US20010013764A1 - Manipulator positioning linkage for robotic surgery - Google Patents
Manipulator positioning linkage for robotic surgery Download PDFInfo
- Publication number
- US20010013764A1 US20010013764A1 US09/825,614 US82561401A US2001013764A1 US 20010013764 A1 US20010013764 A1 US 20010013764A1 US 82561401 A US82561401 A US 82561401A US 2001013764 A1 US2001013764 A1 US 2001013764A1
- Authority
- US
- United States
- Prior art keywords
- linkage
- manipulator
- joints
- robotic
- surgical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B2090/506—Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39022—Transform between measuring and manipulator coordinate system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40158—Correlate actual image at angle with image presented to operator without angle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40166—Surface display, virtual object translated into real surface, movable rods
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45123—Electrogoniometer, neuronavigator, medical robot used by surgeon to operate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/07—Servo-systems
Definitions
- This invention generally relates to surgical devices, systems, and methods, and more particularly provides structures and techniques for manually aligning a robotic surgery system with a desired surgical site.
- a surgeon In robotically assisted or telerobotic surgery, a surgeon typically operates a master controller to control the motion of surgical instruments at the surgical site.
- the controller may be separated from the patient by a significant distance (e.g., across the operating room, in a different room, or in a completely different building than the patient). Alternatively, a controller may be positioned quite near the patient in the operating room.
- the controller will typically include one or more hand input devices (such as joysticks, exoskeletal gloves, or the like) which are coupled by a servomechanism to a surgical instrument. More specifically, servo motors articulate the surgical instrument based on the surgeon's manipulation of the hand input devices.
- the surgeon may employ, via the robotic surgery system, a variety of surgical instruments, such as tissue graspers, needle drivers, electrosurgical cautery probes, etc.
- tissue graspers such as tissue graspers, needle drivers, electrosurgical cautery probes, etc.
- electrosurgical cautery probes such as electrosurgical cautery probes, etc.
- Each of these structures perform functions for the surgeon, for example, holding or driving a needle, grasping a blood vessel, or dissecting, cauterizing, or coagulating tissue.
- a variety of structural arrangements might be used to support the surgical instrument at the surgical site during robotic surgery. It has previously been proposed to support the surgical instrument with a mechanical linkage that is driven by the servomotors so that movement of the hand input devices at the master controller causes the surgical instrument to move in a corresponding manner at the surgical site.
- the driven linkage or “slave” is often called a robotic surgical manipulator.
- Robotic surgery has potential applications for a wide variety of surgical procedures and settings. Patients may benefit from robotic surgery directed by a surgeon who is at a considerable distance from the patient. This may allow treatment of soldiers in a battlefield environment, or treatment of trauma victims at considerable distances from a skilled surgical staff. Of particular importance to the present invention, robotic surgery also may provide significant benefits for performing minimally invasive surgical procedures located near the surgeon, but which are best performed within internal surgical sites which are difficult and/or impossible to access directly using a surgeon's hands.
- elongate surgical instruments are introduced to an internal surgical site, often through trocar sleeves or cannulas.
- the surgical site often comprises a body cavity, such as the patient's abdomen.
- the body cavity may optionally be distended using a clear fluid such as an insufflation gas.
- Such minimally invasive procedures are often performed under the direction of a surgical imaging system, typically by introducing an endoscope to the surgical site.
- the surgeon manipulates the tissues using end effectors of the elongate surgical instruments by actuating the instrument's handles while viewing the surgical site on a video monitor.
- Robotically assisted minimally invasive surgery instead makes use of a servomechanism to actuate the surgical end effectors of the instruments.
- This allows the surgeon to operate in a comfortable position without looking one direction (towards the monitor) while manipulating handles of surgical instruments that are oriented in another direction (for example, into the patient's abdomen).
- a computer processor of the servomechanism can be used to maintain the alignment between hand input devices of the controller with the image of the surgical end effectors displayed on the monitor using coordinate system transformations. This allows the surgeon to operate in a natural position using anthropomorphic hand input devices and motions aligned with the image display, despite the fact that the actual surgical instruments are inserted via otherwise awkward arbitrary access positions.
- linkage arrangements have been proposed for use as a robotic surgical manipulator during minimally invasive robotic surgery.
- An exemplary linkage arrangement is described in U.S. Pat. No. 5,800,423, the full disclosure of which is incorporated herein by reference.
- this linkage makes use of a parallelogram arrangement of members to hold an instrument having a shaft.
- Such a manipulator structure can constrain movement of the instrument having a shaft so that the instrument pivots about a center of spherical rotation positioned in space along the length of the rigid shaft.
- an end effector of the surgical instrument can be positioned safely by moving the proximal end of the shaft using the manipulator linkage without imposing dangerous forces against the abdominal wall.
- Alternative manipulator structures are described, for example, in U.S. Pat. Nos. 5,445,166; 5,855,583; 5,808,665; and 5,184,601; the full disclosures of which are incorporated herein by reference.
- the present invention provides improved robotic surgery systems, structures, and methods.
- the invention enhances the efficiency and accuracy of robotic systems by providing techniques for aligning the motion and structure of the robotically controlled manipulators and end effectors with both the internal surgical site and each other.
- the invention makes use of manually positionable linkages supporting the surgical instruments. These linkages will often maintain a fixed configuration and/or position until a brake system is released. While the brake is held in a released mode, the fixable linkage allows the operating room personnel to manually move the linkage into alignment with the surgical site. The brake system will often fix the configuration of these passive linkages whenever the operator lets go, thereby avoiding inadvertent movement of the surgical instruments.
- manually repositionable joints of the positioning linkage allow the operator to translate the surgical manipulator and instrument in three dimensions, and to orient the surgical instrument by rotating the manipulator and instrument about three axes of rotation. Positioning of these structures is generally facilitated by using a counter-balanced linkage system, and/or by using an inherently balanced linkage system (for example, a selective Compliance Assembly Robot Arm or “SCARA,” a revolute arm in which the joint axes are vertical).
- SCARA selective Compliance Assembly Robot Arm
- the robotic system can automatically calculate the desired coordinate system transformations so as to align hand inputs at the master controller relative to a display system with the displayed movements of the surgical instruments end effector.
- This capability can be provided by including a sensor system coupled to the fixable linkage.
- a processor of the servomechanism can ensure that when the surgeon moves a hand input device to her right, the image of the end effector moves to the right on the controller's display.
- Multiple fixable positioning linkages will often extend from a common base to the driven linkages of the robotic surgical manipulators, so that the manipulator structures can be easily moved to the desired position for surgery, and so that the relative position of each manipulator can be calculated from the sensor system. This also allows positioning of the manipulators while the surgical instrument is at or near the center of travel of the manipulator, thereby decreasing the possibility that a surgical procedure will be interrupted by a limitation in the range of motion of the manipulator.
- the invention provides a robotic surgery system comprising a base, a surgical end effector, and robotic linkage supporting the end effector relative to the base.
- the linkage comprising a plurality of driven joints coupled to a servomechanism for moving the end effector so as to manipulate tissues.
- the linkage also includes a plurality of releasably fixable joints for pre-configuring the linkage.
- a joint sensor system couples the fixable joints to the servomechanism. The sensor system generates joint configuration signals.
- the invention provides a support structure for supporting a first robotic surgical manipulator relative to a second robotic surgical manipulator.
- Each surgical manipulator is coupled to a servomechanism so as to robotically manipulate tissues of a patient body with a surgical end effector.
- the support structure comprises a base coupled to the first manipulator.
- the manipulator support moveably supports the second manipulator relative to the base.
- a sensor system couples the manipulator support to the servomechanism.
- the sensor system transmits manipulator position signals to the servomechanism.
- Servomechanism calculates a position or orientation of the first manipulator relative to the second manipulator using the signals.
- the invention provides a robotic surgery system comprising a base, a surgical end effector and a manipulator supporting the end effector.
- the manipulator has a rigid shaft and constrains movement of the shaft to rotation about a pivot point along the shaft.
- An imaging system is oriented toward the end effector.
- the imaging system has a field of view defining a coordinate system.
- a linkage supports the manipulator relative to the base.
- a brake system restrains articulation of the linkage.
- the brake system is releasable to allow manual movement of the pivot point of the manipulator relative to the base.
- a servo-mechanism drivingly engages the manipulator for robotic manipulation of tissues with the end effector.
- a hand input controller is coupled to the servomechanism.
- the controller has a controller coordinate system.
- a sensor system is coupled to the linkage so as to generate linkage configuration signals.
- a processor is coupled to the sensor system and the servomechanism. The processor uses the linkage position signals to calculate a coordinate system transformation so as to coordinate controller inputs with a displayed image of the end effector.
- the invention provides a transportable robotic surgery system comprising a cart having rolling elements for moving the cart between operating rooms.
- a plurality of robotic arms are supported by the cart.
- a plurality of surgical implements are supported by the arms.
- a control station is couplable to the cart for directing robotic surgery.
- the invention provides a method for preparing for robotic surgery.
- the method comprises maintaining driven joints of a robotic surgical manipulator sufficiently near mid-points of travel of the joints, so as to avoid interference with a limit of travel of the manipulator within an intended worksite.
- the robotic manipulator is pre-positioned by manually articulating a linkage (the linkage generally supporting the manipulator relative to a base) while maintaining the driven joints near the mid-points.
- the positioned manipulator is restrained with a brake system so as to prevent articulation of the linkage.
- the invention provides a method for performing robotic surgery.
- the method comprises positioning a robotic surgical manipulator by manually articulating a linkage.
- the positioned manipulator is restrained with a brake system so as to prevent manual articulation of the linkage.
- a surgical end effector which is supported by the positioned manipulator, is imaged in an imaging coordinate system.
- the restrained manipulator is actuated with a servomechanism by actuating a controller in a controller coordinate system so as to robotically manipulate tissue with the end effector.
- the controller coordinate system is transformed to the imaging coordinate system by sensing joint configurations of the restrained linkage.
- the imaged end effector is displayed so that controller inputs correlate with end effector movements.
- the invention provides a method for performing robotic surgery.
- the method comprises manually moving a manipulator relative to a base by articulating a plurality of fixable joints.
- a brake is actuated to inhibit inadvertent manual movement of the positioned end effector from articulation of the fixable joints.
- Tissue is manipulated with the end effector by actuating a plurality of driven joints of the linkage with a servomechanism. Positions of the fixable joints are sensed and transmitted to the servomechanism.
- FIG. 1 is a plane view showing a robotic surgical system performing a minimally invasive robotic surgical procedure.
- FIG. 2 is a perspective view of a robotic surgical patient-side cart system in which positioning linkages having a series of manually articulatable, fixable joints support three robotically actuated manipulators.
- FIG. 2A is a perspective view of a robotic surgical manipulator for use in the cart system of FIG. 2.
- FIGS. 2B and C are side and front views, respectively, of the linkage of the robotic manipulator of FIG. 2, showing how the manipulator maintains a remote center of rotation along a shaft of a surgical instrument.
- FIG. 3 is a perspective view of the patient-side cart structure and positioning linkages which support the robotic manipulators in the system of FIG. 2.
- FIGS. 4A and B are front and rear perspective views, respectively, of the patient-side cart structure, showing the counter weighted vertical sliding joints which vertically position the manipulators, and also showing the steering system for the cart.
- FIG. 5 is a perspective view of a positioning linkage which allows the robotic manipulators to be pre-positioned manually, and also illustrates the potentiometers used to sense the joint angles.
- FIG. 6 is a perspective view of a positioning linkage used for manual positioning of a laparoscope in preparation for surgery, and also illustrates the potentiometers used to sense the joint angles.
- FIG. 7 is a perspective view of the patient-side cart and positioning linkages with lightweight covers protecting sensitive portions of the system.
- FIGS. 8A and B are rear and front views, respectively, of the surgeon's console for use in the surgical system of FIG. 1.
- FIGS. 9A and B illustrate a master input device for use in the surgeon's console of the FIGS. 8A and B.
- FIG. 10 is a perspective view of an alternative patient-side cart having a modified middle arm for positioning an endoscope.
- FIG. 11 is a perspective view of an exemplary articulated surgical instrument for use in the system of FIG. 1.
- the present invention provides robotic surgery systems, devices, and methods.
- Robotic surgery will generally involve the use of multiple robotic manipulator arms.
- One or more of the robotic manipulator arms will often support a surgical tool which may be articulated (such as jaws, scissors, graspers, needle holders, micro dissectors, staple appliers, tackers, suction/irrigation tools, clip appliers, or the like) or non-articulated (such as cutting blades, cautery probes, irrigators, catheters, suction orifices, or the like).
- One or more of the arms will often be used to support a surgical image capture device such as an endoscope (which may be any of a variety of structures such as a laparoscope, an arthroscope, a hysteroscope, or the like), or, optionally, some other imaging modality (such as ultrasound, fluoroscopy, magnetic resonance imaging, or the like).
- a surgical image capture device such as an endoscope (which may be any of a variety of structures such as a laparoscope, an arthroscope, a hysteroscope, or the like), or, optionally, some other imaging modality (such as ultrasound, fluoroscopy, magnetic resonance imaging, or the like).
- the arms will support at least two surgical tools corresponding to the two hands of a surgeon and one image capture device.
- Mounting of multiple robotic manipulator arms with the arms supported by one or more positioning linkages attached to a common base also allows the computer system that controls robotic movements to determine the position of the end effectors and robotic arms relative to each other. This can be used for a variety of purposes, including transforming an image capture coordinate system to a hand input controller coordinate system so as to align the surgeon's inputs with movements of the end effectors as displayed to the surgeon.
- the computer may also calculate the positions of the robotic manipulators to avoid interference as the implements are manipulated during surgery. For example, solid modeling of the robotic manipulator structure may be used to prevent two arms from striking each other, thereby avoiding damage to the robotic structure and potential injury to the patient.
- This common base may also maximize access to the patient before, during, and after the robotic surgical procedure, as the cart will typically be situated along one side of the operating table, leaving the other side available for access by surgeons and surgical assistants.
- the present invention will find applications in a variety of surgical procedures.
- the most immediate applications will be to improve existing minimally invasive surgical procedures, such as coronary artery bypass grafting and mitral and aortic valve repair and/or replacement.
- the invention will also have applications for surgical procedures which are difficult to perform using existing minimally invasive techniques, such as Nissen Fundoplications. Additionally, it is anticipated that these surgical systems will find uses in entirely new surgeries that would be difficult and/or impossible to perform using traditional open or known minimally invasive techniques.
- vascular surgery such as for the repair of thoracic and abdominal aneurysms
- general and digestive surgeries such as cholecystectomy, inguinale hernia repair, colon resection, and the like
- gynecology for fertility procedures, hysterectomies, bladder neck suspensions, and the like
- alternative procedures include vascular surgery (such as for the repair of thoracic and abdominal aneurysms), general and digestive surgeries (such as cholecystectomy, inguinale hernia repair, colon resection, and the like), gynecology (for fertility procedures, hysterectomies, bladder neck suspensions, and the like), and a wide variety of alternative procedures.
- an operator O (generally a surgeon) performs a minimally invasive surgical procedure on patient P by manipulating input devices at a surgeon's console 150 .
- a computer of console 150 directs movement of endoscopic surgical instruments 54 , effecting movement of the instruments using a robotic patient-side cart system 50 .
- An assistant A assists in pre-positioning of the manipulator relative to patient P in swapping tools 54 for alternative tool structures, and the like, while viewing the internal surgical site via an assistant display 12 .
- the image of the internal surgical site shown to assistant A and operator O by the assistant display and surgeon's console is provided by one of the surgical instruments supported by cart 50 .
- cart 50 includes at least three robotic manipulator arms supported by linkages, with the central arm supporting an endoscope and the outer arms supporting tissue manipulation tools.
- the arms of cart 50 will include a positioning portion which remains in a fixed configuration while manipulating tissue, and a driven portion which is actively articulated under the direction of surgeon's console 150 .
- the actively driven portion is herein referred to as a manipulator 58 .
- the fixable portion of the cart linkage structures may be referred to as a positioning linkage and/or a “set-up joint” 56 , 56 ′.
- Robotic arm cart 50 is shown in isolation in FIG. 2.
- Cart 50 includes a base 52 from which three surgical implements 54 are supported. More specifically, implements 54 are each supported by a positioning linkage 56 and a robotic manipulators 58 .
- linkage structures are here illustrated with protective covers extending over much of the robotic linkage. It should be understood that these protective covers are optional, and may be limited in size or entirely eliminated in some embodiments to minimize the inertia that is manipulated by the servomechanism, and to limit the overall weight of cart 50 .
- Cart 50 will generally have dimensions suitable for transporting the cart between operating rooms.
- the cart will typically fit through standard operating room doors and onto standard hospital elevators.
- the cart should have a weight and wheel (or other transportation) system that allows the cart to be positioned adjacent an operating table by a single attendant.
- the cart should have sufficient stability in the transport configuration to avoid tipping at minor discontinuities of the floor, and to easily withstand overturning moments that will be imposed at the ends of the robotic arms during use.
- robotic manipulators 58 preferably include a linkage 62 that constrains movement of tool 54 .
- linkage 62 includes rigid links coupled together by rotational joints in a parallelogram arrangement so that tool 54 rotates around a point in space 64 , as more fully described in issued U.S. Pat. No. 5,817,084, the full disclosure of which is incorporated herein by reference.
- the parallelogram arrangement constrains rotation to pivoting about an axis 64 a , sometimes called the pitch axis.
- the links supporting the parallelogram linkage are pivotally mounted to set-up joints 56 so that tool 54 further rotates about an axis 64 b , sometimes called the yaw axis.
- the pitch and yaw axes intersect at the remote center 64 , which is aligned along a shaft 66 of tool 54 .
- Tool 54 has still further driven degrees of freedom as supported by manipulator 58 , including sliding motion of the tool along insertion axis 64 c (the axis of shaft 66 ), sometimes referred to as insertion.
- insertion the axis of shaft 66
- remote center 64 remains fixed relative to base 68 of manipulator 58 .
- the entire manipulator is generally moved to re-position remote center 64 .
- Linkage 62 of manipulator 58 is driven by a series of motors 70 (see FIG. 2B). These motors actively move linkage 62 in response to commands from a processor. Motors 70 are further coupled to tool 54 so as to rotate the tool about axis 64 c , and often to articulate a wrist at the distal end of the tool about at least one, and often two, degrees of freedom. Additionally, motors 70 can be used to actuate an articulatable end effector of the tool for grasping tissues in the jaws of a forceps or the like. Motors 70 may be coupled to at least some of the joints of tool 54 using cables, as more fully described in U.S. Pat. No. 5,792,135, the full disclosure of which is also incorporated herein by reference.
- manipulator 58 will often include flexible members for transferring motion from the drive components to the surgical tool.
- manipulator 58 will often include a cannula 72 .
- Cannula 72 which may be releasably coupled to manipulator 58 , supports tool 54 , preferably allowing the tool to rotate and move axially through the central bore of the cannula.
- manipulator 58 is generally supported by a positioning linkage 56 .
- Exemplary positioning linkage structures are illustrated in FIG. 3.
- the exemplary positioning linkage system includes three types of structures. First, a vertical column 80 supports vertically sliding joints 82 that are used to position manipulator 58 along the vertical or Z axis. Second, rotary joints 84 separated by rigid links 86 are used to horizontally position manipulators 58 in the X-Y plane. Third, another series of rotary joints 84 mounted adjacent a manipulator interface 88 rotationally orients the manipulators.
- the structure of column 80 , vertical sliding joints 82 , and base 52 can be understood with reference to FIGS. 4A and B. Beginning with base 52 , the base will generally distribute the weight of the robotic structures and the forces imposed on the entire slave system. When used for surgery, base 52 will be fixedly supported by a series of jacks 90 to avoid inadvertent movement of the robotic arms. Jacks 90 will typically be threadably coupled to the remainder of base 52 , so that the jacks can be retracted for transport. When jacks 90 are retracted by rotating their handles, base 52 rests on wheels 92 .
- the wheels located near the front of the cart will preferably be non-swiveling.
- the wheels will rotate about a fixed axis relative to the base.
- Wheels 92 adjacent a rear portion of the cart will preferably be coupled to steering handle 94 so that the wheels and handle rotate about a steering axis. This facilitates maneuvering of the cart and positioning of the cart adjacent the operating table.
- Passively swiveling “outrigger” wheels 93 may be disposed outboard of the steerable wheels 92 to provide additional support if the cart begins to tip.
- the exemplary base comprises box steel tubing, which may be welded or bolted together.
- Column 80 extends upward from base 52 , and may optionally also comprise a box steel structure.
- Sliding joints 82 including vertical tracks 96 on which sliders 98 ride, are counterbalanced by weights 100 mounted within column 80 . More specifically, a cable extends upward from slider 98 and over a pulley 102 , and then down from the pulley to weight 100 within column 80 .
- Weight 100 preferably has a mass that is substantially equal to the combined mass of the slider 98 , positioning linkage 56 , manipulator 58 , and tool 54 . This allows the robotic arms to be re-positioned upward or downward with very little effort. It should be understood that weight 100 is schematically illustrated, and may have an actual length of about 24 in. or more.
- pulleys 102 are coupled to column 80 by brakes 104 . These brakes prevent rotation of the pulleys when slider 98 is positioned, as will be described in more detail hereinbelow.
- sliding joints 82 include sensors 106 coupled to sliders 98 or counterweights 100 by cables 108 .
- Sensors 106 comprise accurate potentiometers that generate electrical signals which vary with the position of sliders 98 along tracks 96 .
- knowing the axial position of sliders 98 allows the processor to perform transformations between first and second slider coordinate systems 110 , 112 and a reference base coordinate system 114 .
- Each sensor preferably may comprise redundant potentiometers that “self-check” one another. That is, information from the redundant potentiometers may be compared with a selected tolerance to ensure to a degree of accuracy that the positioning of the corresponding joint is correctly known. If the information from the redundant potentiometers fail to match, the operator may be informed of this fact and/or the set-up may be interrupted or delayed until corrective action is taken. Additionally, the operator may be able to override such an interrupt if desired. Potentiometers on the set-up linkage may be also checked for movement, to warn an operator of unintended movement of the normally locked and stationary set-up linkages during an operation, such as might be due to an assistant unintentionally leaning against the linkage.
- Positioning linkage 56 is supported by slider 98 , and include first and second elongate links 120 , 122 .
- First link 120 is coupled to slider 98 by rotational joint 84 a , and is coupled to second link 122 by rotational joint 84 b .
- slider 98 moves up and downward (along the z-axis) to vertically position the manipulator and remote center of rotation. Pivoting of the first and second linkages relative to the slider and to each other allows the manipulator to move horizontally (in the X-Y plane).
- rotational joints 84 a and 84 b rotate about vertical axes, the height of the manipulator does not change when these joints rotate and no counterbalancing is required.
- Rotational joints 84 generally include a brake 124 and a sensor 126 .
- Brake 124 prevents rotation about the joint unless the brake is released.
- the brake is normally on (so that the joint is in a fixed configuration). This prevents inadvertent articulation of positioning linkage 56 during a surgical procedure, and also avoids movement if power to the robotic system is lost.
- the brakes may be safely overcome (so as to articulate the joints without damage) with a reasonable amount of manual force against the linkage or manipulator, thereby providing a safety feature if power is lost.
- Suitable brakes may be actuated electrically, pneumatically, hydraulically, or the like, and may be located at the joint axis (as shown) or may coupled to the joint using gears, cables, rigid linkages, or the like.
- Sensors 126 of joints 84 generate electrical signals which indicate the rotational angle defined by the joint. Sensors 126 preferably generate absolute angle indication signals that vary with the absolute angle defined by the joint, rather than generating a signal which indicates a change in the angle. This avoids having to regularly return the joints to a zero position to provide an accurate angle measurement.
- absolute angle measurement devices are generally preferred, in some embodiments sensors 126 may comprise encoders that measure a number of discrete changes in the joint angle, or a wide variety of alternative structures.
- Links 120 and 122 may be formed of a wide variety of high strength, light weight materials.
- Alternative structures might include aluminum or composites, such as graphite or the like. In general, minimizing the weight of the set-up joints and manipulator structures can dramatically decrease the total weight of the robotic cart, as the structures are often counterbalanced and any added weight generally increases the cart base weight to avoid tipping.
- Positioning of the manipulator in preparation for surgery is facilitated by providing a handle 128 affixed to the distal end of second link 122 .
- Handle 128 has an actuation button 130 that releases brakes 124 so as to allow movement of set-up joints 56 .
- the joints will preferably remain locked unless a signal is provided by circuitry coupled to actuation button 130 .
- Affixing handle 128 on or near the manipulator support interface allows the positioning linkage to be moved without imposing undue forces against the servomechanism of the manipulator structure.
- rotational joints 84 c, d , and e allow the manipulator structure to be rotated to a desired orientation.
- positioning linkage 56 allows the manipulator to be positioned with six degrees of freedom relative to base 52 of the robotic arm cart. As illustrated, one or more orientational degrees of freedom may be provided between the handle and the manipulator.
- the rotational joints 84 and the sliding joint 82 include a sensor coupled to a processor of the servomechanism, the servomechanism can calculate a position and orientation of a manipulator interface 132 on which the manipulator is mounted, and can also perform the coordinate system transformations described hereinabove.
- the brakes 124 at all of the joints on one of the three positioning linkage 56 supporting a manipulator 58 are actuated in unison by actuation button 130 on handle 128 , allowing the operating room personnel to position and orient the manipulator freely.
- the manipulator structure will preferably be balanced about rotational joints 84 d and 84 e , as these joints may rotate about axes that are at an angle from vertical. Fabricating the manipulator or adding counterbalance weights to the manipulator so that the center of mass of the manipulator is aligned along the axes of rotation of these two joints (as illustrated in FIG. 3) will prevent the operating room personnel from having to overcome a righting moment when rotationally positioning the manipulator.
- positioning linkage 56 ′ provide each of the positional degrees of freedom described above, but with more limited orientational adjustment capabilities.
- an endoscope is supported by a manipulator having four degrees of freedom (such as pitch, yaw, insertion, and roll about the scope's axis) the manipulator need not be supported by a positioning linkage with six degrees of freedom for many surgical procedures.
- Manipulator interface 132 is here coupled to the distal end of second link 122 by a single rotational joint 84 c . As the manipulator structure will have multiple degrees of freedom for the surgical implement supported thereon, this provides sufficient endoscope positioning and orienting flexibility with reduced complexity.
- two six degree of freedom positioning linkages 56 are supported by column 80 on either side of a four degree of freedom positioning linkages 56 ′.
- This central set-up joint is particularly well adapted for use in supporting an image capture device such as a laparoscope, endoscope, or the like.
- Six degree of freedom positioning linkages 56 may be used to pre-position manipulators supporting surgical implements used for manipulating tissue. This arrangement is well adapted for use by a surgeon controlling a surgical tool with each hand while viewing the procedure through the endoscope.
- a manipulator structure coupling the endoscope to positioning linkage 56 ′ may be actuated with a servomechanism so as to pivot the endoscope about the insertion point, as described above.
- FIG. 7 also illustrates a series of protective covers 140 mounted over the brakes and sensors of joints 84 . Additionally, a column cover 142 protects the pulleys and their associated brakes. These covers help avoid injury to attending operating room personnel by limiting the number of pinch points, and also provide a more finished appearance. Similar appearance benefits are provided by mounting base and column covers 144 on their associated cart structures.
- Control station 150 includes processors 152 for the robotic servomechanism. Also included in controller station 150 are a stereo imaging system 154 and a pair of controllers 156 (shown in FIGS. 9A and 9B), which hang below the imaging system.
- the surgeon will generally manipulate tissues using the robotic system by moving the controllers within a three dimensional controller workspace of controller station 150 .
- the surgeon will manipulate these controllers while viewing the surgical site through display 154 .
- Processor 152 can calculate an image capture coordinate system via the sensors in positioning linkage 56 ′ and manipulator 58 supporting the laparoscope, and can perform coordinate system transformations so as to generate signals to the manipulator structure that maintain alignment between the three dimensional image of the end effector as viewed through display 154 and the hand controller within the controller workspace.
- the robotic surgery system allows the surgeon to manipulate the surgical tools as if the handle in the surgeon's hand and the end effector in the surgeon's field of view define a single contiguous surgical instrument. This provides an enhanced sense of presence and allows the surgeon to operate efficiently and accurately without performing mental coordinate transformations.
- the correlation between movement of the input device and image of the end effector is more fully described in U.S. Pat. No. 5,808,665 while an exemplary method and structure for performing the coordinate system transformation calculations is detailed in Provisional U.S. patent application Ser. No. 60/128,160 filed on Apr. 7, 1999 for a “ Camera Referenced Control in a Minimally Invasive Surgical Apparatus ”, the full disclosures of which are incorporated herein by reference.
- controller 156 includes an articulate arm portion 156 A and a wrist or gimbal portion 156 B.
- Articulate arm 156 A primarily accommodates and senses positional or translational movement in the controller workspace, while gimbal 156 B accommodates and senses an orientation of a handle 160 .
- Articulate arm 156 A includes joints which accommodate pivotal rotation about axis A, B, and C, while gimbal 156 B includes rotational joints which accommodate and sense movement about orientational axis 1 , 2 , and 3 .
- Gimbal 156 B also moves relative to articulate arm 156 A about a fourth orientational axis 4 when mounted to the arm, thereby providing a redundant orientational degree of freedom for the master input control handle.
- This exemplary input device is more fully described in co-pending Provisional U.S. Patent Application Ser. No. 60/111,710 filed on Dec. 8, 1998 for a “ Master Having Redundant Degrees of Freedom ”, the full disclosure of which is incorporated herein by reference.
- an alternative cart 50 ′ including a positioning linkage 56 ′ with less than six degrees of freedom, supported between two six degrees of freedom positioning linkages 56 .
- Six degree of freedom linkages 56 generally extend radially outwardly from column 80 and will often be arranged to support the surgical tools 54 (including the tissue manipulating tools and the endoscope,), so that the elongated shafts of these endoscopic instruments extend radially outwardly from a pattern of apertures into an internal surgical sites, as illustrated in FIG. 1.
- Endoscope manipulator 170 and its associated linkage 56 ′ will often be arranged so as to extend substantially from column 80 to the endoscope, as also illustrated in FIG. 1.
- Endoscope manipulator 170 may not include all of the tool actuation drive system provided for articulated surgical instruments, which are typically included in manipulators 58 .
- An exemplary endoscope manipulator is more fully described in Provisional U.S. Patent Application Ser. No. 60/112,990 filed on Dec. 16, 1998, the full disclosure of which is incorporated herein by reference.
- Instrument 54 includes an elongate shaft 66 supporting an end effector 174 relative to a proximal housing 176 .
- Proximal housing 176 is adapted for releasably mounting instrument 54 to a manipulator, and for transmitting drive signals and/or motion between the manipulator and end effector 174 .
- a wrist 178 may provide two degrees of freedom of motion between end effector 174 and shaft 66 , and the shaft may be rotatable relative to proximal housing 176 so as to provide the end effector with three substantially orientational degrees of freedom within the patient P body.
- the shaft 172 , wrist 178 , and one or both members of end effector 174 of instrument 54 may include visible distance markings along their outer surfaces (see FIG. 11), such as in millimeters or portions of inches. Such markings aid a surgeon to understand the distances involved at the surgical site while performing remote telesurgery.
- the surgeon may use the information provided by the ruler markings on the instrument, for example, to gauge the proximity of his/her instruments to various organs or tissue portions, the proximity of the instruments to one another, and the size of various features of the surgical site. Such information may prove valuable when the surgical site is magnified, in 2-D or 3-D, to the point where it may be difficult for the surgeon to relate the magnified image to real scale.
- the operator's console might be arranged with an information “pop-up” capability, with the surgeon being able to call up, when desired, information such as a virtual ruler simply by pushing a button, for example, or activating any other appropriate input device such as voice control.
- the ruler preferably would be moveable on the viewing screen using a mouse, for example, so that the surgeon could then measure a distance of interest using said virtual ruler.
- a number of refinements may be included in the positioning linkages to expedite and facilitate pre-positioning the manipulators in preparation for surgery. For example, it may be desirable to drive the manipulators to a position at which they support their associated surgical instruments near a center of travel of the manipulator while the positioning linkages are being moved into a proper position and orientation for surgery. This will help insure that the assistant A aligns the manipulators with the internal surgical site near the center of travel of the manipulators, thereby avoiding interruptions of the surgical procedure when the movement of the tool is inhibited by a limit of travel of the manipulator.
- processor 152 of workstation 150 may actively drive at least one (and possibly all) of the joints of the positioning linkages to a pre-determined “nominal” configuration, so as to support each manipulator at a position and/or orientation appropriate for a surgical procedure.
- the processor might optionally drive the positioning linkages to selectively different pre-determined nominal configurations for differing surgical procedures so as to expedite the set-up process, for example, moving the manipulators to position the surgical instruments and endoscope for a typical coronary bypass grafting in response to a first input from operator O, or for a Nissen Fundoplication in response to an alternative input from the operator O.
- the assistant A may then optionally move the positioning linkages from the nominal configuration slightly as desired for a procedure on a particular patient P. After a procedure is complete, actively driving the positioning linkages clear of the patient P and/or to a cart storage/transportation configuration (with the manipulators tucked in low along side column 80 ) can enhance the overall number of procedures which might be performed by the robotic system in a given time.
- the optionally releasably attached cannula 72 may be inscribed on its outer surface with markings (see FIG. 2B). Such markings may extend along the entire length of the cannula, or begin at the point along its length corresponding to the remote center of motion 64 . These markings, which may comprise, for example, the distance markings on a ruler, aid a surgeon's assistant in placing the cannula so that the remote center of motion of the manipulator roughly corresponds to the center of the depth of necessary incision in the patient's body to permit insertion of the cannula.
- the markings would permit easier placement of the center of motion at the midpoint of the depth of the incision between the patient's ribs. Such markings also permit an assistant to realize how far a cannula has been inserted into a patient's body.
- a variety of alternative means for guiding positioning linkages 56 , 56 ′ to one or more nominal configurations might be provided.
- a joint of positioning linkage 56 is shown having nominal positioning indicators 180 and 182 .
- first nominal position indicators 180 are aligned on one or more of the rotational joints 84 and sliding joints 82 .
- a second set of nominal position indicators 182 might be brought into alignment by moving the manipulator so as to configure a cart for a different procedure.
- the various sets of nominal position indicators may be differentiated by color, graphics, alpha-numeric markings, or the like.
- Still further alternatives are possible, including software which actuates the brakes of the positioning linkages when each joint is moved into a desired position, so that moving the manipulator arm generally towards the correct orientation will, one-by-one, lock the joints into the desired nominal position.
- Final positioning may then be effected by gently oscillating the manipulator about the joints of the positioning linkage in any remaining degrees of freedom until the sensors indicate that the desired unlocked joints are sufficiently close to the nominal configuration so as to actuate the brakes.
- the cart systems of the present invention can incorporate a number of advantageous features and structures. It is generally preferred to orient the first degree of the positioning linkages extending from a fixable base in a vertical orientation, particularly when movement about the first degree of freedom is counterbalanced. Each consecutive positioning link may be smaller and lighter from the base toward the manipulator, as clearly illustrated in FIG. 5, due to the reduced moment arm of forces applied against the manipulator. Preferably, the positioning linkage members will be designed so as to support forces against the manipulator with substantially equal contributions to the stiffness of the link structure.
- a particularly advantageous design approach is to initially assume that a plurality of the major structural elements of the positioning linkages, typically including the joint, axles, hubs, links and/or bearings, contribute substantially equal amounts to the total deflection when the positioning linkage is configured for surgery. In this way, no single member is over-designed in a way which increases its weight unnecessarily, and thereby avoiding a system of structural members whose overall stiffness is predominantly limited by the most compliant members.
- Many of the components of positioning linkages described above are commercially available from a wide variety of vendors, for example, tapered roller bearings, electrically releasable brakes, and the like.
- each of the robotic surgical arms is mounted to the ceiling of an operating room.
- the attachment points on the ceiling may need to be reinforced to bear the weight of the robotic arms, depending upon their weight.
- the operating room may be dedicated to robotic surgery, or have other uses, in which case the arms may be retracted out of the normal operating space by repositioning the positioning linkages.
- the arms may be releasably attached to the ceiling, and may be detached after an operation for storage elsewhere or for maintenance.
- the attachment points on the ceiling will preferably be known relative to one another. With that information and the information from the sensor array along each arm, the positions of the end effectors can be accurately calculated and manipulated at the surgical site. As a result, the present invention is limited solely by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Robotics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Endoscopes (AREA)
Abstract
Description
- This application claims the benefit of priority from (provisional) application No. 60/095,303, filed on Aug. 4, 1998, the full disclosure of which is incorporated herein by reference.
- This invention generally relates to surgical devices, systems, and methods, and more particularly provides structures and techniques for manually aligning a robotic surgery system with a desired surgical site.
- In robotically assisted or telerobotic surgery, a surgeon typically operates a master controller to control the motion of surgical instruments at the surgical site. The controller may be separated from the patient by a significant distance (e.g., across the operating room, in a different room, or in a completely different building than the patient). Alternatively, a controller may be positioned quite near the patient in the operating room. Regardless, the controller will typically include one or more hand input devices (such as joysticks, exoskeletal gloves, or the like) which are coupled by a servomechanism to a surgical instrument. More specifically, servo motors articulate the surgical instrument based on the surgeon's manipulation of the hand input devices. During an operation, the surgeon may employ, via the robotic surgery system, a variety of surgical instruments, such as tissue graspers, needle drivers, electrosurgical cautery probes, etc. Each of these structures perform functions for the surgeon, for example, holding or driving a needle, grasping a blood vessel, or dissecting, cauterizing, or coagulating tissue.
- A variety of structural arrangements might be used to support the surgical instrument at the surgical site during robotic surgery. It has previously been proposed to support the surgical instrument with a mechanical linkage that is driven by the servomotors so that movement of the hand input devices at the master controller causes the surgical instrument to move in a corresponding manner at the surgical site. The driven linkage or “slave” is often called a robotic surgical manipulator.
- Robotic surgery has potential applications for a wide variety of surgical procedures and settings. Patients may benefit from robotic surgery directed by a surgeon who is at a considerable distance from the patient. This may allow treatment of soldiers in a battlefield environment, or treatment of trauma victims at considerable distances from a skilled surgical staff. Of particular importance to the present invention, robotic surgery also may provide significant benefits for performing minimally invasive surgical procedures located near the surgeon, but which are best performed within internal surgical sites which are difficult and/or impossible to access directly using a surgeon's hands.
- In traditional minimally invasive surgery, elongate surgical instruments are introduced to an internal surgical site, often through trocar sleeves or cannulas. The surgical site often comprises a body cavity, such as the patient's abdomen. The body cavity may optionally be distended using a clear fluid such as an insufflation gas. Such minimally invasive procedures are often performed under the direction of a surgical imaging system, typically by introducing an endoscope to the surgical site. In traditional minimally invasive surgery, the surgeon then manipulates the tissues using end effectors of the elongate surgical instruments by actuating the instrument's handles while viewing the surgical site on a video monitor.
- Robotically assisted minimally invasive surgery instead makes use of a servomechanism to actuate the surgical end effectors of the instruments. This allows the surgeon to operate in a comfortable position without looking one direction (towards the monitor) while manipulating handles of surgical instruments that are oriented in another direction (for example, into the patient's abdomen). As more fully described in U.S. Pat. No. 5,696,837, the full disclosure of which is incorporated herein by reference, a computer processor of the servomechanism can be used to maintain the alignment between hand input devices of the controller with the image of the surgical end effectors displayed on the monitor using coordinate system transformations. This allows the surgeon to operate in a natural position using anthropomorphic hand input devices and motions aligned with the image display, despite the fact that the actual surgical instruments are inserted via otherwise awkward arbitrary access positions.
- A variety of linkage arrangements have been proposed for use as a robotic surgical manipulator during minimally invasive robotic surgery. An exemplary linkage arrangement is described in U.S. Pat. No. 5,800,423, the full disclosure of which is incorporated herein by reference. In one embodiment, this linkage makes use of a parallelogram arrangement of members to hold an instrument having a shaft. Such a manipulator structure can constrain movement of the instrument having a shaft so that the instrument pivots about a center of spherical rotation positioned in space along the length of the rigid shaft. By aligning this center of rotation with the access point to the internal surgical site (for example, with the trocar or cannula at the abdominal wall during laparoscopic surgery), an end effector of the surgical instrument can be positioned safely by moving the proximal end of the shaft using the manipulator linkage without imposing dangerous forces against the abdominal wall. Alternative manipulator structures are described, for example, in U.S. Pat. Nos. 5,445,166; 5,855,583; 5,808,665; and 5,184,601; the full disclosures of which are incorporated herein by reference.
- While the minimally invasive robotic surgery systems proposed to date appear to offer tremendous advantages for performing a wide variety of procedures, still further improvements would be desirable. In general, it would be desirable to provide improved structures and systems for performing robotic surgery. More specifically, it would be beneficial to enhance the efficiency and ease of use of these systems. For example, it would be beneficial to facilitate the alignment of a surgical manipulator with a desired surgical access point. It would further be desirable to allow the surgeon to begin manipulating tissues immediately upon insertion of the surgical instruments and imaging system, with little or no delay in aligning the hand input devices with the actuation servomechanisms. It would further be desirable to provide robotic surgery systems which could be moved between multiple operating rooms without requiring major structural modifications, complex alignment procedures, or unusual peripheral equipment for the operating room, hospital, or procedure site. It would be best if these improvements allowed normal operating room personnel to rapidly arrange and prepare the robotic surgery system for surgery with little or no specialized training, and with as little impact as possible on the overall cost and complexity of the system.
- The present invention provides improved robotic surgery systems, structures, and methods. In general, the invention enhances the efficiency and accuracy of robotic systems by providing techniques for aligning the motion and structure of the robotically controlled manipulators and end effectors with both the internal surgical site and each other. In many embodiments, the invention makes use of manually positionable linkages supporting the surgical instruments. These linkages will often maintain a fixed configuration and/or position until a brake system is released. While the brake is held in a released mode, the fixable linkage allows the operating room personnel to manually move the linkage into alignment with the surgical site. The brake system will often fix the configuration of these passive linkages whenever the operator lets go, thereby avoiding inadvertent movement of the surgical instruments. In the exemplary embodiment, manually repositionable joints of the positioning linkage allow the operator to translate the surgical manipulator and instrument in three dimensions, and to orient the surgical instrument by rotating the manipulator and instrument about three axes of rotation. Positioning of these structures is generally facilitated by using a counter-balanced linkage system, and/or by using an inherently balanced linkage system (for example, a selective Compliance Assembly Robot Arm or “SCARA,” a revolute arm in which the joint axes are vertical).
- Advantageously, once the linkages supporting the surgical manipulator, instruments, and the imaging mechanism are in position, the robotic system can automatically calculate the desired coordinate system transformations so as to align hand inputs at the master controller relative to a display system with the displayed movements of the surgical instruments end effector. This capability can be provided by including a sensor system coupled to the fixable linkage. By measuring the angle of each rotational joint and the position of each sliding joint, a processor of the servomechanism can ensure that when the surgeon moves a hand input device to her right, the image of the end effector moves to the right on the controller's display. Multiple fixable positioning linkages will often extend from a common base to the driven linkages of the robotic surgical manipulators, so that the manipulator structures can be easily moved to the desired position for surgery, and so that the relative position of each manipulator can be calculated from the sensor system. This also allows positioning of the manipulators while the surgical instrument is at or near the center of travel of the manipulator, thereby decreasing the possibility that a surgical procedure will be interrupted by a limitation in the range of motion of the manipulator.
- In a first aspect, the invention provides a robotic surgery system comprising a base, a surgical end effector, and robotic linkage supporting the end effector relative to the base. The linkage comprising a plurality of driven joints coupled to a servomechanism for moving the end effector so as to manipulate tissues. The linkage also includes a plurality of releasably fixable joints for pre-configuring the linkage. A joint sensor system couples the fixable joints to the servomechanism. The sensor system generates joint configuration signals.
- In another aspect, the invention provides a support structure for supporting a first robotic surgical manipulator relative to a second robotic surgical manipulator. Each surgical manipulator is coupled to a servomechanism so as to robotically manipulate tissues of a patient body with a surgical end effector. The support structure comprises a base coupled to the first manipulator. The manipulator support moveably supports the second manipulator relative to the base. A sensor system couples the manipulator support to the servomechanism. The sensor system transmits manipulator position signals to the servomechanism. Servomechanism calculates a position or orientation of the first manipulator relative to the second manipulator using the signals.
