- 108010062580 Concanavalin A Proteins 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 238000011398 antitumor immunotherapy Methods 0.000 description 5
- 208000022362 bacterial infectious disease Diseases 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000011580 nude mouse model Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 4
- 206010025323 Lymphomas Diseases 0.000 description 4
- 241000475481 Nebula Species 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 102000055277 human IL2 Human genes 0.000 description 4
- 238000009169 immunotherapy Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 3
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 238000011098 chromatofocusing Methods 0.000 description 3
- 239000012228 culture supernatant Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000036046 immunoreaction Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000005229 liver cell Anatomy 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 206010000871 Acute monocytic leukaemia Diseases 0.000 description 2
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 2
- 208000009746 Adult T-Cell Leukemia-Lymphoma Diseases 0.000 description 2
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 2
- 206010059313 Anogenital warts Diseases 0.000 description 2
- 206010003645 Atopy Diseases 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 229920002271 DEAE-Sepharose Polymers 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 208000005016 Intestinal Neoplasms Diseases 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 241000232901 Nephroma Species 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000005377 adsorption chromatography Methods 0.000 description 2
- 201000006966 adult T-cell leukemia Diseases 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- -1 antiseptic Substances 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 108090001092 clostripain Proteins 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 238000001641 gel filtration chromatography Methods 0.000 description 2
- 239000007973 glycine-HCl buffer Substances 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000004957 immunoregulator effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 201000002313 intestinal cancer Diseases 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 208000025351 nephroma Diseases 0.000 description 2
- 238000012510 peptide mapping method Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000011218 seed culture Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000001913 submandibular gland Anatomy 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 206010000890 Acute myelomonocytic leukaemia Diseases 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 208000028185 Angioedema Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 206010007134 Candida infections Diseases 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N D-Maltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 208000002125 Hemangioendothelioma Diseases 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000033835 Myelomonocytic Acute Leukemia Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010033737 Pokeweed Mitogens Proteins 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 206010039085 Rhinitis allergic Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- WFWLQNSHRPWKFK-UHFFFAOYSA-N Tegafur Chemical compound O=C1NC(=O)C(F)=CN1C1OCCC1 WFWLQNSHRPWKFK-UHFFFAOYSA-N 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 208000033781 Thyroid carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010062129 Tongue neoplasm Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- USZYSDMBJDPRIF-SVEJIMAYSA-N aclacinomycin A Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1CCC(=O)[C@H](C)O1 USZYSDMBJDPRIF-SVEJIMAYSA-N 0.000 description 1
- 229960004176 aclarubicin Drugs 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 231100000215 acute (single dose) toxicity testing Toxicity 0.000 description 1
- 208000011912 acute myelomonocytic leukemia M4 Diseases 0.000 description 1
- 238000011047 acute toxicity test Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 201000010105 allergic rhinitis Diseases 0.000 description 1
- GUBGYTABKSRVRQ-ASMJPISFSA-N alpha-maltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-ASMJPISFSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000781 anti-lymphocytic effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 201000003984 candidiasis Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- ZYVSOIYQKUDENJ-WKSBCEQHSA-N chromomycin A3 Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1OC(C)=O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@@H](O)[C@H](O[C@@H]3O[C@@H](C)[C@H](OC(C)=O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@@H]1C[C@@H](O)[C@@H](OC)[C@@H](C)O1 ZYVSOIYQKUDENJ-WKSBCEQHSA-N 0.000 description 1
- 208000016532 chronic granulomatous disease Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 208000024711 extrinsic asthma Diseases 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 208000018685 gastrointestinal system disease Diseases 0.000 description 1
- ZBKIUFWVEIBQRT-UHFFFAOYSA-N gold(1+) Chemical compound [Au+] ZBKIUFWVEIBQRT-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 108010034897 lentil lectin Proteins 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000004898 n-terminal fragment Anatomy 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000006218 nasal suppository Substances 0.000 description 1
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108010001062 polysaccharide-K Proteins 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 208000013077 thyroid gland carcinoma Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 235000021241 α-lactalbumin Nutrition 0.000 description 1
- 229930010764 α-maltose Natural products 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a novel protein which induces the interferon- ⁇ (hereinafter abbreviated as “IFN- ⁇ ”) production by immunocompetent cells.
- IFN- ⁇ interferon- ⁇
- IFN- ⁇ is a protein which has antiviral-, antioncotic- and immunoregulatory-activities and is produced by immunocompetent cells that are stimulated with antigens or mitogens. Because of these biological activities, IFN- ⁇ has been expected for use as an antitumor agent since it was discovered, and studied energetically on clinical trials as a therapeutic agent for malignant tumors in general including brain tumors. IFN- ⁇ preparations commercially available now are roughly classified into two groups, i.e.
- IFN- ⁇ s natural IFN- ⁇ s are usually produced by culturing established immunocompetent cell lines in nutrient culture media admixed with IFN- ⁇ inducers to produce IFN- ⁇ s, and purifying the produced IFN- ⁇ s from the resulting cultures. It is known that IFN- ⁇ inducers greatly influences on the IFN- ⁇ yield, the facility of IFN- ⁇ purification, and the safety of final IFN- ⁇ preparations. Generally, mitogens such as concanavalin A (Con A), lentil lectin, pokeweed lectin, endotoxin and lipopolysaccharides can be used as IFN- ⁇ inducers.
- Con A concanavalin A
- lentil lectin lentil lectin
- pokeweed lectin pokeweed lectin
- endotoxin endotoxin and lipopolysaccharides
- the present invention was made based on a novel protein which induces the interferon- ⁇ production by immunocompetent cells.
- cytokines produced by mammalian cells
- the present inventors noticed that the existence of a substance which induces IFN- ⁇ production in mouse liver cells which had been treated with a lipopolysaccharide and inactivated whole cells of Corynebacterium. They isolated the substance by many purification methods using column chromatography as a main technique and studied the properties and features, and have found that the reality is a protein having the following physicochemical properties:
- the present inventors further studied on human liver cells to obtain a DNA which encodes another novel substance that induces the IFN- ⁇ production by immunocompetent cells. They revealed that the reality is a polypeptide, then decoded the DNA and found that it has the amino acid sequence of SEQ ID NO:6 (where the symbol “Xaa” is “isoleucine” or “threonine”). They introduced the DNA into Escherichia coli to express the polypeptide and to produce it in the resulting culture in a satisfactorily high yield.
- SEQ ID NO:6 where the symbol “Xaa” is “isoleucine” or “threonine”.
- the object of the present invention is to provide a protein of human cell origin, which induces the IFN- ⁇ production by immunocompetent cells.
- the another object of the present invention is to provide a process for producing the protein.
- the further object of the present invention is to provide the use of the protein as an agent for susceptive diseases.
- the first object of the present invention is attained by a protein of human cell origin which induces the IFN- ⁇ production by immunocompetent cells and has the amino acid sequence of SEQ ID NO:1.
- the second object of the present invention is attained by a process for producing the protein by propagating human cells which produce the protein, and collecting the protein from the propagated cells.
- the third object of the present invention is attained by an agent for susceptive diseases, which contains the protein as an effective ingredient.
- FIG. 1 is a peptide map of the present protein.
- the protein according to the present invention induces the IFN- ⁇ production by immunocompetent cells when allowed to act on the cells alone or together with an appropriate cofactor.
- the protein is derived from human cells, and it can be readily prepared by the present process using human cells.
- the agent for susceptive diseases according to the present invention induces the IFN- ⁇ production by immunocompetent cells in the human body when administered to humans, and exerts positive effects in the treatment and prevention of IFN- ⁇ susceptive diseases.
- the protein augments the cytotoxicity of killer cells or induces the formation of killer cells, it exerts positive effects on inveterate diseases including malignant tumors.
- protein as referred to in the present invention means polypeptides and glycoproteins in general which induce the IFN- ⁇ production by immunocompetent cells and have the amino acid sequence of SEQ ID NO:1.
- the protein has the amino acid sequences of SEQ ID NOS:1 and 3 near at the N- and C-termini, respectively, and occasionally has the amino acid sequence of SEQ ID NO:6, as a complete amino acid sequence, including the amino acid sequences of SEQ ID NOS:4 and 5 as an internal fragment (where the symbol “Xaa” means “isoleucine” or “threonine”).
- the protein is detected as a protein band at a position corresponding to a molecular weight of 14,000-24,000 daltons, usually, 1,000-19,500 daltons when determined on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of a reducing agent.
- SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
- one or more amino acids may be added to the above N- and/or C-termini of SEQ ID NOS:1 and 3 or one or more amino acids in the N- and/or C-termini may be defected.
- Any protein can be used in the present invention as long as it is derived from a human cell, as well as having either of these amino acid sequences and inducing the IFN- ⁇ production when acting on immunocompetent cells alone or together with an appropriate cofactor.
- human cells used in the present invention include cell lines derived from human hematopoietic cells such as lymphoblasts, lymphocytes, monoblasts, monocytes, myeloblasts, myelocytes, granulocytes and macrophages.
- lymphomas and leukemias such as myelocytic leukemia, promyelocytic leukemia, adult T-cell leukemia, and hairy cell leukemia, specifically, HBL-38 cell, HL-60 cell (ATCC CCL240), K-562 (ATCC CCL243), KG-1 cell (ATCC CCL246), Mo cell (ATCC CRL8066), THP-1 cell (ATCC TIB202), and U-937 cell (ATCC CRL1593) as reported by Jun MINOWADA in “ Cancer Review ”, Vol.10, pp.1-18 (1988), and A-253 cell (ATCC HTB41), an epidermoid carcinoma, submaxillary gland, human.
- leukemias such as myelocytic leukemia, promyelocytic leukemia, adult T-cell leukemia, and hairy cell leukemia, specifically, HBL-38 cell, HL-60 cell (ATCC CCL240), K-562 (ATCC CCL243), KG-1 cell (ATCC CCL24
- Mutants of these cell lines can be also used in the present invention. Because these cell lines readily proliferate and more produce the present protein, they can be advantageously used in the present invention. Especially, epidermoid carcinoma cell lines such as A-253 cell, and human myelomonocytic cell lines such as HBL-38 cell, HL-60 cell, KG-1 cell, THP-1 cell, and U-937 cell have an extremely high productivity of the present protein and are most satisfactorily used in the present invention.
- the above human cells are first allowed to propagate, then the present protein is collected from the propagated cells.
- the method used to propagate these human cells in the present invention is not specifically restricted, and any conventional in vivo or in vitro propagation method can be used.
- the in vivo propagation method means a method to propagate cells using nutrient culture media, which comprises suspending human cells in RPMI 1640 medium, MEM medium and DEM medium, which are used conventionally to propagate animal cells in this field, supplemented with 0.3-30 w/v % of fetal bovine serum to give a cell density of about 1 ⁇ 10 4 -1 ⁇ 10 7 cells/ml, preferably, about 1 ⁇ 10 5 -1 ⁇ 10 6 cells/ml, and culturing these cells at a temperature of 36-38° C., preferably, a temperature of about 37° C. and at a pH of 7-8, preferably, a pH of 7.2-7.4, for about 1-7 days while replacing these media with fresh ones.
- nutrient culture media which comprises suspending human cells in RPMI 1640 medium, MEM medium and DEM medium, which are used conventionally to propagate animal cells in this field, supplemented with 0.3-30 w/v % of fetal bovine serum to give a cell density of
- the propagated cells were separated from the cultures to obtain the objective protein.
- some cells extracellularly excrete the present protein while culturing.
- inducers such as mitogens and/or IFN- ⁇ s which induce the production of the present protein by the human cells, most of or all of the protein may be produced extracellularly.
- the protein can be collected from the culture supernatants.
- the in vivo propagation method for human cells using warm-blooded animals excluding human comprises injecting to suppress the immunoreaction of the animals antilymphocyte antibodies derived from rabbits into rodents such as new born mice, nude mice, rats, nude rats, guinea pigs, and hamsters, injecting subcutaneously or intraperitoneally about 1 ⁇ 10 5 -1 ⁇ 10 8 cells/animal of the human cells into the animals or placing the human cells in diffusion chambers embedded in or out of the animals' 0 body while allowing the animals' body fluid to circulate in the chambers, and feeding the animals by conventional methods for about 2-10 weeks. During the feeding, the human cells propagate while receiving the animals' body fluid.
- rodents such as new born mice, nude mice, rats, nude rats, guinea pigs, and hamsters
- the propagated human cells are collected in the form of a tumor mass, ascites or cell suspension. If necessary, the objective protein is collected after suspending and washing these human cells in and with an appropriate solvent.
- the in vivo propagation method has a merit that as compared with the in vitro propagation method it yields the present protein at a less labor cost and time and in a satisfactorily high yield.
- the in vivo propagation method is disclosed, for example, in Japanese Patent Publication No. 54,158/81.
- the present protein from the propagated cells these cells are disrupted by ultrasonic before or after separating the objective protein from the cultures, homogenizing, freezing and thawing, or by soaking these cells in considerably-low osmotic solvents, then the protein is collected from the resulting cell debris or from a mixture of cell debris and culture supernatant.
