US20010011407A1 - Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated - Google Patents
Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated Download PDFInfo
- Publication number
- US20010011407A1 US20010011407A1 US09/761,653 US76165301A US2001011407A1 US 20010011407 A1 US20010011407 A1 US 20010011407A1 US 76165301 A US76165301 A US 76165301A US 2001011407 A1 US2001011407 A1 US 2001011407A1
- Authority
- US
- United States
- Prior art keywords
- synthetic resin
- strain
- hinge device
- shaft member
- frictional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1675—Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
- G06F1/1681—Details related solely to hinges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1615—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
- G06F1/1616—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05D—HINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
- E05D11/00—Additional features or accessories of hinges
- E05D11/08—Friction devices between relatively-movable hinge parts
- E05D11/082—Friction devices between relatively-movable hinge parts with substantially radial friction, e.g. cylindrical friction surfaces
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2999/00—Subject-matter not otherwise provided for in this subclass
Definitions
- the invention relates to a frictional hinge device used to pivotably support various lid plates at desired angular positions including opening and closing positions, and concerns to a portable business machine such as a laptop note type personal computer into which the frictional hinge device is incorporated to hold a display at the desired angular positions.
- a lid plate is secured to a metallic shaft which is pivotably supported on a holder block metal.
- the holder block metal clamps the metallic shaft to produce a surface frictional resistance between the holder block metal and the metallic shaft so as to hold the lid plate at desired angular positions.
- a shaft lock device is disclosed by Laid-open Japanese Patent Application No. 7-26825 (laid-open on Jan. 27, 1995, assigned to Kabushiki Kaisha Kato Spring Seisakusho ).
- This laid-open publication teaches that an outer shaft is made of a synthetic resin and integrally molded with an inner shaft. Due to a surface frictional resistance caused from a thermal expansional difference between the inner and outer shafts, the inner shaft is held at any desired angular positions while permitting the inner shaft to pivot relative to the outer shaft against the force of the surface frictional resistance therebetween. Due to the surface frictional resistance, a display is held at the desired angular positions in a laptop note type personal computer.
- a support member is integrally molded around the shaft member when a synthetic resin is injected into a mold die in which the shaft member is placed beforehand.
- the support member Due to the synthetic resin contracted by a residual stress caused from a shrinkage allowance when solidified, the support member tightly engages with the shaft member. This provides a good surface frictional resistance therebetween. When the support member is subjected to a frictional torque greater than the surface frictional resistance, the support member pivots around the shaft member relatively. When the support member is subjected to a frictional torque less than the surface frictional resistance, the support member is held at an appropriate angular position by the surface frictional resistance.
- the support member tightly engages with the shaft member due to the synthetic resin contracted by the residual stress caused from the shrinkage allowance when solidified, and a strain appears within the synthetic resin of the support member in correspondence to the residual stress.
- the inventors carried out experimental tests by paying their attention to a relationship between a strain distribution and a torque holding rate. As a result, the inventors found that the torque holding rate falls rapidly to deteriorate the endurance when the strain distribution comes inequable such a degree as to exceed 15% (referred to as “inequable strain distribution degree” hereinafter).
- the torque holding rate T (%) is expressed by the formula below.
- T (%) (a torque measured after undergoing a heat deteriorating experimental test or an endurance experimental test) ⁇ 100/(an initial torque)
- the strain distribution within the synthetic resin is equalized so that the inequable strain distribution degree is 15% or less.
- the inequable strain distribution degree (%) is expressed by (
- the support member is quality controlled based on a molding method, configuration, post-treatment and molding conditions to produce a frictional hinge device superior in endurance.
- the synthetic resin is partly thickened or partly thinned.
- a film injection gate or a multiple point injection gate is provided, the former of which flows the synthetic resin smoothly and the latter of which flows the synthetic resin dispersively when the synthetic resin is molded around the shaft member.
- the synthetic resin is dealt with a heat treatment at a temperature of 0.8 ⁇ Tg (° C.) or higher after the synthetic resin is molded around the shaft member.
- Tg ° C.
- Tg is a vitreous transformation temperature when the synthetic resin metamorphoses into a rubberized property.
- an equable control means is provided to determine mold conditions so as to equally flow the synthetic resin around the shaft member.
- FIG. 1 is a perspective view of the frictional hinge device
- FIG. 2 is a side elevational view of a metallic shaft of the frictional hinge device
- FIG. 2 a is a plan view of the metallic shaft of the frictional hinge device
- FIG. 3 is a plan view of the frictional hinge device but partly sectioned
- FIG. 3 a is a side elevational view of the frictional hinge device
- FIG. 4 is a perspective view of a laptop note type personal computer into which the frictional hinge device is incorporated as a business machine;
- FIG. 5 is a graphical representation showing how an inequable strain distribution degree changes depending on where a strain gauge is attached;
- FIG. 5 a is a plan view of a support block showing where the strain gauge is attached when a tensile experimental test is implemented to seek a strain distribution;
- FIG. 5 b is a side elevational view of the support block showing where the strain gauge is attached when the tensile experimental test is implemented to seek the strain distribution;
- FIG. 6 is a graphical representation showing how a relationship between the inequable strain distribution degree and a torque holding rate
- FIG. 7 is a stress-strain curve represented by a synthetic resin
- FIGS. 8 ⁇ 8 e are schematic views showing various methods how to equalize the strain distribution within the synthetic resin
- FIG. 9 is an example representing a single point injection gate used when injecting the synthetic resin around the metallic shaft
- FIG. 9 a is an example representing a film injection gate used when injecting the synthetic resin around the metallic shaft
- FIG. 9 b is an example representing a multiple point injection gate used when injecting the synthetic resin around the metallic shaft
- FIG. 10 is a characteristic curve showing how the torque holding rate and the inequable strain distribution degree changes depending on a heat treatment temperature
- FIG. 11 is a characteristic curve showing how the torque holding rate and the inequable strain distribution degree changes depending on equable control conditions used when molding the synthetic resin.
- a frictional hinge device 1 is incorporated into a laptop note type personal computer 30 (portable business machine) to pivotally move a lid plate 31 on which a liquid crystal display 32 is mounted.
- the lid plate 31 is adjusted at any desired angular positions to insure a good view on the liquid crystal display 32 .
- the frictional hinge device 1 has a metallic shaft (shaft member) 10 which serves as a rotational axis of a rotational center 10 a .
- the metallic shaft 10 is secured to the lid plate 31 of the personal computer 30 to pivotally move in unison with the lid plate 31 .
- a support block (support member) 20 is provided to pivotably support the metallic shaft 10 relative to the support block 20 .
- the support block 20 may be secured to the lid plate 31 , and metallic shaft 10 secured to a main body of the personal computer 30 .
- the metallic shaft 10 is made from an age-hardened stainless steel (SUS), a mild steel, or a high Si containing aluminum-based alloy in order to form a columnar configuration.
- the metallic shaft 10 has a diameter-increased section 11 (e.g., 5 mm in diameter) at a middle portion and diameter-reduced sections 12 , 13 (e.g., 4 mm in diameter) at right and left end portions respectively.
- the left ended diameter-reduced section 13 has a dowel 14 to connectedly interfit into the lid plate 31 .
- the support block 20 is formed by a synthetic resin (e.g., PAR: acronymized from polyarylate) which tightly engages with an outer surface of the diameter-increased section 11 of the metallic shaft 10 as shown in FIGS. 3 and 3 a .
- the synthetic resin pellets are injected into a mold die in which the metallic shaft 10 had been placed beforehand.
- the mold die is preheated to approx. 165° C. This produces a predetermined quantity of a surface friction resistance between the support block 20 and the metallic shaft 10 due to a residual stress caused from a shrinkage allowance appeared when the synthetic resin is solidified.
- the frictional hinge device 1 holds the lid plate 31 at any angular positions in relation to the main body of the personal computer 30 . For this reason, it is necessary to adjust the frictional torque between the metallic shaft 10 and the support block 20 when the torque is less than a predetermined value. While it is necessary to provide a smooth pivotal movement with the metallic shaft 10 when the frictional torque is greater than the predetermined value.
- the torque holding rate T (%) is expressed by the formula below.
- T (%) (a torque measured after undergoing a heat deteriorating experimental test or an endurance experimental test) ⁇ 100/(an initial torque)
- the inequable strain distribution degree within the synthetic resin is controlled to be 15% or less. This is to insure the torque holding rate of 80% or more as understood from a characteristic curve in FIG. 6.
- the measurements were done under the condition that the strain within the synthetic resin corresponds to 80% or less of a yield point (tensile yield strength) when the synthetic resin is subjected to a tensile experimental test as shown in FIG. 7.
- FIGS. 8 ⁇ 8 e Means to control the inequable strain distribution degree under 15% or less are shown in FIGS. 8 ⁇ 8 e . These means are contrived with an attention paid to the support block 20 formed in a keyhole-shaped configuration as shown in FIG. 8. In the support block 20 having the keyhole-shaped configuration, the strain tends to decrease at a circular head portion (B), and tends to increase at lateral side portions (A) and (C) so as to render the strain distribution inequable.
- the metallic shaft 10 is eccentrically located upward to thin the circular head portion (B) as shown at (i) in FIG. 8 a . Otherwise, the metallic shaft 10 is eccentrically located downward to thicken the circular head portion (B) as shown at (ii) in FIG. 8 a.
- the circular head portion (B) is thinned with the metallic shaft 10 located unchanged to remain concentrical as shown at (i) in FIG. 8 b . Otherwise, the circular head portion (B) is thickened with the metallic shaft 10 located unchanged to remain concentrical as shown at (ii) in FIG. 8 b.
- a rib (Ri) is provided on the lateral side portions (A) and (C) as shown at (i) in FIG. 8 c .
- a mildly curved pad portion (Ro) and a linear-contoured pad portion (Re) are provided on the lateral side portions (A) and (C) respectively as shown at (ii) and (iii) in FIG. 8 c.
- the ribs (Ri) can be provided on two corners of the lateral side portions (A) and (C) as shown at (i) in FIG. 8 d . Otherwise four ribs (Ri) can be provided on four corners of the lateral side portions (A) and (C) as shown at (ii) in FIG. 8 d.
- the support block 20 is formed so that its cross section is symmetrical in the up (right) and down (left) directions to equalize the strain distribution. Due to the support block 20 having a circular cross section as shown in FIG. 8 e . In this instance, four jugs (Sp) are circumferentially provided on the support block 20 at regular intervals so as to lock the support block 20 from inadvertently rotating circumferentially.
- a film injection gate (Gs) is provided instead of the single point injection gate (Gt).
- the film injection gate (Gs) has an axial length dimension corresponding to that of the metallic shaft 10 to keep the flowing lengths substantially uniform as shown at an arrow (K) in FIG. 9 a.
- FIG. 9 b a multiple point injection gate (Gu) is adopted, gates are dispersed so that the flowing lengths from each of the dispersed gates are substantially the same as shown at an arrow (H) in FIG. 9 b.
- a multiple point injection gate (Gu) is adopted, gates are dispersed so that the flowing lengths from each of the dispersed gates are substantially the same as shown at an arrow (H) in FIG. 9 b.
- Another means is further adopted to equalize the strain distribution within the synthetic resin. This means is to deal the synthetic resin with a heat treatment after the synthetic resin was solidified. This means is adopted to relieve a directive effect induced within the synthetic resin when injected into the mold die. When the synthetic resin is solidified without relieving the directive effect, a molecular directive strain appears within the solidified synthetic resin. The heat treatment is done to relieve the molecular directive strain.
- a relationship between the heat treatment temperature, the torque holding rate and the inequable strain distribution degree is determined as shown in FIG. 10.
- the relationship between the heat treatment temperature and the inequable strain distribution degree is labeled by legend L
- the relationship between the heat treatment temperature and the torque holding rate is labeled by legend M.
- Curves labeled by the legends L and M invert upside down when the heat treatment temperature is around 0.75 ⁇ Tg (° C.).
- Tg (° C.) is a vitreous transformation temperature when the synthetic resin metamorphoses into a rubberized property.
- An equable control means is adopted to equalize the strain distribution to determine a relationship between the inequable strain distribution degree and the torque holding rate by changing equable control conditions (molding conditions).
- the results are shown in FIG. 11 in which a left half region from a vertical line (S) teaches an acceptable level range that the inequable strain distribution degree is 15% or less with the torque holding rate at 80% or more. Within the acceptable level range, the synthetic resin flows equally around the metallic shaft to substantially equalize the strain distribution.
- At least two items can be combined by selecting among the following items (a) ⁇ (d).
- the inequable strain distribution degree within the synthetic resin is determined to be 15% or less so as to increase the torque holding rate by 80% or more to tightly engage the support block 20 with the metallic shaft 10 .
- the PAR polyarylate
- the support block 20 with the diameter-increased section 11 as 5 mm in diameter and the diameter-reduced sections 12 as 4 mm in diameter.
- the PAR (polyarylate) is one of heat-resistant non-crystallized synthetic resins with Tg as high as 190° C.
- the PAR (polyarylate) is suited to the support block 20 because the PAR (polyarylate) does not fluctuate its bending elasticity (GPa) significantly under the perimetric ambient temperature range in which business machines are usually used. With the general operating temperature range (e.g., ⁇ 20 to +100° C.), the synthetic resins are selected in which Tg is 120° C. or higher.
- the crystallized resins used in general has bending elasticity (GPa) fluctuating greatly under the operating temperature.
- GPa bending elasticity
- the crystallized synthetic resins are selected from the so-called “super engineering plastic materials”.
- These crystallized synthetic resins are PAR (polyarylate), heat-resistant PC (polycarbonate), PPS (polyphenylene sulphide), PES (polyether sulfone), PEEK (polyether ether ketone) and the like.
- an organic- or inorganic-based antifriction medium such as fluoro-based resin, olefine-based resin, graphite, carbon fiber, talc, vitreous particles, molybdate bisulfide, potassium titanate or the like.
- added to the synthetic resin is mineral, vitreous fiber, carbon fiber or the like within 40% by weight so as to provide a sufficient mechanical strength with the support block 20 when forming in integral with the metallic shaft 10 .
- the outer surface of the metallic shaft 10 may be polished to impart a smaller surface roughness (Ra) therewith. However, when the surface roughness (Ra) is within the range of 0.15 ⁇ 0.35 ⁇ m, the metallic shaft 10 may be remained unpolished.
- the frictional hinge device 1 may be applied to various lid plates for a copy machine, a porcelain toilet, an automobile hatch and hood, carrier side plates of trucks, windows of living houses and a keyboard of piano.
- the frictional hinge device 1 can be applied to any article in which a lid plate is held at any desired angular positions by the surface friction resistance between the metallic shaft and the support block.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Pivots And Pivotal Connections (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
- 1. Field of the Invention
- The invention relates to a frictional hinge device used to pivotably support various lid plates at desired angular positions including opening and closing positions, and concerns to a portable business machine such as a laptop note type personal computer into which the frictional hinge device is incorporated to hold a display at the desired angular positions.
- 2. Description of Prior Art
- In this type of the frictional hinge device, a lid plate is secured to a metallic shaft which is pivotably supported on a holder block metal. The holder block metal clamps the metallic shaft to produce a surface frictional resistance between the holder block metal and the metallic shaft so as to hold the lid plate at desired angular positions.
- Although this makes a whole structure simple and contributes to cost reduction, a certain quantity of grease is required for lubrication between the holder block metal and the metallic shaft. The grease becomes a likely cause of perimetric pollution around the frictional hinge device.
- In order to avoid these inconveniences, a shaft lock device is disclosed by Laid-open Japanese Patent Application No. 7-26825 (laid-open on Jan. 27, 1995, assigned to Kabushiki Kaisha Kato Spring Seisakusho ). This laid-open publication teaches that an outer shaft is made of a synthetic resin and integrally molded with an inner shaft. Due to a surface frictional resistance caused from a thermal expansional difference between the inner and outer shafts, the inner shaft is held at any desired angular positions while permitting the inner shaft to pivot relative to the outer shaft against the force of the surface frictional resistance therebetween. Due to the surface frictional resistance, a display is held at the desired angular positions in a laptop note type personal computer.
- In the shaft lock device disclosed by the Laid-open Japanese Patent Application No. 7-26825, providing a surface roughness, surface treatment and frictional coefficient are suggested as means to determine the frictional torque between the inner and outer shafts together with their diametrical dimensions.
- However, this disclosure remains silent about qualitative and quantitative analyses on a relationship between the inner and outer shafts. This causes no smaller variations on the frictional torque when the inner shaft pivotally moves relative to the outer shaft. This also causes abnormal noise due to a stickslip phenomenon when pivotally moving the inner shaft, thereby losing a good endurance with a reduced frictional torque due to an unacceptable amount of wear between the inner and outer shafts.
- Therefore, the present invention has been made with the above drawbacks in mind.
- It is a main object of the invention to provide a frictional hinge device which is inexpensive with no fear for perimetric grease pollution and no abnormal noise accompanied with a stickslip phenomenon with the least torque variations, and is capable of maintaining a stable surface frictional resistance between a shaft member and a support member for an extended period of time so as to repeatedly hold the support member at desired angular positions based on a substantially uniform surface frictional resistance.
- With a frictional hinge device having a support member rotatably supported by a shaft member, a support member is integrally molded around the shaft member when a synthetic resin is injected into a mold die in which the shaft member is placed beforehand.
- Due to the synthetic resin contracted by a residual stress caused from a shrinkage allowance when solidified, the support member tightly engages with the shaft member. This provides a good surface frictional resistance therebetween. When the support member is subjected to a frictional torque greater than the surface frictional resistance, the support member pivots around the shaft member relatively. When the support member is subjected to a frictional torque less than the surface frictional resistance, the support member is held at an appropriate angular position by the surface frictional resistance.
- With the synthetic resin molded around the shaft member, the support member and the shaft member are assembled quickly with the least manufacturing cost.
- Thus, the support member tightly engages with the shaft member due to the synthetic resin contracted by the residual stress caused from the shrinkage allowance when solidified, and a strain appears within the synthetic resin of the support member in correspondence to the residual stress.
- The inventors carried out experimental tests by paying their attention to a relationship between a strain distribution and a torque holding rate. As a result, the inventors found that the torque holding rate falls rapidly to deteriorate the endurance when the strain distribution comes inequable such a degree as to exceed 15% (referred to as “inequable strain distribution degree” hereinafter).
- The torque holding rate T (%) is expressed by the formula below.
- T (%)=(a torque measured after undergoing a heat deteriorating experimental test or an endurance experimental test)×100/(an initial torque)
- The strain distribution within the synthetic resin is equalized so that the inequable strain distribution degree is 15% or less. Where the inequable strain distribution degree (%) is expressed by (|maximum strain (minimum strain)−average strain|)×100/(average strain) in which a greater one is selected when compared the absolute value |maximum strain| with the absolute value |minimum strain|.
- In order to realize these requirements, the support member is quality controlled based on a molding method, configuration, post-treatment and molding conditions to produce a frictional hinge device superior in endurance.
- With the high and stable torque holding rate thus achieved, a smoothness is imparted to the shaft member to avoid an unfavorable coagulation against the synthetic resin to obtain an appropriate frictional resistance between the shaft member and synthetic resin. This also reduces frictional torque variations and a stickslip phenomenon significantly with no abnormal noise induced due to the stickslip phenomenon when the support member pivots relative to the shaft member.
- In order to equalize the strain distribution within the synthetic resin, the synthetic resin is partly thickened or partly thinned.
- In order to also equalize the strain distribution within the synthetic resin, a film injection gate or a multiple point injection gate is provided, the former of which flows the synthetic resin smoothly and the latter of which flows the synthetic resin dispersively when the synthetic resin is molded around the shaft member.
- In order to further equalize the strain distribution within the synthetic resin, the synthetic resin is dealt with a heat treatment at a temperature of 0.8×Tg (° C.) or higher after the synthetic resin is molded around the shaft member. Where Tg (° C.) is a vitreous transformation temperature when the synthetic resin metamorphoses into a rubberized property.
- In order to furthermore equalize the strain distribution in the synthetic resin, an equable control means is provided to determine mold conditions so as to equally flow the synthetic resin around the shaft member.
- With at least two means combined among (a)˜(e) below, the strain distribution within the synthetic resin is synergistically equalized.
- (a) partly thickening or thinning the synthetic resin,
- (b) providing the film injection gate,
- (c) providing the multiple point injection gate,
- (d) dealing with the heat treatment at temperatures of 0.8×Tg (° C.) or higher, and
- (e) determining molding conditions to equally flowing the synthetic resin around the shaft member due to the equable control means.
- With the frictional hinge device used to pivotably move a display for a portable business machine, it is possible to hold the display repeatedly at any desired angular position for an extended period of time while insuring a stable frictional torque with the least amount of wear between the shaft member and the support member.
- Preferred forms of the present invention are illustrated in the accompanying drawings in which:
- FIG. 1 is a perspective view of the frictional hinge device;
- FIG. 2 is a side elevational view of a metallic shaft of the frictional hinge device;
- FIG. 2a is a plan view of the metallic shaft of the frictional hinge device;
- FIG. 3 is a plan view of the frictional hinge device but partly sectioned;
- FIG. 3a is a side elevational view of the frictional hinge device;
- FIG. 4 is a perspective view of a laptop note type personal computer into which the frictional hinge device is incorporated as a business machine;
- FIG. 5 is a graphical representation showing how an inequable strain distribution degree changes depending on where a strain gauge is attached;
- FIG. 5a is a plan view of a support block showing where the strain gauge is attached when a tensile experimental test is implemented to seek a strain distribution;
- FIG. 5b is a side elevational view of the support block showing where the strain gauge is attached when the tensile experimental test is implemented to seek the strain distribution;
- FIG. 6 is a graphical representation showing how a relationship between the inequable strain distribution degree and a torque holding rate;
- FIG. 7 is a stress-strain curve represented by a synthetic resin;
- FIGS.8˜8 e are schematic views showing various methods how to equalize the strain distribution within the synthetic resin;
- FIG. 9 is an example representing a single point injection gate used when injecting the synthetic resin around the metallic shaft;
- FIG. 9a is an example representing a film injection gate used when injecting the synthetic resin around the metallic shaft;
- FIG. 9b is an example representing a multiple point injection gate used when injecting the synthetic resin around the metallic shaft;
- FIG. 10 is a characteristic curve showing how the torque holding rate and the inequable strain distribution degree changes depending on a heat treatment temperature; and
- FIG. 11 is a characteristic curve showing how the torque holding rate and the inequable strain distribution degree changes depending on equable control conditions used when molding the synthetic resin.
- Referring to FIGS. 1 and 4, a
frictional hinge device 1 is incorporated into a laptop note type personal computer 30 (portable business machine) to pivotally move alid plate 31 on which aliquid crystal display 32 is mounted. Thelid plate 31 is adjusted at any desired angular positions to insure a good view on theliquid crystal display 32. - The
frictional hinge device 1 has a metallic shaft (shaft member) 10 which serves as a rotational axis of arotational center 10 a. Themetallic shaft 10 is secured to thelid plate 31 of thepersonal computer 30 to pivotally move in unison with thelid plate 31. A support block (support member) 20 is provided to pivotably support themetallic shaft 10 relative to thesupport block 20. In this instance, thesupport block 20 may be secured to thelid plate 31, andmetallic shaft 10 secured to a main body of thepersonal computer 30. - As shown in FIGS. 2, 2a, 3 and 3 a, the
metallic shaft 10 is made from an age-hardened stainless steel (SUS), a mild steel, or a high Si containing aluminum-based alloy in order to form a columnar configuration. Themetallic shaft 10 has a diameter-increased section 11 (e.g., 5 mm in diameter) at a middle portion and diameter-reducedsections 12, 13 (e.g., 4 mm in diameter) at right and left end portions respectively. The left ended diameter-reducedsection 13 has adowel 14 to connectedly interfit into thelid plate 31. - On the other hand, the
support block 20 is formed by a synthetic resin (e.g., PAR: acronymized from polyarylate) which tightly engages with an outer surface of the diameter-increasedsection 11 of themetallic shaft 10 as shown in FIGS. 3 and 3a. In this instance, the synthetic resin pellets are injected into a mold die in which themetallic shaft 10 had been placed beforehand. - At a time when molding the synthetic resin around the
metallic shaft 10, the mold die is preheated to approx. 165° C. This produces a predetermined quantity of a surface friction resistance between thesupport block 20 and themetallic shaft 10 due to a residual stress caused from a shrinkage allowance appeared when the synthetic resin is solidified. - The
frictional hinge device 1 holds thelid plate 31 at any angular positions in relation to the main body of thepersonal computer 30. For this reason, it is necessary to adjust the frictional torque between themetallic shaft 10 and thesupport block 20 when the torque is less than a predetermined value. While it is necessary to provide a smooth pivotal movement with themetallic shaft 10 when the frictional torque is greater than the predetermined value. - An attention was focused on a strain distribution within the synthetic resin of the
support block 20 in correspondence to a residual stress established therein. As shown in FIGS. 5a and 5 b, three columns of strain gauge pieces are attached to an outer surface of thesupport block 20 in a circumferential direction so as to measure strains at places denoted by {circle over (1)}, {circle over (2)} and {circle over (3)}. - As a result, a relationship between the places {circle over (1)}, {circle over (2)}, {circle over (3)} and an inequable strain distribution degree was found as shown in FIG. 5. Where the inequable strain distribution degree (%) is expressed by (|maximum strain (minimum strain)−average strain|)×100/(average strain) in which a greater one is selected when compared the absolute value |maximum strain| with the absolute value |minimum strain|.
- The torque holding rate T (%) is expressed by the formula below.
- T (%)=(a torque measured after undergoing a heat deteriorating experimental test or an endurance experimental test)×100/(an initial torque)
- It is to be observed that upon measuring the strain distribution, the number of the gauge pieces attached to the
support block 20 can be variedly changed as desired. - As an acceptable range of the inequable strain distribution degree, a margin of ±15% is adopted from the linear relationship as shown in FIG. 5. From this point of view, the inequable strain distribution degree within the synthetic resin is controlled to be 15% or less. This is to insure the torque holding rate of 80% or more as understood from a characteristic curve in FIG. 6. In order to avoid the
support block 20 from deforming disproportionately greater, the measurements were done under the condition that the strain within the synthetic resin corresponds to 80% or less of a yield point (tensile yield strength) when the synthetic resin is subjected to a tensile experimental test as shown in FIG. 7. - Means to control the inequable strain distribution degree under 15% or less are shown in FIGS.8˜8 e. These means are contrived with an attention paid to the
support block 20 formed in a keyhole-shaped configuration as shown in FIG. 8. In thesupport block 20 having the keyhole-shaped configuration, the strain tends to decrease at a circular head portion (B), and tends to increase at lateral side portions (A) and (C) so as to render the strain distribution inequable. - (1) In order to reduce the inequable stress distribution degree (15% or less) within the synthetic resin, the
metallic shaft 10 is eccentrically located upward to thin the circular head portion (B) as shown at (i) in FIG. 8a. Otherwise, themetallic shaft 10 is eccentrically located downward to thicken the circular head portion (B) as shown at (ii) in FIG. 8a. - (2) The circular head portion (B) is thinned with the
metallic shaft 10 located unchanged to remain concentrical as shown at (i) in FIG. 8b. Otherwise, the circular head portion (B) is thickened with themetallic shaft 10 located unchanged to remain concentrical as shown at (ii) in FIG. 8b. - (3) A rib (Ri) is provided on the lateral side portions (A) and (C) as shown at (i) in FIG. 8c. A mildly curved pad portion (Ro) and a linear-contoured pad portion (Re) are provided on the lateral side portions (A) and (C) respectively as shown at (ii) and (iii) in FIG. 8c.
- The ribs (Ri) can be provided on two corners of the lateral side portions (A) and (C) as shown at (i) in FIG. 8d. Otherwise four ribs (Ri) can be provided on four corners of the lateral side portions (A) and (C) as shown at (ii) in FIG. 8d.
- (4) The
support block 20 is formed so that its cross section is symmetrical in the up (right) and down (left) directions to equalize the strain distribution. Due to thesupport block 20 having a circular cross section as shown in FIG. 8e. In this instance, four jugs (Sp) are circumferentially provided on thesupport block 20 at regular intervals so as to lock thesupport block 20 from inadvertently rotating circumferentially. - In order to equalize the strain distribution, another means are adopted under the circumstances that the inequable strain distribution degree tends to increase in a single point injection gate (Gt) as shown in FIG. 9. This is because the single point injection gate (Gt) changes the solidified speed depending on places of the synthetic resin due to the varied flowing lengths running around the
metallic shaft 10 as shown at an arrow (J) in FIG. 9. - In FIG. 9a, a film injection gate (Gs) is provided instead of the single point injection gate (Gt). In order to substantially achieve the uniform solidified speed across the
metallic shaft 10, the film injection gate (Gs) has an axial length dimension corresponding to that of themetallic shaft 10 to keep the flowing lengths substantially uniform as shown at an arrow (K) in FIG. 9a. - In FIG. 9b, a multiple point injection gate (Gu) is adopted, gates are dispersed so that the flowing lengths from each of the dispersed gates are substantially the same as shown at an arrow (H) in FIG. 9b.
- Another means is further adopted to equalize the strain distribution within the synthetic resin. This means is to deal the synthetic resin with a heat treatment after the synthetic resin was solidified. This means is adopted to relieve a directive effect induced within the synthetic resin when injected into the mold die. When the synthetic resin is solidified without relieving the directive effect, a molecular directive strain appears within the solidified synthetic resin. The heat treatment is done to relieve the molecular directive strain.
- In order to seek a heat treatment temperature so as to moderate the molecular directive strain, a relationship between the heat treatment temperature, the torque holding rate and the inequable strain distribution degree is determined as shown in FIG. 10. The relationship between the heat treatment temperature and the inequable strain distribution degree is labeled by legend L, and the relationship between the heat treatment temperature and the torque holding rate is labeled by legend M. Curves labeled by the legends L and M invert upside down when the heat treatment temperature is around 0.75×Tg (° C.). By setting the heat treatment temperature at 0.8×Tg (° C.) or higher, the inequable strain distribution degree is 15% or less with the torque holding rate at 80% or more. Where Tg (° C.) is a vitreous transformation temperature when the synthetic resin metamorphoses into a rubberized property.
- An equable control means is adopted to equalize the strain distribution to determine a relationship between the inequable strain distribution degree and the torque holding rate by changing equable control conditions (molding conditions). The results are shown in FIG. 11 in which a left half region from a vertical line (S) teaches an acceptable level range that the inequable strain distribution degree is 15% or less with the torque holding rate at 80% or more. Within the acceptable level range, the synthetic resin flows equally around the metallic shaft to substantially equalize the strain distribution.
- Upon equalizing the strain distribution within the synthetic resin of the
support block 20, at least two means can be combined among the above-mentioned contrivances. - Namely, at least two items can be combined by selecting among the following items (a)˜(d).
- (a) Partly thickening or thinning the synthetic resin as shown in FIG. 8.
- (b) Providing the film injection gate or providing the multiple point injection gate as shown in FIG. 9.
- (c) Dealing with the heat treatment at temperature of 0.8×Tg (° C.) or higher as shown in FIG. 10.
- (d) Determining the molding conditions to equally flowing the synthetic resin around the
metallic shaft 10 due to the equable control means as shown in FIG. 11. - Thus, the inequable strain distribution degree within the synthetic resin is determined to be 15% or less so as to increase the torque holding rate by 80% or more to tightly engage the
support block 20 with themetallic shaft 10. This eliminates variations on the frictional torque with no substantial stickslip phenomenon, abnormal noise and initial scratches accompanied when pivotally moving thesupport block 20 relative to themetallic shaft 10 so as to maintain the stable surface friction resistance with good endurance for a long period of time. - In the embodiment of the invention, the PAR (polyarylate) is used to the
support block 20 with the diameter-increasedsection 11 as 5 mm in diameter and the diameter-reducedsections 12 as 4 mm in diameter. - The PAR (polyarylate) is one of heat-resistant non-crystallized synthetic resins with Tg as high as 190° C. The PAR (polyarylate) is suited to the
support block 20 because the PAR (polyarylate) does not fluctuate its bending elasticity (GPa) significantly under the perimetric ambient temperature range in which business machines are usually used. With the general operating temperature range (e.g., −20 to +100° C.), the synthetic resins are selected in which Tg is 120° C. or higher. - On the other hand, the crystallized resins used in general has bending elasticity (GPa) fluctuating greatly under the operating temperature. When these crystallized resins are applied to the
support block 20, the crystallized resins can not impart an appropriate frictional resistance with themetallic shaft 10 under the operating temperature fluctuating greatly. This is a reason the crystallized resins are not suited to thesupport block 20. - From the superior heat-resistant view point, the crystallized synthetic resins are selected from the so-called “super engineering plastic materials”.
- These crystallized synthetic resins are PAR (polyarylate), heat-resistant PC (polycarbonate), PPS (polyphenylene sulphide), PES (polyether sulfone), PEEK (polyether ether ketone) and the like.
- When PTFE (polytetrafluoroethylene) is added by 3% by weight to the synthetic resin, the
metallic shaft 10 was found to start pivoting smoothly, thereby further reducing an amount of dust worn between themetallic shaft 10 and thesupport block 20. - As an alternative, added to the above crystallized synthetic resin is an organic- or inorganic-based antifriction medium (within 15% by weight) such as fluoro-based resin, olefine-based resin, graphite, carbon fiber, talc, vitreous particles, molybdate bisulfide, potassium titanate or the like.
- As another alternative, added to the synthetic resin is mineral, vitreous fiber, carbon fiber or the like within 40% by weight so as to provide a sufficient mechanical strength with the
support block 20 when forming in integral with themetallic shaft 10. - It is to be noted that the outer surface of the
metallic shaft 10 may be polished to impart a smaller surface roughness (Ra) therewith. However, when the surface roughness (Ra) is within the range of 0.15˜0.35 μm, themetallic shaft 10 may be remained unpolished. - It is to be observed that instead of the
lid plate 31 of the laptop note typepersonal computer 30, thefrictional hinge device 1 may be applied to various lid plates for a copy machine, a porcelain toilet, an automobile hatch and hood, carrier side plates of trucks, windows of living houses and a keyboard of piano. - The
frictional hinge device 1 can be applied to any article in which a lid plate is held at any desired angular positions by the surface friction resistance between the metallic shaft and the support block. - While there has been described what is at present thought to be preferred embodiments of the invention, it will be understood that modifications may be made therein and it is intended to cover in the appended claims all such modifications which fall within the scope of the invention.
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000008493A JP2001200830A (en) | 2000-01-18 | 2000-01-18 | Friction hinge device and portable office equipment using the device |
JP2000-8493 | 2000-01-18 | ||
JP2000-008493 | 2000-01-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010011407A1 true US20010011407A1 (en) | 2001-08-09 |
US6381809B2 US6381809B2 (en) | 2002-05-07 |
Family
ID=18536751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/761,653 Expired - Fee Related US6381809B2 (en) | 2000-01-18 | 2001-01-18 | Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated |
Country Status (2)
Country | Link |
---|---|
US (1) | US6381809B2 (en) |
JP (1) | JP2001200830A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100238621A1 (en) * | 2009-03-20 | 2010-09-23 | Tracy Mark S | Insert-molded conductor |
CN109844333A (en) * | 2016-10-24 | 2019-06-04 | 世嘉智尼工业株式会社 | Two pivot hinges |
CN112947692A (en) * | 2021-03-29 | 2021-06-11 | 维沃移动通信有限公司 | Hinge assembly and electronic device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6490758B1 (en) * | 1999-04-22 | 2002-12-10 | Chuo Hatsujo Kabushiki Kaisha | Frictional hinge device |
US6741472B1 (en) * | 2002-11-06 | 2004-05-25 | Walkabout Computers, Inc. | Secure hinge mechanism for portable computer |
TWM268883U (en) * | 2004-12-24 | 2005-06-21 | Inventec Corp | Display of notebook computer |
US7152898B2 (en) * | 2005-01-06 | 2006-12-26 | Lear Corporation | System and method for reducing vehicle noise |
CN201053443Y (en) * | 2007-06-25 | 2008-04-30 | 浙江玮硕科技有限公司 | Automatic and hand-operated rotation shaft |
US8631520B2 (en) * | 2009-07-01 | 2014-01-21 | Bemis Manufacturing Company | Self-sustaining toilet seat hinge assembly |
CN102243121A (en) * | 2010-05-12 | 2011-11-16 | 鸿富锦精密工业(深圳)有限公司 | Rotation testing machine of electronic device |
CN102253655A (en) * | 2010-05-21 | 2011-11-23 | 鸿富锦精密工业(深圳)有限公司 | Machine motion control system |
CN102252015A (en) * | 2010-05-21 | 2011-11-23 | 鸿富锦精密工业(深圳)有限公司 | Machine for adjusting torque of pivot device |
CN102338679A (en) * | 2010-07-27 | 2012-02-01 | 鸿富锦精密工业(深圳)有限公司 | Torsion testing apparatus |
TWI481840B (en) * | 2010-08-04 | 2015-04-21 | Hon Hai Prec Ind Co Ltd | Torque testing equipment |
CN110068412A (en) * | 2019-05-14 | 2019-07-30 | 天津大学前沿技术研究院 | A kind of experimental rig and method measuring the quiet frictional resistance of gate |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2887680B2 (en) * | 1989-06-14 | 1999-04-26 | 日本発条株式会社 | Hinge device |
JPH05154864A (en) * | 1991-08-06 | 1993-06-22 | Sankyo Kasei Co Ltd | Hinge and its manufacture |
JP3103626B2 (en) * | 1991-09-27 | 2000-10-30 | 三共化成株式会社 | Hinge and its manufacturing method |
US5491874A (en) * | 1993-06-02 | 1996-02-20 | Cema Technologies, Inc. | Hinge assembly |
JPH0726825A (en) | 1993-07-06 | 1995-01-27 | Kato Spring Seisakusho:Kk | Shaft lock device and manufacturing method thereof |
US5566048A (en) * | 1994-06-02 | 1996-10-15 | Hewlett-Packard Company | Hinge assembly for a device having a display |
US5832566A (en) * | 1995-09-28 | 1998-11-10 | Hewlett-Packard Company | Friction hinge device |
JPH11325051A (en) * | 1998-05-21 | 1999-11-26 | Sony Corp | Hinge |
JP3737904B2 (en) * | 1999-03-03 | 2006-01-25 | 三甲株式会社 | Hinge structure |
-
2000
- 2000-01-18 JP JP2000008493A patent/JP2001200830A/en active Pending
-
2001
- 2001-01-18 US US09/761,653 patent/US6381809B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100238621A1 (en) * | 2009-03-20 | 2010-09-23 | Tracy Mark S | Insert-molded conductor |
CN109844333A (en) * | 2016-10-24 | 2019-06-04 | 世嘉智尼工业株式会社 | Two pivot hinges |
CN112947692A (en) * | 2021-03-29 | 2021-06-11 | 维沃移动通信有限公司 | Hinge assembly and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP2001200830A (en) | 2001-07-27 |
US6381809B2 (en) | 2002-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6381809B2 (en) | Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated | |
US6297946B2 (en) | Portable computer having a sealed hinge clutch | |
JPH056416Y2 (en) | ||
CN1070304C (en) | Slider supporting structure of magnetic disk unit | |
Mnif et al. | Impact of viscoelasticity on the tribological behavior of PTFE composites for valve seals application | |
US6341407B1 (en) | Frictional hinge device and a portable business device having the hinge device incorporated thereinto | |
US6634062B2 (en) | Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated | |
US5373982A (en) | Automatically tiltable small roller structure of slide bearing type for video tape recorders | |
Tan et al. | Abrasion resistance of thermoplastic polyurethane materials blended with ethylene–propylene–diene monomer rubber | |
US6539583B1 (en) | Frictional hinge device and a portable business device having the hinge device incorporated thereinto | |
US6490758B1 (en) | Frictional hinge device | |
JP2001336523A (en) | Friction plate for hinge and hinge | |
JP2000027847A (en) | Friction hinges and portable office equipment | |
BRPI0610507A2 (en) | spherical joint | |
JP2006283378A (en) | Hinge | |
JPH1049935A (en) | Pinch roller device | |
JP2000249142A (en) | Rolling bearing | |
JP2008138782A (en) | Forming roll, thin film forming apparatus and thin film forming method | |
JP2000027846A (en) | Friction hinges and portable office equipment | |
Xu et al. | Effects of Eucommia ulmoides gum content and processing conditions on damping properties of E. ulmoides gum/nitrile-butadiene rubber nanocomposites | |
JP2001329122A (en) | Resin composition for sliding member and inclined pole base using the same | |
JP3209815B2 (en) | Magnetic tape guide roller | |
JP2001002796A (en) | Resin composition for sliding member and inclined pole base using the same | |
Kunishima et al. | Soft EHL-based friction Mechanism of unreinforced and GF-reinforced PA66 in contact with steel under PAO8 oil lubrication | |
JPH0447551A (en) | Tape guide roller for rotary head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHUO HATSUJO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UNEME, MASATO;HAYASHIDA, TAKAAKI;REEL/FRAME:012618/0404 Effective date: 20010112 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140507 |