- In yet another aspect, the invention provides a robotic surgery system comprising a base, a surgical end effector and a manipulator supporting the end effector. The manipulator has a rigid shaft and constrains movement of the shaft to rotation about a pivot point along the shaft. An imaging system is oriented toward the end effector. The imaging system has a field of view defining a coordinate system. A linkage supports the manipulator relative to the base. A brake system restrains articulation of the linkage. The brake system is releasable to allow manual movement of the pivot point of the manipulator relative to the base. A servo-mechanism drivingly engages the manipulator for robotic manipulation of tissues with the end effector. A hand input controller is coupled to the servomechanism. The controller has a controller coordinate system. A sensor system is coupled to the linkage so as to generate linkage configuration signals. A processor is coupled to the sensor system and the servomechanism. The processor uses the linkage position signals to calculate a coordinate system transformation so as to coordinate controller inputs with a displayed image of the end effector.
- In yet another system aspect, the invention provides a transportable robotic surgery system comprising a cart having rolling elements for moving the cart between operating rooms. A plurality of robotic arms are supported by the cart. A plurality of surgical implements are supported by the arms. A control station is couplable to the cart for directing robotic surgery.
- In a first method aspect, the invention provides a method for preparing for robotic surgery. The method comprises maintaining driven joints of a robotic surgical manipulator sufficiently near mid-points of travel of the joints, so as to avoid interference with a limit of travel of the manipulator within an intended worksite. The robotic manipulator is pre-positioned by manually articulating a linkage (the linkage generally supporting the manipulator relative to a base) while maintaining the driven joints near the mid-points. The positioned manipulator is restrained with a brake system so as to prevent articulation of the linkage.
- In another method aspect, the invention provides a method for performing robotic surgery. The method comprises positioning a robotic surgical manipulator by manually articulating a linkage. The positioned manipulator is restrained with a brake system so as to prevent manual articulation of the linkage. A surgical end effector, which is supported by the positioned manipulator, is imaged in an imaging coordinate system. The restrained manipulator is actuated with a servomechanism by actuating a controller in a controller coordinate system so as to robotically manipulate tissue with the end effector. The controller coordinate system is transformed to the imaging coordinate system by sensing joint configurations of the restrained linkage. The imaged end effector is displayed so that controller inputs correlate with end effector movements.
- In yet another method aspect, the invention provides a method for performing robotic surgery. The method comprises manually moving a manipulator relative to a base by articulating a plurality of fixable joints. A brake is actuated to inhibit inadvertent manual movement of the positioned end effector from articulation of the fixable joints. Tissue is manipulated with the end effector by actuating a plurality of driven joints of the linkage with a servomechanism. Positions of the fixable joints are sensed and transmitted to the servomechanism.
- FIG. 1 is a plane view showing a robotic surgical system performing a minimally invasive robotic surgical procedure.
- FIG. 2 is a perspective view of a robotic surgical patient-side cart system in which positioning linkages having a series of manually articulatable, fixable joints support three robotically actuated manipulators.
- FIG. 2A is a perspective view of a robotic surgical manipulator for use in the cart system of FIG. 2.
- FIGS. 2B and C are side and front views, respectively, of the linkage of the robotic manipulator of FIG. 2, showing how the manipulator maintains a remote center of rotation along a shaft of a surgical instrument.
- FIG. 3 is a perspective view of the patient-side cart structure and positioning linkages which support the robotic manipulators in the system of FIG. 2.
- FIGS. 4A and B are front and rear perspective views, respectively, of the patient-side cart structure, showing the counter weighted vertical sliding joints which vertically position the manipulators, and also showing the steering system for the cart.
- FIG. 5 is a perspective view of a positioning linkage which allows the robotic manipulators to be pre-positioned manually, and also illustrates the potentiometers used to sense the joint angles.
- FIG. 6 is a perspective view of a positioning linkage used for manual positioning of a laparoscope in preparation for surgery, and also illustrates the potentiometers used to sense the joint angles.
- FIG. 7 is a perspective view of the patient-side cart and positioning linkages with lightweight covers protecting sensitive portions of the system.
- FIGS. 8A and B are rear and front views, respectively, of the surgeon's console for use in the surgical system of FIG. 1.
- FIGS. 9A and B illustrate a master input device for use in the surgeon's console of the FIGS. 8A and B.
- FIG. 10 is a perspective view of an alternative patient-side cart having a modified middle arm for positioning an endoscope.
- FIG. 11 is a perspective view of an exemplary articulated surgical instrument for use in the system of FIG. 1.
- The present invention provides robotic surgery systems, devices, and methods. Robotic surgery will generally involve the use of multiple robotic manipulator arms. One or more of the robotic manipulator arms will often support a surgical tool which may be articulated (such as jaws, scissors, graspers, needle holders, micro dissectors, staple appliers, tackers, suction/irrigation tools, clip appliers, or the like) or non-articulated (such as cutting blades, cautery probes, irrigators, catheters, suction orifices, or the like). One or more of the arms will often be used to support a surgical image capture device such as an endoscope (which may be any of a variety of structures such as a laparoscope, an arthroscope, a hysteroscope, or the like), or, optionally, some other imaging modality (such as ultrasound, fluoroscopy, magnetic resonance imaging, or the like). Typically, the arms will support at least two surgical tools corresponding to the two hands of a surgeon and one image capture device.
- Mounting the robotic manipulator arms to a single cart structure allows the robotic surgery system of the present invention to be moved efficiently from operating room to operating room. This can avoid construction of specialized robotic operating rooms, and can allow a hospital to take advantage of the flexibility of robotic surgery to perform a variety of surgical procedures, including open surgery, neurosurgical procedures (such as stereotaxy), endoscopic procedures (such as laparoscopy, arthroscopy, thoracoscopy), and the like.
- Mounting of multiple robotic manipulator arms with the arms supported by one or more positioning linkages attached to a common base also allows the computer system that controls robotic movements to determine the position of the end effectors and robotic arms relative to each other. This can be used for a variety of purposes, including transforming an image capture coordinate system to a hand input controller coordinate system so as to align the surgeon's inputs with movements of the end effectors as displayed to the surgeon. In some embodiments, the computer may also calculate the positions of the robotic manipulators to avoid interference as the implements are manipulated during surgery. For example, solid modeling of the robotic manipulator structure may be used to prevent two arms from striking each other, thereby avoiding damage to the robotic structure and potential injury to the patient. This common base may also maximize access to the patient before, during, and after the robotic surgical procedure, as the cart will typically be situated along one side of the operating table, leaving the other side available for access by surgeons and surgical assistants.
- In light of these capabilities, the present invention will find applications in a variety of surgical procedures. The most immediate applications will be to improve existing minimally invasive surgical procedures, such as coronary artery bypass grafting and mitral and aortic valve repair and/or replacement. The invention will also have applications for surgical procedures which are difficult to perform using existing minimally invasive techniques, such as Nissen Fundoplications. Additionally, it is anticipated that these surgical systems will find uses in entirely new surgeries that would be difficult and/or impossible to perform using traditional open or known minimally invasive techniques. In the meantime, additional potential applications include vascular surgery (such as for the repair of thoracic and abdominal aneurysms), general and digestive surgeries (such as cholecystectomy, inguinale hernia repair, colon resection, and the like), gynecology (for fertility procedures, hysterectomies, bladder neck suspensions, and the like), and a wide variety of alternative procedures.
- The positioning linkage devices, systems, and methods described hereinbelow will generally be used within a robotic surgery system such as the described in co-pending U.S. patent application Ser. No. 08/975,617, filed Nov. 21, 1997, the full disclosure of which is incorporated herein by reference.
- Referring now to FIG. 1, an operator O (generally a surgeon) performs a minimally invasive surgical procedure on patient P by manipulating input devices at a surgeon's
console 150. A computer ofconsole 150 directs movement of endoscopicsurgical instruments 54, effecting movement of the instruments using a robotic patient-side cart system 50. An assistant A assists in pre-positioning of the manipulator relative to patient P in swappingtools 54 for alternative tool structures, and the like, while viewing the internal surgical site via anassistant display 12. The image of the internal surgical site shown to assistant A and operator O by the assistant display and surgeon's console is provided by one of the surgical instruments supported bycart 50. Typically,cart 50 includes at least three robotic manipulator arms supported by linkages, with the central arm supporting an endoscope and the outer arms supporting tissue manipulation tools. - Generally, the arms of
cart 50 will include a positioning portion which remains in a fixed configuration while manipulating tissue, and a driven portion which is actively articulated under the direction of surgeon'sconsole 150. The actively driven portion is herein referred to as amanipulator 58. The fixable portion of the cart linkage structures may be referred to as a positioning linkage and/or a “set-up joint” 56, 56′. -
Robotic arm cart 50 is shown in isolation in FIG. 2.Cart 50 includes a base 52 from which threesurgical implements 54 are supported. More specifically, implements 54 are each supported by apositioning linkage 56 and arobotic manipulators 58. It should be noted that these linkage structures are here illustrated with protective covers extending over much of the robotic linkage. It should be understood that these protective covers are optional, and may be limited in size or entirely eliminated in some embodiments to minimize the inertia that is manipulated by the servomechanism, and to limit the overall weight ofcart 50. -
Cart 50 will generally have dimensions suitable for transporting the cart between operating rooms. The cart will typically fit through standard operating room doors and onto standard hospital elevators. The cart should have a weight and wheel (or other transportation) system that allows the cart to be positioned adjacent an operating table by a single attendant. The cart should have sufficient stability in the transport configuration to avoid tipping at minor discontinuities of the floor, and to easily withstand overturning moments that will be imposed at the ends of the robotic arms during use. - Referring now to FIGS.2A-C,
robotic manipulators 58 preferably include alinkage 62 that constrains movement oftool 54. More specifically,linkage 62 includes rigid links coupled together by rotational joints in a parallelogram arrangement so thattool 54 rotates around a point inspace 64, as more fully described in issued U.S. Pat. No. 5,817,084, the full disclosure of which is incorporated herein by reference. The parallelogram arrangement constrains rotation to pivoting about anaxis 64 a, sometimes called the pitch axis. The links supporting the parallelogram linkage are pivotally mounted to set-upjoints 56 so thattool 54 further rotates about anaxis 64 b, sometimes called the yaw axis. The pitch and yaw axes intersect at theremote center 64, which is aligned along ashaft 66 oftool 54. -
Tool 54 has still further driven degrees of freedom as supported bymanipulator 58, including sliding motion of the tool along insertion axis 64 c (the axis of shaft 66), sometimes referred to as insertion. Astool 54 slides along axis 64 c relative tomanipulator 58,remote center 64 remains fixed relative tobase 68 ofmanipulator 58. Hence, the entire manipulator is generally moved to re-positionremote center 64. -
Linkage 62 ofmanipulator 58 is driven by a series of motors 70 (see FIG. 2B). These motors actively movelinkage 62 in response to commands from a processor.Motors 70 are further coupled totool 54 so as to rotate the tool about axis 64 c, and often to articulate a wrist at the distal end of the tool about at least one, and often two, degrees of freedom. Additionally,motors 70 can be used to actuate an articulatable end effector of the tool for grasping tissues in the jaws of a forceps or the like.Motors 70 may be coupled to at least some of the joints oftool 54 using cables, as more fully described in U.S. Pat. No. 5,792,135, the full disclosure of which is also incorporated herein by reference. As described in that reference, the manipulator will often include flexible members for transferring motion from the drive components to the surgical tool. For endoscopic procedures,manipulator 58 will often include acannula 72.Cannula 72, which may be releasably coupled tomanipulator 58, supportstool 54, preferably allowing the tool to rotate and move axially through the central bore of the cannula. - As described above regarding FIG. 2,
manipulator 58 is generally supported by apositioning linkage 56. Exemplary positioning linkage structures are illustrated in FIG. 3. The exemplary positioning linkage system includes three types of structures. First, avertical column 80 supports vertically slidingjoints 82 that are used to positionmanipulator 58 along the vertical or Z axis. Second,rotary joints 84 separated byrigid links 86 are used to horizontally positionmanipulators 58 in the X-Y plane. Third, another series ofrotary joints 84 mounted adjacent amanipulator interface 88 rotationally orients the manipulators. - The structure of
column 80, vertical slidingjoints 82, andbase 52 can be understood with reference to FIGS. 4A and B. Beginning withbase 52, the base will generally distribute the weight of the robotic structures and the forces imposed on the entire slave system. When used for surgery,base 52 will be fixedly supported by a series ofjacks 90 to avoid inadvertent movement of the robotic arms.Jacks 90 will typically be threadably coupled to the remainder ofbase 52, so that the jacks can be retracted for transport. When jacks 90 are retracted by rotating their handles,base 52 rests onwheels 92. - To prevent the cart from tipping as it is rolled on
wheels 92, the wheels located near the front of the cart will preferably be non-swiveling. In other words, the wheels will rotate about a fixed axis relative to the base.Wheels 92 adjacent a rear portion of the cart will preferably be coupled to steering handle 94 so that the wheels and handle rotate about a steering axis. This facilitates maneuvering of the cart and positioning of the cart adjacent the operating table. Passively swiveling “outrigger”wheels 93 may be disposed outboard of thesteerable wheels 92 to provide additional support if the cart begins to tip. - As the weight of
base 52 generally enhances the tipping stability of the slave cart structure, and as a box section enhances stiffness, the exemplary base comprises box steel tubing, which may be welded or bolted together. -
Column 80 extends upward frombase 52, and may optionally also comprise a box steel structure. Slidingjoints 82, includingvertical tracks 96 on whichsliders 98 ride, are counterbalanced byweights 100 mounted withincolumn 80. More specifically, a cable extends upward fromslider 98 and over apulley 102, and then down from the pulley to weight 100 withincolumn 80.Weight 100 preferably has a mass that is substantially equal to the combined mass of theslider 98,positioning linkage 56,manipulator 58, andtool 54. This allows the robotic arms to be re-positioned upward or downward with very little effort. It should be understood thatweight 100 is schematically illustrated, and may have an actual length of about 24 in. or more. - To prevent inadvertent movement of sliding joint82,
pulleys 102 are coupled tocolumn 80 bybrakes 104. These brakes prevent rotation of the pulleys whenslider 98 is positioned, as will be described in more detail hereinbelow. - As described above, it is often advantageous to identify the configuration of the manually movable, as well as the active, joints so as to allow the processor of the robotic system to perform coordinate transformations, calculate relative positions of surgical end effectors, and the like. Toward that end, sliding
joints 82 includesensors 106 coupled tosliders 98 orcounterweights 100 bycables 108.Sensors 106 comprise accurate potentiometers that generate electrical signals which vary with the position ofsliders 98 alongtracks 96. As the structure and position of slidingjoints 82 relative tocolumn 80 is known, knowing the axial position ofsliders 98 allows the processor to perform transformations between first and second slider coordinatesystems system 114. Similarly, by knowing the angles defined by each rotary joint 84, transformations between the slider joints and a manipulator base can also be calculated. It should be understood that these interim coordinate system transformations need not be performed, but that they are representative of the total transformation to be performed. Regardless, where the configuration of all joints betweenbase 52 and the end effectors oftools 54 are known, the processor can accurately determine the position and orientation of the end effector, as well as how to effect movement in a desired direction by articulating one or more of the driven joints. - Each sensor preferably may comprise redundant potentiometers that “self-check” one another. That is, information from the redundant potentiometers may be compared with a selected tolerance to ensure to a degree of accuracy that the positioning of the corresponding joint is correctly known. If the information from the redundant potentiometers fail to match, the operator may be informed of this fact and/or the set-up may be interrupted or delayed until corrective action is taken. Additionally, the operator may be able to override such an interrupt if desired. Potentiometers on the set-up linkage may be also checked for movement, to warn an operator of unintended movement of the normally locked and stationary set-up linkages during an operation, such as might be due to an assistant unintentionally leaning against the linkage.
- The structure of
positioning linkage 56 is illustrated in more detail in FIG. 5. Positioninglinkage 56 is supported byslider 98, and include first and secondelongate links slider 98 by rotational joint 84 a, and is coupled tosecond link 122 by rotational joint 84 b. As described above,slider 98 moves up and downward (along the z-axis) to vertically position the manipulator and remote center of rotation. Pivoting of the first and second linkages relative to the slider and to each other allows the manipulator to move horizontally (in the X-Y plane). Asrotational joints -
Rotational joints 84 generally include abrake 124 and asensor 126.Brake 124 prevents rotation about the joint unless the brake is released. In other words, the brake is normally on (so that the joint is in a fixed configuration). This prevents inadvertent articulation ofpositioning linkage 56 during a surgical procedure, and also avoids movement if power to the robotic system is lost. The brakes may be safely overcome (so as to articulate the joints without damage) with a reasonable amount of manual force against the linkage or manipulator, thereby providing a safety feature if power is lost. - A wide variety of alternative brake structures could be used in place of the exemplary embodiment described above. Suitable brakes may be actuated electrically, pneumatically, hydraulically, or the like, and may be located at the joint axis (as shown) or may coupled to the joint using gears, cables, rigid linkages, or the like.
-
Sensors 126 ofjoints 84 generate electrical signals which indicate the rotational angle defined by the joint.Sensors 126 preferably generate absolute angle indication signals that vary with the absolute angle defined by the joint, rather than generating a signal which indicates a change in the angle. This avoids having to regularly return the joints to a zero position to provide an accurate angle measurement. Although absolute angle measurement devices are generally preferred, in someembodiments sensors 126 may comprise encoders that measure a number of discrete changes in the joint angle, or a wide variety of alternative structures. -
Links - Positioning of the manipulator in preparation for surgery is facilitated by providing a
handle 128 affixed to the distal end ofsecond link 122. Handle 128 has anactuation button 130 that releasesbrakes 124 so as to allow movement of set-upjoints 56. As described above, the joints will preferably remain locked unless a signal is provided by circuitry coupled toactuation button 130. Affixinghandle 128 on or near the manipulator support interface allows the positioning linkage to be moved without imposing undue forces against the servomechanism of the manipulator structure. - In addition to the positional capabilities of
positioning linkage 56, rotational joints 84 c, d, and e allow the manipulator structure to be rotated to a desired orientation. Including the vertical adjustability provided by sliding joint 82,positioning linkage 56 allows the manipulator to be positioned with six degrees of freedom relative to base 52 of the robotic arm cart. As illustrated, one or more orientational degrees of freedom may be provided between the handle and the manipulator. As each of therotational joints 84 and the sliding joint 82 include a sensor coupled to a processor of the servomechanism, the servomechanism can calculate a position and orientation of amanipulator interface 132 on which the manipulator is mounted, and can also perform the coordinate system transformations described hereinabove. - In the exemplary embodiment, the
brakes 124 at all of the joints on one of the threepositioning linkage 56 supporting amanipulator 58 are actuated in unison byactuation button 130 onhandle 128, allowing the operating room personnel to position and orient the manipulator freely. The manipulator structure will preferably be balanced aboutrotational joints - Referring now to FIG. 6, it may not be necessary to provide a full six degrees of freedom for each set of the set-up joints. For example, positioning
linkage 56′ provide each of the positional degrees of freedom described above, but with more limited orientational adjustment capabilities. When, for example, an endoscope is supported by a manipulator having four degrees of freedom (such as pitch, yaw, insertion, and roll about the scope's axis) the manipulator need not be supported by a positioning linkage with six degrees of freedom for many surgical procedures.Manipulator interface 132 is here coupled to the distal end ofsecond link 122 by a single rotational joint 84 c. As the manipulator structure will have multiple degrees of freedom for the surgical implement supported thereon, this provides sufficient endoscope positioning and orienting flexibility with reduced complexity. - Referring now to FIG. 7, in the exemplary robotic cart, two six degree of
freedom positioning linkages 56 are supported bycolumn 80 on either side of a four degree offreedom positioning linkages 56′. This central set-up joint is particularly well adapted for use in supporting an image capture device such as a laparoscope, endoscope, or the like. Six degree offreedom positioning linkages 56 may be used to pre-position manipulators supporting surgical implements used for manipulating tissue. This arrangement is well adapted for use by a surgeon controlling a surgical tool with each hand while viewing the procedure through the endoscope. When re-positioning of the endoscope is desired, a manipulator structure coupling the endoscope topositioning linkage 56′ may be actuated with a servomechanism so as to pivot the endoscope about the insertion point, as described above. - FIG. 7 also illustrates a series of
protective covers 140 mounted over the brakes and sensors ofjoints 84. Additionally, acolumn cover 142 protects the pulleys and their associated brakes. These covers help avoid injury to attending operating room personnel by limiting the number of pinch points, and also provide a more finished appearance. Similar appearance benefits are provided by mounting base and column covers 144 on their associated cart structures. - An exemplary surgeon's workstation is illustrated in FIGS. 8A and
B. Control station 150 includesprocessors 152 for the robotic servomechanism. Also included incontroller station 150 are astereo imaging system 154 and a pair of controllers 156 (shown in FIGS. 9A and 9B), which hang below the imaging system. - The surgeon will generally manipulate tissues using the robotic system by moving the controllers within a three dimensional controller workspace of
controller station 150. In the exemplary embodiment, the surgeon will manipulate these controllers while viewing the surgical site throughdisplay 154.Processor 152 can calculate an image capture coordinate system via the sensors inpositioning linkage 56′ andmanipulator 58 supporting the laparoscope, and can perform coordinate system transformations so as to generate signals to the manipulator structure that maintain alignment between the three dimensional image of the end effector as viewed throughdisplay 154 and the hand controller within the controller workspace. By maintaining this alignment as the physician moves the hand controller in both position and orientation, the robotic surgery system allows the surgeon to manipulate the surgical tools as if the handle in the surgeon's hand and the end effector in the surgeon's field of view define a single contiguous surgical instrument. This provides an enhanced sense of presence and allows the surgeon to operate efficiently and accurately without performing mental coordinate transformations. The correlation between movement of the input device and image of the end effector is more fully described in U.S. Pat. No. 5,808,665 while an exemplary method and structure for performing the coordinate system transformation calculations is detailed in Provisional U.S. patent application Ser. No. 60/128,160 filed on Apr. 7, 1999 for a “Camera Referenced Control in a Minimally Invasive Surgical Apparatus”, the full disclosures of which are incorporated herein by reference. - An exemplary master control input device or
controller 156 is seen in FIGS. 9A and B. Generally,controller 156 includes anarticulate arm portion 156A and a wrist orgimbal portion 156B.Articulate arm 156A primarily accommodates and senses positional or translational movement in the controller workspace, whilegimbal 156B accommodates and senses an orientation of ahandle 160.Articulate arm 156A includes joints which accommodate pivotal rotation about axis A, B, and C, whilegimbal 156B includes rotational joints which accommodate and sense movement aboutorientational axis Gimbal 156B also moves relative to articulatearm 156A about a fourthorientational axis 4 when mounted to the arm, thereby providing a redundant orientational degree of freedom for the master input control handle. This exemplary input device is more fully described in co-pending Provisional U.S. Patent Application Ser. No. 60/111,710 filed on Dec. 8, 1998 for a “Master Having Redundant Degrees of Freedom”, the full disclosure of which is incorporated herein by reference. - Referring now to FIG. 10, an
alternative cart 50′, including apositioning linkage 56′ with less than six degrees of freedom, supported between two six degrees offreedom positioning linkages 56. Six degree offreedom linkages 56 generally extend radially outwardly fromcolumn 80 and will often be arranged to support the surgical tools 54 (including the tissue manipulating tools and the endoscope,), so that the elongated shafts of these endoscopic instruments extend radially outwardly from a pattern of apertures into an internal surgical sites, as illustrated in FIG. 1. This gives thecart system 50′ an “elbows out” appearance in use, which helps enhance the clearance between the manipulators so as to avoid collisions as the manipulators move in the space over patient P during a surgical procedure. Anendoscope manipulator 170 and its associatedlinkage 56′ will often be arranged so as to extend substantially fromcolumn 80 to the endoscope, as also illustrated in FIG. 1.Endoscope manipulator 170 may not include all of the tool actuation drive system provided for articulated surgical instruments, which are typically included inmanipulators 58. An exemplary endoscope manipulator is more fully described in Provisional U.S. Patent Application Ser. No. 60/112,990 filed on Dec. 16, 1998, the full disclosure of which is incorporated herein by reference. - An exemplary articulated endoscopic
surgical instrument 54 is illustrated in FIG. 11.Instrument 54 includes anelongate shaft 66 supporting anend effector 174 relative to aproximal housing 176.Proximal housing 176 is adapted for releasably mountinginstrument 54 to a manipulator, and for transmitting drive signals and/or motion between the manipulator andend effector 174. As described above, awrist 178 may provide two degrees of freedom of motion betweenend effector 174 andshaft 66, and the shaft may be rotatable relative toproximal housing 176 so as to provide the end effector with three substantially orientational degrees of freedom within the patient P body. Preferably, the shaft 172,wrist 178, and one or both members ofend effector 174 ofinstrument 54 may include visible distance markings along their outer surfaces (see FIG. 11), such as in millimeters or portions of inches. Such markings aid a surgeon to understand the distances involved at the surgical site while performing remote telesurgery. The surgeon may use the information provided by the ruler markings on the instrument, for example, to gauge the proximity of his/her instruments to various organs or tissue portions, the proximity of the instruments to one another, and the size of various features of the surgical site. Such information may prove valuable when the surgical site is magnified, in 2-D or 3-D, to the point where it may be difficult for the surgeon to relate the magnified image to real scale. Additionally, the operator's console might be arranged with an information “pop-up” capability, with the surgeon being able to call up, when desired, information such as a virtual ruler simply by pushing a button, for example, or activating any other appropriate input device such as voice control. The ruler preferably would be moveable on the viewing screen using a mouse, for example, so that the surgeon could then measure a distance of interest using said virtual ruler. A variety of exemplary tools are more fully described in co-pending Provisional U.S. Patent Application Ser. No. 60/116,844 filed on Jan. 22, 1999, the full disclosure of which is incorporated herein by reference. - A number of refinements may be included in the positioning linkages to expedite and facilitate pre-positioning the manipulators in preparation for surgery. For example, it may be desirable to drive the manipulators to a position at which they support their associated surgical instruments near a center of travel of the manipulator while the positioning linkages are being moved into a proper position and orientation for surgery. This will help insure that the assistant A aligns the manipulators with the internal surgical site near the center of travel of the manipulators, thereby avoiding interruptions of the surgical procedure when the movement of the tool is inhibited by a limit of travel of the manipulator.
- In some embodiments, it may be beneficial to actively drive one or more of the joints of a positioning linkage. For example,
processor 152 ofworkstation 150 may actively drive at least one (and possibly all) of the joints of the positioning linkages to a pre-determined “nominal” configuration, so as to support each manipulator at a position and/or orientation appropriate for a surgical procedure. The processor might optionally drive the positioning linkages to selectively different pre-determined nominal configurations for differing surgical procedures so as to expedite the set-up process, for example, moving the manipulators to position the surgical instruments and endoscope for a typical coronary bypass grafting in response to a first input from operator O, or for a Nissen Fundoplication in response to an alternative input from the operator O. The assistant A may then optionally move the positioning linkages from the nominal configuration slightly as desired for a procedure on a particular patient P. After a procedure is complete, actively driving the positioning linkages clear of the patient P and/or to a cart storage/transportation configuration (with the manipulators tucked in low along side column 80) can enhance the overall number of procedures which might be performed by the robotic system in a given time. - To further aid in positioning the manipulators for surgery, the optionally releasably attached
cannula 72 may be inscribed on its outer surface with markings (see FIG. 2B). Such markings may extend along the entire length of the cannula, or begin at the point along its length corresponding to the remote center ofmotion 64. These markings, which may comprise, for example, the distance markings on a ruler, aid a surgeon's assistant in placing the cannula so that the remote center of motion of the manipulator roughly corresponds to the center of the depth of necessary incision in the patient's body to permit insertion of the cannula. For coronary surgery, for example, the markings would permit easier placement of the center of motion at the midpoint of the depth of the incision between the patient's ribs. Such markings also permit an assistant to realize how far a cannula has been inserted into a patient's body. - A variety of alternative means for guiding
positioning linkages positioning linkage 56 is shown havingnominal positioning indicators cart 50 to a nominal configuration for a first procedure, firstnominal position indicators 180 are aligned on one or more of therotational joints 84 and slidingjoints 82. A second set ofnominal position indicators 182 might be brought into alignment by moving the manipulator so as to configure a cart for a different procedure. The various sets of nominal position indicators may be differentiated by color, graphics, alpha-numeric markings, or the like. Still further alternatives are possible, including software which actuates the brakes of the positioning linkages when each joint is moved into a desired position, so that moving the manipulator arm generally towards the correct orientation will, one-by-one, lock the joints into the desired nominal position. Final positioning may then be effected by gently oscillating the manipulator about the joints of the positioning linkage in any remaining degrees of freedom until the sensors indicate that the desired unlocked joints are sufficiently close to the nominal configuration so as to actuate the brakes. - The cart systems of the present invention can incorporate a number of advantageous features and structures. It is generally preferred to orient the first degree of the positioning linkages extending from a fixable base in a vertical orientation, particularly when movement about the first degree of freedom is counterbalanced. Each consecutive positioning link may be smaller and lighter from the base toward the manipulator, as clearly illustrated in FIG. 5, due to the reduced moment arm of forces applied against the manipulator. Preferably, the positioning linkage members will be designed so as to support forces against the manipulator with substantially equal contributions to the stiffness of the link structure. A particularly advantageous design approach is to initially assume that a plurality of the major structural elements of the positioning linkages, typically including the joint, axles, hubs, links and/or bearings, contribute substantially equal amounts to the total deflection when the positioning linkage is configured for surgery. In this way, no single member is over-designed in a way which increases its weight unnecessarily, and thereby avoiding a system of structural members whose overall stiffness is predominantly limited by the most compliant members. Many of the components of positioning linkages described above are commercially available from a wide variety of vendors, for example, tapered roller bearings, electrically releasable brakes, and the like.
- While the exemplary embodiments of the present invention have been described in some detail by way of example and for clarity of understanding, a number of adaptations, modifications, and changes will be obvious to those of skill in the art. For example, although this invention has been described with reference to a preferred remote center of motion apparatus embodiment, the scope of the inventions described herein should not be so limited, as would be obvious to one of skill in the art. While the preferred embodiment disclosed herein has multiple robotic arms mounted to a
common base 80, other arrangements of robotic arms having positioning linkages fall within the scope of this invention. For example, in another embodiment of the invention, each of the robotic surgical arms is mounted to the ceiling of an operating room. The attachment points on the ceiling may need to be reinforced to bear the weight of the robotic arms, depending upon their weight. The operating room may be dedicated to robotic surgery, or have other uses, in which case the arms may be retracted out of the normal operating space by repositioning the positioning linkages. Alternatively, the arms may be releasably attached to the ceiling, and may be detached after an operation for storage elsewhere or for maintenance. In order to accurately position the arms relative to one another, the attachment points on the ceiling will preferably be known relative to one another. With that information and the information from the sensor array along each arm, the positions of the end effectors can be accurately calculated and manipulated at the surgical site. As a result, the present invention is limited solely by the appended claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/825,614 US6441577B2 (en) | 1998-08-04 | 2001-04-03 | Manipulator positioning linkage for robotic surgery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9530398P | 1998-08-04 | 1998-08-04 | |
US09/368,309 US6246200B1 (en) | 1998-08-04 | 1999-08-03 | Manipulator positioning linkage for robotic surgery |
US09/825,614 US6441577B2 (en) | 1998-08-04 | 2001-04-03 | Manipulator positioning linkage for robotic surgery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/368,309 Continuation US6246200B1 (en) | 1998-08-04 | 1999-08-03 | Manipulator positioning linkage for robotic surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010013764A1 true US20010013764A1 (en) | 2001-08-16 |
US6441577B2 US6441577B2 (en) | 2002-08-27 |
Family
ID=22251261
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/368,309 Expired - Lifetime US6246200B1 (en) | 1998-08-04 | 1999-08-03 | Manipulator positioning linkage for robotic surgery |
US09/825,614 Expired - Lifetime US6441577B2 (en) | 1998-08-04 | 2001-04-03 | Manipulator positioning linkage for robotic surgery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/368,309 Expired - Lifetime US6246200B1 (en) | 1998-08-04 | 1999-08-03 | Manipulator positioning linkage for robotic surgery |
Country Status (5)
Country | Link |
---|---|
US (2) | US6246200B1 (en) |
EP (1) | EP1109497B1 (en) |
AU (1) | AU5391999A (en) |
DE (1) | DE69940850D1 (en) |
WO (1) | WO2000007503A1 (en) |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030191396A1 (en) * | 2003-03-10 | 2003-10-09 | Sanghvi Narendra T | Tissue treatment method and apparatus |
WO2005046499A2 (en) * | 2003-11-12 | 2005-05-26 | Delta Engineering Gmbh | Actuator platform for guiding end effectors in minimally invasive interventions |
WO2006079108A1 (en) * | 2005-01-24 | 2006-07-27 | Intuitive Surgical, Inc | Modular manipulator support for robotic surgery |
US20070016032A1 (en) * | 2005-04-05 | 2007-01-18 | Gerard Aknine | Microwave devices for treating biological samples and tissue and methods for imaging |
EP1754448A1 (en) | 2005-08-16 | 2007-02-21 | BrainLAB AG | Anthropomorphic medical robot arm with limitation of movement |
US20070129846A1 (en) * | 2005-08-16 | 2007-06-07 | Brainlab Ag | Anthropomorphic medical robot arm with movement restrictions |
US20070265527A1 (en) * | 2006-05-11 | 2007-11-15 | Richard Wohlgemuth | Medical position determination using redundant position detection means and priority weighting for the position detection means |
US20070295649A1 (en) * | 2006-05-03 | 2007-12-27 | Mann & Hummel Gmbh | Apparatus for Collecting and Transporting Coolant-Lubricant Contaminated with Chips |
US20080110312A1 (en) * | 2001-08-27 | 2008-05-15 | Flow International Corporation | Apparatus for generating and manipulating a high-pressure fluid jet |
US20080294107A1 (en) * | 2007-05-22 | 2008-11-27 | Convergent Medical Solutions, Inc. | Multiple robotic injections of prenatal medications based on scanned image |
US20080294115A1 (en) * | 2007-05-22 | 2008-11-27 | Chen Raymond H | Microscopic Tumor Injection Treatment |
US20080294141A1 (en) * | 2007-05-22 | 2008-11-27 | Convergent Medical Solutions, Inc. | Multiple robotic injections of immunosuppressive drugs based on scanned image |
US20080294106A1 (en) * | 2007-05-22 | 2008-11-27 | Convergent Medical Solutions, Inc. | Multiple robotic injections of anesthesia based on scanned image |
US20090055019A1 (en) * | 2007-05-08 | 2009-02-26 | Massachusetts Institute Of Technology | Interactive systems employing robotic companions |
US20090248036A1 (en) * | 2008-03-28 | 2009-10-01 | Intuitive Surgical, Inc. | Controlling a robotic surgical tool with a display monitor |
WO2009146240A1 (en) * | 2008-05-27 | 2009-12-03 | Convergent Medical Solutions, Inc. | Multiple robotic injections based on scanned image |
US20100204713A1 (en) * | 2006-02-03 | 2010-08-12 | The European Atomic Energy Community (Euratom) | Medical robotic system |
US20100228265A1 (en) * | 2009-03-09 | 2010-09-09 | Intuitive Surgical, Inc. | Operator Input Device for a Robotic Surgical System |
WO2010123578A1 (en) * | 2009-04-23 | 2010-10-28 | Lipow Kenneth I | Ring form surgical effector |
US8005571B2 (en) | 2002-08-13 | 2011-08-23 | Neuroarm Surgical Ltd. | Microsurgical robot system |
US20110264110A1 (en) * | 2005-05-19 | 2011-10-27 | Intuitive Surgical, Inc. | Software Center and Highly Configurable Robotic Systems for Surgery and Other Uses |
US20130085389A1 (en) * | 2007-03-16 | 2013-04-04 | Charles Bih Shiou Tsang | Method and apparatus for anorectal examination |
WO2013181533A1 (en) * | 2012-06-01 | 2013-12-05 | Intuitive Surgical Operations, Inc. | Multi-port surgical robotic system architecture |
WO2014018983A1 (en) * | 2012-07-27 | 2014-01-30 | The Board Of Trustees Of The Leland Stanford Junior University | Manipulation of imaging probe during medical procedure |
WO2014026104A1 (en) * | 2012-08-09 | 2014-02-13 | Castro Michael Salvatore | Surgical tool positioning systems |
US20140135611A1 (en) * | 2011-07-01 | 2014-05-15 | Advanced Echo Technology | Robotized system for moving a remotely guided tool |
US20140207166A1 (en) * | 2006-01-31 | 2014-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
CN104114107A (en) * | 2012-02-15 | 2014-10-22 | 直观外科手术操作公司 | Compact needle manipulator for targeted interventions |
US8992421B2 (en) | 2010-10-22 | 2015-03-31 | Medrobotics Corporation | Highly articulated robotic probes and methods of production and use of such probes |
KR101536106B1 (en) * | 2012-04-05 | 2015-07-13 | 라이스 그룹 홀딩 게엠베하 운트 컴퍼니 카게 | Method for operating an industrial robot |
WO2015142790A1 (en) * | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Restoring instrument control input position/orientation during midprocedure restart |
WO2016023635A1 (en) * | 2014-08-14 | 2016-02-18 | Kuka Roboter Gmbh | Positioning a robot |
US9345544B2 (en) | 1999-09-17 | 2016-05-24 | Intuitive Surgical Operations, Inc. | Systems and methods for avoiding collisions between manipulator arms using a null-space |
US9364955B2 (en) | 2011-12-21 | 2016-06-14 | Medrobotics Corporation | Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof |
US9492235B2 (en) | 1999-09-17 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Manipulator arm-to-patient collision avoidance using a null-space |
US9498298B2 (en) | 2010-04-23 | 2016-11-22 | Kenneth I. Lipow | Ring form surgical effector |
US9517106B2 (en) | 1999-09-17 | 2016-12-13 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US9572628B2 (en) | 2011-09-13 | 2017-02-21 | Medrobotics Corporation | Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures |
CN106618735A (en) * | 2016-11-16 | 2017-05-10 | 苏州大学 | Collaborative interaction robot for surgical operation |
US9649163B2 (en) | 2010-11-11 | 2017-05-16 | Medrobotics Corporation | Introduction devices for highly articulated robotic probes and methods of production and use of such probes |
US9658605B2 (en) | 2011-12-23 | 2017-05-23 | Samsung Electronics Co., Ltd. | Surgical robot and control method thereof |
WO2017089909A1 (en) * | 2015-11-23 | 2017-06-01 | Mirbagheri Alireza | A robotic system for tele-surgery |
US9699445B2 (en) | 2008-03-28 | 2017-07-04 | Intuitive Surgical Operations, Inc. | Apparatus for automated panning and digital zooming in robotic surgical systems |
CN107028579A (en) * | 2017-05-25 | 2017-08-11 | 杭州妙手机器人有限公司 | Laparoscopic device around a travel mechanism |
WO2017147353A1 (en) * | 2016-02-26 | 2017-08-31 | Covidien Lp | Robotic surgical systems and robotic arms thereof |
CN107320194A (en) * | 2017-07-31 | 2017-11-07 | 成都中科博恩思医学机器人有限公司 | A kind of stopping means with Redundancy Design |
WO2018034976A1 (en) * | 2016-08-16 | 2018-02-22 | Ethicon Llc | Robotic visualization and collision avoidance |
US9901410B2 (en) | 2010-07-28 | 2018-02-27 | Medrobotics Corporation | Surgical positioning and support system |
WO2018052796A1 (en) | 2016-09-19 | 2018-03-22 | Intuitive Surgical Operations, Inc. | Positioning indicator system for a remotely controllable arm and related methods |
US20180085175A1 (en) * | 2015-08-19 | 2018-03-29 | Brainlab Ag | Determining a configuration of a medical robotic arm |
US9931167B2 (en) | 2012-02-15 | 2018-04-03 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical instrument to provide needle-based therapy |
US9999476B2 (en) * | 2012-08-15 | 2018-06-19 | Intuitive Surgical Operations, Inc. | Movable surgical mounting platform controlled by manual motion of robotic arms |
JP2018522666A (en) * | 2015-07-31 | 2018-08-16 | マッケ・ゲゼルシャフトミットベシュレンクターハフトゥング | Device for detecting the position of movable operating table components |
US20180318023A1 (en) * | 2014-03-17 | 2018-11-08 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
CN109070363A (en) * | 2016-03-30 | 2018-12-21 | 索尼公司 | Mechanical arm control method and manipulator control device |
US10182875B2 (en) | 2016-08-16 | 2019-01-22 | Ethicon Llc | Robotic visualization and collision avoidance |
WO2019094794A3 (en) * | 2017-11-10 | 2019-06-20 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic manipulator or associated tool |
US10357330B2 (en) | 2015-02-18 | 2019-07-23 | Sony Corporation | Medical support arm device and medical system |
CN110202541A (en) * | 2019-05-10 | 2019-09-06 | 合肥市第二人民医院 | Micro-manipulating robot for biomedical engineering |
US10682191B2 (en) | 2012-06-01 | 2020-06-16 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US10687910B1 (en) * | 2018-12-18 | 2020-06-23 | Metal Industries Research & Development Centre | Orthopedic surgery assistant system and end effector |
CN111885979A (en) * | 2018-02-07 | 2020-11-03 | 迪斯透莫森公司 | Surgical robotic system including robotic telemanipulator and integrated laparoscopy |
EP3781069A1 (en) * | 2018-04-16 | 2021-02-24 | Covidien LP | Robotic surgical systems and robotic arm carts thereof |
CN113303828A (en) * | 2021-06-19 | 2021-08-27 | 王芳 | Ultrasonic device for gynecology |
JP2021130003A (en) * | 2014-10-27 | 2021-09-09 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for instrument disturbance compensation |
US11141859B2 (en) | 2015-11-02 | 2021-10-12 | Brainlab Ag | Determining a configuration of a medical robotic arm |
US11188069B2 (en) | 2017-08-16 | 2021-11-30 | Covidien Lp | Preventative maintenance of robotic surgical systems |
WO2022079875A1 (en) * | 2020-10-15 | 2022-04-21 | リバーフィールド株式会社 | Work assistance robot |
WO2022126099A1 (en) * | 2020-12-07 | 2022-06-16 | The Uab Research Foundation | Surgical tool support system |
JP2022171668A (en) * | 2014-10-27 | 2022-11-11 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Systems and methods for integrated operating table motion |
US20220361970A1 (en) * | 2012-08-15 | 2022-11-17 | Intuitive Surgical Operations, Inc. | User initiated break-away clutching of a robotic system |
KR20230003422A (en) * | 2014-10-27 | 2023-01-05 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Medical device with active brake release control |
US11576737B2 (en) | 2014-10-27 | 2023-02-14 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table |
US11737842B2 (en) | 2014-10-27 | 2023-08-29 | Intuitive Surgical Operations, Inc. | System and method for monitoring control points during reactive motion |
US11759265B2 (en) | 2014-10-27 | 2023-09-19 | Intuitive Surgical Operations, Inc. | System and method for registering to a table |
US11957446B2 (en) | 2017-12-08 | 2024-04-16 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
EP4245244A4 (en) * | 2020-11-10 | 2024-10-16 | Chongqing Jinshan Medical Robotics Co., Ltd. | Surgical robot, and surgical robot system |
WO2024259112A1 (en) * | 2023-06-14 | 2024-12-19 | Intuitive Surgical Operations, Inc. | Determining placement quality of a component based on motion of a remote center of motion during a strain relief operation |
US12290328B2 (en) | 2024-06-14 | 2025-05-06 | Distalmotion Sa | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
Families Citing this family (932)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417210A (en) * | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5631973A (en) * | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US6364888B1 (en) * | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US6331181B1 (en) * | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US7666191B2 (en) | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
US8529582B2 (en) * | 1996-12-12 | 2013-09-10 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
US8206406B2 (en) | 1996-12-12 | 2012-06-26 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US8182469B2 (en) | 1997-11-21 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and method |
US7727244B2 (en) | 1997-11-21 | 2010-06-01 | Intuitive Surgical Operation, Inc. | Sterile surgical drape |
EP2362286B1 (en) * | 1997-09-19 | 2015-09-02 | Massachusetts Institute Of Technology | Robotic apparatus |
US6171316B1 (en) | 1997-10-10 | 2001-01-09 | Origin Medsystems, Inc. | Endoscopic surgical instrument for rotational manipulation |
US7297142B2 (en) * | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US8303576B2 (en) * | 1998-02-24 | 2012-11-06 | Hansen Medical, Inc. | Interchangeable surgical instrument |
WO2000067640A2 (en) | 1999-05-10 | 2000-11-16 | Brock Rogers Surgical Inc. | Surgical instrument |
US20080177285A1 (en) * | 1998-02-24 | 2008-07-24 | Hansen Medical, Inc. | Surgical instrument |
US6860878B2 (en) | 1998-02-24 | 2005-03-01 | Endovia Medical Inc. | Interchangeable instrument |
US8414598B2 (en) | 1998-02-24 | 2013-04-09 | Hansen Medical, Inc. | Flexible instrument |
US20020128662A1 (en) | 1998-02-24 | 2002-09-12 | Brock David L. | Surgical instrument |
US20020095175A1 (en) * | 1998-02-24 | 2002-07-18 | Brock David L. | Flexible instrument |
US7789875B2 (en) * | 1998-02-24 | 2010-09-07 | Hansen Medical, Inc. | Surgical instruments |
US7775972B2 (en) * | 1998-02-24 | 2010-08-17 | Hansen Medical, Inc. | Flexible instrument |
US7713190B2 (en) | 1998-02-24 | 2010-05-11 | Hansen Medical, Inc. | Flexible instrument |
US7901399B2 (en) * | 1998-02-24 | 2011-03-08 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US7169141B2 (en) * | 1998-02-24 | 2007-01-30 | Hansen Medical, Inc. | Surgical instrument |
US7758569B2 (en) | 1998-02-24 | 2010-07-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6852107B2 (en) | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6951535B2 (en) | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6459926B1 (en) * | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US8600551B2 (en) | 1998-11-20 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Medical robotic system with operatively couplable simulator unit for surgeon training |
US6659939B2 (en) * | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US6799065B1 (en) * | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
US6522906B1 (en) * | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US7032798B2 (en) | 1999-06-02 | 2006-04-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6315184B1 (en) | 1999-06-02 | 2001-11-13 | Powermed, Inc. | Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments |
US6981941B2 (en) | 1999-06-02 | 2006-01-03 | Power Medical Interventions | Electro-mechanical surgical device |
US6793652B1 (en) | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US7951071B2 (en) | 1999-06-02 | 2011-05-31 | Tyco Healthcare Group Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
US6788018B1 (en) * | 1999-08-03 | 2004-09-07 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
US8271130B2 (en) * | 2009-03-09 | 2012-09-18 | Intuitive Surgical Operations, Inc. | Master controller having redundant degrees of freedom and added forces to create internal motion |
US7594912B2 (en) | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
US7217240B2 (en) | 1999-10-01 | 2007-05-15 | Intuitive Surgical, Inc. | Heart stabilizer |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US8016855B2 (en) | 2002-01-08 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical device |
US8256430B2 (en) | 2001-06-15 | 2012-09-04 | Monteris Medical, Inc. | Hyperthermia treatment and probe therefor |
US6645196B1 (en) * | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
AU2001280635B2 (en) * | 2000-07-20 | 2006-09-21 | Kinetic Surgical Llc | Hand-actuated articulating surgical tool |
US6837892B2 (en) * | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
EP2269500B1 (en) | 2000-11-28 | 2017-06-21 | Intuitive Surgical Operations, Inc. | Endoscopic beating-heart stabilizer and vessel occlusion fastener |
US7699835B2 (en) | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
US20090182226A1 (en) * | 2001-02-15 | 2009-07-16 | Barry Weitzner | Catheter tracking system |
US8414505B1 (en) | 2001-02-15 | 2013-04-09 | Hansen Medical, Inc. | Catheter driver system |
US7766894B2 (en) * | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US20030135204A1 (en) | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
WO2002083003A1 (en) * | 2001-04-11 | 2002-10-24 | Clarke Dana S | Tissue structure identification in advance of instrument |
US6994708B2 (en) * | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US8398634B2 (en) | 2002-04-18 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Wristed robotic surgical tool for pluggable end-effectors |
US7824401B2 (en) * | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US20020165524A1 (en) | 2001-05-01 | 2002-11-07 | Dan Sanchez | Pivot point arm for a robotic system used to perform a surgical procedure |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US7077619B2 (en) * | 2001-07-13 | 2006-07-18 | 3M Innovative Properties Company | Continuous motion robotic manipulator |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US6728599B2 (en) | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
US6839612B2 (en) | 2001-12-07 | 2005-01-04 | Institute Surgical, Inc. | Microwrist system for surgical procedures |
US6793653B2 (en) | 2001-12-08 | 2004-09-21 | Computer Motion, Inc. | Multifunctional handle for a medical robotic system |
US9113878B2 (en) | 2002-01-08 | 2015-08-25 | Covidien Lp | Pinion clip for right angle linear cutter |
US7170677B1 (en) | 2002-01-25 | 2007-01-30 | Everest Vit | Stereo-measurement borescope with 3-D viewing |
AU2003214837B2 (en) * | 2002-02-06 | 2008-06-12 | The Johns Hopkins University | Remote center of motion robotic system and method |
CN100473942C (en) * | 2002-02-14 | 2009-04-01 | Faro科技有限公司 | Portable coordinate measurement machine with integrated line laser scanner |
WO2003070120A1 (en) * | 2002-02-15 | 2003-08-28 | The John Hopkins University | System and method for laser based computed tomography and magnetic resonance registration |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
ES2203318B1 (en) * | 2002-03-25 | 2005-03-01 | Universidad De Malaga | TELEOPERATION SYSTEM OF ROBOTS FOR LAPAROSCOPIC SURGERY. |
ES2200679B1 (en) * | 2002-03-25 | 2005-02-01 | Universidad De Malaga | TELEOPERATION SYSTEM OF ROBOTS FOR TRANSURETRAL RESECTION OF THE PROSTATE. |
US20030191509A1 (en) * | 2002-04-08 | 2003-10-09 | Flynn Timothy M. | Method and apparatus for providing custom configured medical devices |
US7822466B2 (en) * | 2002-04-25 | 2010-10-26 | The Johns Hopkins University | Robot for computed tomography interventions |
EP1501431A1 (en) * | 2002-05-02 | 2005-02-02 | GMP/Surgical Solutions Inc. | Apparatus for positioning a medical instrument relative to a patient |
US7674270B2 (en) * | 2002-05-02 | 2010-03-09 | Laparocision, Inc | Apparatus for positioning a medical instrument |
AU2003241154A1 (en) * | 2002-05-28 | 2003-12-12 | Calabrian High Tech S.R.L. | Navigator-robot for surgical procedures |
EP1515651B1 (en) | 2002-06-14 | 2006-12-06 | Power Medical Interventions, Inc. | Device for clamping, cutting, and stapling tissue |
US20040176751A1 (en) * | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US7331967B2 (en) * | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US8007511B2 (en) * | 2003-06-06 | 2011-08-30 | Hansen Medical, Inc. | Surgical instrument design |
US7042184B2 (en) | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
JP4559093B2 (en) * | 2003-10-03 | 2010-10-06 | オリンパス株式会社 | Medical device support device |
US7963433B2 (en) | 2007-09-21 | 2011-06-21 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US7152456B2 (en) * | 2004-01-14 | 2006-12-26 | Romer Incorporated | Automated robotic measuring system |
US20060293617A1 (en) * | 2004-02-05 | 2006-12-28 | Reability Inc. | Methods and apparatuses for rehabilitation and training |
CA2561140A1 (en) * | 2004-02-05 | 2005-08-18 | Motorika Inc. | Gait rehabilitation methods and apparatuses |
US8112155B2 (en) * | 2004-02-05 | 2012-02-07 | Motorika Limited | Neuromuscular stimulation |
WO2006021952A2 (en) * | 2004-08-25 | 2006-03-02 | Reability Inc. | Motor training with brain plasticity |
KR20070054595A (en) * | 2004-02-05 | 2007-05-29 | 모토리카 리미티드 | Methods and apparatus for rehabilitation exercises and training |
WO2005074371A2 (en) | 2004-02-05 | 2005-08-18 | Motorika Inc. | Methods and apparatus for rehabilitation and training |
US9238137B2 (en) * | 2004-02-05 | 2016-01-19 | Motorika Limited | Neuromuscular stimulation |
US7466303B2 (en) * | 2004-02-10 | 2008-12-16 | Sunnybrook Health Sciences Center | Device and process for manipulating real and virtual objects in three-dimensional space |
US8046049B2 (en) | 2004-02-23 | 2011-10-25 | Biosense Webster, Inc. | Robotically guided catheter |
JP4755638B2 (en) | 2004-03-05 | 2011-08-24 | ハンセン メディカル,インク. | Robotic guide catheter system |
US7976539B2 (en) | 2004-03-05 | 2011-07-12 | Hansen Medical, Inc. | System and method for denaturing and fixing collagenous tissue |
US8160205B2 (en) * | 2004-04-06 | 2012-04-17 | Accuray Incorporated | Robotic arm for patient positioning assembly |
US7632265B2 (en) | 2004-05-28 | 2009-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Radio frequency ablation servo catheter and method |
US9782130B2 (en) * | 2004-05-28 | 2017-10-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system |
US8755864B2 (en) | 2004-05-28 | 2014-06-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for diagnostic data mapping |
US10258285B2 (en) | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US8528565B2 (en) | 2004-05-28 | 2013-09-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated therapy delivery |
US10863945B2 (en) | 2004-05-28 | 2020-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system with contact sensing feature |
US8353897B2 (en) * | 2004-06-16 | 2013-01-15 | Carefusion 2200, Inc. | Surgical tool kit |
US7241290B2 (en) | 2004-06-16 | 2007-07-10 | Kinetic Surgical, Llc | Surgical tool kit |
CA2513202C (en) * | 2004-07-23 | 2015-03-31 | Mehran Anvari | Multi-purpose robotic operating system and method |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US8016835B2 (en) * | 2004-08-06 | 2011-09-13 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US8182491B2 (en) | 2004-08-06 | 2012-05-22 | Depuy Spine, Inc. | Rigidly guided implant placement |
US10646292B2 (en) * | 2004-09-30 | 2020-05-12 | Intuitive Surgical Operations, Inc. | Electro-mechanical strap stack in robotic arms |
US9261172B2 (en) * | 2004-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Multi-ply strap drive trains for surgical robotic arms |
CA2625803A1 (en) * | 2004-10-12 | 2007-05-18 | Kenneth Lipow | Augmented surgical interface |
CA2522005A1 (en) * | 2004-10-14 | 2006-04-14 | Hill-Rom Services, Inc. | Service head with accessory tracks |
US20060277074A1 (en) * | 2004-12-07 | 2006-12-07 | Motorika, Inc. | Rehabilitation methods |
US20080132383A1 (en) * | 2004-12-07 | 2008-06-05 | Tylerton International Inc. | Device And Method For Training, Rehabilitation And/Or Support |
US7837674B2 (en) * | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
US8463439B2 (en) | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US8155910B2 (en) | 2005-05-27 | 2012-04-10 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | Robotically controlled catheter and method of its calibration |
US8273076B2 (en) | 2005-06-30 | 2012-09-25 | Intuitive Surgical Operations, Inc. | Indicator for tool state and communication in multi-arm robotic telesurgery |
WO2007005555A2 (en) | 2005-06-30 | 2007-01-11 | Intuitive Surgical | Indicator for tool state communication in multi-arm telesurgery |
JP2009500086A (en) | 2005-07-01 | 2009-01-08 | ハンセン メディカル,インク. | Robotic guide catheter system |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US20070194082A1 (en) | 2005-08-31 | 2007-08-23 | Morgan Jerome R | Surgical stapling device with anvil having staple forming pockets of varying depths |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US8036776B2 (en) * | 2005-11-16 | 2011-10-11 | Abb Ab | Method and device for controlling motion of an industrial robot with a position switch |
US8182470B2 (en) | 2005-12-20 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Telescoping insertion axis of a robotic surgical system |
US8672922B2 (en) | 2005-12-20 | 2014-03-18 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
CN101340852B (en) | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | Instrument interface of a robotic surgical system |
WO2007075844A1 (en) | 2005-12-20 | 2007-07-05 | Intuitive Surgical, Inc. | Telescoping insertion axis of a robotic surgical system |
US11432895B2 (en) | 2005-12-20 | 2022-09-06 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
TWI291889B (en) * | 2005-12-22 | 2008-01-01 | Ind Tech Res Inst | Interactive control system |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US7930065B2 (en) * | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7835823B2 (en) * | 2006-01-05 | 2010-11-16 | Intuitive Surgical Operations, Inc. | Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system |
US7533892B2 (en) * | 2006-01-05 | 2009-05-19 | Intuitive Surgical, Inc. | Steering system for heavy mobile medical equipment |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US20070225562A1 (en) | 2006-03-23 | 2007-09-27 | Ethicon Endo-Surgery, Inc. | Articulating endoscopic accessory channel |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
NL1031827C2 (en) * | 2006-05-17 | 2007-11-20 | Univ Eindhoven Tech | Operation robot. |
CN104688282A (en) | 2006-06-13 | 2015-06-10 | 直观外科手术操作公司 | Minimally invasive surgical system |
KR20090051029A (en) * | 2006-06-14 | 2009-05-20 | 맥도널드 디트윌러 앤드 어소시에이츠 인코포레이티드 | Surgical manipulator with right-angle pulley drive mechanisms |
CA2654344C (en) | 2006-06-19 | 2015-11-03 | Robarts Research Institute | Apparatus for guiding a medical tool |
US8679096B2 (en) | 2007-06-21 | 2014-03-25 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
CA3068216C (en) | 2006-06-22 | 2023-03-07 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic devices and related methods |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
ES2298051B2 (en) * | 2006-07-28 | 2009-03-16 | Universidad De Malaga | ROBOTIC SYSTEM OF MINIMALLY INVASIVE SURGERY ASSISTANCE ABLE TO POSITION A SURGICAL INSTRUMENT IN RESPONSE TO THE ORDER OF A SURGEON WITHOUT FIXING THE OPERATING TABLE OR PRIOR CALIBRATION OF THE INSERT POINT. |
US8348131B2 (en) | 2006-09-29 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with mechanical indicator to show levels of tissue compression |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US20100241136A1 (en) * | 2006-12-05 | 2010-09-23 | Mark Doyle | Instrument positioning/holding devices |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US7434717B2 (en) | 2007-01-11 | 2008-10-14 | Ethicon Endo-Surgery, Inc. | Apparatus for closing a curved anvil of a surgical stapling device |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
JP4911701B2 (en) * | 2007-01-19 | 2012-04-04 | 株式会社日立製作所 | Master / slave manipulator system |
WO2008104082A1 (en) * | 2007-03-01 | 2008-09-04 | Titan Medical Inc. | Methods, systems and devices for threedimensional input, and control methods and systems based thereon |
US11576736B2 (en) | 2007-03-01 | 2023-02-14 | Titan Medical Inc. | Hand controller for robotic surgery system |
US20090005809A1 (en) | 2007-03-15 | 2009-01-01 | Hess Christopher J | Surgical staple having a slidable crown |
US7709752B2 (en) * | 2007-03-23 | 2010-05-04 | Electri-City, Inc. | Laser surgery station power system |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US7832114B2 (en) * | 2007-04-04 | 2010-11-16 | Eigen, Llc | Tracker holder assembly |
RU2009141610A (en) * | 2007-04-11 | 2011-05-20 | Форт Фотоникс Лимитед (Gb) | SUPPORT DESIGN AND WORK STATION CONTAINING A SUPPORT DESIGN FOR IMPROVEMENT, IMPROVEMENT OF OBJECTIVITY AND DOCUMENTATION OF UTERINE INSPECTIONS IN VIVO |
WO2008150484A1 (en) * | 2007-05-31 | 2008-12-11 | Applied Materials, Inc. | Methods and apparatus for extending the reach of a dual scara robot linkage |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US8620473B2 (en) * | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8444631B2 (en) * | 2007-06-14 | 2013-05-21 | Macdonald Dettwiler & Associates Inc | Surgical manipulator |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
JP5591696B2 (en) | 2007-07-12 | 2014-09-17 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Biopsy elements, arm devices, and medical devices |
CA2695615A1 (en) | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment, and delivery devices and related methods |
WO2009023851A1 (en) | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
US7918230B2 (en) | 2007-09-21 | 2011-04-05 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US20090088772A1 (en) * | 2007-09-27 | 2009-04-02 | Blumenkranz Stephen J | Fiber optic in-situ chemical analysis in a robotic surgical system |
US8400094B2 (en) | 2007-12-21 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Robotic surgical system with patient support |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US9770245B2 (en) | 2008-02-15 | 2017-09-26 | Ethicon Llc | Layer arrangements for surgical staple cartridges |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9895813B2 (en) | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
AU2009261935A1 (en) * | 2008-06-27 | 2009-12-30 | Allegiance Corporation | Flexible wrist-type element and methods of manufacture and use thereof |
US12239396B2 (en) | 2008-06-27 | 2025-03-04 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US8916134B2 (en) * | 2008-07-11 | 2014-12-23 | Industry-Academic Cooperation Foundation, Yonsei University | Metal nanocomposite, preparation method and use thereof |
US8728092B2 (en) * | 2008-08-14 | 2014-05-20 | Monteris Medical Corporation | Stereotactic drive system |
US8747418B2 (en) | 2008-08-15 | 2014-06-10 | Monteris Medical Corporation | Trajectory guide |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9339342B2 (en) | 2008-09-30 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Instrument interface |
US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
KR100944412B1 (en) * | 2008-10-13 | 2010-02-25 | (주)미래컴퍼니 | Surgical slave robot |
US8288520B2 (en) * | 2008-10-27 | 2012-10-16 | Qiagen Gaithersburg, Inc. | Fast results hybrid capture assay and system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
CN102341048A (en) | 2009-02-06 | 2012-02-01 | 伊西康内外科公司 | Driven surgical stapler improvements |
US10070849B2 (en) * | 2009-02-20 | 2018-09-11 | Covidien Lp | Marking articulating direction for surgical instrument |
US9196176B2 (en) | 2009-03-20 | 2015-11-24 | The Johns Hopkins University | Systems and methods for training one or more training users |
US12266040B2 (en) | 2009-03-31 | 2025-04-01 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US9254123B2 (en) | 2009-04-29 | 2016-02-09 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
GB0908368D0 (en) | 2009-05-15 | 2009-06-24 | Univ Leuven Kath | Adjustable remote center of motion positioner |
ES2388029B1 (en) * | 2009-05-22 | 2013-08-13 | Universitat Politècnica De Catalunya | ROBOTIC SYSTEM FOR LAPAROSCOPIC SURGERY. |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
JP5722893B2 (en) * | 2009-08-17 | 2015-05-27 | カリガン、パトリック、ジョン | Apparatus for accommodating a plurality of needles and method of use thereof |
WO2011043234A1 (en) | 2009-10-09 | 2011-04-14 | オリンパスメディカルシステムズ株式会社 | Endoscope device |
EP2512754A4 (en) | 2009-12-17 | 2016-11-30 | Univ Nebraska | MODULAR MEDICAL DEVICES USED IN INTERACTION AND SYSTEMS AND METHODS RELATING THERETO |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
ITCS20100006A1 (en) | 2010-03-02 | 2011-09-03 | Aulicino Edoardo | NEW INSTRUMENTATION TO USE THE NAVI-ROBOT FOR THE CONTROL AND MICROMETRIC HANDLING OF LAPAROSCOPIC INSTRUMENTATION AND FOR THE GUIDE TO BIOPSIES BOTH ECO-GUIDED AND UNDER FLUOROSCOPY |
JP5571432B2 (en) * | 2010-03-30 | 2014-08-13 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Medical robot system |
US20110282357A1 (en) | 2010-05-14 | 2011-11-17 | Intuitive Surgical Operations, Inc. | Surgical system architecture |
KR101117458B1 (en) | 2010-07-27 | 2012-02-29 | 김동철 | Joint fixed equipment of robot arm with which medical equipment is equipped |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US9662174B2 (en) | 2010-08-02 | 2017-05-30 | The Johns Hopkins University | Micro-force guided cooperative control for surgical manipulation of delicate tissue |
CA2804176A1 (en) | 2010-08-06 | 2013-02-05 | Board Of Regents Of The University Of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
WO2012020386A1 (en) * | 2010-08-11 | 2012-02-16 | Ecole Polytechnique Federale De Lausanne (Epfl) | Mechanical positioning system for surgical instruments |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
EP2621356B1 (en) | 2010-09-30 | 2018-03-07 | Ethicon LLC | Fastener system comprising a retention matrix and an alignment matrix |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9055941B2 (en) | 2011-09-23 | 2015-06-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck |
US10123798B2 (en) | 2010-09-30 | 2018-11-13 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US8740038B2 (en) | 2010-09-30 | 2014-06-03 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable portion |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US9342997B2 (en) | 2010-10-29 | 2016-05-17 | The University Of North Carolina At Chapel Hill | Modular staged reality simulator |
US9805625B2 (en) | 2010-10-29 | 2017-10-31 | KindHeart, Inc. | Surgical simulation assembly |
US9486189B2 (en) | 2010-12-02 | 2016-11-08 | Hitachi Aloka Medical, Ltd. | Assembly for use with surgery system |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US20120191086A1 (en) | 2011-01-20 | 2012-07-26 | Hansen Medical, Inc. | System and method for endoluminal and translumenal therapy |
FR2972132B1 (en) * | 2011-03-02 | 2014-05-09 | Gen Electric | DEVICE FOR ASSISTING THE HANDLING OF AN INSTRUMENT OR TOOL |
CA2834649C (en) | 2011-04-29 | 2021-02-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
JP6174017B2 (en) | 2011-06-10 | 2017-08-02 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | In vivo vascular seal end effector and in vivo robotic device |
US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US9138166B2 (en) | 2011-07-29 | 2015-09-22 | Hansen Medical, Inc. | Apparatus and methods for fiber integration and registration |
JP6081061B2 (en) | 2011-08-04 | 2017-02-15 | オリンパス株式会社 | Surgery support device |
JP6021353B2 (en) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | Surgery support device |
JP6005950B2 (en) | 2011-08-04 | 2016-10-12 | オリンパス株式会社 | Surgery support apparatus and control method thereof |
JP6000641B2 (en) | 2011-08-04 | 2016-10-05 | オリンパス株式会社 | Manipulator system |
JP5936914B2 (en) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | Operation input device and manipulator system including the same |
JP5931497B2 (en) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | Surgery support apparatus and assembly method thereof |
JP6009840B2 (en) | 2011-08-04 | 2016-10-19 | オリンパス株式会社 | Medical equipment |
US9161772B2 (en) | 2011-08-04 | 2015-10-20 | Olympus Corporation | Surgical instrument and medical manipulator |
JP6021484B2 (en) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | Medical manipulator |
JP5953058B2 (en) | 2011-08-04 | 2016-07-13 | オリンパス株式会社 | Surgery support device and method for attaching and detaching the same |
WO2013018861A1 (en) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | Medical manipulator and method for controlling same |
JP5841451B2 (en) | 2011-08-04 | 2016-01-13 | オリンパス株式会社 | Surgical instrument and control method thereof |
EP2740435B8 (en) | 2011-08-04 | 2018-12-19 | Olympus Corporation | Surgical support apparatus |
US9227326B2 (en) | 2011-08-11 | 2016-01-05 | The Board Of Trustees Of The Leland Stanford Junior University | Remote center of motion mechanism and method of use |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