- the cell debris or the mixture can be subjected directly or after incubation at about 37° C.
- the protein according to the present invention has a property of inducing the IFN- ⁇ production by immunocompetent cells.
- IFN- ⁇ susceptive diseases including viral diseases such as AIDS and condyloma acuminatum; malignant tumors such as malignant nephroma, granuloma, mycosis fungoides, and brain tumor; and immunopathies such as articular rheumatism and allergosis.
- the present protein is usually added to nutrient culture media for IFN- ⁇ production by culturing immunocompetent cells or administering to humans to treat and/or prevent IFN- ⁇ susceptive diseases.
- leukocytes separated from mammalian peripheral blood and established cell lines of immunocompetent cells such as HBL-38 cell, Mo cell (ATCC CRL8066), Jurkat cell (ATCC CRL8163), HuT78 cell (ATCC TIB161), EL4 cell (ATCC TIB39), L12-R4 cell, and mutants thereof are suspended in culture media containing about 0.1-1,000 ng/ml of the present protein, preferably, about 1-100 ng/ml of the protein.
- these cells are cultured in nutrient culture media supplemented with T-cell stimulants such as mitogen, interleukin 2, and anti-CD3 antibody for about 1-100 hours in conventional manner while replacing the culture media with fresh ones.
- T-cell stimulants such as mitogen, interleukin 2, and anti-CD3 antibody
- the present protein can be collected by one or more conventional methods used to purify IFN- ⁇ such as salting out, dialysis, filtration, concentration, separatory sedimentation, gel filtration chromatography, ion-exchange chromatography, hydrophobic chromatography, adsorption chromatography, affinity chromatography, chromatofocusing, gel electrophoresis and isoelectrophoresis.
- the present protein induces the IFN- ⁇ production by human immunocompetent cells
- agents for susceptive diseases containing the protein as an effective ingredient stimulate the human immunocompetent cells to produce IFN- ⁇ by administering to humans, and exert positive effects on the treatment and/or the prevention of IFN- ⁇ susceptive diseases.
- Killer cells participate in the treatment and/or the prevention of susceptive diseases when the present protein induces the IFN- ⁇ production by immunocompetent cells, accelerates the cytotoxicity of killer cells such as cytotoxic T-cells and lymphokine activating killer cells including NK- and LAK-cells, and induces the formation of killer cells similarly as the proteins in the later described Experiments and Examples.
- IFN- ⁇ susceptive diseases means diseases in general including IFN- ⁇ susceptive diseases, which can be treated and/or prevented by IFN- ⁇ s and/or killer cells:
- viral diseases such as hepatitis, herpes, condyloma acuminatum, and AIDS
- infectious diseases such as candidiasis, malaria, cryptococcosis, and Yersinia
- malignant solid tumors such as malignant tumor, mycosis fungoides, and chronic granulomatous disease
- hematopoietic malignant tumors such as adult T-cell leukemia, chronic myelocytic leukemia, and malignant tumor
- immunopathies such as allergosis and rheumatism.
- the present protein positively effects on the complete cure or the remission of leukopenia and thrombocytopenia induced by radio- and chemotherapies to treat leukemia, myeloma, and malignant tumors.
- the present agent for susceptive diseases is widely used in the treatment and/or the prevention of the above susceptive diseases as an antitumor agent, antiviral agent, antiseptic, immunotherapeutic agent, platelet-increasing agent, or leukocyte-increasing agent.
- the present agent is generally processed into a liquid, paste or solid form which contains 0.000001-100 w/w %, preferably, 0.0001-0.1 w/w % of the protein, on a dry solid basis (d.s.b.).
- the present agent can be used intact or processed into compositions by mixing with physiologically-acceptable carriers, adjuvants, excipients, diluents and/or stabilizers, and, if necessary, further mixing with one or more other biologically-active substances such as interferon- ⁇ , interferon- ⁇ , interleukin 2, interleukin 3, interleukin 12, TNF- ⁇ , TNF- ⁇ , carboquone, cyclophosphamide, aclarubicin, thiotepa, busulfan, ancitabine, cytarabine, 5-fluorouracil, 5-fluoro-1-(tetrahydro-2-furyl)uracil, methotrexate, actinomycin D, chromomycin A 3 , daunorubicin, doxorubicin, bleomycin, mitomycin C, vincristine, vinblastine, L-asparaginase, radio gold colloidal, Krestin® picibanil
- a combination of the present protein and interleukin 2 is especially useful because interleukin 2 acts as a cofactor for the protein when the protein induces the IFN- ⁇ production by immunocompetent cells.
- Another combination of the protein and a natural or recombinant human interleukin 2 induces a relatively high level of IFN- ⁇ production with only a small amount of the protein which does not substantially induce the IFN- ⁇ production by immunocompetent cells.
- a combination of the protein and interleukin 12 induces a greater level of IFN- ⁇ production which could not be readily attained by them each.
- the protein increases the activity of interleukin 12 to inhibit the production of immunoglobulin E antibody in the human body
- the protein is advantageously used as an agent for immunopathies such as atopic diseases including atopic asthma, atopic bronchial asthma, hay fever, allergic rhinitis, atopic dermatitis, angioedema, and atopic digestive system's disorder.
- atopic diseases including atopic asthma, atopic bronchial asthma, hay fever, allergic rhinitis, atopic dermatitis, angioedema, and atopic digestive system's disorder.
- atopic diseases including atopic asthma, atopic bronchial asthma, hay fever, allergic rhinitis, atopic dermatitis, angioedema, and atopic digestive system's disorder.
- atopic diseases including atopic asthma, atopic bronchial asthma, hay fever, allergic rhinitis, atopic dermatitis, angioedema
- the form of the present agent for susceptive diseases includes those in a unit dose form which means a physically formulated medicament suitable for administration and contains the protein in an amount from 1/40 to several folds, i.e. up to 4 folds of a dosage. Examples of these are injections, liquids, powders, granules, tablets, capsules, sublinguals, ophthalmic solutions, nasal drops, and suppositories.
- the present agent can be orally or parenterally administered to patients, and as described below it can be used to activate antitumor cells in vitro. In both administrations, the agent exerts a satisfactory effect in the treatment and/or the prevention of susceptive diseases. Varied depending on the types of susceptive diseases and the symptoms of patients before and after the administration, the agent is orally administered to them or parenterally administered to their intradermal- and subcutaneous-tissues, muscles, and veins at a dose of about 0.1 ⁇ g to 50 mg per shot, preferably, about one ⁇ g to one mg per shot, 1-4 times/day or 1-5 times/week, for one day to one year.
- the present agent can be also used in so called “antitumor immunotherapy” using interleukin 2.
- the antitumor immunotherapy is roughly classified into (i) a method for directly administering interleukin 2 to patients with malignant tumors, and (ii) a method for introducing antitumor cells which are previously activated in vitro by interleukin 2, i.e. an adoptive immunotherapy.
- the present protein significantly enhances the above immunotherapeutic effect by interleukin 2 when used in combination.
- the protein is administered to patients in an amount of about 0.1 ⁇ g/shot/adult to one mg/shot/adult at 1-10 times before the administration of interleukin 2 or at the same time.
- the dose of interleukin 2 is generally about 10,000-1,000,000 units/shot/adult, though it varies depending on the types of malignant tumors, patients' symptoms, and the dose of the present protein.
- mononuclear cells and lymphocytes collected from patients with malignant tumors, are cultured in the presence of interleukin 2 and about 0.1 ng to one ⁇ g of the protein per 1 ⁇ 10 6 cells of the blood cells. After culturing for a prescribed period of time, NK cells or LAK cells are collected from the culture and introduced into the same patients.
- hematopoietic malignant tumors such as leukemia and malignant lymphoma
- solid malignant tumors such as colonic cancer, rectal cancer, large intestinal cancer, gastric cancer, thyroid carcinoma, cancer of the tongue, bladder carcinoma, choriocarcinoma, hepatoma, prostatic cancer, carcinoma uteri, laryngeal, lung cancer, breast cancer, malignant melanoma, Kaposi's sarcoma, cerebral tumor, neuroblastoma, tumor of the ovary, testicular tumor, osteosarcoma, cancer of the pancreas, renal cancer, hypernephroma, and hemangioendothelioma.
- New born hamsters were suppressed their immunoreaction in conventional manner by injecting a rabbit antiserum to hamster antithymus into the hamsters, transplanted to their dorsal subcutaneous tissues with about 5 ⁇ 10 5 cells/hamster of THP-1 cells (ATCC TIB202), a myelomonocytic cell line of a human acute monocytic leukemia, and fed for 3 weeks in conventional manner.
- Tumor masses formed in their subcutaneous tissues about 15 g weight per hamster, were extracted, dispersed in conventional manner in physiological saline, and washed with phosphate buffered saline (hereinafter abbreviated as “PBS”).
- PBS phosphate buffered saline
- the propagated cells thus obtained were washed with 10-fold volumes of cold 20 mM Hepes buffer (pH 7.4) containing 10 mM potassium chloride, 1.5 mM magnesium chloride, and 0.1 mM disodium ethylenediaminetetraacetate, allowed to stand in 3-fold volumes of a fresh preparation of the same buffer under ice-chilled conditions, freezed at ⁇ 80° C., and thawed to disrupt the cells.
- the disrupted cells were centrifuged to obtain a supernatant which was then fed to a column packed with “DEAE-SEPHAROSE”, a gel for ion-exchange column chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been previously equilibrated with 10 mM phosphate buffer (pH 6.6), followed by washing the column with 10 mM phosphate buffer (pH 6.6), feeding to the column with a gradient buffer of sodium chloride which increases stepwisely from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.6), and collecting a fraction eluted at about 0.2 M sodium chloride.
- DEAE-SEPHAROSE a gel for ion-exchange column chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been previously equilibrated with 10 mM phosphate buffer (pH 6.6), followed by washing the column with 10 mM phosphate
- the fraction was dialyzed against 10 mM phosphate buffer (pH 6.8) and fed to a column packed with “DEAE 5PW”, a gel for ion-exchange chromatography commercialized by Tosoh Corporation, Tokyo, Japan, followed by feeding to the column a gradient buffer of sodium chloride which increases stepwisely from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.8), and collecting fractions eluted at about 0.2-0.3 M sodium chloride.
- the resulting fractions were pooled, then dialyzed against PBS, fed to a plastic cylindrical column packed with a gel for immunoaffinity chromatography using a monoclonal antibody which had been prepared according to the method as disclosed in Japanese Patent Application No. 58,240/95 applied by the present applicant, and washed with PBS.
- the column was fed with 100 mM glycine-HCl buffer (pH 2.5) to collect from the eluate fractions containing a protein which induces the IFN- ⁇ production by immunocompetent cells.
- These fractions were pooled, dialyzed against sterile distilled water, concentrated with a membrane filter, and lyophilized to obtain a purified solid protein in a yield of about 50 ng per hamster.
- a purified protein obtained by the method in Experiment 1 was dissolved in an adequate amount of sterile distilled water, and the solution was fed to a column packed with “ASAHIPAK® C4P-50 4E”, a gel for high-performance liquid chromatography (HPLC) commercialized by Showa Denko, K.K., Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % aqueous trifluoroacetic acid solution, followed by washing the column with 0.1 v/v % aqueous trifluoroacetic acid solution and feeding to the column a linear gradient solution of acetonitrile increasing from 0 v/v % to 90 v/v % in a mixture solution of trifluoroacetic acid and acetonitrile at a flow rate of 60 ml/hour.
- ASAHIPAK® C4P-50 4E a gel for high-performance liquid chromatography
- Fractions containing a protein which induces the IFN- ⁇ production by immunocompetent cells were collected from the eluted fractions, pooled, neutralized with 1 M aqueous tris solution (pH 11.2), and concentrated in conventional manner.
- aqueous tris solution pH 11.2
- the reaction mixture was fed to a column packed with “ODS-120T”, a gel for HPLC commercialized by Tosoh Corporation, Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % aqueous trifluoroacetic acid solution, followed by washing the column with 0.1 v/v % aqueous trifluoroacetic acid solution and feeding to the column a linear gradient solution of acetonitrile increasing from 0 v/v % to 70 v/v % in a mixture solution of trifluoroacetic acid, acetonitrile and water where the concentration of trifluoroacetic acid was 0.09 v/v % at a flow rate of 30 ml/hour while monitoring the absorption level of the peptide, i.e. the concentration of the peptide, at a wave length of 214 nm.
- FIG. 1 is the resulting peptide map.
- peptide fragments eluted at about 59, 62 and 68 min after initiating the elution are respectively named peptide fragments 1 , 2 and 3 .
