US20010009967A1 - Styrene sulfonate cation exchange membrane - Google Patents
Styrene sulfonate cation exchange membrane Download PDFInfo
- Publication number
- US20010009967A1 US20010009967A1 US09/785,846 US78584601A US2001009967A1 US 20010009967 A1 US20010009967 A1 US 20010009967A1 US 78584601 A US78584601 A US 78584601A US 2001009967 A1 US2001009967 A1 US 2001009967A1
- Authority
- US
- United States
- Prior art keywords
- styrene sulfonate
- salt
- divinyl
- monomethyl ether
- glycol monomethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000012528 membrane Substances 0.000 title claims abstract description 57
- 238000005341 cation exchange Methods 0.000 title abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 93
- 229920000642 polymer Polymers 0.000 claims abstract description 26
- 150000003839 salts Chemical class 0.000 claims description 56
- 229910052751 metal Inorganic materials 0.000 claims description 55
- 239000002184 metal Substances 0.000 claims description 55
- 239000000178 monomer Substances 0.000 claims description 35
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 34
- 239000003495 polar organic solvent Substances 0.000 claims description 32
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 29
- 238000004132 cross linking Methods 0.000 claims description 29
- 239000004744 fabric Substances 0.000 claims description 27
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 21
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 21
- 150000001768 cations Chemical class 0.000 claims description 21
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 21
- -1 alkane diol Chemical class 0.000 claims description 20
- ZKIAYSOOCAKOJR-UHFFFAOYSA-M lithium;2-phenylethenesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 ZKIAYSOOCAKOJR-UHFFFAOYSA-M 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 18
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 15
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 14
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 claims description 14
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 14
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 14
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 14
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 14
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 14
- QIFCIFLDTQJGHQ-UHFFFAOYSA-M potassium;2-phenylethenesulfonate Chemical compound [K+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 QIFCIFLDTQJGHQ-UHFFFAOYSA-M 0.000 claims description 12
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 11
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 10
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 claims description 7
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 7
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 claims description 7
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 claims description 7
- YTTFFPATQICAQN-UHFFFAOYSA-N 2-methoxypropan-1-ol Chemical compound COC(C)CO YTTFFPATQICAQN-UHFFFAOYSA-N 0.000 claims description 7
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 claims description 7
- VRUFTFZZSSSPML-UHFFFAOYSA-N 3-hydroxyoxolane-2-carbaldehyde Chemical compound OC1CCOC1C=O VRUFTFZZSSSPML-UHFFFAOYSA-N 0.000 claims description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 7
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 7
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 claims description 7
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 claims description 7
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 235000011187 glycerol Nutrition 0.000 claims description 7
- 239000002798 polar solvent Substances 0.000 claims description 7
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 7
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 7
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 7
- NWRZGFYWENINNX-UHFFFAOYSA-N 1,1,2-tris(ethenyl)cyclohexane Chemical compound C=CC1CCCCC1(C=C)C=C NWRZGFYWENINNX-UHFFFAOYSA-N 0.000 claims description 6
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 claims description 6
- HIACAHMKXQESOV-UHFFFAOYSA-N 1,2-bis(prop-1-en-2-yl)benzene Chemical compound CC(=C)C1=CC=CC=C1C(C)=C HIACAHMKXQESOV-UHFFFAOYSA-N 0.000 claims description 6
- KTSMFGDENUWCPW-UHFFFAOYSA-N 1-ethenoxy-2,3-bis(ethenyl)benzene Chemical compound C=COC1=CC=CC(C=C)=C1C=C KTSMFGDENUWCPW-UHFFFAOYSA-N 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 235000010290 biphenyl Nutrition 0.000 claims description 6
- 239000004305 biphenyl Substances 0.000 claims description 6
- 238000007334 copolymerization reaction Methods 0.000 claims description 6
- 125000004386 diacrylate group Chemical group 0.000 claims description 6
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 claims description 6
- DBSDMAPJGHBWAL-UHFFFAOYSA-N penta-1,4-dien-3-ylbenzene Chemical compound C=CC(C=C)C1=CC=CC=C1 DBSDMAPJGHBWAL-UHFFFAOYSA-N 0.000 claims description 6
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000004800 polyvinyl chloride Substances 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- ZWUBFMWIQJSEQS-UHFFFAOYSA-N 1,1-bis(ethenyl)cyclohexane Chemical compound C=CC1(C=C)CCCCC1 ZWUBFMWIQJSEQS-UHFFFAOYSA-N 0.000 claims description 5
- ZJQIXGGEADDPQB-UHFFFAOYSA-N 1,2-bis(ethenyl)-3,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C=C)=C1C ZJQIXGGEADDPQB-UHFFFAOYSA-N 0.000 claims description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- VVBONYQYEDQEFP-UHFFFAOYSA-K aluminum 2-phenylethenesulfonate Chemical compound [Al+3].[O-]S(=O)(=O)C=Cc1ccccc1.[O-]S(=O)(=O)C=Cc1ccccc1.[O-]S(=O)(=O)C=Cc1ccccc1 VVBONYQYEDQEFP-UHFFFAOYSA-K 0.000 claims description 4
- 159000000007 calcium salts Chemical class 0.000 claims description 4
- HHKWQFVQMZJXNC-UHFFFAOYSA-L calcium;2-phenylethenesulfonate Chemical compound [Ca+2].[O-]S(=O)(=O)C=CC1=CC=CC=C1.[O-]S(=O)(=O)C=CC1=CC=CC=C1 HHKWQFVQMZJXNC-UHFFFAOYSA-L 0.000 claims description 4
- GZPUKKQAJUVQHX-UHFFFAOYSA-L magnesium;2-phenylethenesulfonate Chemical compound [Mg+2].[O-]S(=O)(=O)C=CC1=CC=CC=C1.[O-]S(=O)(=O)C=CC1=CC=CC=C1 GZPUKKQAJUVQHX-UHFFFAOYSA-L 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000005033 polyvinylidene chloride Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229960004063 propylene glycol Drugs 0.000 claims 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims 3
- 229910003002 lithium salt Inorganic materials 0.000 claims 3
- 159000000002 lithium salts Chemical class 0.000 claims 3
- 159000000003 magnesium salts Chemical class 0.000 claims 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 2
- 229910052744 lithium Inorganic materials 0.000 claims 2
- UDKCHWVGPNQSQK-UHFFFAOYSA-N 1,1-bis(ethenyl)cyclopropane Chemical compound C=CC1(C=C)CC1 UDKCHWVGPNQSQK-UHFFFAOYSA-N 0.000 claims 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 239000005862 Whey Substances 0.000 abstract description 32
- 102000007544 Whey Proteins Human genes 0.000 abstract description 32
- 108010046377 Whey Proteins Proteins 0.000 abstract description 32
- 238000000909 electrodialysis Methods 0.000 abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 16
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000008101 lactose Substances 0.000 description 12
- 239000002253 acid Substances 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 9
- 238000012546 transfer Methods 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 6
- 235000009508 confectionery Nutrition 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 6
- 235000013336 milk Nutrition 0.000 description 6
- 239000008267 milk Substances 0.000 description 6
- 210000004080 milk Anatomy 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000007865 diluting Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- 239000005018 casein Substances 0.000 description 4
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 4
- 235000021240 caseins Nutrition 0.000 description 4
- 239000003729 cation exchange resin Substances 0.000 description 4
- 235000013351 cheese Nutrition 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 235000013350 formula milk Nutrition 0.000 description 4
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- NWVVVBRKAWDGAB-UHFFFAOYSA-N hydroquinone methyl ether Natural products COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- WDAXFOBOLVPGLV-UHFFFAOYSA-N isobutyric acid ethyl ester Natural products CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 2
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical class ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical class CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000013627 low molecular weight specie Substances 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000867 polyelectrolyte Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- VTPNYMSKBPZSTF-UHFFFAOYSA-N 1-ethenyl-2-ethylbenzene Chemical class CCC1=CC=CC=C1C=C VTPNYMSKBPZSTF-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- VALZJSUKNDSRPH-UHFFFAOYSA-N 4-(2,5-dioxopyrrol-1-yl)benzenesulfonic acid;sodium Chemical compound [Na].C1=CC(S(=O)(=O)O)=CC=C1N1C(=O)C=CC1=O VALZJSUKNDSRPH-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- LACFLXDRFOQEFZ-UHFFFAOYSA-N 4-ethylbenzenesulfonyl chloride Chemical compound CCC1=CC=C(S(Cl)(=O)=O)C=C1 LACFLXDRFOQEFZ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical class C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 241000549548 Fraxinus uhdei Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910004809 Na2 SO4 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000005250 alkyl acrylate group Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- XDIJWRHVEDUFGP-UHFFFAOYSA-N azanium;2-phenylethenesulfonate Chemical compound [NH4+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 XDIJWRHVEDUFGP-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009296 electrodeionization Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
- C08F212/30—Sulfur
Definitions
- the present invention relates to improvements in electrodialysis.