EP2882330B1 (en) | 2011-10-03 | 2020-05-13 | Board of Regents of the University of Nebraska | Robotic surgical devices and systems |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
US10238837B2 (en) | 2011-10-14 | 2019-03-26 | Intuitive Surgical Operations, Inc. | Catheters with control modes for interchangeable probes |
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
US20140058205A1 (en) | 2012-01-10 | 2014-02-27 | Board Of Regents Of The University Of Nebraska | Methods, Systems, and Devices for Surgical Access and Insertion |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
BR112014024098B1 (en) | 2012-03-28 | 2021-05-25 | Ethicon Endo-Surgery, Inc. | staple cartridge |
JP6224070B2 (en) | 2012-03-28 | 2017-11-01 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Retainer assembly including tissue thickness compensator |
US9498292B2 (en) | 2012-05-01 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
CN117297766A (en) | 2012-06-01 | 2023-12-29 | 直观外科手术操作公司 | Redundant axes and degrees of freedom of a hardware-constrained remote center robotic manipulator |
EP3915504A1 (en) | 2012-06-01 | 2021-12-01 | Intuitive Surgical Operations, Inc. | Surgical instrument manipulator aspects |
KR102184969B1 (en) | 2012-06-01 | 2020-12-01 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Instrument carriage assembly for surgical system |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
CA2876846C (en) | 2012-06-22 | 2021-04-06 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
WO2014003855A1 (en) | 2012-06-27 | 2014-01-03 | Monteris Medical Corporation | Image-guided therapy of a tissue |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
US9364230B2 (en) | 2012-06-28 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with rotary joint assemblies |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
CN104736092B (en) | 2012-08-03 | 2017-07-21 | 史赛克公司 | Systems and methods for robotic surgery |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
WO2014025399A1 (en) | 2012-08-08 | 2014-02-13 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
WO2014028557A1 (en) | 2012-08-15 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Phantom degrees of freedom for manipulating the movement of mechanical bodies |
WO2014028563A1 (en) | 2012-08-15 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Phantom degrees of freedom in joint estimation and control |
WO2014028558A1 (en) | 2012-08-15 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Phantom degrees of freedom for manipulating the movement of surgical systems |
US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
US10028788B2 (en) | 2012-12-31 | 2018-07-24 | Mako Surgical Corp. | System for image-based robotic surgery |
US9131922B2 (en) | 2013-01-29 | 2015-09-15 | Eigen, Inc. | Calibration for 3D reconstruction of medical images from a sequence of 2D images |
JP6321047B2 (en) | 2013-02-15 | 2018-05-09 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for proximal control of surgical instruments |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
JP6345707B2 (en) | 2013-03-01 | 2018-06-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Surgical instrument with soft stop |
US9700309B2 (en) | 2013-03-01 | 2017-07-11 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9888966B2 (en) | 2013-03-14 | 2018-02-13 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9687230B2 (en) | 2013-03-14 | 2017-06-27 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US10086509B2 (en) | 2013-03-14 | 2018-10-02 | Elytra Technologies Llc | Device and method for controlled motion of a tool |
US20140276936A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Active drive mechanism for simultaneous rotation and translation |
CN108309454B (en) | 2013-03-15 | 2021-06-11 | 直观外科手术操作公司 | System and method for positioning a manipulator arm by engagement in a null-vertical space while null-space movement occurs |
CN109171975B (en) | 2013-03-15 | 2021-04-09 | 直观外科手术操作公司 | System and method for managing multiple null-space targets and saturated SLI behavior |
KR102283176B1 (en) | 2013-03-15 | 2021-07-29 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Inter-operative switching of tools in a robotic surgical system |
US9283046B2 (en) | 2013-03-15 | 2016-03-15 | Hansen Medical, Inc. | User interface for active drive apparatus with finite range of motion |
US9981109B2 (en) * | 2013-03-15 | 2018-05-29 | Corindus, Inc. | Guide wire or working catheter with modified drive surface |
EP2969404B1 (en) | 2013-03-15 | 2021-08-11 | Intuitive Surgical Operations, Inc. | Systems for using the null space to emphasize anipulator joint motion anisotropically |
KR102214809B1 (en) | 2013-03-15 | 2021-02-10 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for facilitating access to edges of cartesian-coordinate space using the null space |
US9668768B2 (en) | 2013-03-15 | 2017-06-06 | Synaptive Medical (Barbados) Inc. | Intelligent positioning system and methods therefore |
US10561470B2 (en) | 2013-03-15 | 2020-02-18 | Intuitive Surgical Operations, Inc. | Software configurable manipulator degrees of freedom |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US10136887B2 (en) | 2013-04-16 | 2018-11-27 | Ethicon Llc | Drive system decoupling arrangement for a surgical instrument |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
JP6479790B2 (en) | 2013-07-17 | 2019-03-06 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic surgical device, system and related methods |
US9808249B2 (en) | 2013-08-23 | 2017-11-07 | Ethicon Llc | Attachment portions for surgical instrument assemblies |
MX369362B (en) | 2013-08-23 | 2019-11-06 | Ethicon Endo Surgery Llc | Firing member retraction devices for powered surgical instruments. |
WO2015049619A1 (en) * | 2013-10-01 | 2015-04-09 | Srivastava Sudhir Prem | Tele-robotic surgical system |
TWI511700B (en) * | 2013-11-19 | 2015-12-11 | Univ Nat Taiwan Science Tech | Surgical holder |
CN110074844B (en) | 2013-12-11 | 2023-02-17 | 柯惠Lp公司 | Wrist assembly and jaw assembly for robotic surgical system |
WO2015118466A1 (en) * | 2014-02-04 | 2015-08-13 | Koninklijke Philips N.V. | Robot angular setup using current from joints |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
EP3107478B1 (en) * | 2014-02-20 | 2020-12-09 | Intuitive Surgical Operations, Inc. | Limited movement of a surgical mounting platform controlled by manual motion of robotic arms |
US20140166726A1 (en) | 2014-02-24 | 2014-06-19 | Ethicon Endo-Surgery, Inc. | Staple cartridge including a barbed staple |
CN106232029B (en) | 2014-02-24 | 2019-04-12 | 伊西康内外科有限责任公司 | Fastening system including firing member locking piece |
DE102014203921B4 (en) * | 2014-03-04 | 2017-11-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | management systems |
EP3610820B1 (en) | 2014-03-17 | 2023-08-02 | Intuitive Surgical Operations, Inc. | Methods and devices for table pose tracking using fiducial markers |
CN106132335B (en) | 2014-03-17 | 2019-08-30 | 直观外科手术操作公司 | The method of the movement of unactuated joint in control operation assembling structure |
CN106456265B (en) | 2014-03-17 | 2019-07-30 | 直观外科手术操作公司 | Use remote control operation surgery systems and control method of the inverse kinematics under the limit of joint |
KR102378585B1 (en) | 2014-03-17 | 2022-03-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | System and method for breakaway clutching in an articulated arm |
CN106102636B (en) | 2014-03-17 | 2020-04-07 | 直观外科手术操作公司 | Command shaping to suppress vibration during mode transitions |
US9597153B2 (en) | 2014-03-17 | 2017-03-21 | Intuitive Surgical Operations, Inc. | Positions for multiple surgical mounting platform rotation clutch buttons |
JP6537523B2 (en) * | 2014-03-17 | 2019-07-03 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for maintaining tool attitude |
US9504484B2 (en) | 2014-03-18 | 2016-11-29 | Monteris Medical Corporation | Image-guided therapy of a tissue |
US9486170B2 (en) | 2014-03-18 | 2016-11-08 | Monteris Medical Corporation | Image-guided therapy of a tissue |
US10675113B2 (en) | 2014-03-18 | 2020-06-09 | Monteris Medical Corporation | Automated therapy of a three-dimensional tissue region |
EP2923669B1 (en) | 2014-03-24 | 2017-06-28 | Hansen Medical, Inc. | Systems and devices for catheter driving instinctiveness |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US10028761B2 (en) | 2014-03-26 | 2018-07-24 | Ethicon Llc | Feedback algorithms for manual bailout systems for surgical instruments |
KR102395579B1 (en) | 2014-03-31 | 2022-05-09 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Surgical instrument with shiftable transmission |
KR102399312B1 (en) | 2014-04-01 | 2022-05-18 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Control input accuracy for teleoperated surgical instrument |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
US10206677B2 (en) | 2014-09-26 | 2019-02-19 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
CN106456159B (en) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | Fastener cartridge assembly and nail retainer lid arragement construction |
US10046140B2 (en) | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
EP4295801A3 (en) | 2014-05-05 | 2024-03-20 | Vicarious Surgical Inc. | Virtual reality surgical device |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
US10828120B2 (en) * | 2014-06-19 | 2020-11-10 | Kb Medical, Sa | Systems and methods for performing minimally invasive surgery |
USD779678S1 (en) | 2014-07-24 | 2017-02-21 | KindHeart, Inc. | Surgical tray |
CN105310775B (en) * | 2014-07-31 | 2018-01-30 | 乐普(北京)医疗器械股份有限公司 | Mechanical arm |
US10251717B2 (en) | 2014-08-01 | 2019-04-09 | Intuitive Surgical Operations, Inc. | Damping a telesurgical system |
US10058395B2 (en) | 2014-08-01 | 2018-08-28 | Intuitive Surgical Operations, Inc. | Active and semi-active damping in a telesurgical system |
EP4529881A2 (en) * | 2014-08-12 | 2025-04-02 | Intuitive Surgical Operations, Inc. | Detecting uncontrolled movement |
JP6734259B2 (en) | 2014-08-13 | 2020-08-05 | コヴィディエン リミテッド パートナーシップ | Robot control for grasping mechanical profit |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
CA2961213A1 (en) | 2014-09-12 | 2016-03-17 | Board Of Regents Of The University Of Nebraska | Quick-release end effectors and related systems and methods |
CN111544117A (en) * | 2014-09-15 | 2020-08-18 | 柯惠Lp公司 | Robot-controlled surgical assembly |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
CN107427300B (en) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | Surgical suture buttresses and auxiliary materials |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
EP3200718A4 (en) | 2014-09-30 | 2018-04-25 | Auris Surgical Robotics, Inc | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
WO2016069650A1 (en) | 2014-10-27 | 2016-05-06 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table icons |
EP3188993A4 (en) * | 2014-10-28 | 2018-08-29 | Festo AG & Co. KG | Universal end of arm robot tool |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
JP6608928B2 (en) | 2014-11-11 | 2019-11-20 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic device with miniature joint design and related systems and methods |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
BR112017012996B1 (en) | 2014-12-18 | 2022-11-08 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
WO2016132689A1 (en) * | 2015-02-18 | 2016-08-25 | Sony Corporation | Medical support arm device and medical system |
CN114052918A (en) | 2015-02-19 | 2022-02-18 | 柯惠Lp公司 | Repositioning method for input device of robotic surgical system |
US20160249910A1 (en) | 2015-02-27 | 2016-09-01 | Ethicon Endo-Surgery, Llc | Surgical charging system that charges and/or conditions one or more batteries |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10226250B2 (en) | 2015-02-27 | 2019-03-12 | Ethicon Llc | Modular stapling assembly |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
CN107405172B (en) | 2015-03-10 | 2021-04-13 | 柯惠Lp公司 | Measuring health of connector components of a robotic surgical system |
CN112155739B (en) * | 2015-03-17 | 2024-08-20 | 直观外科手术操作公司 | Systems and methods for providing feedback during manual joint positioning |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
US10327830B2 (en) | 2015-04-01 | 2019-06-25 | Monteris Medical Corporation | Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor |
US10587193B2 (en) | 2015-04-20 | 2020-03-10 | Vitesco Technologies USA, LLC. | Synchronous buck regulator with short circuit to voltage source protection |
US20160314711A1 (en) | 2015-04-27 | 2016-10-27 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station with display of actual animal tissue images and associated methods |
FR3036279B1 (en) * | 2015-05-21 | 2017-06-23 | Medtech Sa | NEUROSURGICAL ASSISTANCE ROBOT |
JP6714618B2 (en) | 2015-06-03 | 2020-06-24 | コヴィディエン リミテッド パートナーシップ | Offset instrument drive |
JP6761822B2 (en) | 2015-06-16 | 2020-09-30 | コヴィディエン リミテッド パートナーシップ | Robot Surgical System Torque Conversion Detection |
US10052102B2 (en) | 2015-06-18 | 2018-08-21 | Ethicon Llc | Surgical end effectors with dual cam actuated jaw closing features |
CA2987652A1 (en) | 2015-06-23 | 2016-12-29 | Covidien Lp | A surgical instrument and instrument drive connector for use with robotic surgical systems |
US10849650B2 (en) | 2015-07-07 | 2020-12-01 | Eigen Health Services, Llc | Transperineal needle guidance |
WO2017007795A1 (en) | 2015-07-07 | 2017-01-12 | Intuitive Surgical Operations, Inc. | Control of multiple devices |
JP7148242B2 (en) * | 2015-07-09 | 2022-10-05 | 川崎重工業株式会社 | surgical robot |
US10828115B2 (en) | 2015-07-23 | 2020-11-10 | Sri International | Robotic arm and robotic surgical system |
CN114027986B (en) | 2015-08-03 | 2024-06-14 | 内布拉斯加大学董事会 | Robotic surgical device system and related methods |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US10517599B2 (en) | 2015-08-26 | 2019-12-31 | Ethicon Llc | Staple cartridge assembly comprising staple cavities for providing better staple guidance |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
WO2017048922A1 (en) | 2015-09-16 | 2017-03-23 | KindHeart, Inc. | Surgical simulation system and associated methods |
USD773686S1 (en) | 2015-09-16 | 2016-12-06 | KindHeart, Inc. | Surgical tray |
US10292777B1 (en) | 2015-09-18 | 2019-05-21 | Elytra Technologies, Llc | Device and method for controlled motion of a tool |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
AU2016326371B2 (en) | 2015-09-25 | 2020-07-23 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US10307160B2 (en) | 2015-09-30 | 2019-06-04 | Ethicon Llc | Compressible adjunct assemblies with attachment layers |
US10716544B2 (en) | 2015-10-08 | 2020-07-21 | Zmk Medical Technologies Inc. | System for 3D multi-parametric ultrasound imaging |
US11234768B1 (en) | 2015-10-15 | 2022-02-01 | Dartmouth-Hitchcock Clinic | Screen-mounted trajectory and aiming guide for use with fluoroscopy |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
EP3364907B1 (en) | 2015-10-23 | 2021-06-02 | Covidien LP | Surgical system for detecting gradual changes in perfusion |
CA3005038A1 (en) | 2015-11-11 | 2017-05-18 | Mako Surgical Corp. | Robotic system and method for backdriving the same |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
GB2545637A (en) * | 2015-12-10 | 2017-06-28 | Cambridge Medical Robotics Ltd | Robot mounting arrangement |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10717187B2 (en) | 2016-02-01 | 2020-07-21 | AM Networks LLC | Desktop robotic arm with interchangeable end effectors |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10470764B2 (en) | 2016-02-09 | 2019-11-12 | Ethicon Llc | Surgical instruments with closure stroke reduction arrangements |
JP6911054B2 (en) | 2016-02-09 | 2021-07-28 | エシコン エルエルシーEthicon LLC | Surgical instruments with asymmetric joint composition |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
WO2017155678A1 (en) | 2016-03-10 | 2017-09-14 | Kindheart, Inc | Fake blood for use in simulated surgical procedures |
WO2017165183A1 (en) | 2016-03-25 | 2017-09-28 | Intuitive Surgical Operations, Inc. | Surgical platform supported by multiple arms |
US11064997B2 (en) | 2016-04-01 | 2021-07-20 | Cilag Gmbh International | Surgical stapling instrument |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US11576562B2 (en) | 2016-04-07 | 2023-02-14 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
WO2017189317A1 (en) | 2016-04-26 | 2017-11-02 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device |
JP7176757B2 (en) | 2016-05-18 | 2022-11-22 | バーチャル インシジョン コーポレイション | ROBOTIC SURGICAL DEVICES, SYSTEMS AND RELATED METHODS |
WO2017205576A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Instrument drive units |
CN109219414B (en) | 2016-05-26 | 2021-11-19 | 柯惠Lp公司 | Robotic surgical assembly |
CN109275333B (en) | 2016-06-03 | 2022-05-17 | 柯惠Lp公司 | System, method and computer readable program product for controlling a robotic delivery manipulator |
EP3463149B1 (en) | 2016-06-03 | 2025-02-19 | Covidien LP | Passive axis system for robotic surgical systems |
CN113180835A (en) | 2016-06-03 | 2021-07-30 | 柯惠Lp公司 | Control arm for robotic surgical system |
EP3463163A4 (en) | 2016-06-03 | 2020-02-12 | Covidien LP | Robotic surgical system with an embedded imager |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
WO2018039606A1 (en) | 2016-08-25 | 2018-03-01 | Virtual Incision Corporation | Quick-release tool coupler and related systems and methods |
US10463439B2 (en) | 2016-08-26 | 2019-11-05 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
JP7090615B2 (en) | 2016-08-30 | 2022-06-24 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robot device |
US11185455B2 (en) * | 2016-09-16 | 2021-11-30 | Verb Surgical Inc. | Table adapters for mounting robotic arms to a surgical table |
US11389360B2 (en) * | 2016-09-16 | 2022-07-19 | Verb Surgical Inc. | Linkage mechanisms for mounting robotic arms to a surgical table |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
EP3525712A4 (en) | 2016-10-14 | 2020-06-17 | Intuitive Surgical Operations Inc. | SYSTEM FOR APPLYING THE PRELOAD VOLTAGE FOR SURGICAL INSTRUMENTS AND RELATED METHODS |
WO2018098319A1 (en) | 2016-11-22 | 2018-05-31 | Board Of Regents Of The University Of Nebraska | Improved gross positioning device and related systems and methods |
CN110462259B (en) | 2016-11-29 | 2022-10-28 | 虚拟切割有限公司 | User controller with user presence detection and related systems and methods |
EP3551099B1 (en) | 2016-12-08 | 2024-03-20 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target plane |
US11974761B2 (en) | 2016-12-08 | 2024-05-07 | Orthotaxy S.A.S. | Surgical system for cutting an anatomical structure according to at least one target plane |
WO2018104523A1 (en) | 2016-12-08 | 2018-06-14 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target cutting plane |
US10433920B2 (en) * | 2016-12-09 | 2019-10-08 | Ethicon Llc | Surgical tool and robotic surgical system interfaces |
US10588704B2 (en) | 2016-12-09 | 2020-03-17 | Ethicon Llc | Surgical tool and robotic surgical system interfaces |
US10722319B2 (en) | 2016-12-14 | 2020-07-28 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
US11202682B2 (en) | 2016-12-16 | 2021-12-21 | Mako Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
JP2020501779A (en) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | Surgical stapling system |
JP7086963B2 (en) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | Surgical instrument system with end effector lockout and launch assembly lockout |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
US11571210B2 (en) | 2016-12-21 | 2023-02-07 | Cilag Gmbh International | Firing assembly comprising a multiple failed-state fuse |
US20180168608A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
JP7010957B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | Shaft assembly with lockout |
US10898186B2 (en) | 2016-12-21 | 2021-01-26 | Ethicon Llc | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
US10835246B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
MX2019007310A (en) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Surgical stapling systems. |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
EP3579782B1 (en) | 2017-02-08 | 2024-05-01 | Brooke Schumm | Intra-operative radiation therapy capsule with cylindrical shell radiation containment shutter system |
CA3051258A1 (en) | 2017-02-09 | 2018-08-16 | Vicarious Surgical Inc. | Virtual reality surgical tools system |
JP2020507377A (en) | 2017-02-15 | 2020-03-12 | コヴィディエン リミテッド パートナーシップ | Systems and equipment for crush prevention in medical robot applications |
US10813710B2 (en) | 2017-03-02 | 2020-10-27 | KindHeart, Inc. | Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station |
AU2018201287B2 (en) * | 2017-03-07 | 2019-01-03 | Stryker Corporation | Medical multi-link boom |
USD824979S1 (en) | 2017-03-16 | 2018-08-07 | AM Networks LLC | Robotic arm |
USD824980S1 (en) | 2017-03-16 | 2018-08-07 | AM Networks LLC | Support for robotic arm |
US10349986B2 (en) | 2017-04-20 | 2019-07-16 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US11517348B2 (en) * | 2017-05-03 | 2022-12-06 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Guide device suitable for performing temporomandibular joint arthroscopy |
US11033341B2 (en) | 2017-05-10 | 2021-06-15 | Mako Surgical Corp. | Robotic spine surgery system and methods |
AU2018265160B2 (en) | 2017-05-10 | 2023-11-16 | Mako Surgical Corp. | Robotic spine surgery system and methods |
KR102643758B1 (en) | 2017-05-12 | 2024-03-08 | 아우리스 헬스, 인코포레이티드 | Biopsy devices and systems |
US10792119B2 (en) * | 2017-05-22 | 2020-10-06 | Ethicon Llc | Robotic arm cart and uses therefor |
CN110650705B (en) | 2017-05-24 | 2023-04-28 | 柯惠Lp公司 | Presence detection of electrosurgical tools in robotic systems |
US10806532B2 (en) | 2017-05-24 | 2020-10-20 | KindHeart, Inc. | Surgical simulation system using force sensing and optical tracking and robotic surgery system |
EP3629980A4 (en) | 2017-05-25 | 2021-03-10 | Covidien LP | Robotic surgical system with automated guidance |
CN110177518B (en) | 2017-05-25 | 2023-01-31 | 柯惠Lp公司 | System and method for detecting objects within a field of view of an image capture device |
US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
US10856948B2 (en) | 2017-05-31 | 2020-12-08 | Verb Surgical Inc. | Cart for robotic arms and method and apparatus for registering cart to surgical table |
US10485623B2 (en) | 2017-06-01 | 2019-11-26 | Verb Surgical Inc. | Robotic arm cart with fine position adjustment features and uses therefor |
US11052930B2 (en) * | 2017-06-16 | 2021-07-06 | Verb Surgical Inc. | Robotic arm cart having locking swivel joints and other position adjustment features and uses therefor |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10913145B2 (en) | 2017-06-20 | 2021-02-09 | Verb Surgical Inc. | Cart for robotic arms and method and apparatus for cartridge or magazine loading of arms |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11389161B2 (en) | 2017-06-28 | 2022-07-19 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
AU2018290831A1 (en) | 2017-06-28 | 2019-12-19 | Auris Health, Inc. | Instrument insertion compensation |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10758232B2 (en) | 2017-06-28 | 2020-09-01 | Ethicon Llc | Surgical instrument with positive jaw opening features |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
EP4070740B1 (en) | 2017-06-28 | 2025-03-26 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
CN107374733B (en) * | 2017-07-31 | 2021-07-13 | 成都博恩思医学机器人有限公司 | Operation trolley |
CN107260308B (en) * | 2017-07-31 | 2021-06-22 | 成都博恩思医学机器人有限公司 | Surgical robot mechanical arm connecting device and surgical robot thereof |
CN107374732B (en) * | 2017-07-31 | 2021-11-30 | 成都博恩思医学机器人有限公司 | A braking system and surgical robot for arm |
CN107374731B (en) * | 2017-07-31 | 2021-09-14 | 成都博恩思医学机器人有限公司 | Lifting system for mechanical arm and surgical robot |
CN107374736B (en) * | 2017-07-31 | 2021-09-07 | 成都博恩思医学机器人有限公司 | an operating trolley |
CN107320278A (en) * | 2017-07-31 | 2017-11-07 | 成都中科博恩思医学机器人有限公司 | A kind of operation chassis with pushing hands |
CN107334532B (en) * | 2017-07-31 | 2021-03-19 | 成都博恩思医学机器人有限公司 | surgical robot |
CN107320187B (en) * | 2017-07-31 | 2023-08-01 | 成都博恩思医学机器人有限公司 | Flange safety mechanism for operation trolley |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
CN111093551B (en) | 2017-08-10 | 2023-08-11 | 直观外科手术操作公司 | Increased usable instrument life for telesurgery systems |
US11406441B2 (en) | 2017-08-16 | 2022-08-09 | Covidien Lp | End effector including wrist assembly and monopolar tool for robotic surgical systems |
EP4279013A3 (en) | 2017-08-22 | 2023-11-29 | Intuitive Surgical Operations, Inc. | User-installable part installation detection techniques |
CN110177516B (en) | 2017-09-05 | 2023-10-24 | 柯惠Lp公司 | Collision handling algorithm for robotic surgical systems |
US11583358B2 (en) | 2017-09-06 | 2023-02-21 | Covidien Lp | Boundary scaling of surgical robots |
CA3074880A1 (en) * | 2017-09-06 | 2019-03-14 | Covidien Lp | Mobile surgical control console |
US11847932B2 (en) | 2017-09-07 | 2023-12-19 | Intuitive Surgical Operations, Inc. | Modified animal organs for use in surgical simulators |
CN111093550B (en) | 2017-09-08 | 2023-12-12 | 柯惠Lp公司 | Energy disconnection for robotic surgical assembly |
DE102017215942A1 (en) * | 2017-09-11 | 2019-03-14 | Festo Ag & Co. Kg | SCARA-type robots |
CA3075692A1 (en) | 2017-09-14 | 2019-03-21 | Vicarious Surgical Inc. | Virtual reality surgical camera system |
US10857347B2 (en) | 2017-09-19 | 2020-12-08 | Pulse Biosciences, Inc. | Treatment instrument and high-voltage connectors for robotic surgical system |
CN111417333B (en) | 2017-09-27 | 2023-08-29 | 虚拟切割有限公司 | Robotic surgical device with tracking camera technology and related systems and methods |
US10034721B1 (en) * | 2017-09-27 | 2018-07-31 | Verb Surgical Inc. | Robotic arm cart having shock absorbing mechanisms and uses therefor |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US12029523B2 (en) | 2017-12-01 | 2024-07-09 | Covidien Lp | Drape management assembly for robotic surgical systems |
JP7362610B2 (en) | 2017-12-06 | 2023-10-17 | オーリス ヘルス インコーポレイテッド | System and method for correcting uncommanded instrument rotation |
AU2018384820B2 (en) | 2017-12-14 | 2024-07-04 | Auris Health, Inc. | System and method for estimating instrument location |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11576668B2 (en) | 2017-12-21 | 2023-02-14 | Cilag Gmbh International | Staple instrument comprising a firing path display |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
AU2019205201B2 (en) | 2018-01-04 | 2020-11-05 | Covidien Lp | Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough |
CA3087672A1 (en) | 2018-01-05 | 2019-07-11 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
WO2019139949A1 (en) | 2018-01-10 | 2019-07-18 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
US11234775B2 (en) | 2018-01-26 | 2022-02-01 | Mako Surgical Corp. | End effectors, systems, and methods for impacting prosthetics guided by surgical robots |
US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
KR20240118200A (en) | 2018-02-13 | 2024-08-02 | 아우리스 헬스, 인코포레이티드 | System and method for driving medical instrument |
US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
CN111787880A (en) | 2018-03-08 | 2020-10-16 | 柯惠Lp公司 | Surgical robot system |
CN111936077A (en) * | 2018-04-16 | 2020-11-13 | 柯惠Lp公司 | Surgical robot system |
EP3781367B1 (en) | 2018-04-20 | 2025-03-05 | Covidien LP | Methods for surgical robotic cart placement |
CN111989065A (en) | 2018-04-20 | 2020-11-24 | 柯惠Lp公司 | Compensation of observer movement in a robotic surgical system with a stereoscopic display |
EP3781064A4 (en) * | 2018-04-20 | 2022-01-26 | Covidien LP | Surgical port manipulator |
KR20250002662A (en) | 2018-05-18 | 2025-01-07 | 아우리스 헬스, 인코포레이티드 | Controllers for robotically-enabled teleoperated systems |
US11576739B2 (en) | 2018-07-03 | 2023-02-14 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
WO2020055707A1 (en) | 2018-09-14 | 2020-03-19 | Covidien Lp | Surgical robotic systems and methods of tracking usage of surgical instruments thereof |
EP3852667A4 (en) | 2018-09-17 | 2022-06-15 | Covidien LP | Surgical robotic systems |
CN112702969A (en) | 2018-09-17 | 2021-04-23 | 柯惠Lp公司 | Surgical robot system |
MX2021003099A (en) | 2018-09-17 | 2021-05-13 | Auris Health Inc | Systems and methods for concomitant medical procedures. |
EP3856065A4 (en) | 2018-09-28 | 2022-06-29 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
AU2019347767B2 (en) | 2018-09-28 | 2025-04-24 | Auris Health, Inc. | Systems and methods for docking medical instruments |
CN111358557B (en) * | 2018-10-09 | 2021-06-18 | 成都博恩思医学机器人有限公司 | Surgical instrument control method of laparoscopic surgery robot |
US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
JP6469304B1 (en) * | 2018-10-23 | 2019-02-13 | 株式会社A−Traction | Surgery support apparatus, control method thereof, and program |
WO2020131692A1 (en) | 2018-12-21 | 2020-06-25 | Intuitive Surgical Operations, Inc. | Surgical instruments having mechanisms for identifying and/or deactivating stapler cartridges |
EP3897405A4 (en) | 2018-12-21 | 2022-09-14 | Intuitive Surgical Operations, Inc. | ACTUATION MECHANISMS FOR SURGICAL INSTRUMENTS |
JP7241178B2 (en) | 2018-12-21 | 2023-03-16 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Surgical instrument with reinforced staple cartridge |
US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
CN111374777B (en) * | 2018-12-29 | 2024-09-17 | 达科为(深圳)医疗设备有限公司 | Master-slave robot system for pleuroperitoneal cavity minimally invasive surgery and configuration method |
WO2020146348A1 (en) | 2019-01-07 | 2020-07-16 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
US11571569B2 (en) | 2019-02-15 | 2023-02-07 | Pulse Biosciences, Inc. | High-voltage catheters for sub-microsecond pulsing |
WO2020172158A1 (en) * | 2019-02-21 | 2020-08-27 | Covidien Lp | Robotic surgical systems and robotic arm carts thereof |
US20200268440A1 (en) * | 2019-02-25 | 2020-08-27 | Acessa Health Inc. | Automated ablation control systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
WO2020206315A1 (en) | 2019-04-05 | 2020-10-08 | KindHeart, Inc. | Simulation model for laparoscopic foregut surgery |
CN113710170B (en) | 2019-04-15 | 2024-05-31 | 直观外科手术操作公司 | Staple cartridge for surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
WO2020242808A1 (en) | 2019-05-31 | 2020-12-03 | Intuitive Surgical Operations, Inc. | Staple cartridge for a surgical instrument |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11872007B2 (en) | 2019-06-28 | 2024-01-16 | Auris Health, Inc. | Console overlay and methods of using same |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11179214B2 (en) * | 2019-07-16 | 2021-11-23 | Asensus Surgical Us, Inc. | Haptic user interface for robotically controlled surgical instruments |
US12223629B2 (en) | 2019-09-11 | 2025-02-11 | Covidien Lp | Systems and methods for smoke-reduction in images |
EP4044936A4 (en) | 2019-10-18 | 2024-02-28 | Intuitive Surgical Operations, Inc. | Surgical instrument with adjustable jaws |
US20210177500A1 (en) | 2019-12-12 | 2021-06-17 | Intuitive Surgical Operations, Inc. | Surgical instruments having non-linear cam slots |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US12256890B2 (en) | 2019-12-23 | 2025-03-25 | Covidien Lp | Systems and methods for guiding surgical procedures |
CN118383870A (en) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | Alignment interface for percutaneous access |
CN114901194B (en) | 2019-12-31 | 2024-08-30 | 奥瑞斯健康公司 | Anatomical feature identification and targeting |
JP7646675B2 (en) | 2019-12-31 | 2025-03-17 | オーリス ヘルス インコーポレイテッド | Positioning Techniques for Percutaneous Access |
WO2021173315A1 (en) | 2020-02-26 | 2021-09-02 | Covidien Lp | Robotic surgical instrument including linear encoders for measuring cable displacement |
US12262863B2 (en) | 2020-05-12 | 2025-04-01 | Covidien Lp | Systems and methods for image mapping and fusion during surgical procedures |
US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
EP4175576A4 (en) | 2020-07-06 | 2024-08-07 | Virtual Incision Corporation | Surgical robot positioning system and related devices and methods |
USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
US11871925B2 (en) | 2020-07-28 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with dual spherical articulation joint arrangements |
CN112196278B (en) * | 2020-09-16 | 2022-01-25 | 飞帆集团有限公司 | Special-shaped streamer and mounting method thereof |
US11583363B2 (en) * | 2020-09-23 | 2023-02-21 | Metal Industries Research & Development Centre | Holding mechanism for surgical instruments and holding module thereof |
US11900590B2 (en) * | 2020-10-21 | 2024-02-13 | Baker Hughes Holdings Llc | Inspection device articulation transformation based on image transformation |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
WO2022104771A1 (en) * | 2020-11-23 | 2022-05-27 | 诺创智能医疗科技(杭州)有限公司 | Surgical robot |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
EP4274491A1 (en) | 2021-01-08 | 2023-11-15 | Intuitive Surgical Operations, Inc. | Surgical stapling instruments |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
DE202021000992U1 (en) | 2021-03-05 | 2021-06-21 | lNTUITIVE SURGICAL OPERATIONS,INC. | Electrosurgical instruments for sealing and dissection |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
US12167900B2 (en) | 2021-03-31 | 2024-12-17 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
EP4312857A1 (en) | 2021-03-31 | 2024-02-07 | Moon Surgical SAS | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery |
US11812938B2 (en) | 2021-03-31 | 2023-11-14 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
US12178418B2 (en) | 2021-03-31 | 2024-12-31 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
CN114129266B (en) * | 2021-11-11 | 2024-05-14 | 深圳市精锋医疗科技股份有限公司 | Method, robot, device, robot and medium for maintaining RC point unchanged |
JP2024546079A (en) | 2021-11-30 | 2024-12-17 | エンドクエスト ロボティクス インコーポレイテッド | Force transmission system for robotically controlled medical devices |
TWI835436B (en) | 2021-11-30 | 2024-03-11 | 美商安督奎斯特機器人公司 | Steerable overtube assemblies for robotic surgical systems, control assemblies and method thereof |
TWI838986B (en) | 2021-11-30 | 2024-04-11 | 美商安督奎斯特機器人公司 | Patient console, robotic surgical system having the same, and method for performing the same |
JP2024543776A (en) | 2021-11-30 | 2024-11-26 | エンドクエスト ロボティクス インコーポレイテッド | Disposable End Effectors |
WO2023101948A1 (en) | 2021-11-30 | 2023-06-08 | Endoquest, Inc. | Master control systems for robotic surgical systems |
JP2023103734A (en) * | 2022-01-14 | 2023-07-27 | キヤノン株式会社 | Continuum robot system |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US11839442B1 (en) | 2023-01-09 | 2023-12-12 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
USD1066383S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066380S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066378S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066405S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066381S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066404S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066382S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066379S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
WO2024215716A1 (en) | 2023-04-11 | 2024-10-17 | Intuitive Surgical Operations, Inc. | Surgical stapling instruments and control systems for such instruments |
WO2024242819A1 (en) | 2023-05-03 | 2024-11-28 | Intuitive Surgical Operations, Inc. | Surgical staple cartridge insertion and protection devices |
WO2024249977A1 (en) | 2023-06-02 | 2024-12-05 | Intuitive Surgical Operations, Inc. | Surgical clips for sealing and/or closing tissue and vessels |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5078140A (en) | 1986-05-08 | 1992-01-07 | Kwoh Yik S | Imaging device - aided robotic stereotaxis system |
JPH02503519A (en) | 1987-05-27 | 1990-10-25 | サージカル ナビゲーション テクノロジース インコーポレーティッド(アン アフィリエイティッド カンパニー オブ ソファマー ダンネク グループ インコーポレーティッド) | Method and apparatus for reproducibly optically displaying surgical procedures |
US5251127A (en) | 1988-02-01 | 1993-10-05 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US5050608A (en) | 1988-07-12 | 1991-09-24 | Medirand, Inc. | System for indicating a position to be operated in a patient's body |
US5269305A (en) | 1990-04-27 | 1993-12-14 | The Nomos Corporation | Method and apparatus for performing stereotactic surgery |
JP2716270B2 (en) * | 1990-12-27 | 1998-02-18 | 株式会社日立製作所 | Manipulator |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5441042A (en) | 1991-08-05 | 1995-08-15 | Putman; John M. | Endoscope instrument holder |
US5597146A (en) | 1991-08-05 | 1997-01-28 | Putman; J. Michael | Rail-mounted stabilizer for surgical instrument |
CA2078295C (en) | 1991-08-05 | 1995-11-21 | John Michael Putman | Endoscope stabilizer |
US5184601A (en) | 1991-08-05 | 1993-02-09 | Putman John M | Endoscope stabilizer |
WO1993013916A1 (en) | 1992-01-21 | 1993-07-22 | Sri International | Teleoperator system and method with telepresence |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US5737500A (en) * | 1992-03-11 | 1998-04-07 | California Institute Of Technology | Mobile dexterous siren degree of freedom robot arm with real-time control system |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
JP3273084B2 (en) | 1992-08-20 | 2002-04-08 | オリンパス光学工業株式会社 | Medical device holder device |
US5397323A (en) | 1992-10-30 | 1995-03-14 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
JP2648274B2 (en) | 1993-01-28 | 1997-08-27 | 三鷹光器株式会社 | Medical position detection device |
DE69417229T2 (en) | 1993-05-14 | 1999-07-08 | Sri International, Menlo Park, Calif. | SURGERY DEVICE |
AU7468494A (en) | 1993-07-07 | 1995-02-06 | Cornelius Borst | Robotic system for close inspection and remote treatment of moving parts |
US5343385A (en) | 1993-08-17 | 1994-08-30 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5814038A (en) * | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5784542A (en) * | 1995-09-07 | 1998-07-21 | California Institute Of Technology | Decoupled six degree-of-freedom teleoperated robot system |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
EP2362286B1 (en) | 1997-09-19 | 2015-09-02 | Massachusetts Institute Of Technology | Robotic apparatus |
US11684499B2 (en) | 2018-09-09 | 2023-06-27 | Shanghai Elitek Biosciences Co., Ltd. | Stent delivery system |
US11171098B2 (en) | 2018-09-27 | 2021-11-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package and manufacturing method thereof |
US11299098B2 (en) | 2018-10-17 | 2022-04-12 | Aisin Corporation | Vehicular slope apparatus |
-
1999
- 1999-08-03 US US09/368,309 patent/US6246200B1/en not_active Expired - Lifetime
- 1999-08-03 WO PCT/US1999/017522 patent/WO2000007503A1/en active Application Filing
- 1999-08-03 AU AU53919/99A patent/AU5391999A/en not_active Abandoned
- 1999-08-03 EP EP99939671A patent/EP1109497B1/en not_active Expired - Lifetime
- 1999-08-03 DE DE69940850T patent/DE69940850D1/en not_active Expired - Lifetime
-
2001
- 2001-04-03 US US09/825,614 patent/US6441577B2/en not_active Expired - Lifetime
Cited By (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9949801B2 (en) | 1999-09-17 | 2018-04-24 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US9757203B2 (en) | 1999-09-17 | 2017-09-12 | Intuitive Surgical Operations, Inc. | Manipulator arm-to-patient collision avoidance using a null-space |
US9345544B2 (en) | 1999-09-17 | 2016-05-24 | Intuitive Surgical Operations, Inc. | Systems and methods for avoiding collisions between manipulator arms using a null-space |
US9675422B2 (en) | 1999-09-17 | 2017-06-13 | Intuitive Surgical Operations, Inc. | Systems and methods for avoiding collisions between manipulator arms using a null-space |
US9517106B2 (en) | 1999-09-17 | 2016-12-13 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US9492235B2 (en) | 1999-09-17 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Manipulator arm-to-patient collision avoidance using a null-space |
US7703363B2 (en) * | 2001-08-27 | 2010-04-27 | Flow International Corporation | Apparatus for generating and manipulating a high-pressure fluid jet |
US20080110312A1 (en) * | 2001-08-27 | 2008-05-15 | Flow International Corporation | Apparatus for generating and manipulating a high-pressure fluid jet |
US8396598B2 (en) | 2002-08-13 | 2013-03-12 | Neuroarm Surgical Ltd. | Microsurgical robot system |
US8005571B2 (en) | 2002-08-13 | 2011-08-23 | Neuroarm Surgical Ltd. | Microsurgical robot system |
US9220567B2 (en) | 2002-08-13 | 2015-12-29 | Neuroarm Surgical Ltd. | Microsurgical robot system |
US20030191396A1 (en) * | 2003-03-10 | 2003-10-09 | Sanghvi Narendra T | Tissue treatment method and apparatus |
WO2005046499A3 (en) * | 2003-11-12 | 2005-07-14 | Delta Engineering Gmbh | Actuator platform for guiding end effectors in minimally invasive interventions |
WO2005046499A2 (en) * | 2003-11-12 | 2005-05-26 | Delta Engineering Gmbh | Actuator platform for guiding end effectors in minimally invasive interventions |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US8348931B2 (en) | 2005-01-24 | 2013-01-08 | Intuitive Surgical Operations, Inc. | Modular mainpulator support for robotic surgery |
EP2263591A3 (en) * | 2005-01-24 | 2012-12-19 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US9023060B2 (en) * | 2005-01-24 | 2015-05-05 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US8834489B2 (en) | 2005-01-24 | 2014-09-16 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US20060167440A1 (en) * | 2005-01-24 | 2006-07-27 | Intuitive Surgical | Modular manipulator support for robotic surgery |
JP2008528130A (en) * | 2005-01-24 | 2008-07-31 | インテュイティブ サージカル, インコーポレイテッド | Modular manipulator support for robotic surgery |
EP3427685A1 (en) * | 2005-01-24 | 2019-01-16 | Intuitive Surgical Operations Inc. | Modular manipulator support for robotic surgery |
WO2006079108A1 (en) * | 2005-01-24 | 2006-07-27 | Intuitive Surgical, Inc | Modular manipulator support for robotic surgery |
JP2014028296A (en) * | 2005-01-24 | 2014-02-13 | Intuitive Surgical Inc | Modular manipulator support for robotic surgery |
EP2537483A3 (en) * | 2005-01-24 | 2016-12-21 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US20130096576A1 (en) * | 2005-01-24 | 2013-04-18 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
EP2329790A3 (en) * | 2005-01-24 | 2016-07-06 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
JP2012143589A (en) * | 2005-01-24 | 2012-08-02 | Intuitive Surgical Inc | Modular manipulator support for robotic |
EP2263590A3 (en) * | 2005-01-24 | 2012-12-12 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US20070016032A1 (en) * | 2005-04-05 | 2007-01-18 | Gerard Aknine | Microwave devices for treating biological samples and tissue and methods for imaging |
US9687310B2 (en) | 2005-05-19 | 2017-06-27 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8786241B2 (en) | 2005-05-19 | 2014-07-22 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US10512513B2 (en) | 2005-05-19 | 2019-12-24 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US20110264110A1 (en) * | 2005-05-19 | 2011-10-27 | Intuitive Surgical, Inc. | Software Center and Highly Configurable Robotic Systems for Surgery and Other Uses |
US8541970B2 (en) | 2005-05-19 | 2013-09-24 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US12029513B2 (en) | 2005-05-19 | 2024-07-09 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8624537B2 (en) | 2005-05-19 | 2014-01-07 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US11534251B2 (en) | 2005-05-19 | 2022-12-27 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US10123844B2 (en) | 2005-05-19 | 2018-11-13 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US10194998B2 (en) | 2005-05-19 | 2019-02-05 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US9554859B2 (en) | 2005-05-19 | 2017-01-31 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8749190B2 (en) | 2005-05-19 | 2014-06-10 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8749189B2 (en) | 2005-05-19 | 2014-06-10 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US10512514B2 (en) | 2005-05-19 | 2019-12-24 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8823308B2 (en) | 2005-05-19 | 2014-09-02 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US10117714B2 (en) | 2005-05-19 | 2018-11-06 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8816628B2 (en) * | 2005-05-19 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US20070129846A1 (en) * | 2005-08-16 | 2007-06-07 | Brainlab Ag | Anthropomorphic medical robot arm with movement restrictions |
US8160743B2 (en) | 2005-08-16 | 2012-04-17 | Brainlab Ag | Anthropomorphic medical robot arm with movement restrictions |
EP1754448A1 (en) | 2005-08-16 | 2007-02-21 | BrainLAB AG | Anthropomorphic medical robot arm with limitation of movement |
US20140207166A1 (en) * | 2006-01-31 | 2014-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US9743928B2 (en) * | 2006-01-31 | 2017-08-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20100204713A1 (en) * | 2006-02-03 | 2010-08-12 | The European Atomic Energy Community (Euratom) | Medical robotic system |
US9358682B2 (en) * | 2006-02-03 | 2016-06-07 | The European Atomic Energy Community (Euratom), Represented By The European Commission | Medical robotic system |
US20070295649A1 (en) * | 2006-05-03 | 2007-12-27 | Mann & Hummel Gmbh | Apparatus for Collecting and Transporting Coolant-Lubricant Contaminated with Chips |
US20070265527A1 (en) * | 2006-05-11 | 2007-11-15 | Richard Wohlgemuth | Medical position determination using redundant position detection means and priority weighting for the position detection means |
US9125690B2 (en) * | 2006-05-11 | 2015-09-08 | Brainlab Ag | Medical position determination using redundant position detection means and priority weighting for the position detection means |
US20130085389A1 (en) * | 2007-03-16 | 2013-04-04 | Charles Bih Shiou Tsang | Method and apparatus for anorectal examination |
US8909370B2 (en) * | 2007-05-08 | 2014-12-09 | Massachusetts Institute Of Technology | Interactive systems employing robotic companions |
US20090055019A1 (en) * | 2007-05-08 | 2009-02-26 | Massachusetts Institute Of Technology | Interactive systems employing robotic companions |
US20080294115A1 (en) * | 2007-05-22 | 2008-11-27 | Chen Raymond H | Microscopic Tumor Injection Treatment |
US20080294106A1 (en) * | 2007-05-22 | 2008-11-27 | Convergent Medical Solutions, Inc. | Multiple robotic injections of anesthesia based on scanned image |
US20080294107A1 (en) * | 2007-05-22 | 2008-11-27 | Convergent Medical Solutions, Inc. | Multiple robotic injections of prenatal medications based on scanned image |
US20080294141A1 (en) * | 2007-05-22 | 2008-11-27 | Convergent Medical Solutions, Inc. | Multiple robotic injections of immunosuppressive drugs based on scanned image |
US10674900B2 (en) | 2008-03-28 | 2020-06-09 | Intuitive Surgical Operations, Inc. | Display monitor control of a telesurgical tool |
US10432921B2 (en) | 2008-03-28 | 2019-10-01 | Intuitive Surgical Operations, Inc. | Automated panning in robotic surgical systems based on tool tracking |
US20090248036A1 (en) * | 2008-03-28 | 2009-10-01 | Intuitive Surgical, Inc. | Controlling a robotic surgical tool with a display monitor |
US10038888B2 (en) | 2008-03-28 | 2018-07-31 | Intuitive Surgical Operations, Inc. | Apparatus for automated panning and zooming in robotic surgical systems |
US9699445B2 (en) | 2008-03-28 | 2017-07-04 | Intuitive Surgical Operations, Inc. | Apparatus for automated panning and digital zooming in robotic surgical systems |
US20140323803A1 (en) * | 2008-03-28 | 2014-10-30 | Intuitive Surgical Operations, Inc. | Methods of controlling a robotic surgical tool with a display monitor |
US11019329B2 (en) | 2008-03-28 | 2021-05-25 | Intuitive Surgical Operations, Inc. | Automated panning and zooming in teleoperated surgical systems with stereo displays |
US8808164B2 (en) * | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US11076748B2 (en) | 2008-03-28 | 2021-08-03 | Intuitive Surgical Operations, Inc. | Display monitor control of a telesurgical tool |
WO2009146240A1 (en) * | 2008-05-27 | 2009-12-03 | Convergent Medical Solutions, Inc. | Multiple robotic injections based on scanned image |
US20100228265A1 (en) * | 2009-03-09 | 2010-09-09 | Intuitive Surgical, Inc. | Operator Input Device for a Robotic Surgical System |
US8918207B2 (en) * | 2009-03-09 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Operator input device for a robotic surgical system |
WO2010123578A1 (en) * | 2009-04-23 | 2010-10-28 | Lipow Kenneth I | Ring form surgical effector |
US9498298B2 (en) | 2010-04-23 | 2016-11-22 | Kenneth I. Lipow | Ring form surgical effector |
US9901410B2 (en) | 2010-07-28 | 2018-02-27 | Medrobotics Corporation | Surgical positioning and support system |
US10238460B2 (en) | 2010-10-22 | 2019-03-26 | Medrobotics Corporation | Highly articulated robotic probes and methods of production and use of such probes |
US8992421B2 (en) | 2010-10-22 | 2015-03-31 | Medrobotics Corporation | Highly articulated robotic probes and methods of production and use of such probes |
US9649163B2 (en) | 2010-11-11 | 2017-05-16 | Medrobotics Corporation | Introduction devices for highly articulated robotic probes and methods of production and use of such probes |
US20140135611A1 (en) * | 2011-07-01 | 2014-05-15 | Advanced Echo Technology | Robotized system for moving a remotely guided tool |
US9572628B2 (en) | 2011-09-13 | 2017-02-21 | Medrobotics Corporation | Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures |
US9757856B2 (en) | 2011-09-13 | 2017-09-12 | Medrobotics Corporation | Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures |
US9364955B2 (en) | 2011-12-21 | 2016-06-14 | Medrobotics Corporation | Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof |
US9821477B2 (en) | 2011-12-21 | 2017-11-21 | Medrobotics Corporation | Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof |
US9658605B2 (en) | 2011-12-23 | 2017-05-23 | Samsung Electronics Co., Ltd. | Surgical robot and control method thereof |
US9931167B2 (en) | 2012-02-15 | 2018-04-03 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical instrument to provide needle-based therapy |
US10772691B2 (en) | 2012-02-15 | 2020-09-15 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical instrument to provide needle-based therapy |
CN104114107A (en) * | 2012-02-15 | 2014-10-22 | 直观外科手术操作公司 | Compact needle manipulator for targeted interventions |
US10188470B2 (en) | 2012-02-15 | 2019-01-29 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical instrument to provide needle-based therapy |
US11950864B2 (en) | 2012-02-15 | 2024-04-09 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical instrument to provide needle-based therapy |
KR101536106B1 (en) * | 2012-04-05 | 2015-07-13 | 라이스 그룹 홀딩 게엠베하 운트 컴퍼니 카게 | Method for operating an industrial robot |
WO2013181533A1 (en) * | 2012-06-01 | 2013-12-05 | Intuitive Surgical Operations, Inc. | Multi-port surgical robotic system architecture |
US10575908B2 (en) | 2012-06-01 | 2020-03-03 | Intuitive Surgical Operations, Inc. | Multi-port surgical robotic system architecture |
US10682191B2 (en) | 2012-06-01 | 2020-06-16 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US9358074B2 (en) | 2012-06-01 | 2016-06-07 | Intuitive Surgical Operations, Inc. | Multi-port surgical robotic system architecture |
US10194997B2 (en) | 2012-06-01 | 2019-02-05 | Intuitive Surgical Operations, Inc. | Manipulator arm-to-patient collision avoidance using a null-space |
US11576734B2 (en) | 2012-06-01 | 2023-02-14 | Intuitive Surgical Operations, Inc. | Multi-port surgical robotic system architecture |
US10232194B2 (en) | 2012-07-27 | 2019-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | Manipulation of imaging probe during medical procedure |
WO2014018983A1 (en) * | 2012-07-27 | 2014-01-30 | The Board Of Trustees Of The Leland Stanford Junior University | Manipulation of imaging probe during medical procedure |
WO2014026104A1 (en) * | 2012-08-09 | 2014-02-13 | Castro Michael Salvatore | Surgical tool positioning systems |
US9675380B2 (en) | 2012-08-09 | 2017-06-13 | Medrobotics Corporation | Surgical tool positioning system |
US10646297B2 (en) | 2012-08-15 | 2020-05-12 | Intuitive Surgical Operations, Inc. | Movable surgical mounting platform controlled by manual motion of robotic arms |
US11974828B2 (en) | 2012-08-15 | 2024-05-07 | Intuitive Surgical Operations, Inc. | Techniques for operating a kinematic structure by manual motion of link coupled to the kinematic structure |
US20220361970A1 (en) * | 2012-08-15 | 2022-11-17 | Intuitive Surgical Operations, Inc. | User initiated break-away clutching of a robotic system |
US9999476B2 (en) * | 2012-08-15 | 2018-06-19 | Intuitive Surgical Operations, Inc. | Movable surgical mounting platform controlled by manual motion of robotic arms |
US11298200B2 (en) | 2012-08-15 | 2022-04-12 | Intuitive Surgical Operations, Inc. | Techniques for operating a kinematic structure by manual motion of link coupled to the kinematic structure |
US10085811B2 (en) * | 2014-03-17 | 2018-10-02 | Intuitive Surgical Operations Inc. | Restoring instrument control input position/orientation during midprocedure restart |
US20180318023A1 (en) * | 2014-03-17 | 2018-11-08 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
US20190060012A1 (en) * | 2014-03-17 | 2019-02-28 | Intuitive Surgical Operations, Inc. | Restoring instrument control input position/orientation during midprocedure restart |
KR102364743B1 (en) | 2014-03-17 | 2022-02-18 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Restoring instrument control input position/orientation during midprocedure restart |
WO2015142790A1 (en) * | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Restoring instrument control input position/orientation during midprocedure restart |
CN106102632A (en) * | 2014-03-17 | 2016-11-09 | 直观外科手术操作公司 | Restart period reparation apparatus in a program and control input orientation/orientation |
US10500005B2 (en) * | 2014-03-17 | 2019-12-10 | Intuitive Surgical Operations, Inc. | Restoring instrument control input position/orientation during midprocedure restart |
US10779899B2 (en) * | 2014-03-17 | 2020-09-22 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
KR20160135284A (en) * | 2014-03-17 | 2016-11-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Restoring instrument control input position/orientation during midprocedure restart |
US10391635B2 (en) * | 2014-08-14 | 2019-08-27 | Kuka Deutschland Gmbh | Positioning a robot |
CN106573373A (en) * | 2014-08-14 | 2017-04-19 | 库卡罗伯特有限公司 | Positioning a robot |
KR20170041890A (en) * | 2014-08-14 | 2017-04-17 | 쿠카 로보테르 게엠베하 | Positioning a robot |
US20170274533A1 (en) * | 2014-08-14 | 2017-09-28 | Kuka Roboter Gmbh | Positioning A Robot |
WO2016023635A1 (en) * | 2014-08-14 | 2016-02-18 | Kuka Roboter Gmbh | Positioning a robot |
KR101961572B1 (en) * | 2014-08-14 | 2019-03-22 | 쿠카 도이칠란트 게엠베하 | Positioning a robot |
US11684448B2 (en) | 2014-10-27 | 2023-06-27 | Intuitive Surgical Operations, Inc. | Device with active brake release control |
JP7563838B2 (en) | 2014-10-27 | 2024-10-08 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | SYSTEM AND METHOD FOR INSTRUMENT DISTURBANCE COMPENSATION - Patent application |
US11759265B2 (en) | 2014-10-27 | 2023-09-19 | Intuitive Surgical Operations, Inc. | System and method for registering to a table |
JP7503106B2 (en) | 2014-10-27 | 2024-06-19 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Systems and methods for integrated operating table motion |
US12035987B2 (en) | 2014-10-27 | 2024-07-16 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table motion |
US11672618B2 (en) | 2014-10-27 | 2023-06-13 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table motion |
US11576737B2 (en) | 2014-10-27 | 2023-02-14 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table |
US12064201B2 (en) | 2014-10-27 | 2024-08-20 | Intuitive Surgical Operations, Inc. | System and method for monitoring control points during reactive motion |
US11806875B2 (en) | 2014-10-27 | 2023-11-07 | Intuitive Surgical Operations, Inc. | Disturbance compensation in computer-assisted devices |
US11737842B2 (en) | 2014-10-27 | 2023-08-29 | Intuitive Surgical Operations, Inc. | System and method for monitoring control points during reactive motion |
KR20230003422A (en) * | 2014-10-27 | 2023-01-05 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Medical device with active brake release control |
US12179359B2 (en) | 2014-10-27 | 2024-12-31 | Intuitive Surgical Operations, Inc. | Disturbance compensation in computer-assisted devices |
JP7176037B2 (en) | 2014-10-27 | 2022-11-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for instrument disturbance compensation |
US12186033B2 (en) | 2014-10-27 | 2025-01-07 | Intuitive Surgical Operations, Inc. | System and method for registering to a table |
JP2022171668A (en) * | 2014-10-27 | 2022-11-11 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Systems and methods for integrated operating table motion |
US12232834B2 (en) | 2014-10-27 | 2025-02-25 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table |
US11896326B2 (en) | 2014-10-27 | 2024-02-13 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table |
KR102655083B1 (en) | 2014-10-27 | 2024-04-08 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Medical device with active brake release control |
JP2021130003A (en) * | 2014-10-27 | 2021-09-09 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for instrument disturbance compensation |
US10357330B2 (en) | 2015-02-18 | 2019-07-23 | Sony Corporation | Medical support arm device and medical system |
US10898293B2 (en) | 2015-02-18 | 2021-01-26 | Sony Corporation | Medical support arm device and medical system |
JP2018522666A (en) * | 2015-07-31 | 2018-08-16 | マッケ・ゲゼルシャフトミットベシュレンクターハフトゥング | Device for detecting the position of movable operating table components |
US12201373B2 (en) * | 2015-08-19 | 2025-01-21 | Brainlab Ag | Determining a configuration of a medical robotic arm |
US20180085175A1 (en) * | 2015-08-19 | 2018-03-29 | Brainlab Ag | Determining a configuration of a medical robotic arm |
US11141859B2 (en) | 2015-11-02 | 2021-10-12 | Brainlab Ag | Determining a configuration of a medical robotic arm |
CN107847282A (en) * | 2015-11-23 | 2018-03-27 | 阿里礼萨·米尔巴盖里 | A robotic system for telesurgery |
WO2017089909A1 (en) * | 2015-11-23 | 2017-06-01 | Mirbagheri Alireza | A robotic system for tele-surgery |
US11160623B2 (en) | 2016-02-26 | 2021-11-02 | Covidien Lp | Robotic surgical systems and robotic arms thereof |
WO2017147353A1 (en) * | 2016-02-26 | 2017-08-31 | Covidien Lp | Robotic surgical systems and robotic arms thereof |
CN109070363A (en) * | 2016-03-30 | 2018-12-21 | 索尼公司 | Mechanical arm control method and manipulator control device |
US11000338B2 (en) * | 2016-03-30 | 2021-05-11 | Sony Corporation | Arm control method and arm control device |
WO2018034976A1 (en) * | 2016-08-16 | 2018-02-22 | Ethicon Llc | Robotic visualization and collision avoidance |
US11039896B2 (en) * | 2016-08-16 | 2021-06-22 | Ethicon Llc | Robotic visualization and collision avoidance |
US10413373B2 (en) | 2016-08-16 | 2019-09-17 | Ethicon, Llc | Robotic visualization and collision avoidance |
US10182875B2 (en) | 2016-08-16 | 2019-01-22 | Ethicon Llc | Robotic visualization and collision avoidance |
US11883122B2 (en) | 2016-08-16 | 2024-01-30 | Cilag Gmbh International | Robotic visualization and collision avoidance |
EP4382263A3 (en) * | 2016-09-19 | 2024-08-21 | Intuitive Surgical Operations, Inc. | Positioning indicator system for a remotely controllable arm and related methods |
WO2018052796A1 (en) | 2016-09-19 | 2018-03-22 | Intuitive Surgical Operations, Inc. | Positioning indicator system for a remotely controllable arm and related methods |
US12239401B2 (en) | 2016-09-19 | 2025-03-04 | Intuitive Surgical Operations, Inc. | Positioning indicator system for a remotely controllable arm and related methods |
EP3515349A4 (en) * | 2016-09-19 | 2020-08-19 | Intuitive Surgical Operations Inc. | REMOTE ARM POSITIONING INDICATION SYSTEM AND ASSOCIATED PROCEDURES |
US11076925B2 (en) | 2016-09-19 | 2021-08-03 | Intuitive Surgical Operations, Inc. | Positioning indicator system for a remotely controllable arm and related methods |
CN106618735A (en) * | 2016-11-16 | 2017-05-10 | 苏州大学 | Collaborative interaction robot for surgical operation |
CN107028579A (en) * | 2017-05-25 | 2017-08-11 | 杭州妙手机器人有限公司 | Laparoscopic device around a travel mechanism |
CN107320194A (en) * | 2017-07-31 | 2017-11-07 | 成都中科博恩思医学机器人有限公司 | A kind of stopping means with Redundancy Design |
US11188069B2 (en) | 2017-08-16 | 2021-11-30 | Covidien Lp | Preventative maintenance of robotic surgical systems |
US12133700B2 (en) | 2017-11-10 | 2024-11-05 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic manipulator or associated tool |
KR102222651B1 (en) | 2017-11-10 | 2021-03-05 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for controlling robot manipulators or associated tools |
KR102348324B1 (en) | 2017-11-10 | 2022-01-10 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for controlling a robotic manipulator or associated tool |
WO2019094794A3 (en) * | 2017-11-10 | 2019-06-20 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic manipulator or associated tool |
KR20200052980A (en) * | 2017-11-10 | 2020-05-15 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for controlling robot manipulators or associated tools |
US10952801B2 (en) | 2017-11-10 | 2021-03-23 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic manipulator or associated tool |
US11653987B2 (en) | 2017-11-10 | 2023-05-23 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic manipulator or associated tool |
KR20210024229A (en) * | 2017-11-10 | 2021-03-04 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for controlling a robotic manipulator or associated tool |
US11957446B2 (en) | 2017-12-08 | 2024-04-16 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
US12161438B2 (en) | 2018-02-07 | 2024-12-10 | Distalmotion Sa | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
CN111885979A (en) * | 2018-02-07 | 2020-11-03 | 迪斯透莫森公司 | Surgical robotic system including robotic telemanipulator and integrated laparoscopy |
EP3781069A1 (en) * | 2018-04-16 | 2021-02-24 | Covidien LP | Robotic surgical systems and robotic arm carts thereof |
EP3781069B1 (en) * | 2018-04-16 | 2025-04-30 | Covidien LP | Robotic surgical systems and robotic arm carts thereof |
US10687910B1 (en) * | 2018-12-18 | 2020-06-23 | Metal Industries Research & Development Centre | Orthopedic surgery assistant system and end effector |
CN110202541A (en) * | 2019-05-10 | 2019-09-06 | 合肥市第二人民医院 | Micro-manipulating robot for biomedical engineering |
JP7200458B2 (en) | 2020-10-15 | 2023-01-10 | リバーフィールド株式会社 | Work support robot |
JPWO2022079875A1 (en) * | 2020-10-15 | 2022-04-21 | ||
WO2022079875A1 (en) * | 2020-10-15 | 2022-04-21 | リバーフィールド株式会社 | Work assistance robot |
CN116367968A (en) * | 2020-10-15 | 2023-06-30 | 瑞德医疗机器股份有限公司 | Robot is assisted in operation |
EP4223459A4 (en) * | 2020-10-15 | 2023-11-22 | RIVERFIELD Inc. | ROBOTS FOR WORK SUPPORT |
EP4245244A4 (en) * | 2020-11-10 | 2024-10-16 | Chongqing Jinshan Medical Robotics Co., Ltd. | Surgical robot, and surgical robot system |
WO2022126099A1 (en) * | 2020-12-07 | 2022-06-16 | The Uab Research Foundation | Surgical tool support system |
CN113303828A (en) * | 2021-06-19 | 2021-08-27 | 王芳 | Ultrasonic device for gynecology |
WO2024259112A1 (en) * | 2023-06-14 | 2024-12-19 | Intuitive Surgical Operations, Inc. | Determining placement quality of a component based on motion of a remote center of motion during a strain relief operation |
US12290328B2 (en) | 2024-06-14 | 2025-05-06 | Distalmotion Sa | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
Also Published As
Publication number | Publication date |
---|---|
EP1109497A4 (en) | 2007-07-11 |
DE69940850D1 (en) | 2009-06-18 |
EP1109497A1 (en) | 2001-06-27 |
AU5391999A (en) | 2000-02-28 |
WO2000007503A1 (en) | 2000-02-17 |
US6441577B2 (en) | 2002-08-27 |
EP1109497B1 (en) | 2009-05-06 |
US6246200B1 (en) | 2001-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6441577B2 (en) | Manipulator positioning linkage for robotic surgery | |
US10898281B2 (en) | Modular manipulator support for robotic surgery | |
US12029514B2 (en) | Remote center of motion control for a surgical robot | |
US6933695B2 (en) | Ceiling and floor mounted surgical robot set-up arms | |
US12171513B2 (en) | Surgical system and patient-side apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: INTUITIVE SURGICAL OPERATIONS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTUITIVE SURGICAL, INC.;REEL/FRAME:043016/0520 Effective date: 20100219 |