- These peptide fragments were separatory collected and analyzed for amino acid sequence on “MODEL 473A”, a protein sequencer commercialized by Perkin-Elmer Corp., Instrument Div., Norwalk, USA, in conventional manner. As a result, it was revealed that the peptide fragments 1 and 2 have the amino acid sequences of SEQ ID NOS:3 and 7, respectively, while the peptide fragment 3 has those of SEQ ID NOS:4 and 5.
- the purified protein obtained by the method in Experiment 1 contains the amino acid sequence of SEQ ID NO:6 when totally evaluating these results, the fact as revealed in Experiment 2 that the purified protein has a main protein band at a position corresponding to a molecular weight of about 18,000-19,500 daltons on SDS-PAGE, and the fact that the purified protein is calculated to have a molecular weight of 18,199 daltons from the amino acid sequence of SEQ ID NO:6.
- Blood was sampled from a healthy volunteer by a heparinized syringe and diluted by 2-fold with serum free RPMI 1640 medium (pH 7.4).
- the diluted blood was overlaid on a ficoll commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, followed by centrifugation to collect lymphocytes.
- These lymphocytes were washed with RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal bovine serum and suspended in a fresh preparation of the same medium to give a cell density of 5 ⁇ 10 6 cells/ml.
- the cell suspension was distributed to a 96-well microplate in a volume of 0.15 ml/well.
- a purified protein obtained by the method in Experiment 1 was diluted with RPMI 1640 (pH 7.4) supplemented with 10 v/v % fetal bovine serum, and the dilution was distributed to the microplate in a volume of 0.05 ml/well.
- To the microplate was added a fresh preparation of the same buffer either with or without 2.5 ⁇ g/ml Con A or 50 units/ml of a recombinant human interleukin 2 in a volume of 0.05 ml/well, and the microplate was incubated at 37° C. for 24 hours in a 5 v/v % CO 2 incubator.
- IFN- ⁇ yield (IU/ml) Protein concentration Protein Protein (ng/ml) Protein plus Con A plus interleukin 2 0 ⁇ 0.5 ⁇ 2 ⁇ 0.5 0.32 ⁇ 0.5 6 ⁇ 2 2 ⁇ 1 1.6 10 ⁇ 2 70 ⁇ 20 60 ⁇ 20 8 140 ⁇ 10 490 ⁇ 80 570 ⁇ 30 40 180 ⁇ 20 620 ⁇ 10 880 ⁇ 50 200 260 ⁇ 20 800 ⁇ 20 1500 ⁇ 400
- Blood was sampled from a healthy volunteer by a heparinized syringe and diluted with PBS by 2-fold. The dilution was overlaid on a ficoll, and the resultant was centrifuged to obtain a high density layer of lymphocytes.
- the lymphocytes were suspended in RPMI 1640 medium (pH 7.2) containing 10 ⁇ g/ml kanamycin, 5 ⁇ 10 ⁇ 5 M 2-mercaptoethanol and 10 v/v fetal bovine serum, and the suspension was distributed to a 12-well microplate in a volume of 0.5 ml/well.
- a purified protein obtained by the method in Experiment 1 was appropriately diluted with a fresh preparation of the same buffer, and the dilution was distributed to the microplate in a volume of 1.5 ml/well, followed by adding to the microplate 0.5 ml/well of a fresh preparation of the same buffer either with or without 50 units/ml of a recombinant human interleukin 2, incubating the microplate at 37° C. for 24 hours in a 5 v/v % CO 2 incubator, and washing the resultant cells with PBS to obtain cultured lymphocytes containing NK cells as an effector cell.
- the microplate was incubated at 37° C. for 4 hours in a 5 v/v % CO 2 or, followed by counting the radio activity of each supernatant to count the dead target cells. In each system, the percentage (%) of the dead target cells with respect to the target cells used in this experiment was calculated for evaluating cytotoxicity.
- a purified protein obtained by the method in Experiment 1 was injected percutaneously, orally or intraperitoneally into 8-week-old mice in conventional manner.
- the LD 50 of the protein was about one mg/kg mouse or higher independent of these administration routes. This evidences that the present protein is safe to incorporate into medicaments which are administrable to humans.
- IFN- ⁇ deeply relates to the inhibition of bacterial infection and the propagation of malignant tumors, the regulation of human biophylaxis through the immunoregulatory function, and to the inhibition of immunoglobulin E antibody's production.
- IFN- ⁇ is now commercially available and used as an agent for human susceptive diseases, and the diseases to be treated, dose, administration, and safety are almost revealed. It is described in “ Cytokines in Cancer Therapy ”, edited by Frances R.
- IFN- ⁇ and killer cells closely relate to the treatment and the prevention of human diseases for complete cure and remission.
- the fact that the present protein induces the IFN- ⁇ production by immunocompetent cells, enhances the NK cells' cytotoxicity, and induces the LAK cells' formation indicates that the present agent containing the protein can be administered to humans over a relatively long period of time and exerts a satisfactory therapeutic effect on the treatment and the prevention of IFN- ⁇ and/or killer cell related diseases without substantially inducing serious side effects.
- Examples A-1 to A-8 are the preferred embodiments of the preparation of the present protein
- Examples B-1 to B-6 are the preferred embodiments of the present agent for susceptive diseases:
- New born hamsters were suppressed their immunoreaction in conventional manner by injecting a rabbit antiserum to hamster antithymus into the hamsters, transplanted to their dorsal subcutaneous tissues with about 5 ⁇ 10 5 cells/hamster of THP-1 cells (ATCC TIB202), a myelomonocytic cell line of a human acute leukemia, and fed for 3 weeks in conventional manner.
- Tumor masses, about 15 g weight each, subcutaneously formed in each hamster were extracted, suspended in physiological saline in conventional manner, and washed with PBS.
- the disrupted cells were centrifuged, and the supernatant was fed to a column packed with “DEAE-SEPHAROSE”, a gel for ion-exchange chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, followed by washing the column with 10 mM phosphate buffer (pH 6.6), fed with a gradient buffer of sodium chloride increasing stepwisely from 0 M to 0.5 M, and collecting fractions eluted at about 0.2 M sodium chloride.
- DEAE-SEPHAROSE a gel for ion-exchange chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden
- fractions were pooled, dialyzed against 10 mM phosphate buffer (pH 6.8), fed to a column packed with “DEAE 5PW”, a gel for ion-exchange chromatography commercialized by Tosoh Corporation, Tokyo, Japan, which had been previously equilibrated with 10 mM phosphate buffer (pH 6.8), fed with a linear gradient buffer of sodium chloride increasing from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.8), and collected fractions eluted at about 0.2-0.3 M sodium chloride.
- the resulting fractions were pooled and dialyzed against PBS.
- the dialyzed inner solution was fed to a cylindrical plastic column prepared by first packing a gel for immunoaffinity chromatography of a monoclonal antibody, which had been prepared according to the method disclosed in Japanese Patent Application No. 58,240/95 applied by the present applicant, then washing with PBS.
- One hundred mM glycine-HCl buffer (pH 2.5) was fed to the column to effect fractionation, followed by collecting fractions containing a protein which induces the IFN- ⁇ production by immunocompetent cells from the eluate, dialyzing the fractions against sterile distilled water, concentrating the dialyzed inner solution with a membrane filter, and lyophilizing the concentrate to obtain a solid purified protein.
- the yield was about 50 ng per hamster.
- New born nude mice were injected into their dorsal subcutaneous tissues with about 1 ⁇ 10 6 cells/nude mouse of KG-1 cells (ATCC CCL246), a myelomonocytic cell line derived from human acute myelomonocytic leukemia, and fed for 4 weeks in conventional manner. Tumor masses, about 20 g weight each, formed subcutaneously in each nude mouse were extracted and dispersed in physiological saline in conventional manner. The cells were washed and disrupted similarly as in Example A-1, and the resulting mixture was purified to obtain a purified protein which induces the IFN- ⁇ production by immunocompetent cells in a yield of about 20 ng per nude mouse.
- KG-1 cells ATCC CCL246
- Tumor masses about 20 g weight each, formed subcutaneously in each nude mouse were extracted and dispersed in physiological saline in conventional manner.
- the cells were washed and disrupted similarly as in Example A-1, and the resulting mixture was pur
- HL-60 cells ATCC CCL240
- RPMI 1640 pH 7.4
- a membrane filter with a diameter of 0.5 ⁇ m
- the rat was fed for 4 weeks in conventional manner, then the chamber was removed.
- the propagated cells in the chamber were collected, washed with physiological saline, and disrupted similarly as in Example A-1, followed by purifying the resulting mixture to obtain a purified protein which induces the IFN- ⁇ production by immunocompetent cells.
- the yield was about 20 ng per rat.
- THP-1 cells ATCC TIB202
- a myelomonocytic cell line derived from human acute monocytic leukemia were suspended in RPMI 1640 medium (pH 7.2) supplemented with 10 v/v % fetal bovine serum to give a cell density of about 3 ⁇ 10 5 cells/ml, and cultured at 37° C. for 3 weeks in a 10 v/v % CO 2 incubator while replacing the medium with a fresh one.
- the propagated cells were separated from the resulting culture, washed with physiological saline, and disrupted similarly as in Example A-1, followed by purifying the resulting mixture to obtain a purified protein which induces the IFN- ⁇ production in a yield of about 10 ng per litter of the culture.
- New born hamsters were immunosuppressed by injecting a rabbit antithymus serum in conventional manner, injected to the dosal subcutaneous tissues with about 5 ⁇ 10 5 cells/head of A-253 cells (ATCC HTB41), an epidermoid carcinoma, submaxillary gland, human, and fed for 3 weeks in usual manner. Thereafter, the tumor masses formed subcutaneously, about 10 g weight in each hamster, were extracted, dispersed in physiological saline, and washed with PBS.
- the propagated cells thus obtained were washed with 20 mM Hepes buffer (pH 7.4) containing 10 mM potassium chloride, 1.5 mM magnesium chloride, and 0.1 mM disodium ethylenediaminetetraacetate, suspended in a fresh preparation of the same buffer to give a cell density of about 2 ⁇ 10 7 cells/ml, disrupted by a homogenizer, and centrifuged to remove cell debris to obtain a supernatant, followed by concentrating the supernatant by a membrane for ultrafiltration to obtain a cell extract containing a protein which induces the interferon- ⁇ production by immunocompetent cells.
- the extract was purified similarly as the method in Example A-1, concentrated, and lyophilized to obtain a solid purified protein in a yield of about 3 ⁇ g of per hamster.
- the purified protein was sampled and analyzed in accordance with the methods in Examples 2-4 revealing that it has the amino acid sequence of SEQ ID NO:1 nearness to the N-terminus and has a similar molecular weight and biological activities to those of the protein in Experiment 1.
- a seed culture of A-253 cell was inoculated into RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum and cultured in conventional manner at 37° C. until forming a monolayer of cells. Thereafter, the cells were detached from the surface of the culture vessel used by using “TRYPSIN-EDTA”, a trypsin commercialized by Gibuco BRL, NY, USA, and washed with PBS.
- TRYPSIN-EDTA a trypsin commercialized by Gibuco BRL, NY, USA
- the cells were disrupted, and the disrupted cells were purified and centrifuged to obtain a supernatant which was then incubated at 37° C. for 6 hours, purified, concentrated, and lyophilized to obtain a solid purified protein which induces the IFN- ⁇ production by immunocompetent cells in a yield of about one ⁇ g per 10 7 cells.
- a seed culture of A-253 cell was inoculated into RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum and cultured in conventional manner at 37° C. until forming a monolayer of cells. Thereafter, the culture medium was replaced with a serum-free RPMI 1640 medium (pH 7.4) supplemented with 10 IU/ml of a natural IFN- ⁇ derived from KG-1 cell as an IFN- ⁇ inducer, and incubated at 37° C. for 48 hours.
- the culture was centrifuged to obtain a supernatant which was then purified by the method in Example A-1, concentrated, and lyophilized to obtain a solid purified protein which induces the IFN- ⁇ production by immunocompetent cells in a yield of about 5 ng per 10 7 cells.
- a purified protein obtained by the method in Example A-1 was dissolved in an adequate amount of sterile distilled water, and the solution was fed to a column packed with “ASAHIPAK® C4P-50 4E”, a gel for high-performance liquid chromatography commercialized by Showa Denko K.K., Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % aqueous trifluoroacetic acid, followed by washing the column with 0.1 v/v % aqueous trifluoroacetic acid and feeding to the column a linear gradient solution of acetonitrile increasing from 0 v/v % to 90 v/v % in a mixture solution of trifluoroacetic acid and acetonitrile at a flow rate of 60 ml/hour.
- ASAHIPAK® C4P-50 4E a gel for high-performance liquid chromatography commercialized by Showa Denko K.K., Tokyo, Japan, which had been previously equilibrated with 0.1
- Fractions containing a protein which induces the IFN- ⁇ production by immunocompetent cells were collected from the eluted fractions, pooled, neutralized with 1 M aqueous tris solution (pH 11.2), and concentrated in conventional manner, followed by removing acetonitrile from the resulting concentrate to obtain a concentrated protein with a purity of at least 95% in a yield of about 10% by weight with respect to the material protein, d.s.b.
- the concentrated protein was sampled and analyzed for molecular weight, resulting in a single protein band, which induces an IFN- ⁇ production, at a position corresponding to a molecular weight of 18,400 ⁇ 1,000 daltons.
- Another fresh sample was analyzed for amino acid sequence in accordance with the method in Experiments 3 and 4, revealing that it has the amino acid sequence of SEQ ID NO:3 and the one of SEQ ID NO:1 near at the N-terminus, more particularly, the one of SEQ ID NO:7, and further it has the amino acid sequence of SEQ ID NOS:4 and 5 as an internal fragment and exhibited a similar biological activity to the protein of Experiment 1 even when concentrated into a relatively high level.
- a purified protein obtained by the method in Example A-1 was dissolved in physiological saline containing one w/v % human serum albumin as a stabilizer, followed by sterilely filtering the solution to obtain a liquid.
- the product with a satisfactory stability can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, bacterial infections, and immunopathies.
- a purified protein obtained by the method in Example A-2 was dissolved in physiological saline containing one w/v % of a purified gelatin as a stabilizer, and the solution was sterilely filtered in conventional manner. The sterile solution was distributed to vials by one ml and lyophilized, then the vials were cap sealed.
- the product with a satisfactory stability can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, bacterial infections, and immunopathies.
- a solid pharmaceutical was prepared similarly as in Example B-2 except for using a purified protein obtained by the method in Example A-5 and “TREHAOSE”, a crystalline trehalose powder commercialized by Hayashibara Co., Ltd., Okayama, Japan, as a stabilizer.
- the product with a satisfactorily stability can be advantageously used as a dry injection for treating and/or preventing malignant tumors, viral diseases, bacterial infections, and immunophathies.
- HI-BIS-WAKO 104 a carboxyvinylpolymer commercialized by Wako Pure Chemicals, Tokyo, Japan
- TREHAOSE a crystalline trehalose powder commercialized by Hayashibara Co., Ltd., Okayama, Japan
- a purified protein obtained by the method in Example A-3 was adjusted to pH 7.2 to obtain a paste containing about one mg of a purified protein per g of the paste.
- the product with a satisfactory spreadability and stability can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, bacterial infections, and immunopathies.
- a purified protein obtained by the method in Example A-4 and “LUMIN (1-1′-1′′-triheptyl-11-chinolyl(4).4.4′ -penthamethinchynocyanine-1-1′′-dijodide)” as a cell activator were mixed to homogeneity with “FINETOSE®”, an anhydrous crystalline ⁇ -maltose powder commercialized by Hayashibara Co., Ltd., Okayama, Japan, and the mixture was tabletted in conventional manner to obtain tablets, about 200 mg weight each, containing the purified protein and LUMIN in an amount of one mg each.
- the product with a satisfactory swallowability, stability and cell-activating activity can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, microbism, and immunopathies.
- Human monocytes were separated from peripheral blood of a patient with malignant lymphoma, suspended in RPMI 1640 medium (pH 7.2), which had been supplemented with 10 v/v % human AB serum and preheated at 37° C., to give a cell density of about 1 ⁇ 10 6 cells/ml, mixed with about 10 ng/ml of a purified protein obtained by the method in Example A-1 and about 100 units/ml of a recombinant human interleukin 2, and incubated at 37° C. for one week, followed by centrifugally collecting LAK cells.
- the LAK cells exerted a strong cytotoxicity on lymphoma cells when introduced into the patient, and the therapeutic effect is significantly higher than that of the conventional adoptive immunotherapy using interleukin 2 alone.
- Cytotoxic T-cells obtained by treating a patient's tumor tissue invasive lymphocyte instead of the patient's monocytes, showed a similar effect as in the LAK cells when reintroduced into the patient.
- the agent for adoptive immunotherapy can be suitably applied to solid tumors such as malignant nephroma, malignant melanoma, large intestinal cancer, and lung cancer.
- the present invention was made based on a novel protein which induces the IFN- ⁇ production by immunocompetent cells and a discovery of human cells which produce the protein.
- the protein with a partly revealed amino acid sequence stably induces the IFN- ⁇ production by immunocompetent cells. Therefore, the protein can be used widely as an IFN- ⁇ inducer for IFN- ⁇ production by culturing cells, and a therapeutic and/or prophylactic agent for IFN- ⁇ susceptive diseases such as viral diseases, malignant tumors, and immunopathies which are susceptible to IFN- ⁇ .
- the present agent for susceptive diseases which contains the protein as an effective ingredient exerts an outstanding effect on the treatment of inveterate diseases such as malignant tumors.
- the protein has a strong IFN- ⁇ production inducibility and has a relatively low toxicity, it induces generally a desired level of IFN- ⁇ production with only a small amount and does not substantially cause serious side effects even when administered to patients at a relatively high dose. Therefore, the protein is advantageous in that it quickly induces a desired level of IFN- ⁇ production without strictly controlling the dose.
- the present protein of human cell origin is advantageous in that it less causes side effects and less induces antibodies when administered to humans in the form of a pharmaceutical composition as compared with artificially produced polypeptides by the recombinant techniques.
- the present protein having these satisfactory properties can be produced in a desired amount by the present process using human cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Virology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a novel protein which induces the interferon-γ (hereinafter abbreviated as “IFN-γ”) production by immunocompetent cells.
- 2. Description of the Prior Art
- It is known that IFN-γ is a protein which has antiviral-, antioncotic- and immunoregulatory-activities and is produced by immunocompetent cells that are stimulated with antigens or mitogens. Because of these biological activities, IFN-γ has been expected for use as an antitumor agent since it was discovered, and studied energetically on clinical trials as a therapeutic agent for malignant tumors in general including brain tumors. IFN-γ preparations commercially available now are roughly classified into two groups, i.e. one group of natural IFN-γs produced by immunocompetent cells and another group of recombinant IFN-γs produced by transformants obtained by introducing DNAs which encode natural IFN-γs into microorganisms of the speciesEscherichia coli. In the above clinical trials, one of these two groups of IFN-γs is administered to patients as an “exogenous IFN-γ”.
- Among these IFN-γs, natural IFN-γs are usually produced by culturing established immunocompetent cell lines in nutrient culture media admixed with IFN-γ inducers to produce IFN-γs, and purifying the produced IFN-γs from the resulting cultures. It is known that IFN-γ inducers greatly influences on the IFN-γ yield, the facility of IFN-γ purification, and the safety of final IFN-γ preparations. Generally, mitogens such as concanavalin A (Con A), lentil lectin, pokeweed lectin, endotoxin and lipopolysaccharides can be used as IFN-γ inducers. However, these mitogens have the following problems: (i) their molecules and qualities vary and change depending on their origins and purification methods, and (ii) preparations with a constant IFN-γ inducibility are not readily prepared in a satisfactory yield. In addition, most of these mitogens might induce unfavorable side effects when administered to living bodies, and some of them might cause toxicity, so that it is substantially difficult to induce IFN-γ production by directly administering IFN-γ inducers to the living bodies.
- The present invention was made based on a novel protein which induces the interferon-γ production by immunocompetent cells. During the study of cytokines produced by mammalian cells, the present inventors noticed that the existence of a substance which induces IFN-γ production in mouse liver cells which had been treated with a lipopolysaccharide and inactivated whole cells of Corynebacterium. They isolated the substance by many purification methods using column chromatography as a main technique and studied the properties and features, and have found that the reality is a protein having the following physicochemical properties:
- (1) Molecular weight
- 19,000±5,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE);
- (2) Isoelectric point (pI)
- pI of 4.8±1.0 on chromatofocusing;
- (3) Partial amino acid sequence
- Having the partial amino acid sequences of SEQ ID NOS:8 and 9; and
- (4) Biological activity
- Inducing the IFN-γ production by immunocompetent cells.
- The data concluded that the substance is novel because no protein with these physicochemical properties is known. The present inventors continued studying on mouse liver cells and have succeeded to isolate a DNA which encodes the protein. The inventors decoded the DNA and have found that it consists of 471 base pairs and encodes the amino acid sequence of SEQ ID NO:10 (where the symbol “Xaa” means “methionine” or “threonine”).
- Based on these findings, the present inventors further studied on human liver cells to obtain a DNA which encodes another novel substance that induces the IFN-γ production by immunocompetent cells. They revealed that the reality is a polypeptide, then decoded the DNA and found that it has the amino acid sequence of SEQ ID NO:6 (where the symbol “Xaa” is “isoleucine” or “threonine”). They introduced the DNA intoEscherichia coli to express the polypeptide and to produce it in the resulting culture in a satisfactorily high yield. These findings were disclosed in Japanese Patent Laid-Open Nos. 27,189/96 and 193,098/96, applied by the present applicant. In Japanese Patent Application No. 78,357/95 applied by the applicant, the polypeptide is disclosed as an agent for susceptive diseases. Although biologically active proteins which are administered to humans after mixed with pharmaceuticals should be generally human cell origin, no human cell which produces such a polypeptide is reported.
- In view of the foregoing, the object of the present invention is to provide a protein of human cell origin, which induces the IFN-γ production by immunocompetent cells.
- The another object of the present invention is to provide a process for producing the protein.
- The further object of the present invention is to provide the use of the protein as an agent for susceptive diseases.
- The first object of the present invention is attained by a protein of human cell origin which induces the IFN-γ production by immunocompetent cells and has the amino acid sequence of SEQ ID NO:1.
- The second object of the present invention is attained by a process for producing the protein by propagating human cells which produce the protein, and collecting the protein from the propagated cells.
- The third object of the present invention is attained by an agent for susceptive diseases, which contains the protein as an effective ingredient.
- FIG. 1 is a peptide map of the present protein.
- The protein according to the present invention induces the IFN-γ production by immunocompetent cells when allowed to act on the cells alone or together with an appropriate cofactor.
- The protein is derived from human cells, and it can be readily prepared by the present process using human cells.
- The agent for susceptive diseases according to the present invention induces the IFN-γ production by immunocompetent cells in the human body when administered to humans, and exerts positive effects in the treatment and prevention of IFN-γ susceptive diseases. When the protein augments the cytotoxicity of killer cells or induces the formation of killer cells, it exerts positive effects on inveterate diseases including malignant tumors.
- The preferred embodiments according to the present invention will be described hereinafter. The wording “protein” as referred to in the present invention means polypeptides and glycoproteins in general which induce the IFN-γ production by immunocompetent cells and have the amino acid sequence of SEQ ID NO:1. Depending on the types and propagation conditions of human cells, the protein has the amino acid sequences of SEQ ID NOS:1 and 3 near at the N- and C-termini, respectively, and occasionally has the amino acid sequence of SEQ ID NO:6, as a complete amino acid sequence, including the amino acid sequences of SEQ ID NOS:4 and 5 as an internal fragment (where the symbol “Xaa” means “isoleucine” or “threonine”). The protein is detected as a protein band at a position corresponding to a molecular weight of 14,000-24,000 daltons, usually, 1,000-19,500 daltons when determined on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of a reducing agent. Depending on the types and propagating conditions of human cells, one or more amino acids may be added to the above N- and/or C-termini of SEQ ID NOS:1 and 3 or one or more amino acids in the N- and/or C-termini may be defected. Any protein can be used in the present invention as long as it is derived from a human cell, as well as having either of these amino acid sequences and inducing the IFN-γ production when acting on immunocompetent cells alone or together with an appropriate cofactor.
- These proteins can be produced by the present process using human cells. Usually, the human cells used in the present invention include cell lines derived from human hematopoietic cells such as lymphoblasts, lymphocytes, monoblasts, monocytes, myeloblasts, myelocytes, granulocytes and macrophages. Examples of these cell lines are lymphomas and leukemias such as myelocytic leukemia, promyelocytic leukemia, adult T-cell leukemia, and hairy cell leukemia, specifically, HBL-38 cell, HL-60 cell (ATCC CCL240), K-562 (ATCC CCL243), KG-1 cell (ATCC CCL246), Mo cell (ATCC CRL8066), THP-1 cell (ATCC TIB202), and U-937 cell (ATCC CRL1593) as reported by Jun MINOWADA in “Cancer Review”, Vol.10, pp.1-18 (1988), and A-253 cell (ATCC HTB41), an epidermoid carcinoma, submaxillary gland, human. Mutants of these cell lines can be also used in the present invention. Because these cell lines readily proliferate and more produce the present protein, they can be advantageously used in the present invention. Especially, epidermoid carcinoma cell lines such as A-253 cell, and human myelomonocytic cell lines such as HBL-38 cell, HL-60 cell, KG-1 cell, THP-1 cell, and U-937 cell have an extremely high productivity of the present protein and are most satisfactorily used in the present invention.
- In the present process, the above human cells are first allowed to propagate, then the present protein is collected from the propagated cells. The method used to propagate these human cells in the present invention is not specifically restricted, and any conventional in vivo or in vitro propagation method can be used. The in vivo propagation method means a method to propagate cells using nutrient culture media, which comprises suspending human cells in RPMI 1640 medium, MEM medium and DEM medium, which are used conventionally to propagate animal cells in this field, supplemented with 0.3-30 w/v % of fetal bovine serum to give a cell density of about 1×104-1×107 cells/ml, preferably, about 1×105-1×106 cells/ml, and culturing these cells at a temperature of 36-38° C., preferably, a temperature of about 37° C. and at a pH of 7-8, preferably, a pH of 7.2-7.4, for about 1-7 days while replacing these media with fresh ones. Thereafter, the propagated cells were separated from the cultures to obtain the objective protein. Depending on the types and culture conditions of human cells, some cells extracellularly excrete the present protein while culturing. When coexisted in culture media inducers such as mitogens and/or IFN-γs which induce the production of the present protein by the human cells, most of or all of the protein may be produced extracellularly. In this case, the protein can be collected from the culture supernatants.
- The in vivo propagation method for human cells using warm-blooded animals excluding human comprises injecting to suppress the immunoreaction of the animals antilymphocyte antibodies derived from rabbits into rodents such as new born mice, nude mice, rats, nude rats, guinea pigs, and hamsters, injecting subcutaneously or intraperitoneally about 1×105-1×108 cells/animal of the human cells into the animals or placing the human cells in diffusion chambers embedded in or out of the animals'0 body while allowing the animals' body fluid to circulate in the chambers, and feeding the animals by conventional methods for about 2-10 weeks. During the feeding, the human cells propagate while receiving the animals' body fluid. The propagated human cells are collected in the form of a tumor mass, ascites or cell suspension. If necessary, the objective protein is collected after suspending and washing these human cells in and with an appropriate solvent. The in vivo propagation method has a merit that as compared with the in vitro propagation method it yields the present protein at a less labor cost and time and in a satisfactorily high yield. The in vivo propagation method is disclosed, for example, in Japanese Patent Publication No. 54,158/81.
- To collect the present protein from the propagated cells, these cells are disrupted by ultrasonic before or after separating the objective protein from the cultures, homogenizing, freezing and thawing, or by soaking these cells in considerably-low osmotic solvents, then the protein is collected from the resulting cell debris or from a mixture of cell debris and culture supernatant. To collect the protein from the cell debris or the mixture, the cell debris or the mixture can be subjected directly or after incubation at about 37° C. for 1-24 hours to the following conventional methods for purifying biologically active substances in this field: salting out, dialysis, filtration, concentration, separatory sedimentation, gel filtration chromatography, ion-exchange chromatography, hydrophobic chromatography, adsorption chromatography, affinity chromatography, chromatofocusing, gel electrophoresis and/or isoelectrophoresis. Two or more of these conventional methods can be selectively used in combination. The collected protein can be concentrated and/or lyophilized into a liquid or solid form to meet to final use. The monoclonal antibody as disclosed in Japanese Patent Application No. 58,240/95 applied by the present applicant is advantageously used to purify the present protein. Immunoaffinity chromatography using the monoclonal antibody yields the highest possible purity of the protein at the lowest cost and labor.
- As is described above, the protein according to the present invention has a property of inducing the IFN-γ production by immunocompetent cells. Thus it can be satisfactorily used as an inducer for IFN-γ production by cell culture methods and used in the treatment and prevention of IFN-γ susceptive diseases including viral diseases such as AIDS and condyloma acuminatum; malignant tumors such as malignant nephroma, granuloma, mycosis fungoides, and brain tumor; and immunopathies such as articular rheumatism and allergosis.
- The present protein is usually added to nutrient culture media for IFN-γ production by culturing immunocompetent cells or administering to humans to treat and/or prevent IFN-γ susceptive diseases. In the former case, leukocytes separated from mammalian peripheral blood and established cell lines of immunocompetent cells such as HBL-38 cell, Mo cell (ATCC CRL8066), Jurkat cell (ATCC CRL8163), HuT78 cell (ATCC TIB161), EL4 cell (ATCC TIB39), L12-R4 cell, and mutants thereof are suspended in culture media containing about 0.1-1,000 ng/ml of the present protein, preferably, about 1-100 ng/ml of the protein. If necessary, these cells are cultured in nutrient culture media supplemented with T-cell stimulants such as mitogen,
interleukin 2, and anti-CD3 antibody for about 1-100 hours in conventional manner while replacing the culture media with fresh ones. From the resulting cultures the present protein can be collected by one or more conventional methods used to purify IFN-γ such as salting out, dialysis, filtration, concentration, separatory sedimentation, gel filtration chromatography, ion-exchange chromatography, hydrophobic chromatography, adsorption chromatography, affinity chromatography, chromatofocusing, gel electrophoresis and isoelectrophoresis. - Because the present protein induces the IFN-γ production by human immunocompetent cells, agents for susceptive diseases containing the protein as an effective ingredient stimulate the human immunocompetent cells to produce IFN-γ by administering to humans, and exert positive effects on the treatment and/or the prevention of IFN-γ susceptive diseases. Killer cells participate in the treatment and/or the prevention of susceptive diseases when the present protein induces the IFN-γ production by immunocompetent cells, accelerates the cytotoxicity of killer cells such as cytotoxic T-cells and lymphokine activating killer cells including NK- and LAK-cells, and induces the formation of killer cells similarly as the proteins in the later described Experiments and Examples. The wording “susceptive diseases” as referred to in the present invention means diseases in general including IFN-γ susceptive diseases, which can be treated and/or prevented by IFN-γs and/or killer cells: For example, viral diseases such as hepatitis, herpes, condyloma acuminatum, and AIDS; infectious diseases such as candidiasis, malaria, cryptococcosis, and Yersinia; malignant solid tumors such as malignant tumor, mycosis fungoides, and chronic granulomatous disease; hematopoietic malignant tumors such as adult T-cell leukemia, chronic myelocytic leukemia, and malignant tumor; and immunopathies such as allergosis and rheumatism. When used with
interleukin 3, the present protein positively effects on the complete cure or the remission of leukopenia and thrombocytopenia induced by radio- and chemotherapies to treat leukemia, myeloma, and malignant tumors. - The present agent for susceptive diseases is widely used in the treatment and/or the prevention of the above susceptive diseases as an antitumor agent, antiviral agent, antiseptic, immunotherapeutic agent, platelet-increasing agent, or leukocyte-increasing agent. Depending on the type of agent and the symptom of susceptive diseases to be treated, the present agent is generally processed into a liquid, paste or solid form which contains 0.000001-100 w/w %, preferably, 0.0001-0.1 w/w % of the protein, on a dry solid basis (d.s.b.).
- The present agent can be used intact or processed into compositions by mixing with physiologically-acceptable carriers, adjuvants, excipients, diluents and/or stabilizers, and, if necessary, further mixing with one or more other biologically-active substances such as interferon-α, interferon-β,
interleukin 2,interleukin 3, interleukin 12, TNF-α, TNF-β, carboquone, cyclophosphamide, aclarubicin, thiotepa, busulfan, ancitabine, cytarabine, 5-fluorouracil, 5-fluoro-1-(tetrahydro-2-furyl)uracil, methotrexate, actinomycin D, chromomycin A3, daunorubicin, doxorubicin, bleomycin, mitomycin C, vincristine, vinblastine, L-asparaginase, radio gold colloidal, Krestin® picibanil, lentinan, and Maruyama vaccine. Among these combinations, a combination of the present protein andinterleukin 2 is especially useful becauseinterleukin 2 acts as a cofactor for the protein when the protein induces the IFN-γ production by immunocompetent cells. Another combination of the protein and a natural or recombinanthuman interleukin 2 induces a relatively high level of IFN-γ production with only a small amount of the protein which does not substantially induce the IFN-γ production by immunocompetent cells. While a combination of the protein and interleukin 12 induces a greater level of IFN-γ production which could not be readily attained by them each. Because the present protein increases the activity of interleukin 12 to inhibit the production of immunoglobulin E antibody in the human body, the protein is advantageously used as an agent for immunopathies such as atopic diseases including atopic asthma, atopic bronchial asthma, hay fever, allergic rhinitis, atopic dermatitis, angioedema, and atopic digestive system's disorder. Occasionally a relatively small amount of interleukin 12 exists in humans. In this case, a sole administration of the protein to humans can attain the desired effect. - The form of the present agent for susceptive diseases includes those in a unit dose form which means a physically formulated medicament suitable for administration and contains the protein in an amount from 1/40 to several folds, i.e. up to 4 folds of a dosage. Examples of these are injections, liquids, powders, granules, tablets, capsules, sublinguals, ophthalmic solutions, nasal drops, and suppositories.
- The present agent can be orally or parenterally administered to patients, and as described below it can be used to activate antitumor cells in vitro. In both administrations, the agent exerts a satisfactory effect in the treatment and/or the prevention of susceptive diseases. Varied depending on the types of susceptive diseases and the symptoms of patients before and after the administration, the agent is orally administered to them or parenterally administered to their intradermal- and subcutaneous-tissues, muscles, and veins at a dose of about 0.1 μg to 50 mg per shot, preferably, about one μg to one mg per shot, 1-4 times/day or 1-5 times/week, for one day to one year.
- The present agent can be also used in so called “antitumor immunotherapy” using
interleukin 2. Generally, the antitumor immunotherapy is roughly classified into (i) a method for directly administeringinterleukin 2 to patients with malignant tumors, and (ii) a method for introducing antitumor cells which are previously activated in vitro byinterleukin 2, i.e. an adoptive immunotherapy. The present protein significantly enhances the above immunotherapeutic effect byinterleukin 2 when used in combination. In the method (i), the protein is administered to patients in an amount of about 0.1 μg/shot/adult to one mg/shot/adult at 1-10 times before the administration ofinterleukin 2 or at the same time. The dose ofinterleukin 2 is generally about 10,000-1,000,000 units/shot/adult, though it varies depending on the types of malignant tumors, patients' symptoms, and the dose of the present protein. In the method (ii), mononuclear cells and lymphocytes, collected from patients with malignant tumors, are cultured in the presence ofinterleukin 2 and about 0.1 ng to one μg of the protein per 1×106 cells of the blood cells. After culturing for a prescribed period of time, NK cells or LAK cells are collected from the culture and introduced into the same patients. Diseases which can be treated by the present antitumor immunotherapy are, for example, hematopoietic malignant tumors such as leukemia and malignant lymphoma, and solid malignant tumors such as colonic cancer, rectal cancer, large intestinal cancer, gastric cancer, thyroid carcinoma, cancer of the tongue, bladder carcinoma, choriocarcinoma, hepatoma, prostatic cancer, carcinoma uteri, laryngeal, lung cancer, breast cancer, malignant melanoma, Kaposi's sarcoma, cerebral tumor, neuroblastoma, tumor of the ovary, testicular tumor, osteosarcoma, cancer of the pancreas, renal cancer, hypernephroma, and hemangioendothelioma. - The following experiments explain the present protein:
- Preparation of protein
- New born hamsters were suppressed their immunoreaction in conventional manner by injecting a rabbit antiserum to hamster antithymus into the hamsters, transplanted to their dorsal subcutaneous tissues with about 5×105 cells/hamster of THP-1 cells (ATCC TIB202), a myelomonocytic cell line of a human acute monocytic leukemia, and fed for 3 weeks in conventional manner. Tumor masses formed in their subcutaneous tissues, about 15 g weight per hamster, were extracted, dispersed in conventional manner in physiological saline, and washed with phosphate buffered saline (hereinafter abbreviated as “PBS”).
- The propagated cells thus obtained were washed with 10-fold volumes of cold 20 mM Hepes buffer (pH 7.4) containing 10 mM potassium chloride, 1.5 mM magnesium chloride, and 0.1 mM disodium ethylenediaminetetraacetate, allowed to stand in 3-fold volumes of a fresh preparation of the same buffer under ice-chilled conditions, freezed at −80° C., and thawed to disrupt the cells. The disrupted cells were centrifuged to obtain a supernatant which was then fed to a column packed with “DEAE-SEPHAROSE”, a gel for ion-exchange column chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been previously equilibrated with 10 mM phosphate buffer (pH 6.6), followed by washing the column with 10 mM phosphate buffer (pH 6.6), feeding to the column with a gradient buffer of sodium chloride which increases stepwisely from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.6), and collecting a fraction eluted at about 0.2 M sodium chloride.
- The fraction was dialyzed against 10 mM phosphate buffer (pH 6.8) and fed to a column packed with “DEAE 5PW”, a gel for ion-exchange chromatography commercialized by Tosoh Corporation, Tokyo, Japan, followed by feeding to the column a gradient buffer of sodium chloride which increases stepwisely from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.8), and collecting fractions eluted at about 0.2-0.3 M sodium chloride.
- The resulting fractions were pooled, then dialyzed against PBS, fed to a plastic cylindrical column packed with a gel for immunoaffinity chromatography using a monoclonal antibody which had been prepared according to the method as disclosed in Japanese Patent Application No. 58,240/95 applied by the present applicant, and washed with PBS. The column was fed with 100 mM glycine-HCl buffer (pH 2.5) to collect from the eluate fractions containing a protein which induces the IFN-γ production by immunocompetent cells. These fractions were pooled, dialyzed against sterile distilled water, concentrated with a membrane filter, and lyophilized to obtain a purified solid protein in a yield of about 50 ng per hamster.
- Molecular weight
- In accordance with the method reported by U. K. Laemmli inNature, Vol.227, pp.680-685 (1970), a purified protein prepared by the method in
Experiment 1 was electrophoresed on a sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) in the presence of 2 w/v % dithiothreitol, resulting in a main protein band with an IFN-γ inducibility at a position corresponding to about 18,000-19,500 daltons. The marker proteins used in this experiment were bovine serum albumin (MW=67,000 daltons), ovalbumin (MW=45,000 daltons), carbonic anhydrase (MW=30,000 daltons), soy bean trypsin inhibitor (MW=20,100 daltons), and α-lactalbumin (MW=14,400 daltons). - Amino acid sequence and peptide mapping near at the N-terminus
- Amino acid sequence near at the N-terminus
- The purified protein in
Experiment 1 was analyzed on “MODEL 473A”, a protein sequencer commercialized by Perkin-Elmer Corp., Instrument Div., Norwalk, USA, and revealed that it has the amino acid sequence of SEQ ID NO:1, particularly, SEQ ID NO:2. - Peptide mapping
- A purified protein obtained by the method in
Experiment 1 was dissolved in an adequate amount of sterile distilled water, and the solution was fed to a column packed with “ASAHIPAK® C4P-50 4E”, a gel for high-performance liquid chromatography (HPLC) commercialized by Showa Denko, K.K., Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % aqueous trifluoroacetic acid solution, followed by washing the column with 0.1 v/v % aqueous trifluoroacetic acid solution and feeding to the column a linear gradient solution of acetonitrile increasing from 0 v/v % to 90 v/v % in a mixture solution of trifluoroacetic acid and acetonitrile at a flow rate of 60 ml/hour. Fractions containing a protein which induces the IFN-γ production by immunocompetent cells were collected from the eluted fractions, pooled, neutralized with 1 M aqueous tris solution (pH 11.2), and concentrated in conventional manner. To 50 mM Tris-HCl buffer (pH 8.5), dissolving an adequate amount of clostripain commercialized by Sigma Chemical Company, St. Louis, MO., USA, was added the protein in an amount of about 50 folds of the clostripain by molar ratio while removing acetonitrile, and the resulting mixture was allowed to react at a pH of 8-9 and at 37° C. for 12 hours to obtain a reaction mixture containing fragments of the protein. - The reaction mixture was fed to a column packed with “ODS-120T”, a gel for HPLC commercialized by Tosoh Corporation, Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % aqueous trifluoroacetic acid solution, followed by washing the column with 0.1 v/v % aqueous trifluoroacetic acid solution and feeding to the column a linear gradient solution of acetonitrile increasing from 0 v/v % to 70 v/v % in a mixture solution of trifluoroacetic acid, acetonitrile and water where the concentration of trifluoroacetic acid was 0.09 v/v % at a flow rate of 30 ml/hour while monitoring the absorption level of the peptide, i.e. the concentration of the peptide, at a wave length of 214 nm. FIG. 1 is the resulting peptide map.
- In FIG. 1, peptide fragments eluted at about 59, 62 and 68 min after initiating the elution are respectively named
peptide fragments peptide fragment 3 has those of SEQ ID NOS:4 and 5. The comparison of these amino acid sequences with the one of SEQ ID NO:6 revealed that the peptide fragments 1 to 3 correspond to the positions 148-157, 1-13 and 45-58 or 80-96 in the amino acid sequence of SEQ ID NO:6, respectively. These results confirmed that the peptide fragments 1 and 2 correspond to the C- and N-terminal fragments of the protein used for analysis, and thepeptide fragment 3 corresponds to an internal fragment of the protein. - It is concluded that the purified protein obtained by the method in
Experiment 1 contains the amino acid sequence of SEQ ID NO:6 when totally evaluating these results, the fact as revealed inExperiment 2 that the purified protein has a main protein band at a position corresponding to a molecular weight of about 18,000-19,500 daltons on SDS-PAGE, and the fact that the purified protein is calculated to have a molecular weight of 18,199 daltons from the amino acid sequence of SEQ ID NO:6. - Biological activity
- IFN-γ production by immunocompetent cell
- Blood was sampled from a healthy volunteer by a heparinized syringe and diluted by 2-fold with serum free RPMI 1640 medium (pH 7.4). The diluted blood was overlaid on a ficoll commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, followed by centrifugation to collect lymphocytes. These lymphocytes were washed with RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal bovine serum and suspended in a fresh preparation of the same medium to give a cell density of 5×106 cells/ml. The cell suspension was distributed to a 96-well microplate in a volume of 0.15 ml/well.
- A purified protein obtained by the method in
Experiment 1 was diluted with RPMI 1640 (pH 7.4) supplemented with 10 v/v % fetal bovine serum, and the dilution was distributed to the microplate in a volume of 0.05 ml/well. To the microplate was added a fresh preparation of the same buffer either with or without 2.5 μg/ml Con A or 50 units/ml of a recombinanthuman interleukin 2 in a volume of 0.05 ml/well, and the microplate was incubated at 37° C. for 24 hours in a 5 v/v % CO2 incubator. After completion of the culture, 0.1 ml of a culture supernatant was sampled from each well and assayed for IFN-γ activity by conventional enzyme immunosorbent assay (EIA). As a control, a system free of the purified protein was provided and treated similarly as above. The results were in Table 1 where the IFN-γ content was assayed and expressed in terms of international unit (IU) with respect to “Gg23-901-530”, an international standard for IFN-γ obtained from the National Institute for Health, Bethesda, Md., USA.TABLE 1 IFN-γ yield (IU/ml) Protein concentration Protein Protein (ng/ml) Protein plus Con A plus interleukin 20 <0.5 <2 <0.5 0.32 <0.5 6 ± 2 2 ± 1 1.6 10 ± 2 70 ± 20 60 ± 20 8 140 ± 10 490 ± 80 570 ± 30 40 180 ± 20 620 ± 10 880 ± 50 200 260 ± 20 800 ± 20 1500 ± 400 - The results in Table 1 show that lymphocytes as an immunocompetent cell produced IFN-γ by the action of the present protein. As is evident from the results, the IFN-γ production is increased in the presence of
interleukin 2 or Con A as a cofactor. - Increase of cytotoxicity by NK cell
- Blood was sampled from a healthy volunteer by a heparinized syringe and diluted with PBS by 2-fold. The dilution was overlaid on a ficoll, and the resultant was centrifuged to obtain a high density layer of lymphocytes. The lymphocytes were suspended in RPMI 1640 medium (pH 7.2) containing 10 μg/ml kanamycin, 5×10−5 M 2-mercaptoethanol and 10 v/v fetal bovine serum, and the suspension was distributed to a 12-well microplate in a volume of 0.5 ml/well. A purified protein obtained by the method in
Experiment 1 was appropriately diluted with a fresh preparation of the same buffer, and the dilution was distributed to the microplate in a volume of 1.5 ml/well, followed by adding to the microplate 0.5 ml/well of a fresh preparation of the same buffer either with or without 50 units/ml of a recombinanthuman interleukin 2, incubating the microplate at 37° C. for 24 hours in a 5 v/v % CO2 incubator, and washing the resultant cells with PBS to obtain cultured lymphocytes containing NK cells as an effector cell. 1×104 cells/well aliquots of K-562 cells (ATCC CCL243), derived from human chronic myelocytic leukemia as a NK-cell susceptive target cell, which had been labelled with 51Cr in conventional manner, were distributed to a 96-well microplate, and mixed with the above NK cells in a ratio of 2.5:1, 5:1 or 10:1 (=(effector cells):(target cells)). The microplate was incubated at 37° C. for 4 hours in a 5 v/v % CO2 or, followed by counting the radio activity of each supernatant to count the dead target cells. In each system, the percentage (%) of the dead target cells with respect to the target cells used in this experiment was calculated for evaluating cytotoxicity. The results were in Table 2.TABLE 2 Protein Cytotoxicity concentration Effector cells/Target cells (pM) Concentration of interleukin 22.5/1 5/1 10/1 0 0 19 36 59 0 10 28 44 61 0.5 0 22 41 63 0.5 10 31 54 69 5 0 28 49 66 5 10 36 58 71 50 0 29 53 67 50 10 42 62 72 500 0 33 56 84 500 10 57 78 96 - The results in Table 2 show that the protein according to the present invention has a property of enhancing the cytotoxicity by NK cells. As is evident from the results, the cytotoxicity is more enhanced by the coexisting
interleukin 2. - Induction of LAK cell formation
- 1×104 cells/well aliquots of Raji cell (ATCC CCL86), a human Burkitt's lymphoma as an NK-cell non-susceptive target cell labelled with 51Cr in conventional manner were distributed to a 96-well microplate, and mixed with a cell suspension of the target cells and cultured lymphocytes containing LAK cells as an effector cell, prepared similarly by the method in Experiment 4-2 except for culturing 72 hours, in a ratio of 5:1, 10:1 or 20:1 (=(effector cells):(target cells)), followed by incubating the microplate at 37° C. for 4 hours in a 5 v/v % CO2 incubator and counting the radio activity of each supernatant in conventional manner. Thereafter, the cytotoxicity (%) was calculated similarly as in Experiment 4-2. The results were in Table 3.
TABLE 3 Protein Cytotoxicity concentration Effector cells/Target cells (pM) Concentration of interleukin 25/1 10/1 20/1 0 0 12 23 31 0 10 14 25 35 0.5 0 14 24 34 0.5 10 18 32 42 5 0 16 26 37 5 10 21 36 50 50 0 22 41 49 50 10 26 52 56 500 0 27 44 61 500 10 33 59 72 - The results in Table 3 show that the present protein has a property of inducing the LAK-cell formation. As is evident from these results, this induction is more enhanced by the coexisting
interleukin 2. - Acute toxicity test
- A purified protein obtained by the method in
Experiment 1 was injected percutaneously, orally or intraperitoneally into 8-week-old mice in conventional manner. As a result, the LD50 of the protein was about one mg/kg mouse or higher independent of these administration routes. This evidences that the present protein is safe to incorporate into medicaments which are administrable to humans. - It is well known that IFN-γ deeply relates to the inhibition of bacterial infection and the propagation of malignant tumors, the regulation of human biophylaxis through the immunoregulatory function, and to the inhibition of immunoglobulin E antibody's production. As is described above, IFN-γ is now commercially available and used as an agent for human susceptive diseases, and the diseases to be treated, dose, administration, and safety are almost revealed. It is described in “Cytokines in Cancer Therapy”, edited by Frances R. Balkwill, translated by Yoshihiko WATANABE, published by Tokyo-Kagaku-Dojin, Tokyo, Japan (1991) that treatments using killer cells such as NK- and LAK-cells are used as an antitumor immunotherapy and applied to human diseases, and reported that most of them exert a satisfactory therapeutic effect. Recently focussed is the relationship between the therapeutic effect and the augmentation of killer cells' cytotoxicity or the induction of killer cells' formation using cytokines. For example, T. Fujioka et al. reported in “British Journal of Urology”, Vol.73, No. 1, pp.23-31 (1994) that
interleukin 2 strongly induced the formation of LAK cells in an antitumor immunotherapy using LAK cells andinterleukin 2, and exerted a satisfactory effect on the metastasis of human cancer without substantially inducing serious toxicity and side effects. - Thus it is revealed that IFN-γ and killer cells closely relate to the treatment and the prevention of human diseases for complete cure and remission. Under these backgrounds as shown in the results in Experiments 4 and 5, the fact that the present protein induces the IFN-γ production by immunocompetent cells, enhances the NK cells' cytotoxicity, and induces the LAK cells' formation indicates that the present agent containing the protein can be administered to humans over a relatively long period of time and exerts a satisfactory therapeutic effect on the treatment and the prevention of IFN-γ and/or killer cell related diseases without substantially inducing serious side effects.
- The following Examples explain the preferred embodiments of the present invention in more detail. Examples A-1 to A-8 are the preferred embodiments of the preparation of the present protein, and Examples B-1 to B-6 are the preferred embodiments of the present agent for susceptive diseases:
- Preparation of protein
- New born hamsters were suppressed their immunoreaction in conventional manner by injecting a rabbit antiserum to hamster antithymus into the hamsters, transplanted to their dorsal subcutaneous tissues with about 5×105 cells/hamster of THP-1 cells (ATCC TIB202), a myelomonocytic cell line of a human acute leukemia, and fed for 3 weeks in conventional manner. Tumor masses, about 15 g weight each, subcutaneously formed in each hamster were extracted, suspended in physiological saline in conventional manner, and washed with PBS.
- In accordance with the method by Matthew J. Kostura et al. in “Proceedings of theNational Academy of Sciences of the United States of America”, Vol.86, pp.5,227-5,231 (1989), the suspended cells were washed with 10-fold volumes of cold 20 mM Hepes buffer (pH 7.4) containing 10 mM potassium chloride, 1.5 mM magnesium chloride, 0. 1 mM disodium ethylenediaminetetraacetate, allowed to stand in 3-fold volumes of a fresh preparation of the same buffer, allowed to stand for 20 min under ice-chilled conditions, lyophilized at −80° C., and thawed to disrupt cells. The disrupted cells were centrifuged, and the supernatant was fed to a column packed with “DEAE-SEPHAROSE”, a gel for ion-exchange chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, followed by washing the column with 10 mM phosphate buffer (pH 6.6), fed with a gradient buffer of sodium chloride increasing stepwisely from 0 M to 0.5 M, and collecting fractions eluted at about 0.2 M sodium chloride.
- The fractions were pooled, dialyzed against 10 mM phosphate buffer (pH 6.8), fed to a column packed with “DEAE 5PW”, a gel for ion-exchange chromatography commercialized by Tosoh Corporation, Tokyo, Japan, which had been previously equilibrated with 10 mM phosphate buffer (pH 6.8), fed with a linear gradient buffer of sodium chloride increasing from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.8), and collected fractions eluted at about 0.2-0.3 M sodium chloride.
- The resulting fractions were pooled and dialyzed against PBS. The dialyzed inner solution was fed to a cylindrical plastic column prepared by first packing a gel for immunoaffinity chromatography of a monoclonal antibody, which had been prepared according to the method disclosed in Japanese Patent Application No. 58,240/95 applied by the present applicant, then washing with PBS. One hundred mM glycine-HCl buffer (pH 2.5) was fed to the column to effect fractionation, followed by collecting fractions containing a protein which induces the IFN-γ production by immunocompetent cells from the eluate, dialyzing the fractions against sterile distilled water, concentrating the dialyzed inner solution with a membrane filter, and lyophilizing the concentrate to obtain a solid purified protein. The yield was about 50 ng per hamster.
- Preparation of protein
- New born nude mice were injected into their dorsal subcutaneous tissues with about 1×106 cells/nude mouse of KG-1 cells (ATCC CCL246), a myelomonocytic cell line derived from human acute myelomonocytic leukemia, and fed for 4 weeks in conventional manner. Tumor masses, about 20 g weight each, formed subcutaneously in each nude mouse were extracted and dispersed in physiological saline in conventional manner. The cells were washed and disrupted similarly as in Example A-1, and the resulting mixture was purified to obtain a purified protein which induces the IFN-γ production by immunocompetent cells in a yield of about 20 ng per nude mouse.
- A portion of the purified protein was analyzed for amino acid sequence in accordance with the method in Experiments 2-4, revealing that the protein has the partial amino acid sequence of SEQ ID NO:1 near at the N-terminus and a similar molecular weight and biological activity as the protein in
Experiment 1. - Preparation of protein
- HL-60 cells (ATCC CCL240), a myelomonocytic cell line derived from human acute promyelocytic leukemia, were suspended in RPMI 1640 (pH 7.4) placed in an about 10-ml plastic cylindrical diffusion chamber in which was installed a membrane filter with a diameter of 0.5 μm, then the chamber was intraperitoneally embedded in an aged rat. The rat was fed for 4 weeks in conventional manner, then the chamber was removed. The propagated cells in the chamber were collected, washed with physiological saline, and disrupted similarly as in Example A-1, followed by purifying the resulting mixture to obtain a purified protein which induces the IFN-γ production by immunocompetent cells. The yield was about 20 ng per rat.
- A portion of the purified protein was analyzed for amino acid sequence in accordance with the method in Experiments 2-4, revealing that the protein has the partial amino acid sequence of SEQ ID NO:1 near at the N-terminus and has a similar molecular weight and biological activity to the protein in
Experiment 1. - Preparation of protein
- THP-1 cells (ATCC TIB202), a myelomonocytic cell line derived from human acute monocytic leukemia, were suspended in RPMI 1640 medium (pH 7.2) supplemented with 10 v/v % fetal bovine serum to give a cell density of about 3×105 cells/ml, and cultured at 37° C. for 3 weeks in a 10 v/v % CO2 incubator while replacing the medium with a fresh one. The propagated cells were separated from the resulting culture, washed with physiological saline, and disrupted similarly as in Example A-1, followed by purifying the resulting mixture to obtain a purified protein which induces the IFN-γ production in a yield of about 10 ng per litter of the culture.
- A portion of the purified protein was analyzed for amino acid sequence in accordance with the method in Experiments 2-4, revealing that the protein has the partial amino acid sequence of SEQ ID NO:1 near at the N-terminus and has a similar molecular weight and biological activity to the protein in
Experiment 1. - Preparation of protein
- New born hamsters were immunosuppressed by injecting a rabbit antithymus serum in conventional manner, injected to the dosal subcutaneous tissues with about 5×105 cells/head of A-253 cells (ATCC HTB41), an epidermoid carcinoma, submaxillary gland, human, and fed for 3 weeks in usual manner. Thereafter, the tumor masses formed subcutaneously, about 10 g weight in each hamster, were extracted, dispersed in physiological saline, and washed with PBS.
- The propagated cells thus obtained were washed with 20 mM Hepes buffer (pH 7.4) containing 10 mM potassium chloride, 1.5 mM magnesium chloride, and 0.1 mM disodium ethylenediaminetetraacetate, suspended in a fresh preparation of the same buffer to give a cell density of about 2×107 cells/ml, disrupted by a homogenizer, and centrifuged to remove cell debris to obtain a supernatant, followed by concentrating the supernatant by a membrane for ultrafiltration to obtain a cell extract containing a protein which induces the interferon-γ production by immunocompetent cells. The extract was purified similarly as the method in Example A-1, concentrated, and lyophilized to obtain a solid purified protein in a yield of about 3 μg of per hamster.
- The purified protein was sampled and analyzed in accordance with the methods in Examples 2-4 revealing that it has the amino acid sequence of SEQ ID NO:1 nearness to the N-terminus and has a similar molecular weight and biological activities to those of the protein in
Experiment 1. - Preparation of protein
- A seed culture of A-253 cell was inoculated into RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum and cultured in conventional manner at 37° C. until forming a monolayer of cells. Thereafter, the cells were detached from the surface of the culture vessel used by using “TRYPSIN-EDTA”, a trypsin commercialized by Gibuco BRL, NY, USA, and washed with PBS. In accordance with the method in Example A-1, the cells were disrupted, and the disrupted cells were purified and centrifuged to obtain a supernatant which was then incubated at 37° C. for 6 hours, purified, concentrated, and lyophilized to obtain a solid purified protein which induces the IFN-γ production by immunocompetent cells in a yield of about one μg per 107 cells.
- The supernatant was sampled and analyzed in accordance with the method in Experiments 2-4 revealing that it has the amino acid sequence of SEQ ID NO:1 near at the N-terminus and has a similar molecular weight and biological activities to those of the protein in
Experiment 1. - Preparation of protein
- A seed culture of A-253 cell was inoculated into RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum and cultured in conventional manner at 37° C. until forming a monolayer of cells. Thereafter, the culture medium was replaced with a serum-free RPMI 1640 medium (pH 7.4) supplemented with 10 IU/ml of a natural IFN-γ derived from KG-1 cell as an IFN-γ inducer, and incubated at 37° C. for 48 hours. The culture was centrifuged to obtain a supernatant which was then purified by the method in Example A-1, concentrated, and lyophilized to obtain a solid purified protein which induces the IFN-γ production by immunocompetent cells in a yield of about 5 ng per 107 cells.
- The supernatant was sampled and analyzed in accordance with the method in Experiments 2-4 revealing that it has the amino acid sequence of SEQ ID NO:1 nearness to the N-terminus and has a similar molecular weight and biological activities to those of the protein in
Experiment 1. - Preparation of protein
- A purified protein obtained by the method in Example A-1 was dissolved in an adequate amount of sterile distilled water, and the solution was fed to a column packed with “ASAHIPAK® C4P-50 4E”, a gel for high-performance liquid chromatography commercialized by Showa Denko K.K., Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % aqueous trifluoroacetic acid, followed by washing the column with 0.1 v/v % aqueous trifluoroacetic acid and feeding to the column a linear gradient solution of acetonitrile increasing from 0 v/v % to 90 v/v % in a mixture solution of trifluoroacetic acid and acetonitrile at a flow rate of 60 ml/hour. Fractions containing a protein which induces the IFN-γ production by immunocompetent cells were collected from the eluted fractions, pooled, neutralized with 1 M aqueous tris solution (pH 11.2), and concentrated in conventional manner, followed by removing acetonitrile from the resulting concentrate to obtain a concentrated protein with a purity of at least 95% in a yield of about 10% by weight with respect to the material protein, d.s.b.
- In accordance with the method in
Experiment 2, the concentrated protein was sampled and analyzed for molecular weight, resulting in a single protein band, which induces an IFN-γ production, at a position corresponding to a molecular weight of 18,400±1,000 daltons. Another fresh sample was analyzed for amino acid sequence in accordance with the method inExperiments 3 and 4, revealing that it has the amino acid sequence of SEQ ID NO:3 and the one of SEQ ID NO:1 near at the N-terminus, more particularly, the one of SEQ ID NO:7, and further it has the amino acid sequence of SEQ ID NOS:4 and 5 as an internal fragment and exhibited a similar biological activity to the protein ofExperiment 1 even when concentrated into a relatively high level. - Liquid
- A purified protein obtained by the method in Example A-1 was dissolved in physiological saline containing one w/v % human serum albumin as a stabilizer, followed by sterilely filtering the solution to obtain a liquid.
- The product with a satisfactory stability can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, bacterial infections, and immunopathies.
- Dried injection
- A purified protein obtained by the method in Example A-2 was dissolved in physiological saline containing one w/v % of a purified gelatin as a stabilizer, and the solution was sterilely filtered in conventional manner. The sterile solution was distributed to vials by one ml and lyophilized, then the vials were cap sealed.
- The product with a satisfactory stability can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, bacterial infections, and immunopathies.
- Dry injection
- A solid pharmaceutical was prepared similarly as in Example B-2 except for using a purified protein obtained by the method in Example A-5 and “TREHAOSE”, a crystalline trehalose powder commercialized by Hayashibara Co., Ltd., Okayama, Japan, as a stabilizer.
- The product with a satisfactorily stability can be advantageously used as a dry injection for treating and/or preventing malignant tumors, viral diseases, bacterial infections, and immunophathies.
- Ointment
- “HI-BIS-WAKO 104”, a carboxyvinylpolymer commercialized by Wako Pure Chemicals, Tokyo, Japan, and “TREHAOSE”, a crystalline trehalose powder commercialized by Hayashibara Co., Ltd., Okayama, Japan, were dissolved in sterile distilled water in respective amounts of 1.4 w/w % and 2.0 w/w %, and the solution was mixed to homogeneity with a purified protein obtained by the method in Example A-3, then adjusted to pH 7.2 to obtain a paste containing about one mg of a purified protein per g of the paste.
- The product with a satisfactory spreadability and stability can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, bacterial infections, and immunopathies.
- Tablet
- A purified protein obtained by the method in Example A-4 and “LUMIN (1-1′-1″-triheptyl-11-chinolyl(4).4.4′ -penthamethinchynocyanine-1-1″-dijodide)” as a cell activator were mixed to homogeneity with “FINETOSE®”, an anhydrous crystalline α-maltose powder commercialized by Hayashibara Co., Ltd., Okayama, Japan, and the mixture was tabletted in conventional manner to obtain tablets, about 200 mg weight each, containing the purified protein and LUMIN in an amount of one mg each.
- The product with a satisfactory swallowability, stability and cell-activating activity can be used as an injection, collunarium or nebula to treat and/or prevent susceptive diseases such as malignant tumors, viral diseases, microbism, and immunopathies.
- Agent for adoptive immunotherapy
- Human monocytes were separated from peripheral blood of a patient with malignant lymphoma, suspended in RPMI 1640 medium (pH 7.2), which had been supplemented with 10 v/v % human AB serum and preheated at 37° C., to give a cell density of about 1×106 cells/ml, mixed with about 10 ng/ml of a purified protein obtained by the method in Example A-1 and about 100 units/ml of a recombinant
human interleukin 2, and incubated at 37° C. for one week, followed by centrifugally collecting LAK cells. - The LAK cells exerted a strong cytotoxicity on lymphoma cells when introduced into the patient, and the therapeutic effect is significantly higher than that of the conventional adoptive
immunotherapy using interleukin 2 alone. Cytotoxic T-cells, obtained by treating a patient's tumor tissue invasive lymphocyte instead of the patient's monocytes, showed a similar effect as in the LAK cells when reintroduced into the patient. The agent for adoptive immunotherapy can be suitably applied to solid tumors such as malignant nephroma, malignant melanoma, large intestinal cancer, and lung cancer. - As is described above, the present invention was made based on a novel protein which induces the IFN-γ production by immunocompetent cells and a discovery of human cells which produce the protein. The protein with a partly revealed amino acid sequence stably induces the IFN-γ production by immunocompetent cells. Therefore, the protein can be used widely as an IFN-γ inducer for IFN-γ production by culturing cells, and a therapeutic and/or prophylactic agent for IFN-γ susceptive diseases such as viral diseases, malignant tumors, and immunopathies which are susceptible to IFN-γ. The present agent for susceptive diseases which contains the protein as an effective ingredient exerts an outstanding effect on the treatment of inveterate diseases such as malignant tumors.
- Because the protein has a strong IFN-γ production inducibility and has a relatively low toxicity, it induces generally a desired level of IFN-γ production with only a small amount and does not substantially cause serious side effects even when administered to patients at a relatively high dose. Therefore, the protein is advantageous in that it quickly induces a desired level of IFN-γ production without strictly controlling the dose. Especially, the present protein of human cell origin is advantageous in that it less causes side effects and less induces antibodies when administered to humans in the form of a pharmaceutical composition as compared with artificially produced polypeptides by the recombinant techniques.
- The present protein having these satisfactory properties can be produced in a desired amount by the present process using human cells.
- Thus the present invention with these significant functions and effects is a significant invention which greatly contributes to this field.
- While there has been described what is at present considered to be the preferred embodiments of the invention, it will be understood the various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirit and scope of the invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/752,510 US6441138B2 (en) | 1995-09-26 | 2001-01-03 | Protein which induces interferon-γ production by immunocompetent cell |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP270725/1995 | 1995-09-26 | ||
JP7-270725 | 1995-09-26 | ||
JP27072595 | 1995-09-26 | ||
JP6743496 | 1996-02-29 | ||
JP8-67434 | 1996-02-29 | ||
JP26910596A JP4004088B2 (en) | 1995-09-26 | 1996-09-20 | Protein that induces production of interferon-γ in immunocompetent cells |
JP10-050403 | 1996-09-20 | ||
US72101896A | 1996-09-26 | 1996-09-26 | |
US08/832,198 US6242255B1 (en) | 1995-09-26 | 1997-04-08 | Protein which induces interferon-gamma production by immunocompetent cell |
US09/752,510 US6441138B2 (en) | 1995-09-26 | 2001-01-03 | Protein which induces interferon-γ production by immunocompetent cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/832,198 Division US6242255B1 (en) | 1994-11-15 | 1997-04-08 | Protein which induces interferon-gamma production by immunocompetent cell |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010018212A1 true US20010018212A1 (en) | 2001-08-30 |
US6441138B2 US6441138B2 (en) | 2002-08-27 |
Family
ID=27299437
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/832,198 Expired - Lifetime US6242255B1 (en) | 1994-11-15 | 1997-04-08 | Protein which induces interferon-gamma production by immunocompetent cell |
US09/752,510 Expired - Fee Related US6441138B2 (en) | 1995-09-26 | 2001-01-03 | Protein which induces interferon-γ production by immunocompetent cell |
US09/819,902 Expired - Fee Related US6403079B1 (en) | 1995-09-26 | 2001-03-29 | Process for producing a pharmaceutical composition containing a protein which induces interferon-γ production by an immunocompetent cell |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/832,198 Expired - Lifetime US6242255B1 (en) | 1994-11-15 | 1997-04-08 | Protein which induces interferon-gamma production by immunocompetent cell |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/819,902 Expired - Fee Related US6403079B1 (en) | 1995-09-26 | 2001-03-29 | Process for producing a pharmaceutical composition containing a protein which induces interferon-γ production by an immunocompetent cell |
Country Status (6)
Country | Link |
---|---|
US (3) | US6242255B1 (en) |
EP (1) | EP0767178A1 (en) |
JP (1) | JP4004088B2 (en) |
KR (1) | KR100491365B1 (en) |
AU (1) | AU724940B2 (en) |
CA (1) | CA2186423C (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7135458B1 (en) * | 1995-11-15 | 2006-11-14 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Interferon-γ inducing polypeptide, pharmaceutical composition thereof, monoclonal antibody thereto, and methods of use |
WO1997024441A1 (en) * | 1995-12-29 | 1997-07-10 | Incyte Pharmaceuticals, Inc. | Nucleic acids encoding interferon gamma inducing factor-2 |
JP3955352B2 (en) | 1997-02-25 | 2007-08-08 | 株式会社林原生物化学研究所 | Osteoclast formation inhibitor |
TWI227136B (en) * | 1998-05-21 | 2005-02-01 | Smithkline Beecham Corp | Novel pharmaceutical composition for the prevention and/or treatment of cancer |
US6432678B1 (en) * | 1999-06-21 | 2002-08-13 | Smithkline Beecham Corporation | Macaca cynomolgus IL 18 |
KR100951067B1 (en) * | 2000-02-10 | 2010-04-07 | 아보트 러보러터리즈 | Antibodies that Bind to Human Interleukin-18 and Methods of Making and Using the Same |
US20030044398A1 (en) * | 2001-03-20 | 2003-03-06 | Robl James M. | Methods for producing antibodies in mammals |
MD2053C2 (en) * | 2001-07-10 | 2003-07-31 | Национальный Научно-Практический Центр Превентивной Медицины Министерства Здравоохранения Республики Молдова | Remedy with interferon inducing action |
JP4059648B2 (en) * | 2001-08-28 | 2008-03-12 | 独立行政法人科学技術振興機構 | Oral cytokine inducer |
ES2340494T3 (en) | 2003-04-15 | 2010-06-04 | Glaxosmithkline Llc | MUTANTS OF REPLACEMENT OF HUMAN IL-18 AND ITS CONJUGATES. |
US7968684B2 (en) * | 2003-11-12 | 2011-06-28 | Abbott Laboratories | IL-18 binding proteins |
PL1793859T3 (en) | 2004-08-20 | 2009-08-31 | Smithkline Beecham Corp | Treatment of oral and intestinal mucositis by administering human il-18 |
WO2007094472A1 (en) * | 2006-02-17 | 2007-08-23 | Atsuo Sekiyama | Biological load indicator and method of measuring biological load |
AR065803A1 (en) | 2007-03-23 | 2009-07-01 | Smithkline Beecham Corp | USE OF A HUMAN IL-18 POLYPEPTIDE AND AN ANTI-CD ANTIBODY TO PREPARE A MEDICINE |
US8168165B2 (en) | 2008-12-23 | 2012-05-01 | Abbott Laboratories | Alkylated interleukin-18 compositions |
AU2015300006B2 (en) | 2014-08-07 | 2018-08-30 | Haruki Okamura | Therapeutic agent for cancer which comprises combination of IL-18 and molecule-targeting antibody |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2016015B (en) * | 1978-01-22 | 1982-05-06 | Hayashibara Co | Method of preparing interferon and preparations containing interferon |
US5457038A (en) * | 1988-11-10 | 1995-10-10 | Genetics Institute, Inc. | Natural killer stimulatory factor |
EP0692536B1 (en) * | 1994-07-14 | 2000-11-22 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | IFN-Y production inducing protein and monoclonal antibody of the same |
JP3109018B2 (en) | 1994-07-14 | 2000-11-13 | 株式会社林原生物化学研究所 | Protein that induces interferon-γ production |
JP2724987B2 (en) * | 1994-11-15 | 1998-03-09 | 株式会社林原生物化学研究所 | Polypeptide that induces interferon-γ production |
TW464656B (en) * | 1994-11-15 | 2001-11-21 | Hayashibara Biochem Lab | Interferon-gamma production inducing polypeptide monoclonal antibody, and agent for interferon-gamma susceptive disease |
US6060283A (en) * | 1996-06-27 | 2000-05-09 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Genomic DNA encoding human interleukin-18 (IL-18, interferon-γ inducing factor) |
JPH1080270A (en) * | 1996-07-19 | 1998-03-31 | Hayashibara Biochem Lab Inc | Polypeptide-processing enzyme |
US5891662A (en) * | 1997-11-13 | 1999-04-06 | Infectech, Inc. | Method for determining the antimicrobial agent sensitivity of a nonparaffinophilic hydrophobic microorganism |
-
1996
- 1996-09-20 JP JP26910596A patent/JP4004088B2/en not_active Expired - Fee Related
- 1996-09-25 CA CA002186423A patent/CA2186423C/en not_active Expired - Fee Related
- 1996-09-26 AU AU65881/96A patent/AU724940B2/en not_active Ceased
- 1996-09-26 EP EP96306997A patent/EP0767178A1/en not_active Withdrawn
-
1997
- 1997-04-08 US US08/832,198 patent/US6242255B1/en not_active Expired - Lifetime
-
2001
- 2001-01-03 US US09/752,510 patent/US6441138B2/en not_active Expired - Fee Related
- 2001-03-29 US US09/819,902 patent/US6403079B1/en not_active Expired - Fee Related
-
2004
- 2004-12-06 KR KR1020040101627A patent/KR100491365B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US6441138B2 (en) | 2002-08-27 |
CA2186423C (en) | 2007-06-26 |
US6242255B1 (en) | 2001-06-05 |
CA2186423A1 (en) | 1997-03-27 |
KR100491365B1 (en) | 2005-05-24 |
US6403079B1 (en) | 2002-06-11 |
AU6588196A (en) | 1997-05-15 |
EP0767178A1 (en) | 1997-04-09 |
JPH09289896A (en) | 1997-11-11 |
AU724940B2 (en) | 2000-10-05 |
JP4004088B2 (en) | 2007-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6403079B1 (en) | Process for producing a pharmaceutical composition containing a protein which induces interferon-γ production by an immunocompetent cell | |
ES2329099T3 (en) | ISOLATED POLIPEPTIDIC FRAGMENT THAT INDUCES INTERFERON-GAMMA PRODUCTION AND AN ISOLATED DNA FRAGMENT THAT CODIFIES SUCH POLYPEPTIDE. | |
US5518899A (en) | Preparation of human myelomonocyte interferon-gamma | |
Kriegler et al. | Partial purification and characterization of a growth factor for macrophage progenitor cells with high proliferative potential in mouse bone marrow | |
US7355014B2 (en) | Interferon-γ inducing polypeptide, pharmaceutical composition thereof, monoclonal antibody thereto, and methods of use | |
US4777241A (en) | Proteinaceous substance showing antitumorous action and its preparing method | |
US6207641B1 (en) | Pharmaceutical composition containing IFN-γ inducing polypeptide or factor for treating and/or preventing IFN-γ susceptive diseases | |
HU210694B (en) | Method for production of new cell growth regulatory factor | |
NZ299943A (en) | Protein stimulator of ifn-gamma in immunocompetant cells | |
KR100491366B1 (en) | A protein that induces the production of interferon-gamma by immune cells | |
US6331403B1 (en) | Use of mCRP to slow cell growth and to promote maturation of cells | |
JPS6019720A (en) | Krebs statika (antitumor substance derived from human) and its preparation | |
EP0161384A2 (en) | Human endogenous cancer regulatory factors, method of preparing the same, and pharmaceutical compositions containing the same | |
KR950008569B1 (en) | Novel lymphokine and its production and uses | |
US5126148A (en) | Process to prepare metastasis-inhibitory factor | |
KR100490447B1 (en) | Polypeptides Inducing Production of Interferon-γ, Monoclonal Antibodies and Susceptible Diseases Specific to Dipeptides | |
JP3993652B2 (en) | Sensitive disease agent | |
JP2532025B2 (en) | Lymphokine activity enhancer having an antitumor effect, which comprises a new lymphokine III as an active ingredient | |
JPS58203918A (en) | Glycoprotein, its preparation and remedy for tumors | |
JPH0523755B2 (en) | ||
JPH02124900A (en) | Lak induction repressing factor, production thereof and immunosuppressive agent containing the same factor as active ingredient | |
JPS63500376A (en) | Human endogenous cancer regulators | |
JPH09208489A (en) | Agent for gamma-interferon susceptible disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
PTEF | Application for a patent term extension |
Free format text: PRODUCT NAME: BEYAZ (DROSPIRENONE, ETHINYL ESTRADIOL QND LEVOMEFOLATE CALCIUM); REQUESTED FOR 834 DAYS Filing date: 20101123 Expiry date: 20200417 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20140827 |
|
PTEG | Grant of a patent term extension |
Free format text: PRODUCT NAME: BEYAZ (DROSPIRENONE, ETHINYL ESTRADIOL QND LEVOMEFOLATE CALCIUM) Filing date: 20101123 Expiry date: 20200417 |