- the invention relates to membranes and to electrodialysis apparatus which are particularly suitable for purification of whey.
- Whey the supernatant fluid derived from removal of some or all of the casein from milk
- Whey may be produced by acidification of skim milk to a pH of about 4.7, which causes the casein to precipitate. Casein can be further purified and used in cheese making, in manufacture of some plastics and for other purposes. Acidification of milk to produce whey may be performed by addition of lactic or other acid, producing “acid” whey, or enzymatically, producing “sweet” whey. Acid whey is produced, for example, as a byproduct of the process for making cottage cheese. Sweet whey is a byproduct of some other cheese making processes e.g. cheddar.
- Sweet and acid whey differ mainly in acidity (attributable to the presence of lactic or other acid), mineral content, and fat content.
- Sweet whey has a pH of about 5.9 to 6.5, containing about 0.5 weight % inorganic salts (also referred to as “ash”) and about 0.2 to 0.4 weight % fat.
- Acid whey has a pH of about 4.3 to 4.6, containing about 0.7 to 0.8 weight % ash and about 0.05 to 0.1 weight % fat.
- whey can be used as an additive to animal feed or to a variety of human foods such as protein and citrus drinks, dry mixes, confectionery coatings, ice cream, bakery goods, and the like.
- a particular utility of whey, in the form of reduced mineral whey (RMW) is as an additive to human infant formula.
- RMW derived from bovine milk is a particularly suitable infant formula additive.
- Sweet whey derived from cheese making processes is preferably used to produce RMW for infant formula, resulting in an efficient and profitable use of a by-product.
- Electrodialysis is commonly employed to produce RMW for use in infant formula because of its gentle method of desalting. Typically, 85 to 95% of the minerals may be removed from whey in a batch or a continuous ED process.
- Worldwide ED production of demineralized whey is in excess of 150,000 metric tons (330 million pounds) of RMW solids (dry basis) per year.
- ED facilities may have an installed capacity to demineralize as much as 500,000 kg (1.1 million pounds) or more per day of fluid whey.
- ED methods which are particularly suitable for demineralization of whey are disclosed, for example, in commonly assigned U.S. Pat. No. 5,223,107, which is incorporated herein by reference.
- ED methods and apparatus purify through electric field-mediated transfer of ions through membranes from less concentrated compartments (diluting or permeate streams) to more concentrated compartments (concentrating or brine streams).
- Anion transfer and cation transfer membranes are alternated in ED methods and apparatus, the membranes being placed between an anode and a cathode across which an electric field is applied.
- Anion transfer membranes allow passage substantially only of negatively charged low molecular weight species (anions), and cation transfer membranes allow passage substantially only of positively charged low molecular weight species (cations).
- the combination of an anode, a cathode, and the alternating anion and cation transfer membranes therebetween is commonly referred to as an ED “stack”.
- cation exchange membranes have proven particularly suitable for use in ED of whey.
- cation exchange membranes based on sulfonated polystyrene are routinely employed for ED of whey, since they are particularly stable in the presence of alkaline and acid washing solutions used for sanitation of ED equipment.
- Sulfonated polystyrene based cation exchange membranes were initially manufactured by a multi-step process: in the first step, monomers such as divinyl benzene and styrene, in a water insoluble organic solvent such as diethyl benzene, were polymerized on a reinforcing fabric. In the second step, the resulting solid polymer was sulfonated in a second water insoluble organic solvent, such as ethylene dichloride. The finished membrane was produced by washing with a polar organic solvent such as methanol and then neutralizing with aqueous sodium bicarbonate.
- a polar organic solvent such as methanol
- the multi-step process causes significant chemical disposal problems, since the monomers employed are all water insoluble, and the polymerization and subsequent reactions are therefore carried out in water insoluble solvents.
- Another disadvantage of the multi-step process is that sulfonation may occur more heavily at the surface of the membrane than in its interior, producing membranes having high electrical resistance.
- U.S. Pat. No. 4,540,762 discloses copolymerization of sodium-N-(4-sulfophenyl) maleimide and a styrene sulfonate salt to produce a linear (i.e., not cross-linked), water soluble polyelectrolyte for use as a deflocculating agent in water-based drilling muds.
- U.S. Pat. No. 4,511,712 discloses a method of isolating ionic polymers, including styrene homopolymers, in the salt form.
- 4,060,673 discloses salts of polystyrene sulfonates to produce water soluble ion exchange membranes for use as permselective barriers in organic electrode batteries.
- U.S. Pat. No. 4,110,366 discloses a process for producing an alkali metal styrene sulfonate by an extraction/back-extraction process.
- the ion exchange capacity obtainable from quaternary ammonium styrene sulfonate salts as disclosed in commonly assigned U.S. Pat. No. 5,203,982 may be limited by the solubilities of such styrene sulfonate quaternary ammonium salts in polar solvents. Such patent is also incorporated herein by reference.
- styrene sulfonate quaternary ammonium salts are relatively large molecules, the resulting membranes have sufficiently large interstices that lactose may transfer out of the diluting compartment during electrodialysis of whey. A high lactose content in the brine stream may create waste disposal problems related to the biochemical oxygen demand of lactose.
- the present invention provides an improved process for manufacturing styrene sulfonate-based cation exchange membranes, which are useful for a variety of applications, including electrodialysis of whey.
- the invention provides a process for making a polymer comprising the step of reacting a styrene sulfonate metal salt, with or without a crosslinking agent, in an organic polar solvent for a time and at a temperature sufficient to cause polymerization of such styrene sulfonate metal salt to occur.
- This embodiment also encompasses polymers made using this process, the polymers being suitable for use in any process or apparatus that employs styrene sulfonate based polymers.
- Crosslinked polymers formed using the method of this embodiment are particularly suitable as ion exchange resin particulates and as components of cation exchange membranes employed in electrodialysis of whey or other liquids.
- Uncrosslinked polymers formed using the method of the invention are particularly suitable for use as polyelectrolytes in electric cells such as rechargeable batteries.
- This embodiment further provides an electrodialysis apparatus comprising fabric reinforced crosslinked cation exchange membranes made using the process of the invention.
- the invention provides a process for producing a styrene sulfonate metal salt which is soluble in polar organic solvents, comprising the steps of dissolving sodium or potassium styrene sulfonate in an aqueous solution; converting the dissolved sodium or potassium styrene sulfonate to styrene sulfonic acid; adding an ionic form of a suitable metal to such styrene sulfonic acid, thereby forming the styrene sulfonate salt of such metal; and isolating the resulting styrene sulfonate salt.
- Styrene sulfonate-based polymers are produced in accordance with the invention through polymerization of a styrene sulfonate salt which is soluble in an organic polar solvent.
- the resulting styrene sulfonate-based polymers may be crosslinked or uncrosslinked.
- Crosslinked polymers suitable for incorporation into fabric reinforced cation exchange membranes are produced in accordance with the present invention through copolymerization of a crosslinking monomer with such styrene sulfonate metal salt.
- Any styrene sulfonate metal salt may be used in the process of the invention, so long as the solubility of such metal salt in the solvent is very much greater than the solubility of sodium or potassium styrene sulfonate in the solvent.
- the styrene sulfonate metal salt used in the process of the invention is lithium styrene sulfonate, magnesium styrene sulfonate, calcium styrene sulfonate, aluminum styrene sulfonate, ferrous styrene sulfonate, ferric styrene sulfonate, or ammonium styrene sulfonate. More preferably the styrene sulfonate metal salt monomer used in the process of the invention is lithium styrene sulfonate.
- the styrene sulfonate metal salt may be produced for use in the process of the invention, for example, as set forth in chapter 4 of Functional Monomers , vol. 1, Yocum et al. ed. (Marcel Dekker, Inc., 1973), by sulfonating ethylbenzene with chlorosulfuric acid (or with sulfuric acid followed by chlorination with PCl 5 ,) to produce p-ethylbenzenesulfonyl chloride which is then purified by fractional distillation, brominated, and subsequently debrominated with the hydroxide of the desired metal.
- LiOH is employed in this process, pure p-lithium styrene sulfonate is produced.
- the styrene sulfonate metal salt may be produced for use in the process of the invention by exchange of the desired metal ion with hydrogen from styrene sulfonic acid.
- Styrene sulfonic acid is generated by exposing sodium or potassium styrene sulfonate, which are commercially available, to a hydrogen form of a cation exchange resin.
- Example 1 describes production of lithium styrene sulfonate using this method.
- Other styrene sulfonate metal salts soluble in polar organic solvents may be similarly produced for use in the method of the invention.
- the styrene sulfonate metal salt soluble in polar organic solvents produced in accordance with the invention may be polymerized as set forth below, in the presence of crosslinking monomer, to make a water insoluble polymer, or in the absence of a crosslinking monomer to produce a water soluble polymer.
- the styrene sulfonate metal salt may also be copolymerized with other monomers e.g. styrene, ethyl vinyl benzene, vinyl toluene with or without a crosslinking monomer.
- Styrene sulfonate metal salt soluble in a polar organic solvent may also be produced in situ in such polar solvent by reacting commercially available sodium styrene sulfonate or potassium styrene sulfonate dispersed in such solvent with a suitable “non-styrene sulfonate” salt according to the reaction:
- Example 4 sets forth production of a water insoluble membrane from lithium styrene sulfonate and divinyl benzene using this method.
- a styrene sulfonate metal salt produced in this way may be made prior to addition of the crosslinking monomer or simultaneously with addition of the crosslinking monomer.
- Any crosslinking monomer may be employed in the process of the invention, so long as the crosslinking monomer is soluble in the polar organic solvent employed for the polymerization reaction in the presence of the polar organic solvent soluble styrene sulfonate salt, and so long as such crosslinking monomer is capable of copolymerizing with the styrene sulfonate metal salt employed for the polymerization reaction.
- Suitable crosslinking monomers include, for example, a divinyl benzene, a diisopropenyl benzene, a divinyl toluene, a divinyl naphthalene, a divinyl diphenyl, a divinylphenyl vinyl ether, a divinyl dimethylbenzene and equivalents thereof.
- Suitable equivalents include, for example, a divinyl sulfone, a divinyl cyclohexane, a trivinyl cyclohexane, a diacrylate or a dimethacrylate of an alkane diol such as ethylene glycol dimethacrylate or tetramethylene glycol dimethacrylate, a tetraacrylate or tetramethylacrylate of pentaerythritol, and the like.
- Other vinyl group-containing compounds may also be present and may participate in the copolymerization reaction.
- Such compounds include, for example, styrene, vinyl toluenes, ethyl vinyl benzenes, vinyl naphthalenes, vinyl chlorobenzenes, vinyl xylenes, alpha substituted derivatives of styrene, vinyl toluenes, vinyl naphthalenes, vinyl chlorobenzenes, and vinyl xylenes, alkyl acrylates, alkyl methacrylates, butadiene, isoprene, acrylonitrile, and the like.
- any polar organic solvent is suitable for use in the method of the invention, so long as the solvent is not itself polymerizable.
- the solvent has a low frequency dielectric constant greater than about 10. More preferably, the solvent has a low frequency dielectric constant greater than about 30 .
- the solvent has a Hildebrand solubility parameter greater than about 10 (cal/cm 3 ) 1/2 .
- the solvent will dissolve at least 10%, more preferably 20%, by weight of the non-sodium, non-potassium styrene sulfonate.
- formamide N,N-dimethyl formamide, N,N-dimethyl acetamide, 2-pyrrolidone, N-methyl 2-pyrrolidone, dimethyl sulfoxide, ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, 1,3-butane diol, 1,4-butane diol, 2,3-butane diol, 1,3-propylene glycol, 1,2-propylene glycol, sulfolane, glycerine, tetrahydrofurfural alcohol, 1,2,4-butane triol, ethylene glycol, monopropylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol, and the like.
- the styrene sulfonate metal salt, with or without other vinyl compounds may be polymerized using any known method.
- the styrene sulfonate metal salt and crosslinking monomer, with or without other vinyl compounds may be copolymerized using any known method.
- the copolymerization method employed will correspond to the end use of the polymer.
- the styrene sulfonate metal salt in the polar organic solvent, alone or in the presence of a crosslinking monomer and/or a polymerization catalyst is polymerized by heating.
- the polymerization reaction may be performed at a temperature within the range from about 40° C. to about 100° C.
- the polymerization reaction is performed at a temperature within the range from about 60° C. to about 80° C.
- a polymerization initiating catalyst may optionally be added to the reaction mixture.
- Any polymerization initiating catalyst may be used in accordance with the invention, including those which are spontaneously active and those which are activated by heat, by electromagnetic radiation, or by chemical promoters.
- Anionic, cationic, or coordination initiators may be used, but free radical initiators such as peroxides, hydroperoxides, and azo compounds are preferred.
- TPO tertiary butyl peroctoate
- 2,4-pentanedione potassium persulfate
- hydrogen peroxide tertiary butyl hydroperoxide
- benzoyl peroxide 2,2′-azobis (2-amidopropane) dihydrochloride
- 4,4′-azobis (4-cyanopentanoic acid 2,2′-azobis (2-amidopropane) dihydrochloride
- 2-azobis isobutyronitrile
- azo-bismethylisobutyrate and the like.
- the amount of polymerization initiating catalyst is about 0.01% to about 2% of the weight of the monomers employed in the polymerization reaction.
- the polymers formed using the process set forth above may be used in many ways, for example in the form of particulate resins or as membranes.
- Membranes formed using the process of the invention may be used in electrodeionization, electrodialysis, electrolysis, or as cell separators in batteries. Uncrosslinked, water soluble membranes are preferred for use in batteries, as described more fully in U.S. Pat. Nos. 4,060,673 and 4,952,466.
- Crosslinked, fabric reinforced water insoluble membranes are preferred for use in electrodialysis, and the styrene sulfonate cation exchange membranes of the present invention are particularly preferred for use as components of an apparatus employed in electrodialysis of whey, other milk-based fluids, or other liquids.
- the membrane may be formed by casting the polymer on a reinforcing material or substrate.
- Suitable substrates for cast membranes include woven synthetic fabrics such as polypropylene cloth, polyacrylonitrile cloth, polyacrylonitrile-co-vinyl chloride cloth, polyvinyl chloride cloth, polyester cloth, and the like.
- Other suitable substrates include glass filter cloth, polyvinylidene chloride screen, glass paper, treated cellulose battery paper, polystyrene-coated glass fiber mat, polyvinyl chloride battery paper, and the like.
- Lithium styrene sulfonate may be made using ion exchange of commercially available sodium or potassium styrene sulfonate as set forth below:
- a 20% sodium styrene sulfonate solution is made by dissolving 200 g solid sodium styrene sulfonate (purity 81%, Tosoh, Japan) in water to 1 liter of solution with 500 ppm methylhydroquinone, added as a polymerization inhibitor. Insoluble solids are filtered out of the solution. The solution is then passed through a one liter column of cation exchange resin in the hydrogen form at a flow rate of 7 ml/min. Any strongly acid cation exchange resin may be used such as:
- Amberlite IR 118, 120 or 200 (Rohm and Haas Co., Philadelphia, Pa., USA);
- Purolite C-100E, C-120E, C-145 or C150 The Purolite Co., Bala Cynwyd, Pa., USA.
- the yield from the ion exchange column is about one liter of hydrogen styrene sulfonate, which is then neutralized by addition of LiOH.H 2 O powder (approximately 33 g) until the pH of the solution is about 7.
- the resulting solution of lithium styrene sulfonate in water is dried.
- a yield of about 143 g lithium styrene sulfonate (a white or grey powder) with a water content of about 9.9% is obtained.
- NMP N-methyl pyrrolidone
- DVD divinyl benzene
- 5 mg methyl hydroquinone is combined at a temperature of 60-65° C.
- 130 grams of dried lithium styrene sulfonate (“LISS”) is then added, with stirring, and allowed to dissolve slowly until a clear solution is obtained.
- the solution contains therefore about 36% NMP by weight, 32% DVB and 3.2% LISS.
- the solution is allowed to cool to room temperature, and a polymerization initiator, azobis methylisobutyrate (Polysciences Inc., Warrington, Pa., USA ) is added to a final concentration of about 1.6% of the total solution volume and allowed to dissolve with stirring.
- a polymerization initiator Polysciences Inc., Warrington, Pa., USA
- the polymerizable reaction mixture is filtered and a brown, clear filtrate is collected.
- a polypropylene cloth substrate for the membrane is impregnated with the filtrate collected above and allowed to cure between glass plates in an 85° C. oven for one hour.
- the membrane thus obtained is sequentially soaked in water for 30 minutes, in 2N NaCl for 2 hours, and in water for 30 minutes.
- Cation exchange capacity in milligram-equivalents per gram of dry cation exchange in the sodium form (i.e., not including fabric) is about 1.96 meq/g.
- Water content as percent by weight of the wet cation exchange resin in the sodium form (i.e., not including fabric) is about 36.9%.
- the areal resistance of 11.2 ohm-cm 2 is that of a square centimeter of membrane in the sodium form measured in 0.01 N NaCl at 1 kHz.
- the thickness of the membrane is about 0.057 cm.
- Example 2 The procedure set forth in Example 2 is used with the following formulation of starting materials, to produce a membrane having a capacity of 2.24 meq/g; water content of 41.1%; a resistance of 9.8 ohm-cm 2 ; and a thickness of 0.057 cm.
- N-methyl pyrrolidone 28.4 g (39% by weight)
- reaction mixture is allowed to cool to room temperature, and insoluble materials (NaCl and unreacted insoluble sodium styrene sulfonate) are removed by filtration. A brown, clear filtrate (121 g) is obtained for use in membrane synthesis.
- Example 2 To the filtrate is added about 1.6 weight % azobis methyl isobutyrate, and the casting procedure set forth in Example 2 is used to make a cation exchange membrane.
- the membrane obtained using sodium styrene sulfonate and LiCl has a capacity of about 1.94 meq/g, a water content of about 36.7%, a resistance of about 11.3 ohm-cm 2 , and a thickness of about 0.058 cm.
- Lactose transport of the ion exchange membranes produced above is determined by applying a known quantity of d.c. current to a four cell lab ED unit.
- the ED unit consists of four LUCITE cells (3 ⁇ 4′′ ⁇ 31 ⁇ 2′′ ⁇ 31 ⁇ 2′′) each with a circular compartment 1 ⁇ 2′′ in diameter, each cell having inlet and outlet tubes.
- the unit also has two 31 ⁇ 2′′ ⁇ 31 ⁇ 2′′ platinum plated titanium sheet electrodes.
- Standard ion exchange membranes (cation: CR61 CZL; anion: AR 103 QZL, both from Ionics, Incorporated, Watertown, Mass.) are used with the exception that the membrane between the diluting and the concentrating cells is the test membrane.
- a 20% of lactose solution with 0.2 N NaCl is circulated in diluting compartment.
- the concentrating compartment contains0.02 N NaCl solution.
- a 0.2 N Na 2 SO 4 solution is circulated through the electrode compartments.
- the membrane is tested with a direct current of 160 milli-amperes for 30 minutes. Lactose is transported from the diluting compartment through the test membrane to the concentrating compartment when the DC current is applied. Concentration of lactose in concentrating compartment is measured through UV spectroscopy. Lactose transport numbers are about 2.79 and 2.75 g/Faraday for the cationic membranes of Examples 2 and 3, respectively, which are extrapolated to 30% lactose. In contrast, lactose transport numbers for membranes produced using the process of U.S. Pat. No. 5,203,982 were>9.0 g/Faraday.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
- The present invention relates to improvements in electrodialysis. In particular, the invention relates to membranes and to electrodialysis apparatus which are particularly suitable for purification of whey.
- Whey, the supernatant fluid derived from removal of some or all of the casein from milk, is a rich source of lactose and protein. Whey may be produced by acidification of skim milk to a pH of about 4.7, which causes the casein to precipitate. Casein can be further purified and used in cheese making, in manufacture of some plastics and for other purposes. Acidification of milk to produce whey may be performed by addition of lactic or other acid, producing “acid” whey, or enzymatically, producing “sweet” whey. Acid whey is produced, for example, as a byproduct of the process for making cottage cheese. Sweet whey is a byproduct of some other cheese making processes e.g. cheddar. Sweet and acid whey differ mainly in acidity (attributable to the presence of lactic or other acid), mineral content, and fat content. Sweet whey has a pH of about 5.9 to 6.5, containing about 0.5 weight % inorganic salts (also referred to as “ash”) and about 0.2 to 0.4 weight % fat. Acid whey has a pH of about 4.3 to 4.6, containing about 0.7 to 0.8 weight % ash and about 0.05 to 0.1 weight % fat.
- After the salts (i.e. ash) and lactic acid are reduced or substantially removed, whey can be used as an additive to animal feed or to a variety of human foods such as protein and citrus drinks, dry mixes, confectionery coatings, ice cream, bakery goods, and the like. A particular utility of whey, in the form of reduced mineral whey (RMW), is as an additive to human infant formula. By virtue of the removal of casein, whey produced from bovine milk has a protein composition which conforms closely to that of human milk, in contrast to the protein composition of whole bovine milk. For this reason, RMW derived from bovine milk is a particularly suitable infant formula additive. Sweet whey derived from cheese making processes is preferably used to produce RMW for infant formula, resulting in an efficient and profitable use of a by-product.
- Electrodialysis (ED) is commonly employed to produce RMW for use in infant formula because of its gentle method of desalting. Typically, 85 to 95% of the minerals may be removed from whey in a batch or a continuous ED process. Worldwide ED production of demineralized whey is in excess of 150,000 metric tons (330 million pounds) of RMW solids (dry basis) per year. ED facilities may have an installed capacity to demineralize as much as 500,000 kg (1.1 million pounds) or more per day of fluid whey. ED methods which are particularly suitable for demineralization of whey are disclosed, for example, in commonly assigned U.S. Pat. No. 5,223,107, which is incorporated herein by reference.
- In general, ED methods and apparatus purify through electric field-mediated transfer of ions through membranes from less concentrated compartments (diluting or permeate streams) to more concentrated compartments (concentrating or brine streams). Anion transfer and cation transfer membranes are alternated in ED methods and apparatus, the membranes being placed between an anode and a cathode across which an electric field is applied. Anion transfer membranes allow passage substantially only of negatively charged low molecular weight species (anions), and cation transfer membranes allow passage substantially only of positively charged low molecular weight species (cations). The combination of an anode, a cathode, and the alternating anion and cation transfer membranes therebetween is commonly referred to as an ED “stack”.
- Several problems are inherent to electrodialysis of whey, ED membranes are particularly vulnerable to fouling during purification of whey. Calcium is present in whey at relatively high concentrations, and during ED calcium salts can precipitate in the brine stream and on membrane surfaces. Acid may be added to the brine stream to prevent such precipitation: however, use of large volumes of acid creates cost and disposal problems.
- Certain cation exchange membranes have proven particularly suitable for use in ED of whey. For example, cation exchange membranes based on sulfonated polystyrene are routinely employed for ED of whey, since they are particularly stable in the presence of alkaline and acid washing solutions used for sanitation of ED equipment.
- Sulfonated polystyrene based cation exchange membranes were initially manufactured by a multi-step process: in the first step, monomers such as divinyl benzene and styrene, in a water insoluble organic solvent such as diethyl benzene, were polymerized on a reinforcing fabric. In the second step, the resulting solid polymer was sulfonated in a second water insoluble organic solvent, such as ethylene dichloride. The finished membrane was produced by washing with a polar organic solvent such as methanol and then neutralizing with aqueous sodium bicarbonate. The multi-step process causes significant chemical disposal problems, since the monomers employed are all water insoluble, and the polymerization and subsequent reactions are therefore carried out in water insoluble solvents. Another disadvantage of the multi-step process is that sulfonation may occur more heavily at the surface of the membrane than in its interior, producing membranes having high electrical resistance.
- U.S. Pat. No. 4,540,762 discloses copolymerization of sodium-N-(4-sulfophenyl) maleimide and a styrene sulfonate salt to produce a linear (i.e., not cross-linked), water soluble polyelectrolyte for use as a deflocculating agent in water-based drilling muds. U.S. Pat. No. 4,511,712 discloses a method of isolating ionic polymers, including styrene homopolymers, in the salt form. U.S. Pat. No. 4,060,673 discloses salts of polystyrene sulfonates to produce water soluble ion exchange membranes for use as permselective barriers in organic electrode batteries. U.S. Pat. No. 4,110,366 discloses a process for producing an alkali metal styrene sulfonate by an extraction/back-extraction process.
- The ion exchange capacity obtainable from quaternary ammonium styrene sulfonate salts as disclosed in commonly assigned U.S. Pat. No. 5,203,982 may be limited by the solubilities of such styrene sulfonate quaternary ammonium salts in polar solvents. Such patent is also incorporated herein by reference. In addition, since styrene sulfonate quaternary ammonium salts are relatively large molecules, the resulting membranes have sufficiently large interstices that lactose may transfer out of the diluting compartment during electrodialysis of whey. A high lactose content in the brine stream may create waste disposal problems related to the biochemical oxygen demand of lactose.
- A need exists, therefore, for additional methods and membranes useful in electrodialytic purification of whey and other liquids.
- The present invention provides an improved process for manufacturing styrene sulfonate-based cation exchange membranes, which are useful for a variety of applications, including electrodialysis of whey.
- In one preferred embodiment, the invention provides a process for making a polymer comprising the step of reacting a styrene sulfonate metal salt, with or without a crosslinking agent, in an organic polar solvent for a time and at a temperature sufficient to cause polymerization of such styrene sulfonate metal salt to occur. This embodiment also encompasses polymers made using this process, the polymers being suitable for use in any process or apparatus that employs styrene sulfonate based polymers. Crosslinked polymers formed using the method of this embodiment are particularly suitable as ion exchange resin particulates and as components of cation exchange membranes employed in electrodialysis of whey or other liquids. Uncrosslinked polymers formed using the method of the invention are particularly suitable for use as polyelectrolytes in electric cells such as rechargeable batteries. This embodiment further provides an electrodialysis apparatus comprising fabric reinforced crosslinked cation exchange membranes made using the process of the invention.
- In another preferred embodiment, the invention provides a process for producing a styrene sulfonate metal salt which is soluble in polar organic solvents, comprising the steps of dissolving sodium or potassium styrene sulfonate in an aqueous solution; converting the dissolved sodium or potassium styrene sulfonate to styrene sulfonic acid; adding an ionic form of a suitable metal to such styrene sulfonic acid, thereby forming the styrene sulfonate salt of such metal; and isolating the resulting styrene sulfonate salt.
- Styrene sulfonate-based polymers are produced in accordance with the invention through polymerization of a styrene sulfonate salt which is soluble in an organic polar solvent. The resulting styrene sulfonate-based polymers may be crosslinked or uncrosslinked. Crosslinked polymers suitable for incorporation into fabric reinforced cation exchange membranes are produced in accordance with the present invention through copolymerization of a crosslinking monomer with such styrene sulfonate metal salt. Any styrene sulfonate metal salt may be used in the process of the invention, so long as the solubility of such metal salt in the solvent is very much greater than the solubility of sodium or potassium styrene sulfonate in the solvent. Preferably, the styrene sulfonate metal salt used in the process of the invention is lithium styrene sulfonate, magnesium styrene sulfonate, calcium styrene sulfonate, aluminum styrene sulfonate, ferrous styrene sulfonate, ferric styrene sulfonate, or ammonium styrene sulfonate. More preferably the styrene sulfonate metal salt monomer used in the process of the invention is lithium styrene sulfonate.
- The styrene sulfonate metal salt may be produced for use in the process of the invention, for example, as set forth in chapter 4 ofFunctional Monomers, vol. 1, Yocum et al. ed. (Marcel Dekker, Inc., 1973), by sulfonating ethylbenzene with chlorosulfuric acid (or with sulfuric acid followed by chlorination with PCl5,) to produce p-ethylbenzenesulfonyl chloride which is then purified by fractional distillation, brominated, and subsequently debrominated with the hydroxide of the desired metal. When LiOH is employed in this process, pure p-lithium styrene sulfonate is produced.
- Alternatively, the styrene sulfonate metal salt may be produced for use in the process of the invention by exchange of the desired metal ion with hydrogen from styrene sulfonic acid. Styrene sulfonic acid is generated by exposing sodium or potassium styrene sulfonate, which are commercially available, to a hydrogen form of a cation exchange resin. Example 1 describes production of lithium styrene sulfonate using this method. Other styrene sulfonate metal salts soluble in polar organic solvents may be similarly produced for use in the method of the invention.
- The styrene sulfonate metal salt soluble in polar organic solvents produced in accordance with the invention may be polymerized as set forth below, in the presence of crosslinking monomer, to make a water insoluble polymer, or in the absence of a crosslinking monomer to produce a water soluble polymer. The styrene sulfonate metal salt may also be copolymerized with other monomers e.g. styrene, ethyl vinyl benzene, vinyl toluene with or without a crosslinking monomer.
- Styrene sulfonate metal salt soluble in a polar organic solvent may also be produced in situ in such polar solvent by reacting commercially available sodium styrene sulfonate or potassium styrene sulfonate dispersed in such solvent with a suitable “non-styrene sulfonate” salt according to the reaction:
- Na+SS−+M+X−→M+SS−+Na+X−⇓
- in which SS− represents styrene sulfonate anion, M+ represents a cation which forms a styrene sulfonate salt which is soluble in the organic polar solvent and X− represents an anion which forms a sodium salt (alternatively potassium salt) which is insoluble in such solvent. It will be clear from the above equation that the driving force for the reaction in the insolubility of Na+X−(or K+X−) compared to Na+SS−, M+X− and M+SS−, Na+SS− and M+X− must both have at least limited solubility in the polar solvent for the reaction to proceed. A few tests can easily select a suitable combination of solvent and salt M+X−.
- Example 4 sets forth production of a water insoluble membrane from lithium styrene sulfonate and divinyl benzene using this method. A styrene sulfonate metal salt produced in this way may be made prior to addition of the crosslinking monomer or simultaneously with addition of the crosslinking monomer.
- Any crosslinking monomer may be employed in the process of the invention, so long as the crosslinking monomer is soluble in the polar organic solvent employed for the polymerization reaction in the presence of the polar organic solvent soluble styrene sulfonate salt, and so long as such crosslinking monomer is capable of copolymerizing with the styrene sulfonate metal salt employed for the polymerization reaction. Suitable crosslinking monomers include, for example, a divinyl benzene, a diisopropenyl benzene, a divinyl toluene, a divinyl naphthalene, a divinyl diphenyl, a divinylphenyl vinyl ether, a divinyl dimethylbenzene and equivalents thereof. Suitable equivalents include, for example, a divinyl sulfone, a divinyl cyclohexane, a trivinyl cyclohexane, a diacrylate or a dimethacrylate of an alkane diol such as ethylene glycol dimethacrylate or tetramethylene glycol dimethacrylate, a tetraacrylate or tetramethylacrylate of pentaerythritol, and the like. Other vinyl group-containing compounds may also be present and may participate in the copolymerization reaction. Such compounds include, for example, styrene, vinyl toluenes, ethyl vinyl benzenes, vinyl naphthalenes, vinyl chlorobenzenes, vinyl xylenes, alpha substituted derivatives of styrene, vinyl toluenes, vinyl naphthalenes, vinyl chlorobenzenes, and vinyl xylenes, alkyl acrylates, alkyl methacrylates, butadiene, isoprene, acrylonitrile, and the like. The presence of such compounds in polymers made by the process of the invention will not change the essential performance of the polymers or their suitability for the uses described herein, so long as the cation exchange polymers produced have equivalent weights of not more than about 1000 (i.e., a cation exchange capacity of not less than about 1 mg equivalent per g polymer) in the sodium form, on a substantially dry basis not including any reinforcing medium or substrate which may be present.
- Any polar organic solvent is suitable for use in the method of the invention, so long as the solvent is not itself polymerizable. Preferably, the solvent has a low frequency dielectric constant greater than about 10. More preferably, the solvent has a low frequency dielectric constant greater than about30. Preferably, the solvent has a Hildebrand solubility parameter greater than about 10 (cal/cm3)1/2. Preferably the solvent will dissolve at least 10%, more preferably 20%, by weight of the non-sodium, non-potassium styrene sulfonate. For example, formamide, N,N-dimethyl formamide, N,N-dimethyl acetamide, 2-pyrrolidone, N-methyl 2-pyrrolidone, dimethyl sulfoxide, ethylene carbonate, propylene carbonate, γ-butyrolactone, 1,3-butane diol, 1,4-butane diol, 2,3-butane diol, 1,3-propylene glycol, 1,2-propylene glycol, sulfolane, glycerine, tetrahydrofurfural alcohol, 1,2,4-butane triol, ethylene glycol, monopropylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol, and the like. Minor amounts of other polymers, for example, styrene-butadiene copolymer, styrene-isoprene copolymer, polyvinyl alcohol, and the like, may be added to the solvent in accordance with the method of the invention.
- The styrene sulfonate metal salt, with or without other vinyl compounds, may be polymerized using any known method. Similarly, the styrene sulfonate metal salt and crosslinking monomer, with or without other vinyl compounds, may be copolymerized using any known method. The copolymerization method employed will correspond to the end use of the polymer. In general, the styrene sulfonate metal salt in the polar organic solvent, alone or in the presence of a crosslinking monomer and/or a polymerization catalyst, is polymerized by heating. The polymerization reaction may be performed at a temperature within the range from about 40° C. to about 100° C. Preferably, the polymerization reaction is performed at a temperature within the range from about 60° C. to about 80° C.
- A polymerization initiating catalyst may optionally be added to the reaction mixture. Any polymerization initiating catalyst may be used in accordance with the invention, including those which are spontaneously active and those which are activated by heat, by electromagnetic radiation, or by chemical promoters. Anionic, cationic, or coordination initiators may be used, but free radical initiators such as peroxides, hydroperoxides, and azo compounds are preferred. Many free radical initiators are known, for example, tertiary butyl peroctoate (“TPO”), 2,4-pentanedione, potassium persulfate, hydrogen peroxide, tertiary butyl hydroperoxide, benzoyl peroxide, 2,2′-azobis (2-amidopropane) dihydrochloride, 4,4′-azobis (4-cyanopentanoic acid), 2-azobis (isobutyronitrile), azo-bismethylisobutyrate, and the like. In general, the amount of polymerization initiating catalyst is about 0.01% to about 2% of the weight of the monomers employed in the polymerization reaction.
- The polymers formed using the process set forth above may be used in many ways, for example in the form of particulate resins or as membranes. Membranes formed using the process of the invention may be used in electrodeionization, electrodialysis, electrolysis, or as cell separators in batteries. Uncrosslinked, water soluble membranes are preferred for use in batteries, as described more fully in U.S. Pat. Nos. 4,060,673 and 4,952,466. Crosslinked, fabric reinforced water insoluble membranes are preferred for use in electrodialysis, and the styrene sulfonate cation exchange membranes of the present invention are particularly preferred for use as components of an apparatus employed in electrodialysis of whey, other milk-based fluids, or other liquids.
- When polymers manufactured by the process of the invention are used as membranes, the membrane may be formed by casting the polymer on a reinforcing material or substrate. Suitable substrates for cast membranes include woven synthetic fabrics such as polypropylene cloth, polyacrylonitrile cloth, polyacrylonitrile-co-vinyl chloride cloth, polyvinyl chloride cloth, polyester cloth, and the like. Other suitable substrates include glass filter cloth, polyvinylidene chloride screen, glass paper, treated cellulose battery paper, polystyrene-coated glass fiber mat, polyvinyl chloride battery paper, and the like.
- The following examples illustrate the preferred modes of making and practicing the present invention, but are not meant to limit the scope of the invention since alternative methods may be used to obtain similar results.
- Lithium styrene sulfonate may be made using ion exchange of commercially available sodium or potassium styrene sulfonate as set forth below:
- A 20% sodium styrene sulfonate solution is made by dissolving 200 g solid sodium styrene sulfonate (purity 81%, Tosoh, Japan) in water to 1 liter of solution with 500 ppm methylhydroquinone, added as a polymerization inhibitor. Insoluble solids are filtered out of the solution. The solution is then passed through a one liter column of cation exchange resin in the hydrogen form at a flow rate of 7 ml/min. Any strongly acid cation exchange resin may be used such as:
- Amberlite IR 118, 120 or 200 (Rohm and Haas Co., Philadelphia, Pa., USA);
- Dowex 50 WX4 (Dow Chemical Co., Midland, Mich., USA);
- Purolite C-100E, C-120E, C-145 or C150 (The Purolite Co., Bala Cynwyd, Pa., USA).
- The yield from the ion exchange column is about one liter of hydrogen styrene sulfonate, which is then neutralized by addition of LiOH.H2O powder (approximately 33 g) until the pH of the solution is about 7. The resulting solution of lithium styrene sulfonate in water is dried. A yield of about 143 g lithium styrene sulfonate (a white or grey powder) with a water content of about 9.9% is obtained.
- In a 500 ml flat bottomed flask, 147.5 g N-methyl pyrrolidone (“NMP”), 130 g divinyl benzene (“DVB” 80%) and 5 mg methyl hydroquinone are combined at a temperature of 60-65° C. 130 grams of dried lithium styrene sulfonate (“LISS”) is then added, with stirring, and allowed to dissolve slowly until a clear solution is obtained. The solution contains therefore about 36% NMP by weight, 32% DVB and 3.2% LISS. The solution is allowed to cool to room temperature, and a polymerization initiator, azobis methylisobutyrate (Polysciences Inc., Warrington, Pa., USA ) is added to a final concentration of about 1.6% of the total solution volume and allowed to dissolve with stirring. The polymerizable reaction mixture is filtered and a brown, clear filtrate is collected.
- A polypropylene cloth substrate for the membrane is impregnated with the filtrate collected above and allowed to cure between glass plates in an 85° C. oven for one hour. The membrane thus obtained is sequentially soaked in water for 30 minutes, in 2N NaCl for 2 hours, and in water for 30 minutes. Using standard procedures, the following membrane characteristics are determined. Cation exchange capacity in milligram-equivalents per gram of dry cation exchange in the sodium form (i.e., not including fabric) is about 1.96 meq/g. Water content as percent by weight of the wet cation exchange resin in the sodium form (i.e., not including fabric) is about 36.9%. The areal resistance of 11.2 ohm-cm2 is that of a square centimeter of membrane in the sodium form measured in 0.01 N NaCl at 1 kHz. The thickness of the membrane is about 0.057 cm.
- The procedure set forth in Example 2 is used with the following formulation of starting materials, to produce a membrane having a capacity of 2.24 meq/g; water content of 41.1%; a resistance of 9.8 ohm-cm2; and a thickness of 0.057 cm.
- N-methyl pyrrolidone: 28.4 g (39% by weight)
- Divinyl benzene (80%): 21.3 g (29% by weight)
- Dried lithium styrene sulfonate: 22.8 g (31% by weight)
- Azobis methylisobutyrate: 1% of total volume
- In a 500 ml flat bottomed flask, 50 ml (52.5 g) N-methylpyrrolidone and 50 ml divinyl benzene (80%) are combined at a temperature of 70° C. with stirring. Ten grams of LiCl and 80 mg methylhydroquinone are added to the solution. Subsequently, 50 g sodium styrene sulfonate (81%) are added to the solution forming a suspension, and the reaction allowed to proceed at 70-80° C. for one hour. The LiCl reacts with the suspended sodium styrene sulfonate to form lithium styrene sulfonate and insoluble NaCl. The reaction mixture is allowed to cool to room temperature, and insoluble materials (NaCl and unreacted insoluble sodium styrene sulfonate) are removed by filtration. A brown, clear filtrate (121 g) is obtained for use in membrane synthesis.
- To the filtrate is added about 1.6 weight % azobis methyl isobutyrate, and the casting procedure set forth in Example 2 is used to make a cation exchange membrane. The membrane obtained using sodium styrene sulfonate and LiCl has a capacity of about 1.94 meq/g, a water content of about 36.7%, a resistance of about 11.3 ohm-cm2, and a thickness of about 0.058 cm.
- Lactose transport of the ion exchange membranes produced above is determined by applying a known quantity of d.c. current to a four cell lab ED unit. The ED unit consists of four LUCITE cells (¾″×3½″×3½″) each with a circular compartment ½″ in diameter, each cell having inlet and outlet tubes. The unit also has two 3½″×3½″ platinum plated titanium sheet electrodes. Standard ion exchange membranes (cation: CR61 CZL; anion: AR 103 QZL, both from Ionics, Incorporated, Watertown, Mass.) are used with the exception that the membrane between the diluting and the concentrating cells is the test membrane. A 20% of lactose solution with 0.2 N NaCl is circulated in diluting compartment. The concentrating compartment contains0.02 N NaCl solution. A 0.2 N Na2 SO4 solution is circulated through the electrode compartments. The membrane is tested with a direct current of 160 milli-amperes for 30 minutes. Lactose is transported from the diluting compartment through the test membrane to the concentrating compartment when the DC current is applied. Concentration of lactose in concentrating compartment is measured through UV spectroscopy. Lactose transport numbers are about 2.79 and 2.75 g/Faraday for the cationic membranes of Examples 2 and 3, respectively, which are extrapolated to 30% lactose. In contrast, lactose transport numbers for membranes produced using the process of U.S. Pat. No. 5,203,982 were>9.0 g/Faraday.
- Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein. Such equivalents are considered to be within the scope of this invention, and are covered by the following claims.
Claims (45)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/785,846 US6344584B2 (en) | 1998-03-23 | 2001-02-16 | Process for producing styrene sulfonate cation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/046,292 US6221248B1 (en) | 1998-03-23 | 1998-03-23 | Styrene sulfonate cation exchange membrane |
US09/785,846 US6344584B2 (en) | 1998-03-23 | 2001-02-16 | Process for producing styrene sulfonate cation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/046,292 Division US6221248B1 (en) | 1998-03-23 | 1998-03-23 | Styrene sulfonate cation exchange membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010009967A1 true US20010009967A1 (en) | 2001-07-26 |
US6344584B2 US6344584B2 (en) | 2002-02-05 |
Family
ID=21942670
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/046,292 Expired - Lifetime US6221248B1 (en) | 1998-03-23 | 1998-03-23 | Styrene sulfonate cation exchange membrane |
US09/785,846 Expired - Lifetime US6344584B2 (en) | 1998-03-23 | 2001-02-16 | Process for producing styrene sulfonate cation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/046,292 Expired - Lifetime US6221248B1 (en) | 1998-03-23 | 1998-03-23 | Styrene sulfonate cation exchange membrane |
Country Status (4)
Country | Link |
---|---|
US (2) | US6221248B1 (en) |
EP (1) | EP1066331A1 (en) |
CA (1) | CA2325496A1 (en) |
WO (1) | WO1999048940A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070053865A1 (en) * | 2002-07-22 | 2007-03-08 | Toni Chancellor-Adams | Poly(potassium and sodium styrene sulfonate) its manufacture and its uses |
JP2013545834A (en) * | 2010-10-15 | 2013-12-26 | シーメンス インダストリー インコーポレイテッド | Method for producing a monomer solution for producing a cation exchange membrane |
JP7544523B2 (en) | 2020-07-29 | 2024-09-03 | 東ソー・ファインケム株式会社 | Polar organic solvent solution of lithium styrene sulfonate with inhibited spontaneous polymerization and method for inhibiting spontaneous polymerization |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000454A1 (en) * | 1998-06-26 | 2000-01-06 | Nippon Steel Chemical Co., Ltd. | Process for producing bisphenol a |
DE10022496A1 (en) * | 2000-05-09 | 2001-11-15 | Bayer Ag | Styrenesulfonate polymers useful as cation exchangers, have sulfonic acid groups neutralized with transition metal cations |
JP4664609B2 (en) * | 2003-05-27 | 2011-04-06 | 株式会社荏原製作所 | Organic polymer material having sulfonic acid group and method for producing the same |
EP1760812B1 (en) | 2004-06-22 | 2010-12-08 | Asahi Glass Company, Limited | Liquid composition, process for its production, and process for producing membrane electrode assembly for polymer electrolyte fuel cell |
KR100971640B1 (en) | 2004-06-22 | 2010-07-22 | 아사히 가라스 가부시키가이샤 | Electrolyte membrane for solid polymer fuel cell, manufacturing method and membrane electrode assembly for solid polymer fuel cell |
US7959780B2 (en) * | 2004-07-26 | 2011-06-14 | Emporia Capital Funding Llc | Textured ion exchange membranes |
US7780833B2 (en) | 2005-07-26 | 2010-08-24 | John Hawkins | Electrochemical ion exchange with textured membranes and cartridge |
US8562803B2 (en) | 2005-10-06 | 2013-10-22 | Pionetics Corporation | Electrochemical ion exchange treatment of fluids |
CN101352657B (en) * | 2008-02-29 | 2011-07-20 | 中国科学技术大学 | Homogeneous phase cation exchange film and preparation method thereof |
KR100999048B1 (en) * | 2008-08-01 | 2010-12-09 | 한국화학연구원 | Method for preparing anion exchange composite membrane containing styrene-vinylbenzyl copolymer |
ES2748340T3 (en) | 2009-08-26 | 2020-03-16 | Evoqua Water Tech Pte Ltd | Ion exchange membranes |
US8696882B2 (en) * | 2009-12-03 | 2014-04-15 | Lawrence Livermore National Security, Llc. | Nanoengineered field induced charge separation membranes and methods of manufacture thereof |
US9403128B2 (en) | 2009-12-03 | 2016-08-02 | Lawrence Livermore National Security, Llc | Nanoengineered field induced charge separation membranes manufacture thereof |
EA024707B1 (en) | 2010-10-15 | 2016-10-31 | ЭВОКУА УОТЕР ТЕКНОЛОДЖИЗ ЭлЭлСи | Anion exchange membranes and process for making same |
US9073050B2 (en) | 2011-10-05 | 2015-07-07 | General Electric Company | Ion exchange compositions, methods for making and materials prepared therefrom |
CA2884791C (en) | 2012-10-04 | 2021-09-07 | Evoqua Water Technologies Llc | High-performance anion exchange membranes and methods of making same |
EP2906330B1 (en) | 2012-10-11 | 2020-06-17 | Evoqua Water Technologies LLC | Coated ion exchange membranes |
JP6471495B2 (en) * | 2014-02-05 | 2019-02-20 | 東ソー株式会社 | Lithium styrene sulfonate |
US9757695B2 (en) | 2015-01-03 | 2017-09-12 | Pionetics Corporation | Anti-scale electrochemical apparatus with water-splitting ion exchange membrane |
CN105148737B (en) * | 2015-08-14 | 2016-05-25 | 厦门市科宁沃特水处理科技股份有限公司 | A kind of preparation method of the electrodialytic membranes based on ion liquid polymerization |
US10913809B2 (en) | 2016-06-17 | 2021-02-09 | Cornell University | Cross-linked polymeric material |
US12163001B2 (en) | 2018-09-25 | 2024-12-10 | Evoqua Water Technologies Llc | Ion exchange membrane through UV initiation polymerization |
CN113087960B (en) * | 2021-05-19 | 2022-07-08 | 石河子大学 | Porous crystal glue and preparation method thereof |
GB202113996D0 (en) * | 2021-09-30 | 2021-11-17 | Fujifilm Mfg Europe Bv | Films and their uses |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4060673A (en) | 1969-04-07 | 1977-11-29 | P. R. Mallory & Co. Inc. | Ion exchange membranes and organic electrolyte cells employing same |
JPS501707B1 (en) * | 1969-12-20 | 1975-01-21 | ||
JPS5516419B2 (en) * | 1974-05-27 | 1980-05-01 | ||
JPS52116438A (en) | 1975-12-17 | 1977-09-29 | Toyo Soda Mfg Co Ltd | Preparation of styrene sulfonic acid salts |
FR2391653A1 (en) | 1977-05-23 | 1978-12-22 | Nestle Sa Soc Ass Tech Prod | WHEY TREATMENT PROCESS |
US4540762A (en) | 1982-09-13 | 1985-09-10 | Exxon Research And Engineering Co. | Copolymers of sodium styrene sulfonate and sodium-N-(4-sulfophenyl)-maleimide |
US4511712A (en) | 1984-02-21 | 1985-04-16 | General Electric Company | Method for isolating ionomers in the salt form |
US4952466A (en) | 1987-01-16 | 1990-08-28 | The Dow Chemical Company | Solid electrolyte battery |
AU603489B2 (en) | 1987-10-08 | 1990-11-15 | Idemitsu Kosan Company Limited | Styrenic polymer and process for its production |
US5264125A (en) * | 1989-09-08 | 1993-11-23 | Ionics' Incorporated | Process for manufacturing continuous supported ion selective membranes using non-polymerizable high boiling point solvents |
US5203982A (en) | 1989-10-16 | 1993-04-20 | Ionics, Incorporated | Cation exchange membranes |
US5262255A (en) | 1991-01-30 | 1993-11-16 | Matsushita Electric Industrial Co., Ltd. | Negative electrode for non-aqueous electrolyte secondary battery |
US5223107A (en) | 1991-05-31 | 1993-06-29 | Ionics, Inc. | Electrodialysis method for demineralization of liquid, whey-based material |
US5520813A (en) | 1995-01-23 | 1996-05-28 | Korin; Amos | Processing of nuclear waste solutions by membrane separation |
-
1998
- 1998-03-23 US US09/046,292 patent/US6221248B1/en not_active Expired - Lifetime
-
1999
- 1999-03-23 EP EP99914085A patent/EP1066331A1/en not_active Withdrawn
- 1999-03-23 CA CA002325496A patent/CA2325496A1/en not_active Abandoned
- 1999-03-23 WO PCT/US1999/006397 patent/WO1999048940A1/en not_active Application Discontinuation
-
2001
- 2001-02-16 US US09/785,846 patent/US6344584B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070053865A1 (en) * | 2002-07-22 | 2007-03-08 | Toni Chancellor-Adams | Poly(potassium and sodium styrene sulfonate) its manufacture and its uses |
US20090175818A1 (en) * | 2002-07-22 | 2009-07-09 | Caroline Bacon-Kurtz | Poly(Potassium and Sodium Styrene Sulfonate) Its Manufacture and Its Uses |
JP2013545834A (en) * | 2010-10-15 | 2013-12-26 | シーメンス インダストリー インコーポレイテッド | Method for producing a monomer solution for producing a cation exchange membrane |
JP7544523B2 (en) | 2020-07-29 | 2024-09-03 | 東ソー・ファインケム株式会社 | Polar organic solvent solution of lithium styrene sulfonate with inhibited spontaneous polymerization and method for inhibiting spontaneous polymerization |
Also Published As
Publication number | Publication date |
---|---|
US6221248B1 (en) | 2001-04-24 |
US6344584B2 (en) | 2002-02-05 |
CA2325496A1 (en) | 1999-09-30 |
EP1066331A1 (en) | 2001-01-10 |
WO1999048940A1 (en) | 1999-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6221248B1 (en) | Styrene sulfonate cation exchange membrane | |
CA2844708C (en) | Resilient cation exchange membranes | |
JP5889907B2 (en) | Method for producing a monomer solution for producing a cation exchange membrane | |
AU2013325234B2 (en) | High-performance Anion exchange membranes and methods of making same | |
JPS59179625A (en) | High electroconductivity bridged polymer ion exchange membrane reinforced with non-woven carbonaceous fiber cloth | |
US3657104A (en) | Bifunctional cation exchange membranes and their use in electrolyticcells | |
JPH08512358A (en) | Copolymer composition of trifluorostyrene and substituted trifluorostyrene and ion exchange resin made therefrom | |
US5203982A (en) | Cation exchange membranes | |
Bhadja et al. | Poly (acrylonitrile-co-styrene sodium sulfonate-co-n-butyl acrylate) terpolymer based cation exchange membrane for water desalination via electrodialysis | |
KR101863396B1 (en) | Acid block anion membrane | |
US6696503B2 (en) | Process for preparing crosslinked ion exchangers based on unsaturated aliphatic nitriles | |
Li et al. | Fabrication of S-PBI cation exchange membrane with excellent anti-fouling property for enhanced performance in electrodialysis | |
Hwang et al. | Preparation of anion exchange membrane based on block copolymers. Part II: the effect of the formation of macroreticular structure on the membrane properties | |
WO2014057821A1 (en) | Cation exchange membrane and method for producing same | |
JP2005066599A (en) | Electrodialysis method, electrodialysis device, electrodeionization device, electrodeionization method, and exhaust gas treatment method | |
JP2014176345A (en) | Method for producing low-salt soy sauce | |
US3749655A (en) | Ion exchange membranes having a macroporous surface area | |
CN116217897A (en) | A kind of polyelectrolyte material and its preparation method and cation selective separation membrane | |
KR20160060889A (en) | Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same | |
JP2014176346A (en) | Method for producing food product, and food product production system used therefor | |
JP2014198298A (en) | Separation method of nitrate ions | |
CN119425417A (en) | Method for preparing cation exchange membrane from olefin sulfonic acid intermediate | |
CN119406256A (en) | Preparation method of olefin sulfonic acid organic ammonium cation exchange membrane | |
JP2024142959A (en) | Cation exchange membrane, ion exchange membrane cell and electrodialysis device | |
JPH05214125A (en) | Anion exchange membrane excellent in selectivity between anion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IONICS, INCORPORATED, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, JUCHUI RAY;MIR, LEON;ZHENG, YONGCHANG;REEL/FRAME:011615/0012 Effective date: 19980320 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UBS AG, STAMFORD BRANCH AS COLLATERAL AGENT, CONNE Free format text: ;ASSIGNOR:IONICS, INCORPORATED;REEL/FRAME:015000/0654 Effective date: 20040213 Owner name: UBS AG, STAMFORD BRANCH AS COLLATERAL AGENT,CONNEC Free format text: SEE 015083/0722 CORRECTION OF REC. DATE;ASSIGNOR:IONICS, INCORPORATED;REEL/FRAME:015000/0654 Effective date: 20040213 |
|
AS | Assignment |
Owner name: UBS AG, STAMFORD BRANCH AS COLLATERAL AGENT, CONNE Free format text: SECURITY AGREEMENT;ASSIGNOR:IONICS, INCORPORATED;REEL/FRAME:015083/0722 Effective date: 20040213 Owner name: UBS AG, STAMFORD BRANCH AS COLLATERAL AGENT,CONNEC Free format text: SECURITY AGREEMENT;ASSIGNOR:IONICS, INCORPORATED;REEL/FRAME:015083/0722 Effective date: 20040213 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |