US20010011175A1 - System for translation of electromagnetic and optical localization systems - Google Patents
System for translation of electromagnetic and optical localization systems Download PDFInfo
- Publication number
- US20010011175A1 US20010011175A1 US09/803,977 US80397701A US2001011175A1 US 20010011175 A1 US20010011175 A1 US 20010011175A1 US 80397701 A US80397701 A US 80397701A US 2001011175 A1 US2001011175 A1 US 2001011175A1
- Authority
- US
- United States
- Prior art keywords
- navigation system
- electromagnetic
- optical
- navigation
- patient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013519 translation Methods 0.000 title claims abstract description 48
- 230000003287 optical effect Effects 0.000 title claims description 81
- 230000004807 localization Effects 0.000 title description 14
- 238000002672 stereotactic surgery Methods 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims description 7
- 230000005672 electromagnetic field Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 22
- 238000001356 surgical procedure Methods 0.000 description 20
- 210000003128 head Anatomy 0.000 description 13
- 210000004556 brain Anatomy 0.000 description 8
- 238000004891 communication Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 238000002675 image-guided surgery Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0818—Redundant systems, e.g. using two independent measuring systems and comparing the signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3983—Reference marker arrangements for use with image guided surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3995—Multi-modality markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
Definitions
- the present invention relates to localization of a position during surgery.
- the present invention relates more specifically to a system that facilitates combined electromagnetic and optical localization of a position during stereotactic surgery, such as brain surgery and spinal surgery.
- scanners provide valuable information for stereotactic surgery, improved accuracy in defining the position of the target with respect to an accessible reference location can be desirable. Inaccuracies in defining the target position create inaccuracies in placing a therapeutic probe.
- One method for attempting to limit inaccuracies in defining the target position involves fixing the patient's head to the scanner to preserve the reference. Such fixation may be uncomfortable for the patient and creates other inconveniences, particularly if surgical procedures are involved. Consequently, a need exists for a system utilizing a scanner to accurately locate positions of targets, which allows the patient to be removed from the scanner.
- Stereotactic surgery utilizing a three-dimensional digitizer allows a patient to be removed from the scanner while still maintaining a high degree of accuracy for locating the position of targets.
- the three-dimensional digitizer is used as a localizer to determine the intra-procedural relative positions of the target.
- Three-dimensional digitizers may employ optical, acoustic, electromagnetic or other three-dimensional navigation technology for navigation through the patient space.
- electromagnetic navigation systems do not require line-of-sight between the tracking system components.
- electromagnetic navigation is beneficial for laproscopic and percutaneous procedures where the part of the instrument tracked cannot be kept in the line-of sight of the other navigation system components.
- electromagnetic navigation allows a tracking element to be placed at the tip of an instrument, electromagnetic navigation allows the use of non-rigid instruments such as flexible endoscopes.
- use of certain materials in procedures employing electromagnetic tracking is disadvantageous since certain materials could affect the electromagnetic fields used for navigation and therefore affect system accuracy.
- optical navigation systems have a larger working volume than electromagnetic navigation systems, and can be used with instruments having any material composition.
- the nature of optical navigation systems does not accommodate tracking system components on any portion of an instrument to be inserted into the patient's body.
- optical navigation systems typically track portions of the system components that are in the system's line of sight, and then determine the position of any non-visible portions of those components based on system parameters.
- an optical navigation system can track the handle of a surgical instrument but not the inserted tip of the surgical instrument, thus the navigation system must track the instrument handle and use predetermined measurements of the device to determine where the tip of the instrument is relative to the handle. This technique cannot be used for flexible instruments since the relation between the handle and the tip varies.
- Stereotactic surgery techniques are also utilized for spinal surgery, in order to increase accuracy of the surgery and minimize invasiveness. Accuracy is particularly difficult in spinal surgery and must be accommodated in registration and localization techniques utilized in the surgery.
- the vertebra Prior to spinal surgery, the vertebra are scanned to determine their alignment and positioning. During imaging, scans are taken at intervals through the vertebra to create a three-dimensional pre-procedural data set for the vertebra.
- the patient must be moved to the operating table, causing repositioning of the vertebra.
- the respective positions of the vertebra may shift once the patient has been immobilized on the operating table because, unlike the brain, the spine is not held relatively still by a skull-like enveloping structure. Even normal patient respiration may cause relative movement of the vertebra.
- Computer processes discriminate the image data retrieved by scanning the spine so that the body vertebra remain in memory. Once the vertebra are each defined as a single rigid body, the vertebra can be repositioned with software algorithms that define a displaced image data set. Each rigid body element has at least three fiducial markers that are visible on the pre-procedural images and accurately detectable during the procedure. It is preferable to select reference points on the spinous process that are routinely exposed during such surgery.
- the system comprises a first surgical navigation system defining a first patient space, a second surgical navigation system defining a second patient space, and a translation device to register the coordinates of the first patient space to the coordinates of the second patient space.
- the translation device comprises a rigid body, at least one component for a first navigation system placed in or on the rigid body, and at least one component for a second navigation system placed in or on the rigid body, in known relation to the at least one component for the first navigation system.
- the translation device is positioned in a working volume of each of the at least two navigation systems.
- FIG. 1 is a schematic diagram illustrating an embodiment of the system that facilitates combined electromagnetic and optical localization of a position during stereotactic surgery according to the present invention
- FIG. 2 illustrates a top view of a first embodiment of an optical-to-electromagnetic translation device
- FIG. 3 illustrates a schematic perspective view of a second embodiment of an optical-to-electromagnetic translation device
- FIG. 4 illustrates a schematic perspective view of a third embodiment of an optical-to-electromagnetic translation device
- FIG. 5 illustrates a schematic perspective view of a fourth embodiment of an optical-to-electromagnetic translation device.
- the present invention contemplates a system for stereotactic surgery comprising a first surgical navigation system defining a first patient space, a second surgical navigation system defining a second patient space, a translation device to register (correlate the coordinates of) the first patient space to the second patient space, and an image data set generated from a scanning device that defines an image space.
- the image space is registered to at least one of the first and second patient spaces.
- FIG. 1 An exemplary embodiment of the system 10 of the present invention is illustrated in FIG. 1.
- the system of the present invention will be discussed hereinafter with respect to a an optical navigation system in combination with an electromagnetic navigation system.
- the present invention similarly contemplates combining any two navigation systems including optical, acoustic, electromagnetic, or conductive.
- the system illustrated in FIG. 1 includes a first navigation system that is optical.
- Elements of the optical navigation system include at least one optical element, and an optical receiving array 40 in line-of-sight communication with the optical element and in communication with a computer system 50 .
- the optical element can either generate an optical signal independently or alternatively generate an optical signal by reflecting a signal received from an optical signal source.
- the line-of-sight of the optical receiving array defines a “working volume” of the optical system, which is the space in which the optical system can effectively navigate.
- At least one optical element is placed on a translation device.
- preferably at least three non-collinear optical elements are utilized by the system in order to obtain six degrees of freedom location and orientation information from the optical elements.
- FIG. 1 In the exemplary embodiment of the invention illustrated in FIG. 1, four embodiments of the translation device 20 , 60 , 80 , 100 are shown in the working volume of the optical system. While only one translation device is needed for proper operation of the translation system of the present invention, the present invention also contemplates the use of more than one translation device for registration of different navigation systems. For example, more than one translation device could be used for redundant registration of two navigation systems in order to obtain increased accuracy of registration. In addition, if three different navigation systems were utilized in a single surgical procedure, one translation device could be used to register (i.e., correlate the coordinates of) all three navigation systems, or one translation device could be used to register the first and second navigation systems while another translation device registered the second and third navigation systems.
- a dynamic translation device can be incorporated into a medical instrument 60 for use in the surgical procedure being navigated.
- the medical instrument 60 includes a handle 62 , a tip portion 64 and a localization frame 66 .
- At least three collinear optical elements 70 are placed on the localization frame for communication with the optical receiving array 40 .
- the optical receiving array 40 sends a signal to the computer system 50 indicating the current position of the medical instrument 60 .
- a translation device can also be incorporated into a rigid static translation device 100 that is added to the optical and electromagnetic navigation system working spaces specifically to register (i.e., correlate the coordinates of) the optical navigation system to the electromagnetic navigation system.
- the static translation device may have any configuration allowing optical elements 110 to be placed in such a manner to define six degrees of freedom in the optical system (e.g., three non-collinear optical elements).
- this embodiment provides a suitable translation device, it also adds undesirable complexity to the navigation systems by requiring the navigation systems to receive input from and identify an additional structure in their working volume.
- a translation device can also be incorporated into the operating table.
- Optical elements 85 defining six degrees of freedom in the optical system are placed on the operating table in such a manner that they will remain in the line-of-sight of the optical receiving array 40 during the procedure.
- a dynamic translation device can further be incorporated into one or more of the optical elements 20 placed on the patient 30 (or mounted to the patient via a frame).
- optical elements 20 , 70 may be placed on the patient 30 or on the medical instrument 60 for tracking movement of the patient 30 and/or the medical instrument 60 during the procedure, even if the optical elements 20 , 70 on the patient 30 and the medical instrument 60 are not used as translation devices.
- the system of the present invention also includes a second navigation system.
- the second navigation system is electromagnetic.
- any translation device also has at least one component for the electromagnetic navigation system that is in known relationship to the optical elements placed on the device. The known relation of the optical and electromagnetic elements is received by the computer system 50 so that the computer system can generate a translation matrix for registration (i.e., correlation of the coordinates) of the optical and electromagnetic navigation systems.
- Elements of the illustrated electromagnetic navigation system include an electromagnetic element 90 (e.g., a sensor having at least one coil 92 ), and a magnetic field generator. In the embodiment shown in FIG. 1, the magnetic field generator is provided in the operating table 80 . Therefore, in the embodiment of the translation device shown in FIG.
- the magnetic field generator in the operating table 80 serves as the electromagnetic element on the translation device when placed in known relation to the optical elements 85 placed on the table 80 .
- the known relation of the optical and electromagnetic elements is received by the computer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates.
- the electromagnetic element 90 is preferably a sensor having at least one coil 92 .
- the sensor includes two coils 92 that are placed perpendicular to each other to create a sensor having six degrees of freedom.
- the sensor is placed in or on the localization frame 66 in known relation to the optical elements 70 .
- the known relation of the optical and electromagnetic elements is received by the computer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates.
- the electromagnetic element 90 is preferably a sensor as described above with respect to FIG. 2, placed in or on the rigid static device 100 in known relation to the optical elements 110 .
- the known relation of the optical and electromagnetic elements is received by the computer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates.
- the electromagnetic element 90 is preferably a sensor as described above with respect to FIG. 2.
- the sensor is preferably placed in or on the base 25 in known relation to the optical element 20 .
- the known relation of the optical and electromagnetic elements is received by the computer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates.
- the embodiment of FIG. 5 shows the electromagnetic element being integrated with the optical element, the electromagnetic element may alternatively be attached to or interchanged with the optical element 20 placed on the patient 30 (or mounted to the patient via a frame).
- an electromagnetic element 90 may be placed on the patient 30 or on the medical instrument 60 for tracking movement of the patient 30 and or the medical instrument 60 during the procedure, even if the electromagnetic element 90 on the patient 30 and the medical instrument 60 is not used as translation devices.
- the procedure is brain surgery and the translation device is only included in the medical instrument 60 , as illustrated in FIG. 2.
- An optical navigation system and an electromagnetic navigation system are used.
- fiducial markers Prior to the surgical procedure, fiducial markers are placed on the patient's head and the patient's head is scanned using, for example, a MR, CT, ultrasound, fluoro or PET scanner.
- the scanner generates an image data set including data points corresponding to the fiducial markers.
- the image data set is received and stored by the computer system.
- the patient After the patient's head has been scanned, the patient is placed on the operating table and the navigation systems are turned on. In brain surgery, the navigation systems track movement of the patients head and movement of the medical instrument. Since the medical instrument is used as the translation device, both optical and electromagnetic navigation system elements are placed on the medical instrument and both the optical and electromagnetic systems track movement of the medical instrument.
- optical or electromagnetic navigation system elements must be placed on the patient's head.
- optical elements are placed on the patient's head. Since the optical navigation system is tracking movement of the patient's head, the optical navigation system's patient space must be registered to the image space defined by the pre-operative scan.
- the electromagnetic navigation system patient space After the optical navigation system patient space has been registered to the image space, the electromagnetic navigation system patient space must be registered to the optical navigation system patient space. Having a known relation between the electromagnetic and optical elements in the medical instrument allows the computer to use a translation matrix to register the optical navigation system patient space to the electromagnetic navigation system patient space. Thus, the electromagnetic navigation patient space is registered to the image space.
- the medical instrument has a rigid design
- knowing the dimensions of the medical instrument and the orientation and location of the localization frame 66 allows the computer system to determine the position of the tip of the medical instrument.
- the medical instrument 60 has a non-rigid design
- merely knowing the location and orientation of the localization frame 66 by tracking the position of the optical and electromagnetic elements cannot allow the computer to determine the position of the tip 64 of the medical instrument.
- optical navigation systems are line-of-sight navigation systems and therefore do not allow direct tracking of the tip of a probe once it has been inserted into the patient (because the tip is out of the line-of sight of the optical receiving array).
- electromagnetic navigation systems do not require line-of-sight and therefore can track the location and orientation of the inserted tip of even a non-rigid medical instrument.
- an electromagnetic element 90 is placed in the tip portion 64 of the medical instrument and is tracked by the electromagnetic navigation system. Since the electromagnetic navigation system patient space has been registered to the image space, movement of the tip of the medical instrument within the patient's brain (within the image space) can be tracked.
- the present invention allows increased accuracy and flexibility for users by utilizing the features of multiple navigation system to their respective advantages.
- utilizing multiple navigation systems often increases the overall working volume during the procedure.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Robotics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
A system for utilizing and registering at least two surgical navigation systems during stereotactic surgery. The system comprises a first surgical navigation system defining a first patient space, a second surgical navigation system defining a second patient space, and a translation device to register the coordinates of the first patient space to the coordinates of the second patient space. The translation device comprises a rigid body, at least one component for a first navigation system placed in or on the rigid body, and at least one component for a second navigation system placed in or on the rigid body, in known relation to the at least one component for the first navigation system. The translation device is positioned in a working volume of each of the at least two navigation systems.
Description
- The following United States patent applications, which were concurrently filed with this one on Oct. 28, 1999, are fully incorporated herein by reference: Method and System for Navigating a Catheter Probe in the Presence of Field-influencing Objects, by Michael Martinelli, Paul Kessman and Brad Jascob; Patient-shielding and Coil System, by Michael Martinelli, Paul Kessman and Brad Jascob; Navigation Information Overlay onto Ultrasound Imagery, by Paul Kessman, Troy Holsing and Jason Trobaugh; Coil Structures and Methods for Generating Magnetic Fields, by Brad Jascob, Paul Kessman and Michael Martinelli; Registration of Human Anatomy Integrated for Electromagnetic Localization, by Mark W. Hunter and Paul Kessman; System for Translation of Electromagnetic and Optical Localization Systems, by Mark W. Hunter and Paul Kessman; Surgical Communication and Power System, by Mark W. Hunter, Paul Kessman and Brad Jascob; and Surgical Sensor, by Mark W. Hunter, Sheri McCoid and Paul Kessman.
- 1. Field of the Invention
- The present invention relates to localization of a position during surgery. The present invention relates more specifically to a system that facilitates combined electromagnetic and optical localization of a position during stereotactic surgery, such as brain surgery and spinal surgery.
- 2. Description of Related Art
- Precise localization of a position has always been important to stereotactic surgery. In addition, minimizing invasiveness of surgery is important to reduce health risks for a patient. Stereotactic surgery minimizes invasiveness of surgical procedures by allowing a device to be guided through tissue that has been localized by preoperative scanning techniques, such as for example, MR, CT, ultrasound, fluoro and PET. Recent developments in stereotactic surgery have increased localization precision and helped minimize invasiveness of surgery.
- Stereotactic surgery is now commonly used in surgery of the brain. Such methods typically involve acquiring image data by placing fiducial markers on the patient's head, scanning the patient's head, attaching a headring to the patient's head, and determining the spatial relation of the image data to the headring by, for example, registration of the fiducial markers. Registration of the fiducial markers relates the information in the scanned image data for the patient's brain to the brain itself, and utilizes one-to-one mapping between the fiducial markers as identified in the image data and the fiducial markers that remain on the patient's head after scanning and throughout surgery. This is referred to as registering image space to patient space. Often, the image space must also be registered to another image space. Registration is accomplished through knowledge of the coordinate vectors of at least three non-collinear points in the image space and the patient space.
- Currently, registration for image guided surgery is completed by a few different methods. First, point-to-point registration is accomplished by the user to identify points in image space and then touch the same points in patient space. Second, surface registration involves the user's generation of a surface (e.g., the patient's forehead) in patient space by either selecting multiple points or scanning, and then accepting or rejecting the best fit to that surface in image space, as chosen by the processor. Third, repeat fixation devices entail the user repeatedly removing and replacing a device in known relation to the fiducial markers. Such registration methods have additional steps during the procedure, and therefore increase the complexity of the system and increase opportunities for introduction of human error.
- Through the image data, quantitative coordinates of targets within the patient's body can be specified relative to the fiducial markers. Once a guide probe or other instrument has been registered to the fiducial markers on the patient's body, the instrument can be navigated through the patient's body using image data.
- It is also known to display large, three-dimensional data sets of image data in an operating room or in the direct field of view of a surgical microscope. Accordingly, a graphical representation of instrument navigation through the patient's body is displayed on a computer screen based on reconstructed images of scanned image data.
- Although scanners provide valuable information for stereotactic surgery, improved accuracy in defining the position of the target with respect to an accessible reference location can be desirable. Inaccuracies in defining the target position create inaccuracies in placing a therapeutic probe. One method for attempting to limit inaccuracies in defining the target position involves fixing the patient's head to the scanner to preserve the reference. Such fixation may be uncomfortable for the patient and creates other inconveniences, particularly if surgical procedures are involved. Consequently, a need exists for a system utilizing a scanner to accurately locate positions of targets, which allows the patient to be removed from the scanner.
- Stereotactic surgery utilizing a three-dimensional digitizer allows a patient to be removed from the scanner while still maintaining a high degree of accuracy for locating the position of targets. The three-dimensional digitizer is used as a localizer to determine the intra-procedural relative positions of the target. Three-dimensional digitizers may employ optical, acoustic, electromagnetic or other three-dimensional navigation technology for navigation through the patient space.
- Different navigational systems have different advantages and disadvantages. For example, electromagnetic navigation systems do not require line-of-sight between the tracking system components. Thus, electromagnetic navigation is beneficial for laproscopic and percutaneous procedures where the part of the instrument tracked cannot be kept in the line-of sight of the other navigation system components. Since electromagnetic navigation allows a tracking element to be placed at the tip of an instrument, electromagnetic navigation allows the use of non-rigid instruments such as flexible endoscopes. However, use of certain materials in procedures employing electromagnetic tracking is disadvantageous since certain materials could affect the electromagnetic fields used for navigation and therefore affect system accuracy.
- Comparatively, optical navigation systems have a larger working volume than electromagnetic navigation systems, and can be used with instruments having any material composition. However, the nature of optical navigation systems does not accommodate tracking system components on any portion of an instrument to be inserted into the patient's body. For percutaneous and laproscopic procedures, optical navigation systems typically track portions of the system components that are in the system's line of sight, and then determine the position of any non-visible portions of those components based on system parameters. For example, an optical navigation system can track the handle of a surgical instrument but not the inserted tip of the surgical instrument, thus the navigation system must track the instrument handle and use predetermined measurements of the device to determine where the tip of the instrument is relative to the handle. This technique cannot be used for flexible instruments since the relation between the handle and the tip varies.
- Stereotactic surgery techniques are also utilized for spinal surgery, in order to increase accuracy of the surgery and minimize invasiveness. Accuracy is particularly difficult in spinal surgery and must be accommodated in registration and localization techniques utilized in the surgery. Prior to spinal surgery, the vertebra are scanned to determine their alignment and positioning. During imaging, scans are taken at intervals through the vertebra to create a three-dimensional pre-procedural data set for the vertebra. However, after scanning the patient must be moved to the operating table, causing repositioning of the vertebra. In addition, the respective positions of the vertebra may shift once the patient has been immobilized on the operating table because, unlike the brain, the spine is not held relatively still by a skull-like enveloping structure. Even normal patient respiration may cause relative movement of the vertebra.
- Computer processes discriminate the image data retrieved by scanning the spine so that the body vertebra remain in memory. Once the vertebra are each defined as a single rigid body, the vertebra can be repositioned with software algorithms that define a displaced image data set. Each rigid body element has at least three fiducial markers that are visible on the pre-procedural images and accurately detectable during the procedure. It is preferable to select reference points on the spinous process that are routinely exposed during such surgery.
- See also, for example, U.S. Pat. No. 5,871,445, WO 96/11624, U.S. Pat. No. 5,592,939 and U.S. Pat. No. 5,697,377, the disclosures of which are incorporated herein by reference.
- To enhance the prior art, and in accordance with the purposes of the invention, as embodied and broadly described herein, there is provided a system for utilizing and registering at least two surgical navigation systems during stereotactic surgery. The system comprises a first surgical navigation system defining a first patient space, a second surgical navigation system defining a second patient space, and a translation device to register the coordinates of the first patient space to the coordinates of the second patient space. The translation device comprises a rigid body, at least one component for a first navigation system placed in or on the rigid body, and at least one component for a second navigation system placed in or on the rigid body, in known relation to the at least one component for the first navigation system. The translation device is positioned in a working volume of each of the at least two navigation systems.
- Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned from practice of the invention. The objectives and other advantages of the invention will be realized and attained by the apparatus particularly pointed out in the written description and claims herein as well as the appended drawings.
- The accompanying drawings, which are incorporated in and constitute part of the specification, illustrate a presently preferred embodiment of the invention and together with the general description given above and detailed description of the preferred embodiment given below, serve to explain the principles of the invention.
- FIG. 1 is a schematic diagram illustrating an embodiment of the system that facilitates combined electromagnetic and optical localization of a position during stereotactic surgery according to the present invention;
- FIG. 2 illustrates a top view of a first embodiment of an optical-to-electromagnetic translation device;
- FIG. 3 illustrates a schematic perspective view of a second embodiment of an optical-to-electromagnetic translation device;
- FIG. 4 illustrates a schematic perspective view of a third embodiment of an optical-to-electromagnetic translation device; and
- FIG. 5 illustrates a schematic perspective view of a fourth embodiment of an optical-to-electromagnetic translation device.
- Reference will now be made in detail to the present preferred exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- The present invention contemplates a system for stereotactic surgery comprising a first surgical navigation system defining a first patient space, a second surgical navigation system defining a second patient space, a translation device to register (correlate the coordinates of) the first patient space to the second patient space, and an image data set generated from a scanning device that defines an image space. The image space is registered to at least one of the first and second patient spaces.
- An exemplary embodiment of the
system 10 of the present invention is illustrated in FIG. 1. The system of the present invention will be discussed hereinafter with respect to a an optical navigation system in combination with an electromagnetic navigation system. However, the present invention similarly contemplates combining any two navigation systems including optical, acoustic, electromagnetic, or conductive. - The system illustrated in FIG. 1 includes a first navigation system that is optical. Elements of the optical navigation system include at least one optical element, and an optical receiving
array 40 in line-of-sight communication with the optical element and in communication with acomputer system 50. The optical element can either generate an optical signal independently or alternatively generate an optical signal by reflecting a signal received from an optical signal source. The line-of-sight of the optical receiving array defines a “working volume” of the optical system, which is the space in which the optical system can effectively navigate. - At least one optical element is placed on a translation device. According to the illustrated embodiment of the present invention, preferably at least three non-collinear optical elements are utilized by the system in order to obtain six degrees of freedom location and orientation information from the optical elements.
- In the exemplary embodiment of the invention illustrated in FIG. 1, four embodiments of the
translation device - As illustrated in FIGS. 1 and 2, a dynamic translation device can be incorporated into a
medical instrument 60 for use in the surgical procedure being navigated. Themedical instrument 60 includes ahandle 62, atip portion 64 and alocalization frame 66. At least three collinear optical elements 70 (capable of defining six degrees of freedom in the optical system) are placed on the localization frame for communication with the optical receivingarray 40. As the medical instrument moves in the working volume of the optical system, the optical receivingarray 40 sends a signal to thecomputer system 50 indicating the current position of themedical instrument 60. - As illustrated in FIGS. 1 and 3, a translation device can also be incorporated into a rigid
static translation device 100 that is added to the optical and electromagnetic navigation system working spaces specifically to register (i.e., correlate the coordinates of) the optical navigation system to the electromagnetic navigation system. The static translation device may have any configuration allowingoptical elements 110 to be placed in such a manner to define six degrees of freedom in the optical system (e.g., three non-collinear optical elements). Although this embodiment provides a suitable translation device, it also adds undesirable complexity to the navigation systems by requiring the navigation systems to receive input from and identify an additional structure in their working volume. - As illustrated in FIGS. 1 and 4, a translation device can also be incorporated into the operating table.
Optical elements 85 defining six degrees of freedom in the optical system are placed on the operating table in such a manner that they will remain in the line-of-sight of the optical receivingarray 40 during the procedure. - As illustrated in FIGS. 1 and 5, a dynamic translation device can further be incorporated into one or more of the
optical elements 20 placed on the patient 30 (or mounted to the patient via a frame). - It is to be understood that
optical elements medical instrument 60 for tracking movement of thepatient 30 and/or themedical instrument 60 during the procedure, even if theoptical elements patient 30 and themedical instrument 60 are not used as translation devices. - As illustrated in FIG. 1, the system of the present invention also includes a second navigation system. In the embodiment illustrated in FIG. 1, the second navigation system is electromagnetic. Thus, any translation device also has at least one component for the electromagnetic navigation system that is in known relationship to the optical elements placed on the device. The known relation of the optical and electromagnetic elements is received by the
computer system 50 so that the computer system can generate a translation matrix for registration (i.e., correlation of the coordinates) of the optical and electromagnetic navigation systems. Elements of the illustrated electromagnetic navigation system include an electromagnetic element 90 (e.g., a sensor having at least one coil 92), and a magnetic field generator. In the embodiment shown in FIG. 1, the magnetic field generator is provided in the operating table 80. Therefore, in the embodiment of the translation device shown in FIG. 4, as described above, the magnetic field generator in the operating table 80 serves as the electromagnetic element on the translation device when placed in known relation to theoptical elements 85 placed on the table 80. The known relation of the optical and electromagnetic elements is received by thecomputer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates. - In the
medical instrument 60 embodiment of the translation device illustrated in FIG. 2, theelectromagnetic element 90 is preferably a sensor having at least onecoil 92. The sensor includes twocoils 92 that are placed perpendicular to each other to create a sensor having six degrees of freedom. The sensor is placed in or on thelocalization frame 66 in known relation to theoptical elements 70. The known relation of the optical and electromagnetic elements is received by thecomputer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates. - In the rigid
static embodiment 100 of the translation device illustrated in FIG. 3, theelectromagnetic element 90 is preferably a sensor as described above with respect to FIG. 2, placed in or on the rigidstatic device 100 in known relation to theoptical elements 110. The known relation of the optical and electromagnetic elements is received by thecomputer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates. - As illustrated in FIG. 5, showing a schematic version of a dynamic translation device to be integrated one or more of the
optical elements 20 placed on the patient 30 (or mounted to the i patient via a frame), theelectromagnetic element 90 is preferably a sensor as described above with respect to FIG. 2. The sensor is preferably placed in or on the base 25 in known relation to theoptical element 20. The known relation of the optical and electromagnetic elements is received by thecomputer system 50 so that the computer system can generate a translation matrix for correlation of the optical and electromagnetic navigation system coordinates. Although the embodiment of FIG. 5 shows the electromagnetic element being integrated with the optical element, the electromagnetic element may alternatively be attached to or interchanged with theoptical element 20 placed on the patient 30 (or mounted to the patient via a frame). - It is to be understood that an
electromagnetic element 90 may be placed on the patient 30 or on themedical instrument 60 for tracking movement of thepatient 30 and or themedical instrument 60 during the procedure, even if theelectromagnetic element 90 on thepatient 30 and themedical instrument 60 is not used as translation devices. - An exemplary operation of the system of the present invention will now be described. For the purposes of the example, the procedure is brain surgery and the translation device is only included in the
medical instrument 60, as illustrated in FIG. 2. An optical navigation system and an electromagnetic navigation system are used. - Prior to the surgical procedure, fiducial markers are placed on the patient's head and the patient's head is scanned using, for example, a MR, CT, ultrasound, fluoro or PET scanner. The scanner generates an image data set including data points corresponding to the fiducial markers.
- The image data set is received and stored by the computer system.
- After the patient's head has been scanned, the patient is placed on the operating table and the navigation systems are turned on. In brain surgery, the navigation systems track movement of the patients head and movement of the medical instrument. Since the medical instrument is used as the translation device, both optical and electromagnetic navigation system elements are placed on the medical instrument and both the optical and electromagnetic systems track movement of the medical instrument.
- Since the patient's head must also be tracked, either optical or electromagnetic navigation system elements must be placed on the patient's head. For the purposes of the present illustration, optical elements are placed on the patient's head. Since the optical navigation system is tracking movement of the patient's head, the optical navigation system's patient space must be registered to the image space defined by the pre-operative scan.
- After the optical navigation system patient space has been registered to the image space, the electromagnetic navigation system patient space must be registered to the optical navigation system patient space. Having a known relation between the electromagnetic and optical elements in the medical instrument allows the computer to use a translation matrix to register the optical navigation system patient space to the electromagnetic navigation system patient space. Thus, the electromagnetic navigation patient space is registered to the image space.
- If the medical instrument has a rigid design, knowing the dimensions of the medical instrument and the orientation and location of the
localization frame 66 allows the computer system to determine the position of the tip of the medical instrument. However, in the case where themedical instrument 60 has a non-rigid design, merely knowing the location and orientation of thelocalization frame 66 by tracking the position of the optical and electromagnetic elements cannot allow the computer to determine the position of thetip 64 of the medical instrument. Additionally, optical navigation systems are line-of-sight navigation systems and therefore do not allow direct tracking of the tip of a probe once it has been inserted into the patient (because the tip is out of the line-of sight of the optical receiving array). - However, electromagnetic navigation systems do not require line-of-sight and therefore can track the location and orientation of the inserted tip of even a non-rigid medical instrument. To do so, an
electromagnetic element 90 is placed in thetip portion 64 of the medical instrument and is tracked by the electromagnetic navigation system. Since the electromagnetic navigation system patient space has been registered to the image space, movement of the tip of the medical instrument within the patient's brain (within the image space) can be tracked. - Thus, the present invention allows increased accuracy and flexibility for users by utilizing the features of multiple navigation system to their respective advantages. In addition, utilizing multiple navigation systems often increases the overall working volume during the procedure.
- It will be apparent to those skilled in the art that various modifications and variations can be made to the system of the present invention without departing from the scope or spirit of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (19)
1. A system for utilizing and registering at least two surgical navigation systems during stereotactic surgery, the system comprising:
a first surgical navigation system defining a first patient space;
a second surgical navigation system defining a second patient space; and
a translation device to register the coordinates of the first patient space to the coordinates of the second patient space.
2. The system of , wherein the first navigation system is a line-of-sight navigation system.
claim 1
3. The system of , wherein the line-of-sight navigation system is an optical navigation system.
claim 2
4. The system of , wherein the second navigation system is a non-line-of-sight navigation system.
claim 2
5. The system of , wherein the non-line-of sight system is an electromagnetic navigation system.
claim 4
6. The system of , wherein the translation device includes at least one component for the first navigation system and at least one component for the second navigation system.
claim 1
7. The system of , wherein the translation matrix between the at least one component for the first navigation system and the at least one component of the second navigation system is predetermined.
claim 6
8. The system of , wherein the first navigation system is an optical navigation system and the at least one components for the first navigation system is an optical element.
claim 7
9. The system of , wherein the second navigation system is an electromagnetic navigation system and the at least one component for the second navigation system is an electromagnetic element.
claim 8
10. The system of , wherein the at least one electromagnetic element is a sensor.
claim 9
11. A device for registering coordinates of at least two navigation systems, the device comprising:
a rigid body;
at least one component for a first navigation system placed in or on the rigid body; and
at least one component for a second navigation system placed in or on the rigid body, in known relation to the at least one component for the first navigation system,
wherein the device is positioned in a working volume of each of the at least two navigation systems.
12. The device of , wherein the first navigation system is a line-of line-of-sight navigation system.
claim 11
13. The system of , wherein the line-of-sight navigation system is an optical navigation system.
claim 12
14. The system of , wherein the second navigation system is a non-line-of-sight navigation system.
claim 12
15. The system of , wherein the non-line-of sight system is an electromagnetic navigation system.
claim 14
16. The system of , wherein the first navigation system is an optical navigation system and the at least one component for the first navigation system is an optical element.
claim 11
18. The system of , wherein the second navigation system is an electromagnetic navigation system and the at least one component for the second navigation system is an electromagnetic element.
claim 16
19. The system of , wherein the electromagnetic element is a sensor.
claim 9
20. The system of , wherein the electromagnetic element generates an electromagnetic field.
claim 9
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/803,977 US6402762B2 (en) | 1999-10-28 | 2001-03-13 | System for translation of electromagnetic and optical localization systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/429,568 US6235038B1 (en) | 1999-10-28 | 1999-10-28 | System for translation of electromagnetic and optical localization systems |
US09/803,977 US6402762B2 (en) | 1999-10-28 | 2001-03-13 | System for translation of electromagnetic and optical localization systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/429,568 Continuation US6235038B1 (en) | 1999-10-28 | 1999-10-28 | System for translation of electromagnetic and optical localization systems |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010011175A1 true US20010011175A1 (en) | 2001-08-02 |
US6402762B2 US6402762B2 (en) | 2002-06-11 |
Family
ID=23703800
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/429,568 Expired - Lifetime US6235038B1 (en) | 1999-10-28 | 1999-10-28 | System for translation of electromagnetic and optical localization systems |
US09/803,977 Expired - Lifetime US6402762B2 (en) | 1999-10-28 | 2001-03-13 | System for translation of electromagnetic and optical localization systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/429,568 Expired - Lifetime US6235038B1 (en) | 1999-10-28 | 1999-10-28 | System for translation of electromagnetic and optical localization systems |
Country Status (4)
Country | Link |
---|---|
US (2) | US6235038B1 (en) |
AU (1) | AU2617801A (en) |
DE (1) | DE10083670B4 (en) |
WO (1) | WO2001034050A2 (en) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040199072A1 (en) * | 2003-04-01 | 2004-10-07 | Stacy Sprouse | Integrated electromagnetic navigation and patient positioning device |
US20050281465A1 (en) * | 2004-02-04 | 2005-12-22 | Joel Marquart | Method and apparatus for computer assistance with total hip replacement procedure |
US20060058604A1 (en) * | 2004-08-25 | 2006-03-16 | General Electric Company | System and method for hybrid tracking in surgical navigation |
US20060262631A1 (en) * | 2004-11-12 | 2006-11-23 | Samsung Electronics Co., Ltd. | Bank selection signal control circuit for use in semiconductor memory device, and bank selection control method |
US20070225595A1 (en) * | 2006-01-17 | 2007-09-27 | Don Malackowski | Hybrid navigation system for tracking the position of body tissue |
WO2007115152A2 (en) | 2006-03-31 | 2007-10-11 | Medtronic Vascular, Inc. | Telescoping catheter with electromagnetic coils for imaging and navigation during cardiac procedures |
EP1854425A1 (en) * | 2006-05-11 | 2007-11-14 | BrainLAB AG | Position determination for medical devices with redundant position measurement and weighting to prioritise measurements |
WO2008086434A2 (en) * | 2007-01-09 | 2008-07-17 | Cyberheart, Inc. | Depositing radiation in heart muscle under ultrasound guidance |
US20080177280A1 (en) * | 2007-01-09 | 2008-07-24 | Cyberheart, Inc. | Method for Depositing Radiation in Heart Muscle |
US20080269777A1 (en) * | 2007-04-25 | 2008-10-30 | Medtronic, Inc. | Method And Apparatus For Controlled Insertion and Withdrawal of Electrodes |
US20080269600A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Flexible Array For Use In Navigated Surgery |
US20080269602A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Method And Apparatus For Performing A Navigated Procedure |
WO2008130355A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Method for performing multiple registrations in a navigated procedure |
US20080269599A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Method for Performing Multiple Registrations in a Navigated Procedure |
US20080317204A1 (en) * | 2007-03-16 | 2008-12-25 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US20080319491A1 (en) * | 2007-06-19 | 2008-12-25 | Ryan Schoenefeld | Patient-matched surgical component and methods of use |
US20090012509A1 (en) * | 2007-04-24 | 2009-01-08 | Medtronic, Inc. | Navigated Soft Tissue Penetrating Laser System |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US7561915B1 (en) | 2004-12-17 | 2009-07-14 | Cardiac Pacemakers, Inc. | MRI system having implantable device safety features |
US7643862B2 (en) | 2005-09-15 | 2010-01-05 | Biomet Manufacturing Corporation | Virtual mouse for use in surgical navigation |
US7722565B2 (en) | 2004-11-05 | 2010-05-25 | Traxtal, Inc. | Access system |
US20100160771A1 (en) * | 2007-04-24 | 2010-06-24 | Medtronic, Inc. | Method and Apparatus for Performing a Navigated Procedure |
US7751868B2 (en) | 2004-11-12 | 2010-07-06 | Philips Electronics Ltd | Integrated skin-mounted multifunction device for use in image-guided surgery |
US20100204955A1 (en) * | 2005-11-28 | 2010-08-12 | Martin Roche | Method and system for positional measurement using ultrasonic sensing |
US20100228117A1 (en) * | 2009-03-09 | 2010-09-09 | Medtronic Navigation, Inc | System And Method For Image-Guided Navigation |
US7805269B2 (en) | 2004-11-12 | 2010-09-28 | Philips Electronics Ltd | Device and method for ensuring the accuracy of a tracking device in a volume |
US7840256B2 (en) | 2005-06-27 | 2010-11-23 | Biomet Manufacturing Corporation | Image guided tracking array and method |
US7840254B2 (en) | 2005-01-18 | 2010-11-23 | Philips Electronics Ltd | Electromagnetically tracked K-wire device |
WO2011041123A2 (en) | 2009-09-30 | 2011-04-07 | Medtronic Inc. | Image-guided heart valve placement or repair |
US20110160583A1 (en) * | 2009-12-31 | 2011-06-30 | Orthosensor | Orthopedic Navigation System with Sensorized Devices |
US20110166407A1 (en) * | 2009-07-17 | 2011-07-07 | Cyberheart, Inc. | Heart Treatment Kit, System, and Method For Radiosurgically Alleviating Arrhythmia |
US8014867B2 (en) | 2004-12-17 | 2011-09-06 | Cardiac Pacemakers, Inc. | MRI operation modes for implantable medical devices |
US8032228B2 (en) | 2007-12-06 | 2011-10-04 | Cardiac Pacemakers, Inc. | Method and apparatus for disconnecting the tip electrode during MRI |
US8068648B2 (en) | 2006-12-21 | 2011-11-29 | Depuy Products, Inc. | Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US8086321B2 (en) | 2007-12-06 | 2011-12-27 | Cardiac Pacemakers, Inc. | Selectively connecting the tip electrode during therapy for MRI shielding |
US8160717B2 (en) | 2008-02-19 | 2012-04-17 | Cardiac Pacemakers, Inc. | Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field |
US8165659B2 (en) | 2006-03-22 | 2012-04-24 | Garrett Sheffer | Modeling method and apparatus for use in surgical navigation |
US8311637B2 (en) | 2008-02-11 | 2012-11-13 | Cardiac Pacemakers, Inc. | Magnetic core flux canceling of ferrites in MRI |
US8421642B1 (en) | 2006-08-24 | 2013-04-16 | Navisense | System and method for sensorized user interface |
US8494805B2 (en) | 2005-11-28 | 2013-07-23 | Orthosensor | Method and system for assessing orthopedic alignment using tracking sensors |
US8565874B2 (en) | 2009-12-08 | 2013-10-22 | Cardiac Pacemakers, Inc. | Implantable medical device with automatic tachycardia detection and control in MRI environments |
US8571637B2 (en) | 2008-01-21 | 2013-10-29 | Biomet Manufacturing, Llc | Patella tracking method and apparatus for use in surgical navigation |
US8571661B2 (en) | 2008-10-02 | 2013-10-29 | Cardiac Pacemakers, Inc. | Implantable medical device responsive to MRI induced capture threshold changes |
US8611983B2 (en) | 2005-01-18 | 2013-12-17 | Philips Electronics Ltd | Method and apparatus for guiding an instrument to a target in the lung |
US8632461B2 (en) | 2005-06-21 | 2014-01-21 | Koninklijke Philips N.V. | System, method and apparatus for navigated therapy and diagnosis |
US8639331B2 (en) | 2009-02-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Systems and methods for providing arrhythmia therapy in MRI environments |
US8638296B1 (en) | 2006-09-05 | 2014-01-28 | Jason McIntosh | Method and machine for navigation system calibration |
WO2014052428A1 (en) * | 2012-09-26 | 2014-04-03 | Stryker Corporation | Navigation system including optical and non-optical sensors |
US8862200B2 (en) | 2005-12-30 | 2014-10-14 | DePuy Synthes Products, LLC | Method for determining a position of a magnetic source |
US8934961B2 (en) | 2007-05-18 | 2015-01-13 | Biomet Manufacturing, Llc | Trackable diagnostic scope apparatus and methods of use |
US9189083B2 (en) | 2008-03-18 | 2015-11-17 | Orthosensor Inc. | Method and system for media presentation during operative workflow |
US9398892B2 (en) | 2005-06-21 | 2016-07-26 | Koninklijke Philips N.V. | Device and method for a trackable ultrasound |
US9510771B1 (en) | 2011-10-28 | 2016-12-06 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
US9661991B2 (en) | 2005-08-24 | 2017-05-30 | Koninklijke Philips N.V. | System, method and devices for navigated flexible endoscopy |
CN107496030A (en) * | 2017-09-04 | 2017-12-22 | 重庆博仕康科技有限公司 | Optomagnetic integral location tracking device |
US9848922B2 (en) | 2013-10-09 | 2017-12-26 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
US9854991B2 (en) | 2013-03-15 | 2018-01-02 | Medtronic Navigation, Inc. | Integrated navigation array |
US20190175059A1 (en) * | 2017-12-07 | 2019-06-13 | Medtronic Xomed, Inc. | System and Method for Assisting Visualization During a Procedure |
US10582879B2 (en) | 2004-02-17 | 2020-03-10 | Philips Electronics Ltd | Method and apparatus for registration, verification and referencing of internal organs |
US10974075B2 (en) | 2007-03-16 | 2021-04-13 | Varian Medical Systems, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
WO2024236440A1 (en) * | 2023-05-15 | 2024-11-21 | Medtronic Navigation, Inc. | Hybrid localization for minimally invasive surgery and cervical spinal referencing, and methods for using the same |
US12178469B2 (en) | 2016-11-07 | 2024-12-31 | Vycor Medical Inc. | Surgical introducer with guidance system receptacle |
Families Citing this family (351)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2204200A (en) | 1998-12-23 | 2000-07-31 | Image Guided Technologies, Inc. | A hybrid 3-d probe tracked by multiple sensors |
US6235038B1 (en) | 1999-10-28 | 2001-05-22 | Medtronic Surgical Navigation Technologies | System for translation of electromagnetic and optical localization systems |
US6381485B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies, Inc. | Registration of human anatomy integrated for electromagnetic localization |
US7635390B1 (en) * | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
WO2001064124A1 (en) * | 2000-03-01 | 2001-09-07 | Surgical Navigation Technologies, Inc. | Multiple cannula image guided tool for image guided procedures |
US6497134B1 (en) * | 2000-03-15 | 2002-12-24 | Image Guided Technologies, Inc. | Calibration of an instrument |
AU8370301A (en) * | 2000-08-23 | 2002-03-04 | Micronix Pty Ltd | Catheter locator apparatus and method of use |
DE50006264D1 (en) * | 2000-09-26 | 2004-06-03 | Brainlab Ag | System for the navigation-based alignment of elements on a body |
US6891518B2 (en) * | 2000-10-05 | 2005-05-10 | Siemens Corporate Research, Inc. | Augmented reality visualization device |
WO2002029700A2 (en) * | 2000-10-05 | 2002-04-11 | Siemens Corporate Research, Inc. | Intra-operative image-guided neurosurgery with augmented reality visualization |
IL140136A (en) * | 2000-12-06 | 2010-06-16 | Intumed Ltd | Apparatus for self-guided intubation |
CN100491914C (en) * | 2001-01-30 | 2009-05-27 | Z-凯特公司 | Tool calibrator and tracker system |
DE10107421A1 (en) * | 2001-02-14 | 2002-09-12 | Siemens Ag | Method for determining distortions in an image and calibration object therefor |
US7547307B2 (en) * | 2001-02-27 | 2009-06-16 | Smith & Nephew, Inc. | Computer assisted knee arthroplasty instrumentation, systems, and processes |
ATE431110T1 (en) | 2001-02-27 | 2009-05-15 | Smith & Nephew Inc | SURGICAL NAVIGATION SYSTEM FOR PARTIAL KNEE JOINT RECONSTRUCTION |
US6887245B2 (en) * | 2001-06-11 | 2005-05-03 | Ge Medical Systems Global Technology Company, Llc | Surgical drill for use with a computer assisted surgery system |
US8061006B2 (en) * | 2001-07-26 | 2011-11-22 | Powderject Research Limited | Particle cassette, method and kit therefor |
WO2003013372A2 (en) * | 2001-08-08 | 2003-02-20 | Stryker Corporation | Surgical tool system with components that perform inductive data transfer |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US20030055436A1 (en) * | 2001-09-14 | 2003-03-20 | Wolfgang Daum | Navigation of a medical instrument |
DE50113703D1 (en) * | 2001-10-10 | 2008-04-17 | Brainlab Ag | Medical instrument with touch-sensitive tip |
US7286866B2 (en) * | 2001-11-05 | 2007-10-23 | Ge Medical Systems Global Technology Company, Llc | Method, system and computer product for cardiac interventional procedure planning |
US6654629B2 (en) | 2002-01-23 | 2003-11-25 | Valentino Montegrande | Implantable biomarker and method of use |
US7311705B2 (en) | 2002-02-05 | 2007-12-25 | Medtronic, Inc. | Catheter apparatus for treatment of heart arrhythmia |
US7237556B2 (en) * | 2002-02-11 | 2007-07-03 | Smith & Nephew, Inc. | Image-guided fracture reduction |
US7499743B2 (en) * | 2002-03-15 | 2009-03-03 | General Electric Company | Method and system for registration of 3D images within an interventional system |
EP1348383B1 (en) * | 2002-03-21 | 2005-05-04 | BrainLAB AG | Retractor navigation device |
US7998062B2 (en) * | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
US7778686B2 (en) * | 2002-06-04 | 2010-08-17 | General Electric Company | Method and apparatus for medical intervention procedure planning and location and navigation of an intervention tool |
US7520857B2 (en) * | 2002-06-07 | 2009-04-21 | Verathon Inc. | 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
US8221322B2 (en) * | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods to improve clarity in ultrasound images |
US7819806B2 (en) * | 2002-06-07 | 2010-10-26 | Verathon Inc. | System and method to identify and measure organ wall boundaries |
US20060025689A1 (en) * | 2002-06-07 | 2006-02-02 | Vikram Chalana | System and method to measure cardiac ejection fraction |
US20070276247A1 (en) * | 2002-06-07 | 2007-11-29 | Vikram Chalana | Systems and methods for ultrasound imaging using an inertial reference unit |
US20040127797A1 (en) * | 2002-06-07 | 2004-07-01 | Bill Barnard | System and method for measuring bladder wall thickness and presenting a bladder virtual image |
US8221321B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods for quantification and classification of fluids in human cavities in ultrasound images |
GB2391625A (en) | 2002-08-09 | 2004-02-11 | Diagnostic Ultrasound Europ B | Instantaneous ultrasonic echo measurement of bladder urine volume with a limited number of ultrasound beams |
US20090112089A1 (en) * | 2007-10-27 | 2009-04-30 | Bill Barnard | System and method for measuring bladder wall thickness and presenting a bladder virtual image |
EP1531749A2 (en) | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
US20040077940A1 (en) * | 2002-10-11 | 2004-04-22 | Kienzle Thomas C. | Instrument guide for use with a tracking system |
US8052695B2 (en) * | 2002-10-11 | 2011-11-08 | Ge Medical Systems Global Technology Company Llc | Adjustable instruments for use with an electromagnetic localizer |
US7869861B2 (en) * | 2002-10-25 | 2011-01-11 | Howmedica Leibinger Inc. | Flexible tracking article and method of using the same |
US7933640B2 (en) * | 2002-11-14 | 2011-04-26 | General Electric Company | Interchangeable localizing devices for use with tracking systems |
US7094241B2 (en) | 2002-11-27 | 2006-08-22 | Zimmer Technology, Inc. | Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty |
US6837854B2 (en) * | 2002-12-18 | 2005-01-04 | Barbara Ann Karmanos Cancer Institute | Methods and systems for using reference images in acoustic image processing |
US20070282347A9 (en) * | 2002-12-20 | 2007-12-06 | Grimm James E | Navigated orthopaedic guide and method |
US7029477B2 (en) | 2002-12-20 | 2006-04-18 | Zimmer Technology, Inc. | Surgical instrument and positioning method |
US20040122305A1 (en) * | 2002-12-20 | 2004-06-24 | Grimm James E. | Surgical instrument and method of positioning same |
US20040172044A1 (en) * | 2002-12-20 | 2004-09-02 | Grimm James E. | Surgical instrument and method of positioning same |
US8246602B2 (en) | 2002-12-23 | 2012-08-21 | Medtronic, Inc. | Catheters with tracking elements and permeable membranes |
US8043281B2 (en) | 2002-12-23 | 2011-10-25 | Medtronic, Inc. | Catheters incorporating valves and permeable membranes |
US6889695B2 (en) | 2003-01-08 | 2005-05-10 | Cyberheart, Inc. | Method for non-invasive heart treatment |
US20040152955A1 (en) * | 2003-02-04 | 2004-08-05 | Mcginley Shawn E. | Guidance system for rotary surgical instrument |
US20040171930A1 (en) * | 2003-02-04 | 2004-09-02 | Zimmer Technology, Inc. | Guidance system for rotary surgical instrument |
US6925339B2 (en) | 2003-02-04 | 2005-08-02 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
US7458977B2 (en) * | 2003-02-04 | 2008-12-02 | Zimmer Technology, Inc. | Surgical navigation instrument useful in marking anatomical structures |
US6988009B2 (en) * | 2003-02-04 | 2006-01-17 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
US20070055142A1 (en) * | 2003-03-14 | 2007-03-08 | Webler William E | Method and apparatus for image guided position tracking during percutaneous procedures |
US7747047B2 (en) * | 2003-05-07 | 2010-06-29 | Ge Medical Systems Global Technology Company, Llc | Cardiac CT system and method for planning left atrial appendage isolation |
US7565190B2 (en) | 2003-05-09 | 2009-07-21 | Ge Medical Systems Global Technology Company, Llc | Cardiac CT system and method for planning atrial fibrillation intervention |
US7343196B2 (en) * | 2003-05-09 | 2008-03-11 | Ge Medical Systems Global Technology Company Llc | Cardiac CT system and method for planning and treatment of biventricular pacing using epicardial lead |
US6932823B2 (en) * | 2003-06-24 | 2005-08-23 | Zimmer Technology, Inc. | Detachable support arm for surgical navigation system reference array |
US20050010105A1 (en) * | 2003-07-01 | 2005-01-13 | Sra Jasbir S. | Method and system for Coronary arterial intervention |
US7344543B2 (en) * | 2003-07-01 | 2008-03-18 | Medtronic, Inc. | Method and apparatus for epicardial left atrial appendage isolation in patients with atrial fibrillation |
US7813785B2 (en) * | 2003-07-01 | 2010-10-12 | General Electric Company | Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery |
US7398116B2 (en) | 2003-08-11 | 2008-07-08 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
US8150495B2 (en) * | 2003-08-11 | 2012-04-03 | Veran Medical Technologies, Inc. | Bodily sealants and methods and apparatus for image-guided delivery of same |
US7756567B2 (en) * | 2003-08-29 | 2010-07-13 | Accuray Incorporated | Image guided radiosurgery method and apparatus using registration of 2D radiographic images with digitally reconstructed radiographs of 3D scan data |
US20050054918A1 (en) * | 2003-09-04 | 2005-03-10 | Sra Jasbir S. | Method and system for treatment of atrial fibrillation and other cardiac arrhythmias |
US20060009755A1 (en) * | 2003-09-04 | 2006-01-12 | Sra Jasbir S | Method and system for ablation of atrial fibrillation and other cardiac arrhythmias |
US7862570B2 (en) | 2003-10-03 | 2011-01-04 | Smith & Nephew, Inc. | Surgical positioners |
US7764985B2 (en) | 2003-10-20 | 2010-07-27 | Smith & Nephew, Inc. | Surgical navigation system component fault interfaces and related processes |
US20050171396A1 (en) * | 2003-10-20 | 2005-08-04 | Cyberheart, Inc. | Method for non-invasive lung treatment |
US7308299B2 (en) | 2003-10-22 | 2007-12-11 | General Electric Company | Method, apparatus and product for acquiring cardiac images |
US7308297B2 (en) * | 2003-11-05 | 2007-12-11 | Ge Medical Systems Global Technology Company, Llc | Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing |
CA2546023C (en) | 2003-11-14 | 2012-11-06 | Smith & Nephew, Inc. | Adjustable surgical cutting systems |
WO2005053559A1 (en) | 2003-11-25 | 2005-06-16 | Smith & Nephew, Inc. | Methods and apparatuses for providing a navigational array |
US20050137661A1 (en) * | 2003-12-19 | 2005-06-23 | Sra Jasbir S. | Method and system of treatment of cardiac arrhythmias using 4D imaging |
US20050143777A1 (en) * | 2003-12-19 | 2005-06-30 | Sra Jasbir S. | Method and system of treatment of heart failure using 4D imaging |
US7641661B2 (en) | 2003-12-26 | 2010-01-05 | Zimmer Technology, Inc. | Adjustable resection guide |
US7454248B2 (en) * | 2004-01-30 | 2008-11-18 | Ge Medical Systems Global Technology, Llc | Method, apparatus and product for acquiring cardiac images |
US8046050B2 (en) * | 2004-03-05 | 2011-10-25 | Biosense Webster, Inc. | Position sensing system for orthopedic applications |
US20050215888A1 (en) * | 2004-03-05 | 2005-09-29 | Grimm James E | Universal support arm and tracking array |
US20060052691A1 (en) * | 2004-03-05 | 2006-03-09 | Hall Maleata Y | Adjustable navigated tracking element mount |
US8114086B2 (en) * | 2004-03-08 | 2012-02-14 | Zimmer Technology, Inc. | Navigated cut guide locator |
US7641660B2 (en) | 2004-03-08 | 2010-01-05 | Biomet Manufacturing Corporation | Method, apparatus, and system for image guided bone cutting |
US7993341B2 (en) * | 2004-03-08 | 2011-08-09 | Zimmer Technology, Inc. | Navigated orthopaedic guide and method |
US20080269596A1 (en) * | 2004-03-10 | 2008-10-30 | Ian Revie | Orthpaedic Monitoring Systems, Methods, Implants and Instruments |
CA2561493A1 (en) | 2004-03-31 | 2005-10-20 | Smith & Nephew, Inc. | Methods and apparatuses for providing a reference array input device |
WO2005104978A1 (en) | 2004-04-21 | 2005-11-10 | Smith & Nephew, Inc. | Computer-aided methods, systems, and apparatuses for shoulder arthroplasty |
US7522779B2 (en) * | 2004-06-30 | 2009-04-21 | Accuray, Inc. | Image enhancement method and system for fiducial-less tracking of treatment targets |
US7366278B2 (en) * | 2004-06-30 | 2008-04-29 | Accuray, Inc. | DRR generation using a non-linear attenuation model |
US8167888B2 (en) * | 2004-08-06 | 2012-05-01 | Zimmer Technology, Inc. | Tibial spacer blocks and femoral cutting guide |
US8515527B2 (en) | 2004-10-13 | 2013-08-20 | General Electric Company | Method and apparatus for registering 3D models of anatomical regions of a heart and a tracking system with projection images of an interventional fluoroscopic system |
US7327872B2 (en) * | 2004-10-13 | 2008-02-05 | General Electric Company | Method and system for registering 3D models of anatomical regions with projection images of the same |
DE102004058122A1 (en) * | 2004-12-02 | 2006-07-13 | Siemens Ag | Medical image registration aid for landmarks by computerized and photon emission tomographies, comprises permeable radioactive substance is filled with the emission tomography as radiation permeable containers, a belt and patient body bowl |
JP2008521574A (en) * | 2004-12-02 | 2008-06-26 | スミス アンド ネフュー インコーポレーテッド | System providing a reference plane for attaching an acetabular cup |
US7976518B2 (en) | 2005-01-13 | 2011-07-12 | Corpak Medsystems, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
US20060161059A1 (en) * | 2005-01-20 | 2006-07-20 | Zimmer Technology, Inc. | Variable geometry reference array |
US20060184396A1 (en) * | 2005-01-28 | 2006-08-17 | Dennis Charles L | System and method for surgical navigation |
EP1855601B1 (en) | 2005-02-22 | 2018-10-10 | Smith & Nephew, Inc. | In-line milling system |
JP2008541020A (en) * | 2005-05-06 | 2008-11-20 | オーソソフト インコーポレイテッド | Wireless system for tracking objects |
US8108072B2 (en) * | 2007-09-30 | 2012-01-31 | Intuitive Surgical Operations, Inc. | Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information |
US8147503B2 (en) * | 2007-09-30 | 2012-04-03 | Intuitive Surgical Operations Inc. | Methods of locating and tracking robotic instruments in robotic surgical systems |
US8073528B2 (en) * | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
US10555775B2 (en) | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
WO2007033206A2 (en) | 2005-09-13 | 2007-03-22 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
US20070066881A1 (en) * | 2005-09-13 | 2007-03-22 | Edwards Jerome R | Apparatus and method for image guided accuracy verification |
US20070073133A1 (en) * | 2005-09-15 | 2007-03-29 | Schoenefeld Ryan J | Virtual mouse for use in surgical navigation |
US8357181B2 (en) | 2005-10-27 | 2013-01-22 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
KR20080081907A (en) * | 2005-11-03 | 2008-09-10 | 오르소소프트 인코포레이티드 | Computer Supported Surgical Multifaced Tracker Device |
US7684647B2 (en) * | 2005-11-16 | 2010-03-23 | Accuray Incorporated | Rigid body tracking for radiosurgery |
US7835500B2 (en) * | 2005-11-16 | 2010-11-16 | Accuray Incorporated | Multi-phase registration of 2-D X-ray images to 3-D volume studies |
US20070149977A1 (en) * | 2005-11-28 | 2007-06-28 | Zimmer Technology, Inc. | Surgical component positioner |
US8303505B2 (en) * | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Methods and apparatuses for image guided medical procedures |
US20070161888A1 (en) * | 2005-12-30 | 2007-07-12 | Sherman Jason T | System and method for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US20070167741A1 (en) * | 2005-12-30 | 2007-07-19 | Sherman Jason T | Apparatus and method for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US7520880B2 (en) * | 2006-01-09 | 2009-04-21 | Zimmer Technology, Inc. | Adjustable surgical support base with integral hinge |
US7744600B2 (en) * | 2006-01-10 | 2010-06-29 | Zimmer Technology, Inc. | Bone resection guide and method |
US20070173822A1 (en) * | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Use of a posterior dynamic stabilization system with an intradiscal device |
US8083795B2 (en) | 2006-01-18 | 2011-12-27 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of manufacturing same |
US7780671B2 (en) * | 2006-01-23 | 2010-08-24 | Zimmer Technology, Inc. | Bone resection apparatus and method for knee surgery |
US7328131B2 (en) | 2006-02-01 | 2008-02-05 | Medtronic, Inc. | Implantable pedometer |
US20070238992A1 (en) * | 2006-02-01 | 2007-10-11 | Sdgi Holdings, Inc. | Implantable sensor |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US7993269B2 (en) | 2006-02-17 | 2011-08-09 | Medtronic, Inc. | Sensor and method for spinal monitoring |
US8016859B2 (en) * | 2006-02-17 | 2011-09-13 | Medtronic, Inc. | Dynamic treatment system and method of use |
US20070197895A1 (en) | 2006-02-17 | 2007-08-23 | Sdgi Holdings, Inc. | Surgical instrument to assess tissue characteristics |
US20070239153A1 (en) * | 2006-02-22 | 2007-10-11 | Hodorek Robert A | Computer assisted surgery system using alternative energy technology |
US20070233238A1 (en) * | 2006-03-31 | 2007-10-04 | Medtronic Vascular, Inc. | Devices for Imaging and Navigation During Minimally Invasive Non-Bypass Cardiac Procedures |
WO2007113719A1 (en) * | 2006-03-31 | 2007-10-11 | Koninklijke Philips Electronics, N.V. | System for local error compensation in electromagnetic tracking systems |
US7918796B2 (en) * | 2006-04-11 | 2011-04-05 | Warsaw Orthopedic, Inc. | Volumetric measurement and visual feedback of tissues |
ES2569411T3 (en) | 2006-05-19 | 2016-05-10 | The Queen's Medical Center | Motion tracking system for adaptive real-time imaging and spectroscopy |
JP4816281B2 (en) * | 2006-06-22 | 2011-11-16 | 富士ゼロックス株式会社 | Document use management system, document management server and program thereof |
US20080051677A1 (en) * | 2006-08-23 | 2008-02-28 | Warsaw Orthopedic, Inc. | Method and apparatus for osteochondral autograft transplantation |
US7747306B2 (en) | 2006-09-01 | 2010-06-29 | Warsaw Orthopedic, Inc. | Osteochondral implant procedure |
US8197494B2 (en) * | 2006-09-08 | 2012-06-12 | Corpak Medsystems, Inc. | Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device |
US8543188B2 (en) * | 2006-10-17 | 2013-09-24 | General Electric Company | Method and apparatus for calibrating medical devices |
US7879040B2 (en) * | 2006-10-23 | 2011-02-01 | Warsaw Orthopedic, IN | Method and apparatus for osteochondral autograft transplantation |
US20080114375A1 (en) * | 2006-11-09 | 2008-05-15 | General Electric Company | Method and apparatus for attaching a dynamic reference |
US8852192B2 (en) * | 2006-11-13 | 2014-10-07 | Warsaw Orthopedic, Inc. | Method and apparatus for osteochondral autograft transplantation |
US20080140180A1 (en) * | 2006-12-07 | 2008-06-12 | Medtronic Vascular, Inc. | Vascular Position Locating Apparatus and Method |
US20080139915A1 (en) * | 2006-12-07 | 2008-06-12 | Medtronic Vascular, Inc. | Vascular Position Locating and/or Mapping Apparatus and Methods |
US20080147173A1 (en) * | 2006-12-18 | 2008-06-19 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
US8473030B2 (en) * | 2007-01-12 | 2013-06-25 | Medtronic Vascular, Inc. | Vessel position and configuration imaging apparatus and methods |
US20080172119A1 (en) * | 2007-01-12 | 2008-07-17 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
US8374673B2 (en) | 2007-01-25 | 2013-02-12 | Warsaw Orthopedic, Inc. | Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control |
US7987001B2 (en) | 2007-01-25 | 2011-07-26 | Warsaw Orthopedic, Inc. | Surgical navigational and neuromonitoring instrument |
US20080188921A1 (en) * | 2007-02-02 | 2008-08-07 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
US20080228072A1 (en) * | 2007-03-16 | 2008-09-18 | Warsaw Orthopedic, Inc. | Foreign Body Identifier |
US10201324B2 (en) | 2007-05-04 | 2019-02-12 | Delphinus Medical Technologies, Inc. | Patient interface system |
US8989842B2 (en) | 2007-05-16 | 2015-03-24 | General Electric Company | System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system |
US8428690B2 (en) | 2007-05-16 | 2013-04-23 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
US8167803B2 (en) | 2007-05-16 | 2012-05-01 | Verathon Inc. | System and method for bladder detection using harmonic imaging |
US8527032B2 (en) | 2007-05-16 | 2013-09-03 | General Electric Company | Imaging system and method of delivery of an instrument to an imaged subject |
US8364242B2 (en) | 2007-05-17 | 2013-01-29 | General Electric Company | System and method of combining ultrasound image acquisition with fluoroscopic image acquisition |
US9532848B2 (en) * | 2007-06-15 | 2017-01-03 | Othosoft, Inc. | Computer-assisted surgery system and method |
US8315691B2 (en) * | 2007-09-26 | 2012-11-20 | Cyberheart, Inc. | Radiosurgical ablation of the myocardium |
WO2009114859A1 (en) * | 2008-03-14 | 2009-09-17 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US20090259296A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Gate Cannulation Apparatus and Methods |
US20090259284A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Resonating Stent or Stent Element |
US9002076B2 (en) * | 2008-04-15 | 2015-04-07 | Medtronic, Inc. | Method and apparatus for optimal trajectory planning |
US8457371B2 (en) | 2008-04-18 | 2013-06-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8839798B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | System and method for determining sheath location |
US8494608B2 (en) | 2008-04-18 | 2013-07-23 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US8532734B2 (en) | 2008-04-18 | 2013-09-10 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8382372B2 (en) * | 2008-07-09 | 2013-02-26 | Siemens Aktiengesellschaft | Medical apparatus |
EP2323559A4 (en) * | 2008-08-07 | 2016-09-21 | Verathon Inc | Device, system, and method to measure abdominal aortic aneurysm diameter |
WO2010059375A2 (en) * | 2008-10-30 | 2010-05-27 | Payner Troy D | Systems and methods for guiding a medical instrument |
US20100130852A1 (en) * | 2008-11-21 | 2010-05-27 | Medtronic, Inc. | Navigation enabled lead delivery catheter |
US8204574B2 (en) * | 2008-11-21 | 2012-06-19 | Medtronic, Inc. | Stylet for use with image guided systems |
US20100185083A1 (en) * | 2008-11-21 | 2010-07-22 | Medtronic, Inc. | Navigation enabled lead delivery catheter |
US20100130853A1 (en) * | 2008-11-25 | 2010-05-27 | General Electric Company | System for tracking object |
US9226688B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit assemblies |
US8504139B2 (en) | 2009-03-10 | 2013-08-06 | Medtronic Xomed, Inc. | Navigating a surgical instrument |
US9226689B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit sheet |
US8335552B2 (en) * | 2009-03-20 | 2012-12-18 | Medtronic, Inc. | Method and apparatus for instrument placement |
US8494614B2 (en) * | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8475407B2 (en) | 2010-03-25 | 2013-07-02 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US9216257B2 (en) * | 2010-03-25 | 2015-12-22 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US8483802B2 (en) * | 2010-03-25 | 2013-07-09 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US9339601B2 (en) * | 2010-03-25 | 2016-05-17 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
EP2563260B1 (en) | 2010-04-30 | 2019-06-12 | Medtronic Xomed, Inc. | Navigated malleable surgical instrument |
US8781186B2 (en) | 2010-05-04 | 2014-07-15 | Pathfinder Therapeutics, Inc. | System and method for abdominal surface matching using pseudo-features |
US10165928B2 (en) | 2010-08-20 | 2019-01-01 | Mark Hunter | Systems, instruments, and methods for four dimensional soft tissue navigation |
US9974501B2 (en) | 2011-01-28 | 2018-05-22 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US10492868B2 (en) | 2011-01-28 | 2019-12-03 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US10617374B2 (en) | 2011-01-28 | 2020-04-14 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
WO2012127353A1 (en) * | 2011-03-18 | 2012-09-27 | Koninklijke Philips Electronics N.V. | Multi-leg geometry reference tracker for multi-modality data fusion |
WO2012131660A1 (en) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
US9606209B2 (en) | 2011-08-26 | 2017-03-28 | Kineticor, Inc. | Methods, systems, and devices for intra-scan motion correction |
CA3067299A1 (en) | 2011-09-02 | 2013-03-07 | Stryker Corporation | Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing |
WO2013036772A1 (en) | 2011-09-08 | 2013-03-14 | Corpak Medsystems, Inc. | Apparatus and method used with guidance system for feeding and suctioning |
WO2013044944A1 (en) | 2011-09-28 | 2013-04-04 | Brainlab Ag | Self-localizing medical device |
US9750486B2 (en) | 2011-10-25 | 2017-09-05 | Medtronic Navigation, Inc. | Trackable biopsy needle |
US8971989B2 (en) | 2012-01-24 | 2015-03-03 | Covidien Lp | Magnetic field device for mapping and navigation in laparoscopic surgery |
US10249036B2 (en) | 2012-02-22 | 2019-04-02 | Veran Medical Technologies, Inc. | Surgical catheter having side exiting medical instrument and related systems and methods for four dimensional soft tissue navigation |
WO2013192598A1 (en) | 2012-06-21 | 2013-12-27 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US20150032164A1 (en) | 2012-06-21 | 2015-01-29 | Globus Medical, Inc. | Methods for Performing Invasive Medical Procedures Using a Surgical Robot |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US12262954B2 (en) | 2012-06-21 | 2025-04-01 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
ITRM20130009A1 (en) * | 2013-01-07 | 2014-07-08 | Univ Roma La Sapienza | "MULTIPLE SPATIAL TRACKING SYSTEM, OPTICAL UNIT, TO BE USED IN NEUROSURGERY AND TRANSCRANIAL MAGNETIC STIMULATION GUIDED BY RADIOLOGICAL IMAGES" |
US10327708B2 (en) | 2013-01-24 | 2019-06-25 | Kineticor, Inc. | Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan |
US9305365B2 (en) | 2013-01-24 | 2016-04-05 | Kineticor, Inc. | Systems, devices, and methods for tracking moving targets |
US9717461B2 (en) | 2013-01-24 | 2017-08-01 | Kineticor, Inc. | Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan |
US9161799B2 (en) | 2013-01-28 | 2015-10-20 | Warsaw Orthopedic, Inc. | Surgical implant system and method |
CN109008972A (en) | 2013-02-01 | 2018-12-18 | 凯内蒂科尔股份有限公司 | The motion tracking system of real-time adaptive motion compensation in biomedical imaging |
US10123770B2 (en) | 2013-03-13 | 2018-11-13 | Delphinus Medical Technologies, Inc. | Patient support system |
US10278729B2 (en) | 2013-04-26 | 2019-05-07 | Medtronic Xomed, Inc. | Medical device and its construction |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
DE102013221026A1 (en) * | 2013-10-16 | 2015-04-16 | Fiagon Gmbh | Field generator and position detection system |
DE102013222230A1 (en) | 2013-10-31 | 2015-04-30 | Fiagon Gmbh | Surgical instrument |
EP3094272B1 (en) | 2014-01-15 | 2021-04-21 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
WO2015121311A1 (en) | 2014-02-11 | 2015-08-20 | KB Medical SA | Sterile handle for controlling a robotic surgical system from a sterile field |
WO2015148391A1 (en) | 2014-03-24 | 2015-10-01 | Thomas Michael Ernst | Systems, methods, and devices for removing prospective motion correction from medical imaging scans |
US20150305612A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter |
US20150305650A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue |
CN106659537B (en) | 2014-04-24 | 2019-06-11 | Kb医疗公司 | The surgical instrument holder used in conjunction with robotic surgical system |
CN103919611A (en) * | 2014-04-28 | 2014-07-16 | 张文峰 | Orthopaedic robot navigation locating device |
EP3142588B1 (en) | 2014-05-14 | 2018-08-08 | Brainlab AG | Method for determining the spatial position of objects |
US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
EP3188660A4 (en) | 2014-07-23 | 2018-05-16 | Kineticor, Inc. | Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan |
US10285667B2 (en) | 2014-08-05 | 2019-05-14 | Delphinus Medical Technologies, Inc. | Method for generating an enhanced image of a volume of tissue |
CN104127244B (en) * | 2014-08-13 | 2016-05-04 | 苏州迪凯尔医疗科技有限公司 | A kind of passive infrared reflective small ball and using method thereof |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
GB2532004A (en) * | 2014-10-31 | 2016-05-11 | Scopis Gmbh | Hybrid navigation system for surgical interventions |
US12178520B2 (en) | 2014-11-30 | 2024-12-31 | Elbit Systems Ltd. | Model registration system and method |
IL236003A (en) | 2014-11-30 | 2016-02-29 | Ben-Yishai Rani | Model registration system and method |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
WO2016131903A1 (en) | 2015-02-18 | 2016-08-25 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
US9943247B2 (en) | 2015-07-28 | 2018-04-17 | The University Of Hawai'i | Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US10687905B2 (en) | 2015-08-31 | 2020-06-23 | KB Medical SA | Robotic surgical systems and methods |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US10595941B2 (en) | 2015-10-30 | 2020-03-24 | Orthosensor Inc. | Spine measurement system and method therefor |
CN108697367A (en) | 2015-11-23 | 2018-10-23 | 凯内蒂科尓股份有限公司 | Systems, devices and methods for patient motion to be tracked and compensated during medical image scan |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
US10191615B2 (en) | 2016-04-28 | 2019-01-29 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US11172821B2 (en) | 2016-04-28 | 2021-11-16 | Medtronic Navigation, Inc. | Navigation and local thermometry |
CN105852970B (en) * | 2016-04-29 | 2019-06-14 | 北京柏惠维康科技有限公司 | Neurosurgical Robot navigation positioning system and method |
US20180161090A1 (en) * | 2016-12-12 | 2018-06-14 | Amandeep Singh Pabla | Navigated bipolar forceps |
JP7233841B2 (en) | 2017-01-18 | 2023-03-07 | ケービー メディカル エスアー | Robotic Navigation for Robotic Surgical Systems |
US11842030B2 (en) | 2017-01-31 | 2023-12-12 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
US20180289432A1 (en) | 2017-04-05 | 2018-10-11 | Kb Medical, Sa | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
JP6778242B2 (en) | 2017-11-09 | 2020-10-28 | グローバス メディカル インコーポレイティッド | Surgical robot systems for bending surgical rods, and related methods and equipment |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
IT201800002980A1 (en) * | 2018-02-23 | 2019-08-23 | Fond Ospedale San Camillo | DEVICE FOR MAGNETIC NEURONAVIGATION |
US11138768B2 (en) | 2018-04-06 | 2021-10-05 | Medtronic Navigation, Inc. | System and method for artifact reduction in an image |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US10799300B2 (en) | 2018-10-18 | 2020-10-13 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11877806B2 (en) | 2018-12-06 | 2024-01-23 | Covidien Lp | Deformable registration of computer-generated airway models to airway trees |
EP3711699B1 (en) * | 2019-03-21 | 2024-01-03 | Stryker European Operations Limited | Technique for transferring a registration of image data of a surgical object from one surgical navigation system to another surgical navigation system |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
EP3719749A1 (en) | 2019-04-03 | 2020-10-07 | Fiagon AG Medical Technologies | Registration method and setup |
CN110101452A (en) * | 2019-05-10 | 2019-08-09 | 山东威高医疗科技有限公司 | A kind of optomagnetic integrated positioning navigation method for surgical operation |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
CN110037784B (en) * | 2019-05-31 | 2024-07-09 | 山东威高医疗科技有限公司 | Fixed support for assisting fracture reduction based on electromagnetic navigation technology |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
CN110584782B (en) * | 2019-09-29 | 2021-05-14 | 上海微创电生理医疗科技股份有限公司 | Medical image processing method, medical image processing apparatus, medical system, computer, and storage medium |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
EP3848899B1 (en) | 2020-01-09 | 2023-01-25 | Stryker European Operations Limited | Technique of determining a pose of a surgical registration device |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
CN115379812A (en) * | 2020-04-20 | 2022-11-22 | 史密夫和内修有限公司 | Fiducial mark device |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US11730926B2 (en) | 2020-08-31 | 2023-08-22 | Avent, Inc. | System and method for detecting medical device location and orientation in relation to patient anatomy |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
US12238087B2 (en) | 2021-10-04 | 2025-02-25 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
CN114010317A (en) * | 2021-11-24 | 2022-02-08 | 北京华科恒生医疗科技有限公司 | A guiding device adapted to neuronavigation |
US20230165639A1 (en) | 2021-12-01 | 2023-06-01 | Globus Medical, Inc. | Extended reality systems with three-dimensional visualizations of medical image scan slices |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
US12268360B2 (en) | 2022-05-16 | 2025-04-08 | Medtronic Navigation, Inc. | Manual hexapod locking mechanism |
US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
US12226169B2 (en) | 2022-07-15 | 2025-02-18 | Globus Medical, Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
CN118285917B (en) * | 2024-06-05 | 2024-07-30 | 华科精准(北京)医疗设备股份有限公司 | Surgical navigation system and method for improving navigation precision |
Family Cites Families (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2650588A (en) | 1950-12-29 | 1953-09-01 | Drew Harry Guy Radcliffe | Artificial femoral head having an x-ray marker |
US3868565A (en) | 1973-07-30 | 1975-02-25 | Jack Kuipers | Object tracking and orientation determination means, system and process |
US3983474A (en) | 1975-02-21 | 1976-09-28 | Polhemus Navigation Sciences, Inc. | Tracking and determining orientation of object using coordinate transformation means, system and process |
US4173228A (en) | 1977-05-16 | 1979-11-06 | Applied Medical Devices | Catheter locating device |
US4182312A (en) | 1977-05-20 | 1980-01-08 | Mushabac David R | Dental probe |
US4202349A (en) | 1978-04-24 | 1980-05-13 | Jones James W | Radiopaque vessel markers |
US4314251A (en) | 1979-07-30 | 1982-02-02 | The Austin Company | Remote object position and orientation locater |
US4419012A (en) | 1979-09-11 | 1983-12-06 | Elliott Brothers (London) Limited | Position measuring system |
US4317078A (en) | 1979-10-15 | 1982-02-23 | Ohio State University Research Foundation | Remote position and orientation detection employing magnetic flux linkage |
US4339953A (en) | 1980-08-29 | 1982-07-20 | Aisin Seiki Company, Ltd. | Position sensor |
US4431005A (en) | 1981-05-07 | 1984-02-14 | Mccormick Laboratories, Inc. | Method of and apparatus for determining very accurately the position of a device inside biological tissue |
US4422041A (en) | 1981-07-30 | 1983-12-20 | The United States Of America As Represented By The Secretary Of The Army | Magnet position sensing system |
US4396945A (en) | 1981-08-19 | 1983-08-02 | Solid Photography Inc. | Method of sensing the position and orientation of elements in space |
US4651732A (en) | 1983-03-17 | 1987-03-24 | Frederick Philip R | Three-dimensional light guidance system for invasive procedures |
US4613866A (en) | 1983-05-13 | 1986-09-23 | Mcdonnell Douglas Corporation | Three dimensional digitizer with electromagnetic coupling |
US4618978A (en) | 1983-10-21 | 1986-10-21 | Cosman Eric R | Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body |
US4549555A (en) | 1984-02-17 | 1985-10-29 | Orthothronics Limited Partnership | Knee laxity evaluator and motion module/digitizer arrangement |
US4571834A (en) | 1984-02-17 | 1986-02-25 | Orthotronics Limited Partnership | Knee laxity evaluator and motion module/digitizer arrangement |
US4583538A (en) | 1984-05-04 | 1986-04-22 | Onik Gary M | Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization |
US4642786A (en) | 1984-05-25 | 1987-02-10 | Position Orientation Systems, Ltd. | Method and apparatus for position and orientation measurement using a magnetic field and retransmission |
DE3500605A1 (en) | 1985-01-10 | 1986-07-10 | Markus Dr. 5300 Bonn Hansen | DEVICE FOR MEASURING THE POSITIONS AND MOVEMENTS OF THE LOWER JAW RELATIVE TO THE UPPER JAW |
US4737794A (en) | 1985-12-09 | 1988-04-12 | Mcdonnell Douglas Corporation | Method and apparatus for determining remote object orientation and position |
US4722056A (en) | 1986-02-18 | 1988-01-26 | Trustees Of Dartmouth College | Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope |
US4821731A (en) | 1986-04-25 | 1989-04-18 | Intra-Sonix, Inc. | Acoustic image system and method |
US5078140A (en) | 1986-05-08 | 1992-01-07 | Kwoh Yik S | Imaging device - aided robotic stereotaxis system |
US4791934A (en) | 1986-08-07 | 1988-12-20 | Picker International, Inc. | Computer tomography assisted stereotactic surgery system and method |
US4945305A (en) | 1986-10-09 | 1990-07-31 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4849692A (en) | 1986-10-09 | 1989-07-18 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4793355A (en) | 1987-04-17 | 1988-12-27 | Biomagnetic Technologies, Inc. | Apparatus for process for making biomagnetic measurements |
DE3717871C3 (en) | 1987-05-27 | 1995-05-04 | Georg Prof Dr Schloendorff | Method and device for reproducible visual representation of a surgical intervention |
US4836778A (en) | 1987-05-26 | 1989-06-06 | Vexcel Corporation | Mandibular motion monitoring system |
JPH02503519A (en) | 1987-05-27 | 1990-10-25 | サージカル ナビゲーション テクノロジース インコーポレーティッド(アン アフィリエイティッド カンパニー オブ ソファマー ダンネク グループ インコーポレーティッド) | Method and apparatus for reproducibly optically displaying surgical procedures |
US4991579A (en) | 1987-11-10 | 1991-02-12 | Allen George S | Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants |
US5251127A (en) | 1988-02-01 | 1993-10-05 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
EP0326768A3 (en) | 1988-02-01 | 1991-01-23 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US4896673A (en) | 1988-07-15 | 1990-01-30 | Medstone International, Inc. | Method and apparatus for stone localization using ultrasound imaging |
US4905698A (en) | 1988-09-13 | 1990-03-06 | Pharmacia Deltec Inc. | Method and apparatus for catheter location determination |
US5265611A (en) | 1988-09-23 | 1993-11-30 | Siemens Aktiengellschaft | Apparatus for measuring weak, location-dependent and time-dependent magnetic field |
EP0359864B1 (en) | 1988-09-23 | 1993-12-01 | Siemens Aktiengesellschaft | Apparatus and method for the measurement of weak magnetic fields dependent upon position and time |
US5099846A (en) | 1988-12-23 | 1992-03-31 | Hardy Tyrone L | Method and apparatus for video presentation from a variety of scanner imaging sources |
US5197476A (en) | 1989-03-16 | 1993-03-30 | Christopher Nowacki | Locating target in human body |
CN1049287A (en) | 1989-05-24 | 1991-02-20 | 住友电气工业株式会社 | The treatment conduit |
US5681260A (en) | 1989-09-22 | 1997-10-28 | Olympus Optical Co., Ltd. | Guiding apparatus for guiding an insertable body within an inspected object |
EP0419729A1 (en) | 1989-09-29 | 1991-04-03 | Siemens Aktiengesellschaft | Position finding of a catheter by means of non-ionising fields |
FR2652928B1 (en) | 1989-10-05 | 1994-07-29 | Diadix Sa | INTERACTIVE LOCAL INTERVENTION SYSTEM WITHIN A AREA OF A NON-HOMOGENEOUS STRUCTURE. |
EP0427358B1 (en) | 1989-11-08 | 1996-03-27 | George S. Allen | Mechanical arm for and interactive image-guided surgical system |
US5222499A (en) | 1989-11-15 | 1993-06-29 | Allen George S | Method and apparatus for imaging the anatomy |
US5308352A (en) | 1989-11-17 | 1994-05-03 | Koutrouvelis Panos G | Stereotactic device |
US5047036A (en) | 1989-11-17 | 1991-09-10 | Koutrouvelis Panos G | Stereotactic device |
CA2003497C (en) | 1989-11-21 | 1999-04-06 | Michael M. Greenberg | Probe-correlated viewing of anatomical image data |
EP0502069A1 (en) | 1989-11-24 | 1992-09-09 | Technomed International | A method and apparatus for determining the position of a target relative to known co-ordinates |
US5214615A (en) | 1990-02-26 | 1993-05-25 | Will Bauer | Three-dimensional displacement of a body with computer interface |
US5253647A (en) | 1990-04-13 | 1993-10-19 | Olympus Optical Co., Ltd. | Insertion position and orientation state pickup for endoscope |
US5107839A (en) | 1990-05-04 | 1992-04-28 | Pavel V. Houdek | Computer controlled stereotaxic radiotherapy system and method |
US5295483A (en) | 1990-05-11 | 1994-03-22 | Christopher Nowacki | Locating target in human body |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
DE69112538T2 (en) | 1990-07-31 | 1996-03-21 | Faro Medical Technologies Us I | Computer aided surgical device. |
GB9018660D0 (en) | 1990-08-24 | 1990-10-10 | Imperial College | Probe system |
US5193106A (en) | 1990-08-28 | 1993-03-09 | Desena Danforth | X-ray identification marker |
US5160337A (en) | 1990-09-24 | 1992-11-03 | Cosman Eric R | Curved-shaped floor stand for use with a linear accelerator in radiosurgery |
US5198877A (en) | 1990-10-15 | 1993-03-30 | Pixsys, Inc. | Method and apparatus for three-dimensional non-contact shape sensing |
ATE405223T1 (en) | 1990-10-19 | 2008-09-15 | Univ St Louis | SYSTEM FOR LOCALIZING A SURGICAL PROBE RELATIVE TO THE HEAD |
US5059789A (en) | 1990-10-22 | 1991-10-22 | International Business Machines Corp. | Optical position and orientation sensor |
US5823958A (en) | 1990-11-26 | 1998-10-20 | Truppe; Michael | System and method for displaying a structural data image in real-time correlation with moveable body |
US5947981A (en) | 1995-01-31 | 1999-09-07 | Cosman; Eric R. | Head and neck localizer |
US6006126A (en) | 1991-01-28 | 1999-12-21 | Cosman; Eric R. | System and method for stereotactic registration of image scan data |
US5662111A (en) | 1991-01-28 | 1997-09-02 | Cosman; Eric R. | Process of stereotactic optical navigation |
US5291889A (en) | 1991-05-23 | 1994-03-08 | Vanguard Imaging Ltd. | Apparatus and method for spatially positioning images |
FI93607C (en) | 1991-05-24 | 1995-05-10 | John Koivukangas | Cutting Remedy |
US5187475A (en) | 1991-06-10 | 1993-02-16 | Honeywell Inc. | Apparatus for determining the position of an object |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5261404A (en) | 1991-07-08 | 1993-11-16 | Mick Peter R | Three-dimensional mammal anatomy imaging system and method |
US5249581A (en) | 1991-07-15 | 1993-10-05 | Horbal Mark T | Precision bone alignment |
US5211165A (en) | 1991-09-03 | 1993-05-18 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
EP0531081A1 (en) | 1991-09-03 | 1993-03-10 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency fields |
US5251635A (en) | 1991-09-03 | 1993-10-12 | General Electric Company | Stereoscopic X-ray fluoroscopy system using radiofrequency fields |
US5255680A (en) | 1991-09-03 | 1993-10-26 | General Electric Company | Automatic gantry positioning for imaging systems |
US5265610A (en) | 1991-09-03 | 1993-11-30 | General Electric Company | Multi-planar X-ray fluoroscopy system using radiofrequency fields |
US5645065A (en) | 1991-09-04 | 1997-07-08 | Navion Biomedical Corporation | Catheter depth, position and orientation location system |
US5425367A (en) | 1991-09-04 | 1995-06-20 | Navion Biomedical Corporation | Catheter depth, position and orientation location system |
DE4134481C2 (en) | 1991-10-18 | 1998-04-09 | Zeiss Carl Fa | Surgical microscope for computer-aided, stereotactic microsurgery |
US5437277A (en) | 1991-11-18 | 1995-08-01 | General Electric Company | Inductively coupled RF tracking system for use in invasive imaging of a living body |
US5445150A (en) | 1991-11-18 | 1995-08-29 | General Electric Company | Invasive system employing a radiofrequency tracking system |
US5274551A (en) | 1991-11-29 | 1993-12-28 | General Electric Company | Method and apparatus for real-time navigation assist in interventional radiological procedures |
US5371778A (en) | 1991-11-29 | 1994-12-06 | Picker International, Inc. | Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images |
US5230623A (en) | 1991-12-10 | 1993-07-27 | Radionics, Inc. | Operating pointer with interactive computergraphics |
DE4207632C2 (en) | 1992-03-11 | 1995-07-20 | Bodenseewerk Geraetetech | Device and method for positioning a body part for treatment purposes |
DE4207901C3 (en) | 1992-03-12 | 1999-10-07 | Aesculap Ag & Co Kg | Method and device for displaying a work area in a three-dimensional structure |
US5318025A (en) | 1992-04-01 | 1994-06-07 | General Electric Company | Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection |
US5389101A (en) | 1992-04-21 | 1995-02-14 | University Of Utah | Apparatus and method for photogrammetric surgical localization |
US5603318A (en) | 1992-04-21 | 1997-02-18 | University Of Utah Research Foundation | Apparatus and method for photogrammetric surgical localization |
US5325873A (en) | 1992-07-23 | 1994-07-05 | Abbott Laboratories | Tube placement verifier system |
DE4225112C1 (en) | 1992-07-30 | 1993-12-09 | Bodenseewerk Geraetetech | Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit |
FR2694881B1 (en) | 1992-07-31 | 1996-09-06 | Univ Joseph Fourier | METHOD FOR DETERMINING THE POSITION OF AN ORGAN. |
EP0655138B1 (en) | 1992-08-14 | 1998-04-29 | BRITISH TELECOMMUNICATIONS public limited company | Position location system |
US5913820A (en) | 1992-08-14 | 1999-06-22 | British Telecommunications Public Limited Company | Position location system |
US5368030A (en) | 1992-09-09 | 1994-11-29 | Izi Corporation | Non-invasive multi-modality radiographic surface markers |
US5647361A (en) | 1992-09-28 | 1997-07-15 | Fonar Corporation | Magnetic resonance imaging method and apparatus for guiding invasive therapy |
DE4233978C1 (en) * | 1992-10-08 | 1994-04-21 | Leibinger Gmbh | Body marking device for medical examinations |
US5456718A (en) | 1992-11-17 | 1995-10-10 | Szymaitis; Dennis W. | Apparatus for detecting surgical objects within the human body |
US5309913A (en) | 1992-11-30 | 1994-05-10 | The Cleveland Clinic Foundation | Frameless stereotaxy system |
US5732703A (en) | 1992-11-30 | 1998-03-31 | The Cleveland Clinic Foundation | Stereotaxy wand and tool guide |
US5517990A (en) | 1992-11-30 | 1996-05-21 | The Cleveland Clinic Foundation | Stereotaxy wand and tool guide |
US5353807A (en) | 1992-12-07 | 1994-10-11 | Demarco Thomas J | Magnetically guidable intubation device |
US5353795A (en) | 1992-12-10 | 1994-10-11 | General Electric Company | Tracking system to monitor the position of a device using multiplexed magnetic resonance detection |
US5799099A (en) | 1993-02-12 | 1998-08-25 | George S. Allen | Automatic technique for localizing externally attached fiducial markers in volume images of the head |
US5551429A (en) | 1993-02-12 | 1996-09-03 | Fitzpatrick; J. Michael | Method for relating the data of an image space to physical space |
US5787886A (en) * | 1993-03-19 | 1998-08-04 | Compass International Incorporated | Magnetic field digitizer for stereotatic surgery |
US5483961A (en) * | 1993-03-19 | 1996-01-16 | Kelly; Patrick J. | Magnetic field digitizer for stereotactic surgery |
US5453686A (en) | 1993-04-08 | 1995-09-26 | Polhemus Incorporated | Pulsed-DC position and orientation measurement system |
DE69424733T2 (en) | 1993-04-20 | 2001-02-01 | General Electric Co., Schenectady | GRAPHIC DIGITAL PROCESSING SYSTEM AND REAL-TIME VIDEO SYSTEM FOR IMPROVING THE REPRESENTATION OF BODY STRUCTURES DURING SURGICAL INTERVENTION. |
JPH08509144A (en) | 1993-04-22 | 1996-10-01 | ピクシス,インコーポレイテッド | System to locate relative position of objects |
EP0997109B1 (en) | 1993-04-26 | 2003-06-18 | ST. Louis University | Indicating the position of a surgical probe |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
FR2709656B1 (en) | 1993-09-07 | 1995-12-01 | Deemed Int Sa | Installation for computer-assisted microsurgery operation and methods implemented by said installation. |
US5425382A (en) | 1993-09-14 | 1995-06-20 | University Of Washington | Apparatus and method for locating a medical tube in the body of a patient |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5446548A (en) | 1993-10-08 | 1995-08-29 | Siemens Medical Systems, Inc. | Patient positioning and monitoring system |
EP0649117A3 (en) | 1993-10-15 | 1996-01-31 | George S Allen | Method for providing medical images. |
US5531227A (en) | 1994-01-28 | 1996-07-02 | Schneider Medical Technologies, Inc. | Imaging device and method |
DE4417944A1 (en) | 1994-05-21 | 1995-11-23 | Zeiss Carl Fa | Process for correlating different coordinate systems in computer-assisted, stereotactic surgery |
US5419325A (en) | 1994-06-23 | 1995-05-30 | General Electric Company | Magnetic resonance (MR) angiography using a faraday catheter |
US5600330A (en) | 1994-07-12 | 1997-02-04 | Ascension Technology Corporation | Device for measuring position and orientation using non-dipole magnet IC fields |
ATE253864T1 (en) | 1994-08-19 | 2003-11-15 | Biosense Inc | MEDICAL DIAGNOSIS, TREATMENT AND DISPLAY SYSTEM |
US5999840A (en) | 1994-09-01 | 1999-12-07 | Massachusetts Institute Of Technology | System and method of registration of three-dimensional data sets |
US5531520A (en) | 1994-09-01 | 1996-07-02 | Massachusetts Institute Of Technology | System and method of registration of three-dimensional data sets including anatomical body data |
US5829444A (en) | 1994-09-15 | 1998-11-03 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications |
DE69531994T2 (en) | 1994-09-15 | 2004-07-22 | OEC Medical Systems, Inc., Boston | SYSTEM FOR POSITION DETECTION BY MEANS OF A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL AREA |
US5695501A (en) | 1994-09-30 | 1997-12-09 | Ohio Medical Instrument Company, Inc. | Apparatus for neurosurgical stereotactic procedures |
CA2201877C (en) | 1994-10-07 | 2004-06-08 | Richard D. Bucholz | Surgical navigation systems including reference and localization frames |
US5611025A (en) | 1994-11-23 | 1997-03-11 | General Electric Company | Virtual internal cavity inspection system |
US5762064A (en) | 1995-01-23 | 1998-06-09 | Northrop Grumman Corporation | Medical magnetic positioning system and method for determining the position of a magnetic probe |
US5682890A (en) | 1995-01-26 | 1997-11-04 | Picker International, Inc. | Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization |
US5971997A (en) | 1995-02-03 | 1999-10-26 | Radionics, Inc. | Intraoperative recalibration apparatus for stereotactic navigators |
US5588430A (en) | 1995-02-14 | 1996-12-31 | University Of Florida Research Foundation, Inc. | Repeat fixation for frameless stereotactic procedure |
US5797849A (en) | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5730129A (en) | 1995-04-03 | 1998-03-24 | General Electric Company | Imaging of interventional devices in a non-stationary subject |
DE19515748A1 (en) * | 1995-04-28 | 1996-10-31 | Siemens Ag | Device for treatment with acoustic waves |
US5640170A (en) | 1995-06-05 | 1997-06-17 | Polhemus Incorporated | Position and orientation measuring system having anti-distortion source configuration |
US5617857A (en) | 1995-06-06 | 1997-04-08 | Image Guided Technologies, Inc. | Imaging system having interactive medical instruments and methods |
US5718241A (en) | 1995-06-07 | 1998-02-17 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias with no discrete target |
US5752513A (en) | 1995-06-07 | 1998-05-19 | Biosense, Inc. | Method and apparatus for determining position of object |
US5729129A (en) | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
US5592939A (en) | 1995-06-14 | 1997-01-14 | Martinelli; Michael A. | Method and system for navigating a catheter probe |
CA2227275A1 (en) * | 1995-08-18 | 1997-02-27 | Brigham & Women's Hospital | Versatile stereotactic device and methods of use |
US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5769861A (en) | 1995-09-28 | 1998-06-23 | Brainlab Med. Computersysteme Gmbh | Method and devices for localizing an instrument |
US5715822A (en) | 1995-09-28 | 1998-02-10 | General Electric Company | Magnetic resonance devices suitable for both tracking and imaging |
US5772594A (en) | 1995-10-17 | 1998-06-30 | Barrick; Earl F. | Fluoroscopic image guided orthopaedic surgery system with intraoperative registration |
US5697377A (en) | 1995-11-22 | 1997-12-16 | Medtronic, Inc. | Catheter mapping system and method |
DE19547977A1 (en) | 1995-12-21 | 1997-06-26 | Zeiss Carl Fa | Touch probe for coordinate measuring machines |
US5682886A (en) | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
US5727552A (en) | 1996-01-11 | 1998-03-17 | Medtronic, Inc. | Catheter and electrical lead location system |
US5711299A (en) | 1996-01-26 | 1998-01-27 | Manwaring; Kim H. | Surgical guidance method and system for approaching a target within a body |
US5769843A (en) | 1996-02-20 | 1998-06-23 | Cormedica | Percutaneous endomyocardial revascularization |
US5828770A (en) | 1996-02-20 | 1998-10-27 | Northern Digital Inc. | System for determining the spatial position and angular orientation of an object |
US5727553A (en) | 1996-03-25 | 1998-03-17 | Saad; Saad A. | Catheter with integral electromagnetic location identification device |
US5782765A (en) | 1996-04-25 | 1998-07-21 | Medtronic, Inc. | Medical positioning system |
US5799055A (en) | 1996-05-15 | 1998-08-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
US6013087A (en) | 1996-05-29 | 2000-01-11 | U.S. Philips Corporation | Image-guided surgery system |
US5742394A (en) | 1996-06-14 | 1998-04-21 | Ascension Technology Corporation | Optical 6D measurement system with two fan shaped beams rotating around one axis |
US5767960A (en) | 1996-06-14 | 1998-06-16 | Ascension Technology Corporation | Optical 6D measurement system with three fan-shaped beams rotating around one axis |
US5767669A (en) | 1996-06-14 | 1998-06-16 | Ascension Technology Corporation | Magnetic field position and orientation measurement system with dynamic eddy current rejection |
US5820553A (en) | 1996-08-16 | 1998-10-13 | Siemens Medical Systems, Inc. | Identification system and method for radiation therapy |
US5744953A (en) | 1996-08-29 | 1998-04-28 | Ascension Technology Corporation | Magnetic motion tracker with transmitter placed on tracked object |
US5831260A (en) | 1996-09-10 | 1998-11-03 | Ascension Technology Corporation | Hybrid motion tracker |
US5980535A (en) | 1996-09-30 | 1999-11-09 | Picker International, Inc. | Apparatus for anatomical tracking |
US6016439A (en) | 1996-10-15 | 2000-01-18 | Biosense, Inc. | Method and apparatus for synthetic viewpoint imaging |
US6006127A (en) | 1997-02-28 | 1999-12-21 | U.S. Philips Corporation | Image-guided surgery system |
US6019725A (en) | 1997-03-07 | 2000-02-01 | Sonometrics Corporation | Three-dimensional tracking and imaging system |
US6026315A (en) * | 1997-03-27 | 2000-02-15 | Siemens Aktiengesellschaft | Method and apparatus for calibrating a navigation system in relation to image data of a magnetic resonance apparatus |
DE19805112A1 (en) * | 1997-03-27 | 1998-10-15 | Siemens Ag | Method to calibrate navigation system with respect to image data of magnetic resonance device, especially for neurosurgery |
US5921992A (en) | 1997-04-11 | 1999-07-13 | Radionics, Inc. | Method and system for frameless tool calibration |
DE19751761B4 (en) * | 1997-04-11 | 2006-06-22 | Brainlab Ag | System and method for currently accurate detection of treatment targets |
DE19715202B4 (en) | 1997-04-11 | 2006-02-02 | Brainlab Ag | Referencing device with a mouthpiece |
US5834759A (en) | 1997-05-22 | 1998-11-10 | Glossop; Neil David | Tracking device having emitter groups with different emitting directions |
US5907395A (en) | 1997-06-06 | 1999-05-25 | Image Guided Technologies, Inc. | Optical fiber probe for position measurement |
CA2240776C (en) | 1997-07-18 | 2006-01-10 | Image Guided Technologies, Inc. | Improved optical tracking system |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US5987960A (en) | 1997-09-26 | 1999-11-23 | Picker International, Inc. | Tool calibrator |
US5999837A (en) | 1997-09-26 | 1999-12-07 | Picker International, Inc. | Localizing and orienting probe for view devices |
US5978696A (en) | 1997-10-06 | 1999-11-02 | General Electric Company | Real-time image-guided placement of anchor devices |
US5882304A (en) | 1997-10-27 | 1999-03-16 | Picker Nordstar Corporation | Method and apparatus for determining probe location |
DE19747427C2 (en) | 1997-10-28 | 1999-12-09 | Zeiss Carl Fa | Device for bone segment navigation |
US6014580A (en) | 1997-11-12 | 2000-01-11 | Stereotaxis, Inc. | Device and method for specifying magnetic field for surgical applications |
US6021343A (en) * | 1997-11-20 | 2000-02-01 | Surgical Navigation Technologies | Image guided awl/tap/screwdriver |
US6149592A (en) | 1997-11-26 | 2000-11-21 | Picker International, Inc. | Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data |
US5938603A (en) | 1997-12-01 | 1999-08-17 | Cordis Webster, Inc. | Steerable catheter with electromagnetic sensor |
US5967982A (en) | 1997-12-09 | 1999-10-19 | The Cleveland Clinic Foundation | Non-invasive spine and bone registration for frameless stereotaxy |
US6235038B1 (en) | 1999-10-28 | 2001-05-22 | Medtronic Surgical Navigation Technologies | System for translation of electromagnetic and optical localization systems |
-
1999
- 1999-10-28 US US09/429,568 patent/US6235038B1/en not_active Expired - Lifetime
-
2000
- 2000-10-26 DE DE10083670T patent/DE10083670B4/en not_active Expired - Lifetime
- 2000-10-26 WO PCT/US2000/041561 patent/WO2001034050A2/en active Application Filing
- 2000-10-26 AU AU26178/01A patent/AU2617801A/en not_active Abandoned
-
2001
- 2001-03-13 US US09/803,977 patent/US6402762B2/en not_active Expired - Lifetime
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040199072A1 (en) * | 2003-04-01 | 2004-10-07 | Stacy Sprouse | Integrated electromagnetic navigation and patient positioning device |
US20050281465A1 (en) * | 2004-02-04 | 2005-12-22 | Joel Marquart | Method and apparatus for computer assistance with total hip replacement procedure |
US10582879B2 (en) | 2004-02-17 | 2020-03-10 | Philips Electronics Ltd | Method and apparatus for registration, verification and referencing of internal organs |
US20060058604A1 (en) * | 2004-08-25 | 2006-03-16 | General Electric Company | System and method for hybrid tracking in surgical navigation |
US7702379B2 (en) | 2004-08-25 | 2010-04-20 | General Electric Company | System and method for hybrid tracking in surgical navigation |
US7722565B2 (en) | 2004-11-05 | 2010-05-25 | Traxtal, Inc. | Access system |
US20060262631A1 (en) * | 2004-11-12 | 2006-11-23 | Samsung Electronics Co., Ltd. | Bank selection signal control circuit for use in semiconductor memory device, and bank selection control method |
US7805269B2 (en) | 2004-11-12 | 2010-09-28 | Philips Electronics Ltd | Device and method for ensuring the accuracy of a tracking device in a volume |
US7751868B2 (en) | 2004-11-12 | 2010-07-06 | Philips Electronics Ltd | Integrated skin-mounted multifunction device for use in image-guided surgery |
US8014867B2 (en) | 2004-12-17 | 2011-09-06 | Cardiac Pacemakers, Inc. | MRI operation modes for implantable medical devices |
US7561915B1 (en) | 2004-12-17 | 2009-07-14 | Cardiac Pacemakers, Inc. | MRI system having implantable device safety features |
US8543207B2 (en) | 2004-12-17 | 2013-09-24 | Cardiac Pacemakers, Inc. | MRI operation modes for implantable medical devices |
US8886317B2 (en) | 2004-12-17 | 2014-11-11 | Cardiac Pacemakers, Inc. | MRI operation modes for implantable medical devices |
US7840254B2 (en) | 2005-01-18 | 2010-11-23 | Philips Electronics Ltd | Electromagnetically tracked K-wire device |
US8611983B2 (en) | 2005-01-18 | 2013-12-17 | Philips Electronics Ltd | Method and apparatus for guiding an instrument to a target in the lung |
US9398892B2 (en) | 2005-06-21 | 2016-07-26 | Koninklijke Philips N.V. | Device and method for a trackable ultrasound |
US8632461B2 (en) | 2005-06-21 | 2014-01-21 | Koninklijke Philips N.V. | System, method and apparatus for navigated therapy and diagnosis |
US7840256B2 (en) | 2005-06-27 | 2010-11-23 | Biomet Manufacturing Corporation | Image guided tracking array and method |
US9661991B2 (en) | 2005-08-24 | 2017-05-30 | Koninklijke Philips N.V. | System, method and devices for navigated flexible endoscopy |
US7643862B2 (en) | 2005-09-15 | 2010-01-05 | Biomet Manufacturing Corporation | Virtual mouse for use in surgical navigation |
US20100204955A1 (en) * | 2005-11-28 | 2010-08-12 | Martin Roche | Method and system for positional measurement using ultrasonic sensing |
US8494805B2 (en) | 2005-11-28 | 2013-07-23 | Orthosensor | Method and system for assessing orthopedic alignment using tracking sensors |
US8000926B2 (en) | 2005-11-28 | 2011-08-16 | Orthosensor | Method and system for positional measurement using ultrasonic sensing |
US8862200B2 (en) | 2005-12-30 | 2014-10-14 | DePuy Synthes Products, LLC | Method for determining a position of a magnetic source |
US8148978B2 (en) | 2005-12-30 | 2012-04-03 | Depuy Products, Inc. | Magnetic sensor array |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US20070225595A1 (en) * | 2006-01-17 | 2007-09-27 | Don Malackowski | Hybrid navigation system for tracking the position of body tissue |
US8285363B2 (en) | 2006-01-17 | 2012-10-09 | Stryker Corporation | Surgical tracker and implantable marker for use as part of a surgical navigation system |
US20080312530A1 (en) * | 2006-01-17 | 2008-12-18 | Malackowski Donald W | Implantable marker for a surgical navigation system, the marker having a spike for removably securing the marker to the tissue to be tracked |
US8165659B2 (en) | 2006-03-22 | 2012-04-24 | Garrett Sheffer | Modeling method and apparatus for use in surgical navigation |
WO2007115152A2 (en) | 2006-03-31 | 2007-10-11 | Medtronic Vascular, Inc. | Telescoping catheter with electromagnetic coils for imaging and navigation during cardiac procedures |
US9125690B2 (en) | 2006-05-11 | 2015-09-08 | Brainlab Ag | Medical position determination using redundant position detection means and priority weighting for the position detection means |
EP1854425A1 (en) * | 2006-05-11 | 2007-11-14 | BrainLAB AG | Position determination for medical devices with redundant position measurement and weighting to prioritise measurements |
US20070265527A1 (en) * | 2006-05-11 | 2007-11-15 | Richard Wohlgemuth | Medical position determination using redundant position detection means and priority weighting for the position detection means |
US9642571B2 (en) | 2006-08-24 | 2017-05-09 | Orthosensor Inc | System and method for sensorized user interface |
US8421642B1 (en) | 2006-08-24 | 2013-04-16 | Navisense | System and method for sensorized user interface |
US8638296B1 (en) | 2006-09-05 | 2014-01-28 | Jason McIntosh | Method and machine for navigation system calibration |
US8068648B2 (en) | 2006-12-21 | 2011-11-29 | Depuy Products, Inc. | Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system |
WO2008086434A3 (en) * | 2007-01-09 | 2008-11-13 | Cyberheart Inc | Depositing radiation in heart muscle under ultrasound guidance |
US20080177280A1 (en) * | 2007-01-09 | 2008-07-24 | Cyberheart, Inc. | Method for Depositing Radiation in Heart Muscle |
US20080177279A1 (en) * | 2007-01-09 | 2008-07-24 | Cyberheart, Inc. | Depositing radiation in heart muscle under ultrasound guidance |
WO2008086434A2 (en) * | 2007-01-09 | 2008-07-17 | Cyberheart, Inc. | Depositing radiation in heart muscle under ultrasound guidance |
US8345821B2 (en) | 2007-03-16 | 2013-01-01 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US11241590B2 (en) | 2007-03-16 | 2022-02-08 | Varian Medical Systems, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US20080317204A1 (en) * | 2007-03-16 | 2008-12-25 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US20110137158A1 (en) * | 2007-03-16 | 2011-06-09 | Cyberheart, Inc. | Radiation Treatment Planning and Delivery for Moving Targets in the Heart |
US10974075B2 (en) | 2007-03-16 | 2021-04-13 | Varian Medical Systems, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US11712581B2 (en) | 2007-03-16 | 2023-08-01 | Varian Medical Systems, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US20090012509A1 (en) * | 2007-04-24 | 2009-01-08 | Medtronic, Inc. | Navigated Soft Tissue Penetrating Laser System |
US20080269602A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Method And Apparatus For Performing A Navigated Procedure |
US8311611B2 (en) | 2007-04-24 | 2012-11-13 | Medtronic, Inc. | Method for performing multiple registrations in a navigated procedure |
US9289270B2 (en) | 2007-04-24 | 2016-03-22 | Medtronic, Inc. | Method and apparatus for performing a navigated procedure |
US8301226B2 (en) | 2007-04-24 | 2012-10-30 | Medtronic, Inc. | Method and apparatus for performing a navigated procedure |
US8108025B2 (en) | 2007-04-24 | 2012-01-31 | Medtronic, Inc. | Flexible array for use in navigated surgery |
US8467852B2 (en) | 2007-04-24 | 2013-06-18 | Medtronic, Inc. | Method and apparatus for performing a navigated procedure |
WO2008130355A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Method for performing multiple registrations in a navigated procedure |
US20080269600A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Flexible Array For Use In Navigated Surgery |
US20080269599A1 (en) * | 2007-04-24 | 2008-10-30 | Medtronic, Inc. | Method for Performing Multiple Registrations in a Navigated Procedure |
US20100160771A1 (en) * | 2007-04-24 | 2010-06-24 | Medtronic, Inc. | Method and Apparatus for Performing a Navigated Procedure |
US8734466B2 (en) | 2007-04-25 | 2014-05-27 | Medtronic, Inc. | Method and apparatus for controlled insertion and withdrawal of electrodes |
US20080269777A1 (en) * | 2007-04-25 | 2008-10-30 | Medtronic, Inc. | Method And Apparatus For Controlled Insertion and Withdrawal of Electrodes |
US8934961B2 (en) | 2007-05-18 | 2015-01-13 | Biomet Manufacturing, Llc | Trackable diagnostic scope apparatus and methods of use |
US9775625B2 (en) | 2007-06-19 | 2017-10-03 | Biomet Manufacturing, Llc. | Patient-matched surgical component and methods of use |
US10136950B2 (en) | 2007-06-19 | 2018-11-27 | Biomet Manufacturing, Llc | Patient-matched surgical component and methods of use |
US20080319491A1 (en) * | 2007-06-19 | 2008-12-25 | Ryan Schoenefeld | Patient-matched surgical component and methods of use |
US10786307B2 (en) | 2007-06-19 | 2020-09-29 | Biomet Manufacturing, Llc | Patient-matched surgical component and methods of use |
US8086321B2 (en) | 2007-12-06 | 2011-12-27 | Cardiac Pacemakers, Inc. | Selectively connecting the tip electrode during therapy for MRI shielding |
US8554335B2 (en) | 2007-12-06 | 2013-10-08 | Cardiac Pacemakers, Inc. | Method and apparatus for disconnecting the tip electrode during MRI |
US8032228B2 (en) | 2007-12-06 | 2011-10-04 | Cardiac Pacemakers, Inc. | Method and apparatus for disconnecting the tip electrode during MRI |
US8897875B2 (en) | 2007-12-06 | 2014-11-25 | Cardiac Pacemakers, Inc. | Selectively connecting the tip electrode during therapy for MRI shielding |
US8571637B2 (en) | 2008-01-21 | 2013-10-29 | Biomet Manufacturing, Llc | Patella tracking method and apparatus for use in surgical navigation |
US8311637B2 (en) | 2008-02-11 | 2012-11-13 | Cardiac Pacemakers, Inc. | Magnetic core flux canceling of ferrites in MRI |
US8160717B2 (en) | 2008-02-19 | 2012-04-17 | Cardiac Pacemakers, Inc. | Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field |
US9189083B2 (en) | 2008-03-18 | 2015-11-17 | Orthosensor Inc. | Method and system for media presentation during operative workflow |
US8571661B2 (en) | 2008-10-02 | 2013-10-29 | Cardiac Pacemakers, Inc. | Implantable medical device responsive to MRI induced capture threshold changes |
US9561378B2 (en) | 2008-10-02 | 2017-02-07 | Cardiac Pacemakers, Inc. | Implantable medical device responsive to MRI induced capture threshold changes |
US8639331B2 (en) | 2009-02-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Systems and methods for providing arrhythmia therapy in MRI environments |
US8977356B2 (en) | 2009-02-19 | 2015-03-10 | Cardiac Pacemakers, Inc. | Systems and methods for providing arrhythmia therapy in MRI environments |
US20100228117A1 (en) * | 2009-03-09 | 2010-09-09 | Medtronic Navigation, Inc | System And Method For Image-Guided Navigation |
US9737235B2 (en) * | 2009-03-09 | 2017-08-22 | Medtronic Navigation, Inc. | System and method for image-guided navigation |
US20110166407A1 (en) * | 2009-07-17 | 2011-07-07 | Cyberheart, Inc. | Heart Treatment Kit, System, and Method For Radiosurgically Alleviating Arrhythmia |
US9320916B2 (en) | 2009-07-17 | 2016-04-26 | Cyberheart, Inc. | Heart treatment kit, system, and method for radiosurgically alleviating arrhythmia |
US8784290B2 (en) | 2009-07-17 | 2014-07-22 | Cyberheart, Inc. | Heart treatment kit, system, and method for radiosurgically alleviating arrhythmia |
WO2011041123A2 (en) | 2009-09-30 | 2011-04-07 | Medtronic Inc. | Image-guided heart valve placement or repair |
US9381371B2 (en) | 2009-12-08 | 2016-07-05 | Cardiac Pacemakers, Inc. | Implantable medical device with automatic tachycardia detection and control in MRI environments |
US8565874B2 (en) | 2009-12-08 | 2013-10-22 | Cardiac Pacemakers, Inc. | Implantable medical device with automatic tachycardia detection and control in MRI environments |
US20110160572A1 (en) * | 2009-12-31 | 2011-06-30 | Orthosensor | Disposable wand and sensor for orthopedic alignment |
US9452023B2 (en) | 2009-12-31 | 2016-09-27 | Orthosensor Inc. | Operating room surgical field device and method therefore |
US9452022B2 (en) | 2009-12-31 | 2016-09-27 | Orthosensor Inc | Disposable wand and sensor for orthopedic alignment |
US20110160738A1 (en) * | 2009-12-31 | 2011-06-30 | Orthosensor | Operating room surgical field device and method therefore |
US9011448B2 (en) | 2009-12-31 | 2015-04-21 | Orthosensor Inc. | Orthopedic navigation system with sensorized devices |
US20110160583A1 (en) * | 2009-12-31 | 2011-06-30 | Orthosensor | Orthopedic Navigation System with Sensorized Devices |
USRE49094E1 (en) | 2011-10-28 | 2022-06-07 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
US9510771B1 (en) | 2011-10-28 | 2016-12-06 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
US11529198B2 (en) | 2012-09-26 | 2022-12-20 | Stryker Corporation | Optical and non-optical sensor tracking of objects for a robotic cutting system |
US10575906B2 (en) | 2012-09-26 | 2020-03-03 | Stryker Corporation | Navigation system and method for tracking objects using optical and non-optical sensors |
US9271804B2 (en) | 2012-09-26 | 2016-03-01 | Stryker Corporation | Method for tracking objects using optical and non-optical sensors |
US9687307B2 (en) | 2012-09-26 | 2017-06-27 | Stryker Corporation | Navigation system and method for tracking objects using optical and non-optical sensors |
WO2014052428A1 (en) * | 2012-09-26 | 2014-04-03 | Stryker Corporation | Navigation system including optical and non-optical sensors |
US9008757B2 (en) | 2012-09-26 | 2015-04-14 | Stryker Corporation | Navigation system including optical and non-optical sensors |
US12144565B2 (en) | 2012-09-26 | 2024-11-19 | Stryker Corporation | Optical and non-optical sensor tracking of a robotically controlled instrument |
US9854991B2 (en) | 2013-03-15 | 2018-01-02 | Medtronic Navigation, Inc. | Integrated navigation array |
US9848922B2 (en) | 2013-10-09 | 2017-12-26 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
US12178469B2 (en) | 2016-11-07 | 2024-12-31 | Vycor Medical Inc. | Surgical introducer with guidance system receptacle |
CN107496030A (en) * | 2017-09-04 | 2017-12-22 | 重庆博仕康科技有限公司 | Optomagnetic integral location tracking device |
US20190175059A1 (en) * | 2017-12-07 | 2019-06-13 | Medtronic Xomed, Inc. | System and Method for Assisting Visualization During a Procedure |
WO2024236440A1 (en) * | 2023-05-15 | 2024-11-21 | Medtronic Navigation, Inc. | Hybrid localization for minimally invasive surgery and cervical spinal referencing, and methods for using the same |
Also Published As
Publication number | Publication date |
---|---|
WO2001034050A9 (en) | 2001-12-06 |
AU2617801A (en) | 2001-06-06 |
WO2001034050A2 (en) | 2001-05-17 |
DE10083670T1 (en) | 2002-03-14 |
DE10083670B4 (en) | 2006-09-28 |
US6402762B2 (en) | 2002-06-11 |
WO2001034050A3 (en) | 2001-11-08 |
US6235038B1 (en) | 2001-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6235038B1 (en) | System for translation of electromagnetic and optical localization systems | |
US6381485B1 (en) | Registration of human anatomy integrated for electromagnetic localization | |
US6490467B1 (en) | Surgical navigation systems including reference and localization frames | |
US6167145A (en) | Bone navigation system | |
US6669635B2 (en) | Navigation information overlay onto ultrasound imagery | |
US6434415B1 (en) | System for use in displaying images of a body part | |
US8046053B2 (en) | System and method for modifying images of a body part | |
US6895268B1 (en) | Medical workstation, imaging system, and method for mixing two images | |
US8682413B2 (en) | Systems and methods for automated tracker-driven image selection | |
EP2429439B1 (en) | System for automatic registration between an image and a subject | |
US5971997A (en) | Intraoperative recalibration apparatus for stereotactic navigators | |
EP2153794B1 (en) | System for and method of visualizing an interior of a body | |
US6490473B1 (en) | System and method of interactive positioning | |
US9486295B2 (en) | Universal image registration interface | |
Mascott | The Cygnus PFS image-guided system | |
Giraldez et al. | Multimodal augmented reality system for surgical microscopy | |
ZINREICH | 29 IMAGE-GUIDED FUNCTIONAL ENDOSCOPIC SINUS SURGERY | |
Goldsmith | Image-Guided Systems in 21 Neurotology/Skull Base Surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |