US20010007765A1 - Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules - Google Patents
Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules Download PDFInfo
- Publication number
- US20010007765A1 US20010007765A1 US09/140,907 US14090798A US2001007765A1 US 20010007765 A1 US20010007765 A1 US 20010007765A1 US 14090798 A US14090798 A US 14090798A US 2001007765 A1 US2001007765 A1 US 2001007765A1
- Authority
- US
- United States
- Prior art keywords
- poly
- moiety
- active
- group
- mpeg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 175
- 229920001223 polyethylene glycol Polymers 0.000 title claims description 58
- 230000004048 modification Effects 0.000 title description 30
- 238000012986 modification Methods 0.000 title description 30
- 229920001427 mPEG Polymers 0.000 claims abstract description 201
- 239000012634 fragment Substances 0.000 claims abstract description 50
- 125000003118 aryl group Chemical group 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- -1 thiocarbonate Chemical class 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 78
- 125000005647 linker group Chemical group 0.000 claims description 70
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 46
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 45
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 39
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 38
- 150000002148 esters Chemical class 0.000 claims description 37
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 230000000269 nucleophilic effect Effects 0.000 claims description 28
- 239000012588 trypsin Substances 0.000 claims description 27
- 108090000631 Trypsin Proteins 0.000 claims description 26
- 102000004142 Trypsin Human genes 0.000 claims description 26
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 claims description 26
- 102000016938 Catalase Human genes 0.000 claims description 25
- 108010053835 Catalase Proteins 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 102000006382 Ribonucleases Human genes 0.000 claims description 21
- 108010083644 Ribonucleases Proteins 0.000 claims description 21
- 150000003573 thiols Chemical class 0.000 claims description 21
- 108010024976 Asparaginase Proteins 0.000 claims description 19
- 102000015790 Asparaginase Human genes 0.000 claims description 19
- 229960003272 asparaginase Drugs 0.000 claims description 19
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 18
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 18
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 13
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 13
- 239000007795 chemical reaction product Substances 0.000 claims description 12
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 12
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 11
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 claims description 11
- 239000012948 isocyanate Chemical group 0.000 claims description 11
- 150000002513 isocyanates Chemical group 0.000 claims description 11
- 229920001184 polypeptide Polymers 0.000 claims description 11
- XGMDYIYCKWMWLY-UHFFFAOYSA-N 2,2,2-trifluoroethanesulfonic acid Chemical group OS(=O)(=O)CC(F)(F)F XGMDYIYCKWMWLY-UHFFFAOYSA-N 0.000 claims description 10
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 claims description 10
- 230000003213 activating effect Effects 0.000 claims description 10
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 claims description 10
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical group ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 9
- 108010092464 Urate Oxidase Proteins 0.000 claims description 8
- 150000002303 glucose derivatives Polymers 0.000 claims description 8
- 150000002304 glucoses Polymers 0.000 claims description 8
- 125000002791 glucosyl group Polymers C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 claims description 7
- 150000001412 amines Chemical class 0.000 claims description 7
- DSEORJACOQDMQX-UHFFFAOYSA-N bis(2,3,4-trichlorophenyl) carbonate Chemical compound ClC1=C(Cl)C(Cl)=CC=C1OC(=O)OC1=CC=C(Cl)C(Cl)=C1Cl DSEORJACOQDMQX-UHFFFAOYSA-N 0.000 claims description 7
- ACBQROXDOHKANW-UHFFFAOYSA-N bis(4-nitrophenyl) carbonate Chemical compound C1=CC([N+](=O)[O-])=CC=C1OC(=O)OC1=CC=C([N+]([O-])=O)C=C1 ACBQROXDOHKANW-UHFFFAOYSA-N 0.000 claims description 7
- 150000002632 lipids Chemical class 0.000 claims description 7
- 229920000765 poly(2-oxazolines) Polymers 0.000 claims description 7
- 229920001584 poly(acrylomorpholines) Polymers 0.000 claims description 7
- 229920001451 polypropylene glycol Polymers 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- 150000007970 thio esters Chemical class 0.000 claims description 7
- 150000003568 thioethers Chemical class 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- FBPFZTCFMRRESA-NQAPHZHOSA-N Sorbitol Polymers OCC(O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-NQAPHZHOSA-N 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 claims description 6
- 239000012990 dithiocarbamate Substances 0.000 claims description 6
- 150000002314 glycerols Polymers 0.000 claims description 6
- 239000002502 liposome Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 4
- 229920001583 poly(oxyethylated polyols) Polymers 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 239000012062 aqueous buffer Substances 0.000 claims description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 8
- 150000002540 isothiocyanates Chemical group 0.000 claims 8
- 102000040430 polynucleotide Human genes 0.000 claims 2
- 108091033319 polynucleotide Proteins 0.000 claims 2
- 239000002157 polynucleotide Substances 0.000 claims 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical group C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims 1
- 150000007513 acids Chemical class 0.000 claims 1
- PVAWKBXCZQBVLC-UHFFFAOYSA-N carbonic acid;1-hydroxypyrrolidine-2,5-dione Chemical class OC(O)=O.ON1C(=O)CCC1=O PVAWKBXCZQBVLC-UHFFFAOYSA-N 0.000 claims 1
- 150000002763 monocarboxylic acids Chemical class 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 87
- 102000004169 proteins and genes Human genes 0.000 abstract description 87
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 abstract description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 5
- 239000001257 hydrogen Substances 0.000 abstract description 4
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 95
- 235000018102 proteins Nutrition 0.000 description 86
- 102000004190 Enzymes Human genes 0.000 description 73
- 108090000790 Enzymes Proteins 0.000 description 73
- 229940088598 enzyme Drugs 0.000 description 70
- 235000018977 lysine Nutrition 0.000 description 53
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 52
- 229960003646 lysine Drugs 0.000 description 50
- 239000004472 Lysine Substances 0.000 description 49
- 125000003277 amino group Chemical group 0.000 description 31
- 230000000694 effects Effects 0.000 description 27
- 239000000243 solution Substances 0.000 description 23
- 230000008878 coupling Effects 0.000 description 21
- 238000010168 coupling process Methods 0.000 description 21
- 238000005859 coupling reaction Methods 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 230000004913 activation Effects 0.000 description 18
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 18
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 17
- 235000001014 amino acid Nutrition 0.000 description 15
- 229940024606 amino acid Drugs 0.000 description 15
- 0 *C(*)(C)C Chemical compound *C(*)(C)C 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 239000000872 buffer Substances 0.000 description 11
- 125000000524 functional group Chemical group 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229960002317 succinimide Drugs 0.000 description 9
- 231100000331 toxic Toxicity 0.000 description 9
- 230000002588 toxic effect Effects 0.000 description 9
- ZJIFDEVVTPEXDL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) hydrogen carbonate Chemical compound OC(=O)ON1C(=O)CCC1=O ZJIFDEVVTPEXDL-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 8
- 230000029087 digestion Effects 0.000 description 8
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 8
- 238000010915 one-step procedure Methods 0.000 description 8
- 108010059712 Pronase Proteins 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 230000009145 protein modification Effects 0.000 description 7
- 230000002797 proteolythic effect Effects 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 102000019197 Superoxide Dismutase Human genes 0.000 description 6
- 108010012715 Superoxide dismutase Proteins 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 239000000539 dimer Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 6
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 5
- 108010067372 Pancreatic elastase Proteins 0.000 description 5
- 102000016387 Pancreatic elastase Human genes 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 208000035404 Autolysis Diseases 0.000 description 4
- 206010057248 Cell death Diseases 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 108090000787 Subtilisin Proteins 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 230000000058 esterolytic effect Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 108010005555 monomethoxypolyethylene glycol-superoxide dismutase Proteins 0.000 description 4
- QKFJKGMPGYROCL-UHFFFAOYSA-N phenyl isothiocyanate Chemical compound S=C=NC1=CC=CC=C1 QKFJKGMPGYROCL-UHFFFAOYSA-N 0.000 description 4
- 230000004952 protein activity Effects 0.000 description 4
- 230000028043 self proteolysis Effects 0.000 description 4
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- VRARBIRSBAWRNU-UHFFFAOYSA-N COC(=O)NCC(NC(=O)OC)C(=O)O Chemical compound COC(=O)NCC(NC(=O)OC)C(=O)O VRARBIRSBAWRNU-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000011942 biocatalyst Substances 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 230000009144 enzymatic modification Effects 0.000 description 3
- 238000001641 gel filtration chromatography Methods 0.000 description 3
- 229920006158 high molecular weight polymer Polymers 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003457 sulfones Chemical class 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- LUYAMNYBNTVQJG-UHFFFAOYSA-N 1-chloro-2-(2-chloroethylsulfonyl)ethane Chemical compound ClCCS(=O)(=O)CCCl LUYAMNYBNTVQJG-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 2
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 2
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 2
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 2
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- 102000004414 Calcitonin Gene-Related Peptide Human genes 0.000 description 2
- 108090000932 Calcitonin Gene-Related Peptide Proteins 0.000 description 2
- 101800001982 Cholecystokinin Proteins 0.000 description 2
- 102100025841 Cholecystokinin Human genes 0.000 description 2
- 108010003422 Circulating Thymic Factor Proteins 0.000 description 2
- 102400000739 Corticotropin Human genes 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- BVHLGVCQOALMSV-JEDNCBNOSA-N L-lysine hydrochloride Chemical compound Cl.NCCCC[C@H](N)C(O)=O BVHLGVCQOALMSV-JEDNCBNOSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 102000003982 Parathyroid hormone Human genes 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- 108010081690 Pertussis Toxin Proteins 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 241001415846 Procellariidae Species 0.000 description 2
- 102100022831 Somatoliberin Human genes 0.000 description 2
- 101710142969 Somatoliberin Proteins 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 2
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229940107137 cholecystokinin Drugs 0.000 description 2
- 239000012501 chromatography medium Substances 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 102000035118 modified proteins Human genes 0.000 description 2
- 108091005573 modified proteins Proteins 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000000199 parathyroid hormone Substances 0.000 description 2
- 229960001319 parathyroid hormone Drugs 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 229940117953 phenylisothiocyanate Drugs 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- WHNFPRLDDSXQCL-UAZQEYIDSA-N α-msh Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 WHNFPRLDDSXQCL-UAZQEYIDSA-N 0.000 description 2
- AASBXERNXVFUEJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) propanoate Chemical compound CCC(=O)ON1C(=O)CCC1=O AASBXERNXVFUEJ-UHFFFAOYSA-N 0.000 description 1
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- ADFXKUOMJKEIND-UHFFFAOYSA-N 1,3-dicyclohexylurea Chemical compound C1CCCCC1NC(=O)NC1CCCCC1 ADFXKUOMJKEIND-UHFFFAOYSA-N 0.000 description 1
- BGPJLYIFDLICMR-UHFFFAOYSA-N 1,4,2,3-dioxadithiolan-5-one Chemical compound O=C1OSSO1 BGPJLYIFDLICMR-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- QXZGLTYKKZKGLN-UHFFFAOYSA-N 4-(2,5-dioxopyrrolidin-1-yl)oxy-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)ON1C(=O)CCC1=O QXZGLTYKKZKGLN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 102100033367 Appetite-regulating hormone Human genes 0.000 description 1
- 101710129634 Beta-nerve growth factor Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- GMAFJXYFZQRFAM-UHFFFAOYSA-N C.C.C.C.CC(=O)Cl.CC(=O)Cl.CC(=O)ON1C(=O)CCC1=O.O=C(Cl)Cl.O=C1CCC(=O)N1O Chemical compound C.C.C.C.CC(=O)Cl.CC(=O)Cl.CC(=O)ON1C(=O)CCC1=O.O=C(Cl)Cl.O=C1CCC(=O)N1O GMAFJXYFZQRFAM-UHFFFAOYSA-N 0.000 description 1
- UFMINDCKMGTKRD-UHFFFAOYSA-N C.C.C.C.CC(=O)NCC(N)C(=O)O.CC(=O)NCC(N)C(=O)O.CC(=O)NCC(NC(C)=O)C(=O)O.CC(=O)OC1=CC=C([N+](=O)[O-])C=C1.CC(=O)OC1=CC=C([N+](=O)[O-])C=C1.NCCCCC(N)C(=O)O Chemical compound C.C.C.C.CC(=O)NCC(N)C(=O)O.CC(=O)NCC(N)C(=O)O.CC(=O)NCC(NC(C)=O)C(=O)O.CC(=O)OC1=CC=C([N+](=O)[O-])C=C1.CC(=O)OC1=CC=C([N+](=O)[O-])C=C1.NCCCCC(N)C(=O)O UFMINDCKMGTKRD-UHFFFAOYSA-N 0.000 description 1
- CGGBUWUYEPOXLF-UHFFFAOYSA-N C.C.C=C(O)C(CNC(C)=O)NC(C)=O.CC(=O)ON1C(=O)CCC1=O.NCCCCC(N)C(=O)O Chemical compound C.C.C=C(O)C(CNC(C)=O)NC(C)=O.CC(=O)ON1C(=O)CCC1=O.NCCCCC(N)C(=O)O CGGBUWUYEPOXLF-UHFFFAOYSA-N 0.000 description 1
- CYOZDURIMNBCOX-UHFFFAOYSA-N C.C.COC(=O)NCC(NC(=O)OC)C(=O)OC.COC(=O)NCC(NC(=O)OC)C(=O)ON1C(=O)CCC1=O Chemical compound C.C.COC(=O)NCC(NC(=O)OC)C(=O)OC.COC(=O)NCC(NC(=O)OC)C(=O)ON1C(=O)CCC1=O CYOZDURIMNBCOX-UHFFFAOYSA-N 0.000 description 1
- YMSKUFPLFNYCMS-UHFFFAOYSA-N C.C.NCCCCC(N)C(=O)O.[H]C(CSCC(=O)NCC(NC(=O)CSCC([H])C(=O)N1CCOCC1)C(=O)O)C(=O)N1CCOCC1.[H]C(CSCC(=O)ON1C(=O)CCC1=O)C(=O)N1CCOCC1 Chemical compound C.C.NCCCCC(N)C(=O)O.[H]C(CSCC(=O)NCC(NC(=O)CSCC([H])C(=O)N1CCOCC1)C(=O)O)C(=O)N1CCOCC1.[H]C(CSCC(=O)ON1C(=O)CCC1=O)C(=O)N1CCOCC1 YMSKUFPLFNYCMS-UHFFFAOYSA-N 0.000 description 1
- PFZDFODVISGGOS-UHFFFAOYSA-N C.C.NCCCCC(N)C(=O)O.[H]C(CSCC(=O)NCC(NC(=O)CSCC([H])N1CCCC1=O)C(=O)O)N1CCCC1=O.[H]C(CSCC(=O)ON1C(=O)CCC1=O)N1CCCC1=O Chemical compound C.C.NCCCCC(N)C(=O)O.[H]C(CSCC(=O)NCC(NC(=O)CSCC([H])N1CCCC1=O)C(=O)O)N1CCCC1=O.[H]C(CSCC(=O)ON1C(=O)CCC1=O)N1CCCC1=O PFZDFODVISGGOS-UHFFFAOYSA-N 0.000 description 1
- XNHOSGWXKXDGSA-UHFFFAOYSA-N C.CC(=O)NCC(CO)NC(C)=O.CC(=O)ON1C(=O)CCC1=O.NCCCCC(N)CO Chemical compound C.CC(=O)NCC(CO)NC(C)=O.CC(=O)ON1C(=O)CCC1=O.NCCCCC(N)CO XNHOSGWXKXDGSA-UHFFFAOYSA-N 0.000 description 1
- XHVBOIWAPALHSU-UHFFFAOYSA-N CC(=O)NCC(C)NC(C)=O.CC(=O)NCC(C)NC(C)=O.CC(=S)NCC(C)NC(C)=S.CC(=S)SCC(C)SC(C)=S.CCC(C)C.CCC(C)C.CCCC(=O)NCC(C)NC(=O)CCC.CCCC(=O)NCC(C)NC(=O)CCC.CCCCC(=O)NCC(C)NC(=O)CCCC Chemical compound CC(=O)NCC(C)NC(C)=O.CC(=O)NCC(C)NC(C)=O.CC(=S)NCC(C)NC(C)=S.CC(=S)SCC(C)SC(C)=S.CCC(C)C.CCC(C)C.CCCC(=O)NCC(C)NC(=O)CCC.CCCC(=O)NCC(C)NC(=O)CCC.CCCCC(=O)NCC(C)NC(=O)CCCC XHVBOIWAPALHSU-UHFFFAOYSA-N 0.000 description 1
- ZXUVZZCBIHJJRK-UHFFFAOYSA-N CC(=O)NCC(NC(C)=O)C(=O)O.CC(=O)NCC(NC(C)=O)C(=O)ON1C(=O)CCC1=O.O=C1CCC(=O)N1O Chemical compound CC(=O)NCC(NC(C)=O)C(=O)O.CC(=O)NCC(NC(C)=O)C(=O)ON1C(=O)CCC1=O.O=C1CCC(=O)N1O ZXUVZZCBIHJJRK-UHFFFAOYSA-N 0.000 description 1
- SIFCHNIAAPMMKG-UHFFFAOYSA-N CC(=O)ON1C(=O)CCC1=O Chemical compound CC(=O)ON1C(=O)CCC1=O SIFCHNIAAPMMKG-UHFFFAOYSA-N 0.000 description 1
- HPYPTBBZXYHQIV-UHFFFAOYSA-M CC(=O)[C-]=O.[H]C(CCCCNC(=O)[O-])(NC)C(=O)O Chemical compound CC(=O)[C-]=O.[H]C(CCCCNC(=O)[O-])(NC)C(=O)O HPYPTBBZXYHQIV-UHFFFAOYSA-M 0.000 description 1
- AFVFKPVAKUAZFK-UHFFFAOYSA-N CCS(O)(O)OCC(OS(O)(O)CC)C(=O)O.CN.CNCC(NC)C(=O)O Chemical compound CCS(O)(O)OCC(OS(O)(O)CC)C(=O)O.CN.CNCC(NC)C(=O)O AFVFKPVAKUAZFK-UHFFFAOYSA-N 0.000 description 1
- XWQPDPKQGGRWKN-UHFFFAOYSA-N CN=C=O.CN=C=S.CNC(=O)SCC(SC(=O)NC)C(=O)O.CNC(=S)SCC(SC(=S)NC)C(=O)O.COC(=O)ON1C(=O)CCC1=O.COC(=O)SCC(SC(=O)OC)C(=O)O.COCCC(=O)ON1C(=O)CCC1=O.COCCC(=O)SC(SC(=O)CCOC)C(=O)O.O=C(O)C(S)CCCCS.O=C(O)C(S)CCCCS.O=C(O)C(S)CCCCS.O=C(O)C(S)CCCCS Chemical compound CN=C=O.CN=C=S.CNC(=O)SCC(SC(=O)NC)C(=O)O.CNC(=S)SCC(SC(=S)NC)C(=O)O.COC(=O)ON1C(=O)CCC1=O.COC(=O)SCC(SC(=O)OC)C(=O)O.COCCC(=O)ON1C(=O)CCC1=O.COCCC(=O)SC(SC(=O)CCOC)C(=O)O.O=C(O)C(S)CCCCS.O=C(O)C(S)CCCCS.O=C(O)C(S)CCCCS.O=C(O)C(S)CCCCS XWQPDPKQGGRWKN-UHFFFAOYSA-N 0.000 description 1
- SGMOLTGEZITNFM-UHFFFAOYSA-N CNC(=O)CCC(=O)NCCCCC(NC(=O)CCC(=O)NC)C(=O)O.CNC(=O)CCC(=O)ON1C(=O)CCC1=O.COCCC(=O)NCCCCC(NC(=O)CCOC)C(=O)O.COCCC(=O)ON1C(=O)CCC1=O.CSCCC(=O)NCCCCC(NC(=O)CCSC)C(=O)O.CSCCC(=O)ON1C(=O)CCC1=O.NCCCCC(N)C(=O)O.NCCCCC(N)C(=O)O.NCCCCC(N)C(=O)O Chemical compound CNC(=O)CCC(=O)NCCCCC(NC(=O)CCC(=O)NC)C(=O)O.CNC(=O)CCC(=O)ON1C(=O)CCC1=O.COCCC(=O)NCCCCC(NC(=O)CCOC)C(=O)O.COCCC(=O)ON1C(=O)CCC1=O.CSCCC(=O)NCCCCC(NC(=O)CCSC)C(=O)O.CSCCC(=O)ON1C(=O)CCC1=O.NCCCCC(N)C(=O)O.NCCCCC(N)C(=O)O.NCCCCC(N)C(=O)O SGMOLTGEZITNFM-UHFFFAOYSA-N 0.000 description 1
- XHWBFAOLPWHYAG-UHFFFAOYSA-N CO.COC(=O)OC1=CC=C([N+](=O)[O-])C=C1.O=C(Cl)OC1=CC=C([N+](=O)[O-])C=C1 Chemical compound CO.COC(=O)OC1=CC=C([N+](=O)[O-])C=C1.O=C(Cl)OC1=CC=C([N+](=O)[O-])C=C1 XHWBFAOLPWHYAG-UHFFFAOYSA-N 0.000 description 1
- CPJMLTMKTNCDRC-UHFFFAOYSA-N CO.COC1=NC(Cl)=NC(OC)=N1.ClC1=NC(Cl)=NC(Cl)=N1 Chemical compound CO.COC1=NC(Cl)=NC(OC)=N1.ClC1=NC(Cl)=NC(Cl)=N1 CPJMLTMKTNCDRC-UHFFFAOYSA-N 0.000 description 1
- KNAGAGAAIWBYHR-UHFFFAOYSA-N COC(=O)NCCCCC(NC(=O)OC)C(=O)O.COC(=O)NCCCCC(NC(=O)OC)C(=O)ON1C(=O)CCC1=O.O=C1CCC(=O)N1O Chemical compound COC(=O)NCCCCC(NC(=O)OC)C(=O)O.COC(=O)NCCCCC(NC(=O)OC)C(=O)ON1C(=O)CCC1=O.O=C1CCC(=O)N1O KNAGAGAAIWBYHR-UHFFFAOYSA-N 0.000 description 1
- KDYPGSYEXIKXNQ-UHFFFAOYSA-N COC(=O)NCCCCC(NC(=O)OC)C(=O)O.COC(=O)ON1C(=O)CCC1=O.NCCCCC(N)C(=O)O.O Chemical compound COC(=O)NCCCCC(NC(=O)OC)C(=O)O.COC(=O)ON1C(=O)CCC1=O.NCCCCC(N)C(=O)O.O KDYPGSYEXIKXNQ-UHFFFAOYSA-N 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 229920002271 DEAE-Sepharose Polymers 0.000 description 1
- 108010065372 Dynorphins Proteins 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 102000051325 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 102000014429 Insulin-like growth factor Human genes 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102100020873 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 101800001751 Melanocyte-stimulating hormone alpha Proteins 0.000 description 1
- 102400000740 Melanocyte-stimulating hormone alpha Human genes 0.000 description 1
- 101710200814 Melanotropin alpha Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- QHBWSLQUJMHGDB-UHFFFAOYSA-N NCC(N)CO Chemical compound NCC(N)CO QHBWSLQUJMHGDB-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- NQDKDKCVEJEKNE-UHFFFAOYSA-M O=C([O-])ON1C(=O)CCC1=O.[CH2-]OC(=O)ON1C(=O)CCC1=O Chemical compound O=C([O-])ON1C(=O)CCC1=O.[CH2-]OC(=O)ON1C(=O)CCC1=O NQDKDKCVEJEKNE-UHFFFAOYSA-M 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108010071384 Peptide T Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 1
- 102100024622 Proenkephalin-B Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010086019 Secretin Proteins 0.000 description 1
- 102100037505 Secretin Human genes 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 102000018690 Trypsinogen Human genes 0.000 description 1
- 108010027252 Trypsinogen Proteins 0.000 description 1
- 102400000757 Ubiquitin Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000061 acid fraction Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 150000001555 benzenes Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- AOGYCOYQMAVAFD-UHFFFAOYSA-M carbonochloridate Chemical compound [O-]C(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-M 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002027 dichloromethane extract Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 108010077689 gamma-aminobutyryl-2-methyltryptophyl-2-methyltryptophyl-2-methyltryptophyl-lysinamide Proteins 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 108700041430 link Proteins 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229960002101 secretin Drugs 0.000 description 1
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical group OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 102000019506 tumor necrosis factor binding proteins Human genes 0.000 description 1
- 108091016215 tumor necrosis factor binding proteins Proteins 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/48—Polymers modified by chemical after-treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/96—Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/81—Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
- Y10S530/812—Peptides or proteins is immobilized on, or in, an organic carrier
- Y10S530/815—Carrier is a synthetic polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/81—Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
- Y10S530/812—Peptides or proteins is immobilized on, or in, an organic carrier
- Y10S530/815—Carrier is a synthetic polymer
- Y10S530/816—Attached to the carrier via a bridging agent
Definitions
- This invention relates to monofunctional derivatives of poly(ethylene glycol) and related polymers and to methods for their synthesis and activation for use in modifying the characteristics of surfaces and molecules.
- enzymes that exhibit specific biocatalytic activity sometimes are less useful than they otherwise might be because of problems of low stability and solubility in organic solvents.
- many proteins are cleared from circulation too rapidly. Some proteins have less water solubility than is optimal for a therapeutic agent that circulates through the bloodstream. Some proteins give rise to immunological problems when used as therapeutic agents. Immunological problems have been reported from manufactured proteins even where the compound apparently has the same basic structure as the homologous natural product. Numerous impediments to the successful use of enzymes and proteins as drugs and biocatalysts have been encountered.
- the polymer cloud can help to protect the compound from chemical attack, to limit adverse side effects of the compound when injected into the body, and to increase the size of the compound, potentially to render useful compounds that have some medicinal benefit, but otherwise are not useful or are even harmful to an organism.
- the polymer cloud surrounding a protein can reduce the rate of renal excretion and immunological complications and can increase resistance of the protein to proteolytic breakdown into simpler, inactive substances.
- the structure of the protein or enzyme dictates the location of reactive sites that form the loci for linkage with polymers. Proteins are built of various sequences of alpha-amino acids, which have the general structure
- alpha amino moiety (H 2 N—) of one amino acid joins to the carboxyl moiety (—COOH) of an adjacent amino acid to form amide linkages, which can be represented as
- n can be hundreds or thousands.
- the terminal amino acid of a protein molecule contains a free alpha amino moiety that is reactive and to which a polymer can be attached.
- the fragment represented by R can contain reactive sites for protein biological activity and for attachment of polymer.
- lysine which is an amino acid forming part of the backbone of most proteins
- a reactive amino (—NH 2 ) moiety is present in the epsilon position as well as in the alpha position.
- the epsilon —NH 2 is free for reaction under conditions of basic pH.
- Much of the art has been directed to developing polymer derivatives having active moieties for attachment to the epsilon —NH 2 moiety of the lysine fraction of a protein. These polymer derivatives all have in common that the lysine amino acid fraction of the protein typically is modified by polymer attachment, which can be a drawback where lysine is important to protein activity.
- PEG Poly(ethylene glycol), which is commonly referred to simply as “PEG,” has been the nonpeptidic polymer most used so far for attachment to proteins.
- the PEG molecule typically is linear and can be represented structurally as
- the PEG molecule is difunctional, and is sometimes referred to as “PEG diol.”
- the terminal portions of the PEG molecule are relatively nonreactive hydroxyl moieties, —OH, that can be activated, or converted to functional moieties, for attachment of the PEG to other compounds at reactive sites on the compound.
- the terminal moieties of PEG diol have been functionalized as active carbonate ester for selective reaction with amino moieties by substitution of the relatively nonreactive hydroxyl moieties, —OH, with succinimidyl active ester moieties from N-hydroxy succinimide.
- the succinimidyl ester moiety can be represented structurally as
- Difunctional PEG functionalized as the succinimidyl carbonate, has a structure that can be represented as
- Difunctional succinimidyl carbonate PEG has been reacted with free lysine monomer to make high molecular weight polymers.
- Free lysine monomer which is also known as alpha, epsilon diaminocaproic acid, has a structure with reactive alpha and epsilon amino moieties that can be represented as
- the pendant carboxyl groups typically have been used to couple nonprotein pharmaceutical agents to the polymer. Protein pharmaceutical agents would tend to be cross linked by the multifunctional polymer with loss of protein activity.
- Multiarmed PEGs having a reactive terminal moiety on each branch have been prepared by the polymerization of ethylene oxide onto multiple hydroxyl groups of polyols including glycerol. Coupling of this type of multi-functional, branched PEG to a protein normally produces a cross-linked product with considerable loss of protein activity.
- PEG molecule On one end with an essentially nonreactive end moiety so that the PEG molecule is monofunctional.
- Monofunctional PEGs are usually preferred for protein modification to avoid cross linking and loss of activity.
- One hydroxyl moiety on the terminus of the PEG diol molecule typically is substituted with a nonreactive methyl end moiety, CH 3 —.
- the opposite terminus typically is converted to a reactive end moiety that can be activated for attachment at a reactive site on a surface or a molecule such as a protein.
- PEG molecules having a methyl end moiety are sometimes referred to as monomethoxy-poly(ethylene glycol) and are sometimes referred to simply as “mPEG.”
- mPEG polymer derivatives can be represented structurally as
- n typically equals from about 45 to 115 and —Z is a functional moiety that is active for selective attachment to a reactive site on a molecule or surface or is a reactive moiety that can be converted to a functional moiety.
- mPEG polymers are linear polymers of molecular weight in the range of from about 1,000 to 5,000. Higher molecular weights have also been examined, up to a molecular weight of about 25,000, but these mPEGs typically are not of high purity and have not normally been useful in PEG and protein chemistry. In particular, these high molecular weight mPEGs typically contain significant percentages of PEG diol.
- Proteins and other molecules typically have a limited number and distinct type of reactive sites available for coupling, such as the epsilon —NH 2 moiety of the lysine fraction of a protein. Some of these reactive sites may be responsible for a protein's biological activity. A PEG derivative that attached to a sufficient number of such sites to impart the desired characteristics can adversely affect the activity of the protein, which offsets many of the advantages otherwise to be gained.
- PEG derivatives have been developed that have a single functional moiety located along the polymer backbone for attachment to another molecule or surface, rather than at the terminus of the polymer. Although these compounds can be considered linear, they are often referred to as “branched” and are distinguished from conventional, linear PEG derivatives since these molecules typically comprise a pair of mPEG- molecules that have been joined by their reactive end moieties to another moiety, which can be represented structurally as —T—, and that includes a reactive moiety, —Z, extending from the polymer backbone. These compounds have a general structure that can be represented as
- mPEG polymer derivatives show a branched structure when linked to another compound.
- One such branched form of mPEG with a single active binding site, —Z has been prepared by substitution of two of the chloride atoms of trichloro-s-triazine with mPEG to make mPEG-disubstituted chlorotriazine. The third chloride is used to bind to protein.
- An mPEG disubstituted chlorotriazine and its synthesis are disclosed in Wada, H., Imamura, l., Sako, M., Katagiri, S., Tarui, S., Nishimura, H., and Inada, Y.
- Antitumor enzymes polyethylene glycol-modified asparaginase. Ann. N.Y. Acad. Sci. 613, 95-108. Synthesis of mPEG disubstituted chlorotriazine is represented structurally below.
- mPEG-disubstituted chlorotriazine and the procedure used to prepare it present severe limitations because coupling to protein is highly nonselective. Several types of amino acids other than lysine are attacked and many proteins are inactivated. The intermediate is toxic. Also, the mPEG-disubstituted chlorotriazine molecule reacts with water, thus substantially precluding purification of the branched mPEG structure by commonly used chromatographic techniques in water.
- a branched mPEG with a single activation site based on coupling of mPEG to a substituted benzene ring is disclosed in European Patent Application Publication No. 473 084 A2.
- this structure contains a benzene ring that could have toxic effects if the structure is destroyed in a living organism.
- Another branched mPEG with a single activation site has been prepared through a complex synthesis in which an active succinate moiety is attached to the mPEG through a weak ester linkage that is susceptible to hydrolysis.
- An mPEG-OH is reacted with succinic anhydride to make the succinate.
- the reactive succinate is then activated as the succinimide.
- the synthesis, starting with the active succinimide includes the following steps, represented structurally below.
- the mPEG activated as the succinimide, mPEG succinimidyl succinate, is reacted in the first step as shown above with norleucine.
- the symbol —R in the synthesis represents the n-butyl moiety of norleucine.
- the mPEG and norleucine conjugate (A) is activated as the succinimide in the second step by reaction with N-hydroxy succinimide.
- the mPEG and norleucine conjugate activated as the succinimide (B) is coupled to the alpha and epsilon amino moieties of lysine to create an mPEG disubstituted lysine (C) having a reactive carboxyl moiety.
- the mPEG disubstituted lysine is activated as the succinimide.
- ester linkage formed from the reaction of the mPEG-OH and succinic anhydride molecules is a weak linkage that is hydrolytically unstable. In vivo application is therefore limited. Also, purification of the branched mPEG is precluded by commonly used chromatographic techniques in water, which normally would destroy the molecule.
- the molecule also has relatively large molecular fragments between the carboxyl group activated as the succinimide and the mPEG moieties due to the number of steps in the synthesis and to the number of compounds used to create the fragments. These molecular fragments are sometimes referred to as “linkers” or “spacer arms,” and have the potential to act as antigenic sites promoting the formation of antibodies upon injection and initiating an undesirable immunological response in a living organism.
- the invention provides a branched or “multi-armed” amphiphilic polymer derivative that is monofunctional, hydrolytically stable, can be prepared in a simple, one-step reaction, and possesses no aromatic moieties in the linker fragments forming the linkages with the polymer moieties.
- the derivative can be prepared without any toxic linkage or potentially toxic fragments.
- Relatively pure polymer molecules of high molecular weight can be created.
- the polymer can be purified by chromatography in water.
- a multi-step method can be used if it is desired to have polymer arms that differ in molecular weight.
- the polymer arms are capped with relatively nonreactive end groups.
- the derivative can include a single reactive site that is located along the polymer backbone rather than on the terminal portions of the polymer moieties. The reactive site can be activated for selective reactions.
- the multi-armed polymer derivative of the invention having a single reactive site can be used for, among other things, protein modification with a high retention of protein activity. Protein and enzyme activity can be preserved and in some cases is enhanced.
- the single reactive site can be converted to a functional group for highly selective coupling to proteins, enzymes, and surfaces. A larger, more dense polymer cloud can be created surrounding a biomolecule with fewer attachment points to the biomolecule as compared to conventional polymer derivatives having terminal functional groups.
- Hydrolytically weak ester linkages can be avoided. Potentially harmful or toxic products of hydrolysis can be avoided. Large linker fragments can be avoided so as to avoid an antigenic response in living organisms. Cross linking is avoided.
- the molecules of the invention can be represented structurally as poly a -P—CR(—Q—poly b )—Z or:
- Poly a and poly b represent nonpeptidic and substantially nonreactive water soluble polymeric arms that may be the same or different.
- C represents carbon.
- P and Q represent linkage fragments that may be the same or different and that join polymer arms poly a , and poly b , respectively, to C by hydrolytically stable linkages in the absence of aromatic rings in the linkage fragments.
- R is a moiety selected from the group consisting of H, substantially nonreactive, usually alkyl, moieties, and linkage fragments attached by a hydrolytically stable linkage in the absence of aromatic rings to a nonpeptidic and substantially nonreactive water soluble polymeric arm.
- the moiety —Z comprises a moiety selected from the group consisting of moieties having a single site reactive toward nucleophilic moieties, sites that can be converted to sites reactive toward nucleophilic moieties, and the reaction product of a nucleophilic moiety and moieties having a single site reactive toward nucleophilic moieties.
- the moiety —P—CR(—Q—)—Z is the reaction product of a linker moiety and the reactive site of monofunctional, nonpeptidic polymer derivatives, poly a -W and poly b -W, in which W is the reactive site.
- Polymer arms poly a and poly b are nonpeptidic polymers and can be selected from polymers that have a single reactive moiety that can be activated for hydrolytically stable coupling to a suitable linker moiety.
- the linker has the general structure X—CR—(Y)—Z, in which X and Y represent fragments that contain reactive sites for coupling to the polymer reactive site W to form linkage fragments P and Q, respectively.
- At least one of the polymer arms is a poly(ethylene glycol) moiety capped with an essentially nonreactive end group, such as a monomethoxy-poly(ethylene glycol) moiety (“mPEG-”), which is capped with a methyl end group, CH 3 —.
- mPEG- monomethoxy-poly(ethylene glycol) moiety
- the other branch can also be an mPEG moiety of the same or different molecular weight, another poly(ethylene glycol) moiety that is capped with an essentially nonreactive end group other than methyl, or a different nonpeptidic polymer moiety that is capped with a nonreactive end group such as a capped poly(alkylene oxide), a poly(oxyethylated polyol), a poly(olefinic alcohol), or others.
- poly a and poly b are each monomethoxy-poly(ethylene glycol) (“mPEG”) of the same or different molecular weight.
- the mPEG-disubstituted derivative has the general structure mPEG a —P—CH(—Q—mPEG b )—Z.
- the moieties mPEG a - and mPEG b - have the structure CH 3 —(CH 2 CH 2 O) n CH 2 CH 2 — and n may be the same or different for mPEG a and mPEG b .
- Molecules having values of n of from 1 to about 1,150 are contemplated.
- the linker fragments P and Q contain hydrolytically stable linkages that may be the same or different depending upon the functional moiety on the mPEG molecules and the molecular structure of the linker moiety used to join the mPEG moieties in the method for synthesizing the multi-armed structure.
- the linker fragments typically are alkyl fragments containing amino or thiol residues forming a linkage with the residue of the functional moiety of the polymer.
- linker fragments P and Q can include reactive sites for joining additional monofunctional nonpeptidic polymers to the multi-armed structure.
- R can be a hydrogen atom, H, a nonreactive fragment, or, depending on the degree of substitution desired, R can include reactive sites for joining additional monofunctional nonpeptidic polymers to the multi-armed structure.
- the moiety —Z can include a reactive moiety for which the activated nonpeptidic polymers are not selective and that can be subsequently activated for attachment of the derivative to enzymes, other proteins, nucleotides, lipids, liposomes, other molecules, solids, particles, or surfaces.
- the moiety —Z can include a linkage fragment —R z . Depending on the degree of substitution desired, the R z fragment can include reactive sites for joining additional monofunctional nonpeptidic polymers to the multi-armed structure.
- the —Z moiety includes terminal functional moieties for providing linkages to reactive sites on proteins, enzymes, nucleotides, lipids, liposomes, and other materials.
- the moiety —Z is intended to have a broad interpretation and to include the reactive moiety of monofunctional polymer derivatives of the invention, activated derivatives, and conjugates of the derivatives with polypeptides and other substances.
- the invention includes biologically active conjugates comprising a biomolecule, which is a biologically active molecule, such as a protein or enzyme, linked through an activated moiety to the branched polymer derivative of the invention.
- the invention includes biomaterials comprising a solid such as a surface or particle linked through an activated moiety to the polymer derivatives of the invention.
- the polymer moiety is an mPEG moiety and the polymer derivative is a two-armed mPEG derivative based upon hydrolytically stable coupling of mPEG to lysine.
- the mPEG moieties are represented structurally as CH 3 O(CH 2 CH 2 O) n CH 2 CH 2 — wherein n may be the same or different for poly a - and poly b - and can be from 1 to about 1,150 to provide molecular weights of from about 100 to 100,000.
- the —R moiety is hydrogen.
- the —Z moiety is a reactive carboxyl moiety.
- the molecule is represented structurally as follows:
- the reactive carboxyl moiety of hydrolytically stable mPEG-disubstituted lysine which can also be called alpha, epsilon-mPEG lysine, provides a site for interacting with ion exchange chromatography media and thus provides a mechanism for purifying the product.
- These purifiable, high molecular weight, monofunctional compounds have many uses.
- mPEG-disubstituted lysine, activated as succinimidyl ester reacts with amino groups in enzymes under mild aqueous conditions that are compatible with the stability of most enzymes.
- the mPEG-disubstituted lysine of the invention, activated as the succinimidyl ester is represented as follows:
- the invention includes methods of synthesizing the polymers of the invention.
- the methods comprise reacting an active suitable polymer having the structure poly-W with a linker moiety having the structure X—CR—(Y)Z to form poly a -P—CR(—Q-poly b )—Z.
- the poly moiety in the structure poly-W can be either poly a or poly b and is a polymer having a single reactive moiety W.
- the W moiety is an active moiety that is linked to the polymer moiety directly or through a hydrolytically stable linkage.
- the moieties X and Y in the structure X—CR—(Y)Z are reactive with W to form the linkage fragments Q and P, respectively.
- R includes reactive sites similar to those of X and Y, then R can also be modified with a poly-W, in which the poly can be the same as or different from poly a or poly b .
- the moiety Z normally does not include a site that is reactive with W.
- X, Y, R, and Z can each include one or more such reactive sites for preparing monofunctional polymer derivatives having more than two branches.
- the method of the invention typically can be accomplished in one or two steps.
- the method can include additional steps for preparing the compound poly-W and for converting a reactive Z moiety to a functional group for highly selective reactions.
- the active Z moiety includes a reactive moiety that is not reactive with W and can be activated subsequent to formation of poly a -P—CR(—Q-poly b )—Z for highly selective coupling to selected reactive moieties of enzymes and other proteins or surfaces or any molecule having a reactive nucleophilic moiety for which it is desired to modify the characteristics of the molecule.
- the invention provides a multi-armed mPEG derivative for which preparation is simple and straightforward. Intermediates are water stable and thus can be carefully purified by standard aqueous chromatographic techniques. Chlorotriazine activated groups are avoided and more highly selective functional groups are used for enhanced selectivity of attachment and much less loss of activity upon coupling of the mPEG derivatives of the invention to proteins, enzymes, and other peptides. Large spacer arms between the coupled polymer and protein are avoided to avoid introducing possible antigenic sites. Toxic groups, including triazine, are avoided. The polymer backbone contains no hydrolytically weak ester linkages that could break down during in vivo applications.
- Monofunctional polymers of double the molecular weight as compared to the individual mPEG moieties can be provided, with mPEG dimer structures having molecular weights of up to at least about 50,000, thus avoiding the common problem of difunctional impurities present in conventional, linear mPEGs.
- FIGS. 1 ( a ), 1 ( b ), and 1 ( c ) illustrate the time course of digestion of ribonuclease ( ⁇ ), conventional, linear mPEG-modified ribonuclease ( ⁇ ), and ribonuclease modified with a multi-armed mPEG of the invention ( ⁇ ) as assessed by enzyme activity upon incubation with pronase (FIG. 1( a )), elastase (FIG. 1( b )), and subtilisin (FIG. 1( c )).
- FIGS. 2 ( a ) and 2 ( b ) illustrate stability toward heat (FIG. 2( a )) and pH (FIG. 2( b )) of ribonuclease ( ⁇ ), linear mPEG-modified ribonuclease ( ⁇ ), and ribonuclease modified with a multi-armed mPEG of the invention ( ⁇ ).
- FIG. 2( a ) is based on data taken after a 15 minute incubation period at the indicated temperatures.
- FIG. 2( b ) is based on data taken over a 20 hour period at different pH values.
- FIGS. 3 ( a ) and 3 ( b ) illustrate the time course of digestion for catalase ( ⁇ ); linear mPEG-modified catalase ( ⁇ ), and catalase modified with a multi-armed mPEG of the invention ( ⁇ ) as assessed by enzyme activity upon incubation with pronase (FIG. 3( a )) and trypsin (FIG. 3( b )).
- FIG. 4 illustrates the stability of catalase ( ⁇ ), linear mPEG-modified catalase ( ⁇ ), and catalase modified with a multi-armed mPEG of the invention ( ⁇ ) for 20 hours incubation at the indicated pH values.
- FIG. 5 illustrates the time course of digestion of asparaginase ( ⁇ ), linear mPEG-modified asparaginase ( ⁇ ), and asparaginase modified with a multi-armed mPEG of the invention ( ⁇ ) as assessed by enzyme activity assay upon trypsin incubation.
- FIG. 6 illustrates the time course of autolysis of trypsin ( ⁇ ), linear mPEG-modified trypsin ( ⁇ ), and trypsin modified with a multi-armed mPEG of the invention ( ⁇ ) evaluated as residual activity towards TAME (alpha N-p-tosyl-arginine methyl ester).
- the first procedure is a two step procedure, meaning that the lysine is substituted with each of the two mPEG moieties in separate reaction steps. Monomethoxy-poly(ethylene glycol) arms of different lengths or of the same length can be substituted onto the lysine molecule, if desired, using the two step procedure.
- the second procedure is a one step procedure in which the lysine molecule is substituted with each of the two mPEG moieties in a single reaction step.
- the one step procedure is suitable for preparing mPEG-disubstituted lysine having mPEG moieties of the same length.
- a polymer such as mPEG—COOH has a reactive site, the carboxyl moiety, —COOH, that can be converted to a functional group for selective reactions and attachment to proteins and linker moieties.
- the converted polymer is said to be activated and to have an active moiety, while the —COOH group is relatively nonreactive in comparison to an active moiety.
- nonreactive is used herein primarily to refer to a moiety that does not readily react chemically with other moieties, such as the methyl alkyl moiety. However, the term “nonreactive” should be understood to exclude carboxyl and hydroxyl moieties, which, although relatively nonreactive, can be converted to functional groups that are of selective reactivity.
- biologically active means a substance, such as a protein, lipid, or nucleotide that has some activity or function in a living organism or in a substance taken from a living organism.
- an enzyme can catalyze chemical reactions.
- biomaterial is somewhat imprecise, and is used herein to refer to a solid material or particle or surface that is compatible with living organisms or tissue or fluids. For example, surfaces that contact blood, whether in vitro or in vivo, can be made nonfouling by attachment of the polymer derivatives of the invention so that proteins do not become attached to the surface.
- an activated mPEG is prepared for coupling to free lysine monomer and then the lysine monomer is disubstituted with the activated mPEG in two steps.
- the first step occurs in aqueous buffer.
- the second step occurs in dry methylene chloride.
- the active moiety of the mPEG for coupling to the lysine monomer can be selected from a number of activating moieties having leaving moieties that are reactive with the amino moieties of lysine monomer.
- the two step procedure can be represented structurally as follows:
- Step 1 Preparation of mPEG-monosubstituted lysine. Modification of a single lysine amino group was accomplished with mPEG-p-nitrophenylcarbonate in aqueous solution where both lysine and mPEG-p-nitrophenylcarbonate are soluble. The mPEG-p-nitrophenylcarbonate has only limited stability in aqueous solution. However, lysine is not soluble in organic solvents in which the activated mPEG is stable. Consequently, only one lysine amino group is modified by this procedure. NMR confirms that the epsilon amino group is modified.
- the mPEG monosubstituted lysine having the mPEG substituted at the epsilon amino group of lysine as confirmed by NMR analysis, was extracted three times with chloroform. The solution was dried. After concentration, the solution was added drop by drop to diethyl ether to form a precipitate. The precipitate was collected and then crystallized from absolute ethanol. The percentage of modified amino groups was 53%, calculated by calorimetric analysis.
- Step 2 Preparation of mPEG-Disubstituted Lysine.
- the mPEG-monosubstituted lysine product from step 1 above is soluble in organic solvents and so modification of the second lysine amino moiety can be achieved by reaction in dry methylene chloride.
- Activated mPEG, mPEG-p-nitrophenylcarbonate is soluble and stable in organic solvents and can be used to modify the second lysine amino moiety.
- Triethylamine (“TEA”) was added to 4.5 grams of mPEG-monosubstituted lysine, which is about 0.86 millimoles.
- the mixture of TEA and mPEG-monosubstituted lysine was dissolved in 10 milliliters of anhydrous methylene chloride to reach a pH of 8.0.
- the pH was maintained at 8.0 with TEA.
- the reaction mixture was refluxed for 72 hours, brought to room temperature, concentrated, filtered, precipitated with diethyl ether and then crystallized in a minimum amount of hot ethanol.
- the excess of activated mPEG, mPEG-p-nitrophenycarbonate, was deactivated by hydrolysis in an alkaline aqueous medium by stirring overnight at room temperature.
- the solution was cooled to 0° C. and brought to a pH of about 3 with 2 N HCl.
- mPEG-disubstituted lysine was also separated from unmodified mPEG-OH and purified by an alternative method. Ion exchange chromatography was performed on a QAE Sephadex ASO column (Pharmacia) that measured 5 centimeters by 80 centimeters. An 8.3 mM borate buffer of pH 8.9 was used. This alternative procedure permitted fractionation of a greater amount of material per run than the other method above described (up to four grams for each run).
- the purified mPEG-disubstituted lysine was also characterized by 1 H—NMR on a 200 MHz Bruker instrument in dimethyl sulfoxide, d6, at a 5% weight to volume concentration. The data confirmed the expected molecular weight of 10,000 for the polymer.
- the chemical shifts and assignments of the protons in the mPEG-disubstituted lysine are as follows: 1.2-1.4 ppm (multiplet, 6H, methylenes 3,4,5 of lysine); 1.6 ppm (multiplet, 2H, methylene 6 of lysine); 3.14 ppm (s, 3H, terminal mPEG methoxy); 3.49 ppm (s, mPEG backbone methylene); 4.05 ppm (t, 2H, —CH 2 , —OCO—); 7.18 ppm (t, 1H, —NH— lysine); and 7.49 ppm (d,1H, —NH— lysine).
- the two step procedure described above allows polymers of different types and different lengths to be linked with a single reactive site between them.
- the polymer can be designed to provide a polymer cloud of custom shape for a particular application.
- reaction mixture was concentrated under vacuum to about 10 milliliters, filtered, and dropped into 100 milliliters of stirred diethyl ether.
- a precipitate was collected from the diethyl ether by filtration and crystallized twice from ethyl acetate.
- Activation of mPEG was determined to be 98%. Activation was calculated spectrophotometrically on the basis of the absorption at 400 nm in alkaline media after 15 minutes of released 4-nitrophenol ( ⁇ of p-nitrophenol at 400 nm equals 17,000).
- mPEG disubstituted lysine is prepared from lysine and an activated mPEG in a single step as represented structurally below:
- the mPEG disubstituted lysine of the one step procedure does not differ structurally from the mPEG disubstituted lysine of the two step procedure. It should be recognized that the identical compound, having the same molecular weight, can be prepared by either method.
- Preparation of mPEG disubstituted lysine by the one step procedure proceeded as follows: Succinimidylcarbonate mPEG of molecular weight about 20,000 was added in an amount of 10.8 grams, which is 5.4 ⁇ 10 ⁇ 4 moles, to 40 milliliters of lysine HCl solution.
- the lysine HCL solution was in a borate buffer of pH 8.0.
- the concentration was 0.826 milligrams succinimidylcarbonate mPEG per milliliter of lysine HCL solution, which is 1.76 ⁇ 10 ⁇ 4 moles.
- Twenty milliliters of the same buffer was added.
- the solution pH was maintained at 8.0 with aqueous NaOH solution for the following 8 hours.
- the reaction mixture was stirred at room temperature for 24 hours.
- the solution was diluted with 300 milliliters of deionized water.
- the pH of the solution was adjusted to 3.0 by the addition of oxalic acid.
- the solution was then extracted three times with dichloromethane.
- the combined dichloromethane extracts were dried with anhydrous sodium sulphate and filtered.
- the filtrate was concentrated to about 30 milliliters.
- the product, an impure mPEG disubstituted lysine was precipitated with about 200 milliliters of cold ethyl ether. The yield was 90%.
- mPEG disubstituted lysine of molecular weight 20,000 was eluted with 10 mM NaCl.
- the pH of the eluate was adjusted to 3.0 with oxalic acid and then mPEG disubstituted lysine was extracted with dichloromethane, dried with sodium sulphate, concentrated, and precipitated with ethyl ether. Five and one tenth grams of purified mPEG disubstituted lysine were obtained.
- the molecular weight was determined to be 38,000 by gel filtration chromatography and 36,700 by potentiometric titration.
- the one step procedure is simple in application and is useful for producing high molecular weight dimers that have polymers of the same type and length linked with a single reactive site between them.
- Succinimidylcarbonate mPEG was prepared by dissolving 30 grams of mPEG-OH of molecular weight 20,000, which is about 1.5 millimoles, in 120 milliliters of toluene. The solution was dried azeotropically for 3 hours. The dried solution was cooled to room temperature. Added to the cooled and dried solution were 20 milliliters of anhydrous dichloromethane and 2.33 milliliters of a 20% solution of phosgene in toluene. The solution was stirred continuously for a minimum of 16 hours under a hood due to the highly toxic fumes.
- Succinimidylcarbonate mPEG of molecular weight about 20,000 was precipitated in ethyl ether and dried in vacuum for a minimum of 8 hours. The yield was 90%.
- Succinimidylcarbonate-mPEG is available commercially from Shearwater Polymers in Huntsville, Ala.
- the mPEG disubstituted lysine of the invention can be represented structurally more generally as poly a -P—CR (—Q-poly b )—Z or:
- —P—CR(—Q—)—Z is the reaction product of a precursor linker moiety having two reactive amino groups and active monofunctional precursors of poly a and poly b that have been joined to the linker moiety at the reactive amino sites.
- Linker fragments Q and P contain carbamate linkages formed by joining the amino containing portions of the lysine molecule with the functional group with which the mPEG was substituted.
- the linker fragments are selected from —O—C(O)NH(CH 2 ) 4 — and —O—C(O)NH— and are different in the exemplified polymer derivative.
- P and Q could both be —O—C(O)NH(CH 2 ) 4 — or —O—C(O)NH— or some other linkage fragment, as discussed below.
- the moiety represented by R is hydrogen, H.
- the moiety represented by Z is the carboxyl group, — COOH.
- the moieties P, R, Q, and Z are all joined to a central carbon atom.
- the nonpeptidic polymer arms, poly a and poly b are mPEG moieties mPEG a and mPEG b , respectively, and are the same on each of the linker fragments Q and P for the examples above.
- the mPEG moieties have a structure represented as CH 3 O—(CH 2 CH 2 O) n CH 2 CH 2 —.
- n is about 454 to provide a molecular weight for each mPEG moiety of 20,000 and a dimer molecular weight of 40,000.
- n is about 114 to provide a molecular weight for each mPEG moiety of 5,000 and a dimer molecular weight of 10,000.
- Lysine disubstituted with mPEG and having as dimer molecular weights of 10,000 and 40,000 and procedures for preparation of mPEG-disubstituted lysine have been shown.
- mPEG disubstituted lysine and other multi-armed compounds of the invention can be made in a variety of molecular weights, including ultra high molecular weights. High molecular weight monofunctional PEGs are otherwise difficult to obtain.
- Polymerization of ethylene oxide to yield mPEGs usually produces molecular weights of up to about 20,000 to 25,000 g/mol. Accordingly, two-armed mPEG disubstituted lysines of molecular weight of about 40,000 to 50,000 can be made according to the invention. Higher molecular weight lysine disubstituted PEGs can be made if the chain length of the linear mPEGs is increased, up to about 100,000. Higher molecular weights can also be obtained by adding additional monofunctional nonpeptidic polymer arms to additional reactive sites on a linker moiety, within practical limits of steric hindrance.
- Lower molecular weight disubstituted mPEGs can also be made, if desired, down to a molecular weight of about 100 to 200.
- linker fragments P and Q are available, although not necessarily with equivalent results, depending on the precursor linker moiety and the functional moiety with which the activated mPEG or other nonpeptidic monofunctional polymer is substituted and from which the linker fragments result.
- the linker fragments will contain the reaction products of portions of linker moieties that have reactive amino and/or thiol moieties and suitably activated nonpeptidic, monofunctional, water soluble polymers.
- mPEGs are available that form a wide variety of hydrolytically stable linkages with reactive amino moieties.
- Linkages can be selected from the group consisting of amide, amine, ether, carbamate, which are also called urethane linkages, urea, thiourea, thiocarbamate, thiocarbonate, thioether, thioester, dithiocarbonate linkages, and others.
- hydrolytically weak ester linkages and potentially toxic aromatic moieties are to be avoided.
- Hydrolytic stability of the linkages means that the linkages between the polymer arms and the linker moiety are stable in water and that the linkages do not react with water at useful pHs for an extended period of time of at least several days, and potentially indefinitely. Most proteins could be expected to lose their activity at a caustic pH of 11 or higher, so the derivatives should be stable at a pH of less than about 11.
- One or both of the reactive amino moieties, —NH 2 , of lysine or another linker moiety can be replaced with thiol moieties, —SH.
- the linker moiety has a reactive thiol moiety instead of an amino moiety, then the linkages can be selected from the group consisting of thioester, thiocarbonate, thiocarbamate, dithiocarbamate, thioether linkages, and others.
- the above linkages and their formation from activated mPEG and lysine in which both amino moieties have been replaced with thiol moieties are represented structurally below.
- mPEG or other monofunctional polymer reactants can be prepared with a reactive amino moiety and then linked to a suitable linker moiety having reactive groups such as those shown above on the mPEG molecule to form hydrolytically stable linkages as discussed above.
- a suitable linker moiety having reactive groups such as those shown above on the mPEG molecule to form hydrolytically stable linkages as discussed above.
- the amine linkage could be formed as follows:
- Examples of various active electrophilic moieties useful for activating polymers or linking moieties for biological and biotechnical applications in which the active moiety is reacted to form hydrolytically stable linkages in the absence of aromatic moieties include trifluoroethylsulfonate, isocyanate, isosthiocyanate, active esters, active carbonates, various aldehydes, various sulfones, including chloroethylsulfone and vinylsulfone, maleimide, iodoacetamide, and iminoesters.
- Active esters include N-hydroxylsuccinimidyl ester.
- Active carbonates include N-hydroxylsuccinimidyl carbonate, p-nitrophenylcarbonate, and trichlorophenylcarbonate. These electrophilic moieties are examples of those that are suitable as Ws in the structure poly-W and as Xs and Ys in the linker structure X—CR(—Y)—Z.
- Nucleophilic moieties for forming the linkages can be amino, thiol, and hydroxyl. Hydroxyl moieties form hydrolytically stable linkages with isocyanate electrophilic moieties. Also, it should be recognized that the linker can be substituted with different nucleophilic or electrophilic moieties or both electrophilic and nucleophilic moieties depending on the active moieties on the monofunctional polymers with which the linker moiety is to be substituted.
- Linker moieties other than lysine are available for activation and for disubstitution or multisubstitution with mPEG and related polymers for creating multi-armed structures in the absence of aromatic moieties in the structure and that are hydrolytically stable.
- linker moieties include those having more than one reactive site for attachment of various monofunctional polymers.
- Linker moieties can be synthesized to include multiple reactive sites such as amino, thiol, or hydroxyl groups for joining multiple suitably activated mPEGs or other nonpeptidic polymers to the molecule by hydrolytically stable linkages, if it is desired to design a molecule having multiple nonpeptidic polymer branches extending from one or more of the linker arm fragments.
- the linker moieties should also include a reactive site, such as a carboxyl or alcohol moiety, represented as —Z in the general structure above, for which the activated polymers are not selective and that can be subsequently activated for selective reactions for joining to enzymes, other proteins, surfaces, and the like.
- one suitable linker moiety is a diamino alcohol having the structure
- the diamino alcohol can be disubstituted with activated mPEG or other suitable activated polymers similar to disubstitution of lysine and then the hydroxyl moiety can be activated as follows:
- diamino alcohols and alcohols having more than two amino or other reactive groups for polymer attachment are useful.
- a suitably activated mPEG or other monofunctional, nonpeptidic, water soluble polymer can be attached to the amino groups on such a diamino alcohol similar to the method by which the same polymers are attached to lysine as shown above.
- the amino groups can be replaced with thiol or other active groups as discussed above.
- only one hydroxyl group, which is relatively nonreactive, should be present in the —Z moiety, and can be activated subsequent to polymer substitution.
- the moiety —Z can include a reactive moiety or functional group, which normally is a carboxyl moiety, hydroxyl moiety, or activated carboxyl or hydroxyl moiety.
- the carboxyl and hydroxyl moieties are somewhat nonreactive as compared to the thiol, amino, and other moieties discussed above.
- the carboxyl and hydroxyl moieties typically remain intact when the polymer arms are attached to the linker moiety and can be subsequently activated.
- the carboxyl and hydroxyl moieties also provide a mechanism for purification of the multisubstituted linker moiety.
- the carboxyl and hydroxyl moieties provide a site for interacting with ion exchange chromatography media.
- the moiety —Z may also include a linkage fragment, represented as R z in the moiety, which can be substituted or unsubstituted, branched or linear, and joins the reactive moiety to the central carbon.
- R z a linkage fragment
- R z a linkage fragment
- R z can also include the reaction product of one or more reactive moieties including reactive amino, thiol, or other moieties, and a suitably activated mPEG arm or related nonpeptidic polymer arm.
- R z can have the structure (—L-poly c )—COOH or (—L-poly c )—OH in which —L— is the reaction product of a portion of the linker moiety and a suitably activated nonpeptidic polymer, poly c -W, which is selected from the same group as poly a -W and poly b -W but can be the same or different from poly a -W and poly b -W.
- —Z have a broad definition.
- the moiety —Z is intended to represent not only the reactive site of the multisubstituted polymeric derivative that subsequently can be converted to an active form and its attachment to the central carbon, but the activated reactive site and also the conjugation of the precursor activated site with another molecule, whether that molecule be an enzyme, other protein or polypeptide, a phospholipid, a preformed liposome, or on a surface to which the polymer derivative is attached.
- Z encompasses the currently known activating moieties in PEG chemistry and their conjugates. It should also be recognized that, although the linker fragments represented by Q and P and R z should not contain aromatic rings or hydrolytically weak linkages such as ester linkages, such rings and such hydrolytically weak linkages may be present in the active site moiety of —Z or in a molecule joined to such active site. It may be desirable in some instances to provide a linkage between, for example, a protein or enzyme and a multisubstituted polymer derivative that has limited stability in water. Some amino acids contain aromatic moieties, and it is intended that the structure Z include conjugates of multisubstituted monofunctional polymer derivatives with such molecules or portions of molecules. Activated Zs and Zs including attached proteins and other moieties are discussed below.
- R is H.
- R can be designed to have another substantially nonreactive moiety, such as a nonreactive methyl or other alkyl group, or can be the reaction product of one or more reactive moieties including reactive amino, thiol, or other moieties, and a suitably activated mPEG arm or related nonpeptidic polymer arm.
- R can have the structure —M-poly d , in which —M— is the reaction product of a portion of the linker moiety and a suitably activated nonpeptidic polymer, poly d -W, which is selected from the same group as poly a -W and poly b -W but can be the same or different from poly a -W and poly b -W.
- multi-armed structures can be made having one or more mPEGs or other nonpeptidic polymer arms extending from each portion P, Q, R, and R z , all of which portions extend from a central carbon atom, C, which multi-armed structures have a single reactive site for subsequent activation included in the structure represented by Z.
- linker fragments P and Q are located at least one active site for which the monofunctional, nonpeptidic polymers are selective. These active sites include amino moieties, thiol moieties, and other moieties as described above.
- the nonpeptidic polymer arms tend to mask antigenic properties of the linker fragment, if any.
- a linker fragment length of from 1 to 10 carbon atoms or the equivalent has been determined to be useful to avoid a length that could provide an antigenic site. Also, for all the linker fragments P, Q, R, and R z , there should be an absence of aromatic moieties in the structure and the linkages should be hydrolytically stable.
- Poly(ethylene glycol) is useful in the practice of the invention for the nonpeptidic polymer arms attached to the linker fragments.
- PEG is used in biological applications because it has properties that are highly desirable and is generally approved for biological or biotechnical applications. PEG typically is clear, colorless, odorless, soluble in water, stable to heat, inert to many chemical agents, does not hydrolyze or deteriorate, and is nontoxic.
- Poly(ethylene glycol) is considered to be biocompatible, which is to say that PEG is capable of coexistence with living tissues or organisms without causing harm. More specifically, PEG is not immunogenic, which is to say that PEG does not tend to produce an immune response in the body.
- the PEG When attached to a moiety having some desirable function in the body, the PEG tends to mask the moiety and can reduce or eliminate any immune response so that an organism can tolerate the presence of the moiety. Accordingly, the activated PEGs of the invention should be substantially non-toxic and should not tend substantially to produce an immune response or cause clotting or other undesirable effects.
- PEG poly(ethylene glycol)
- PEG is also known as polyoxyethylene, polyethylene oxide, polyglycol, and polyether glycol. PEG can be prepared as copolymers of ethylene oxide and many other monomers.
- PVA poly(vinyl alcohol)
- PPG poly(propylene glycol)
- PEG poly(oxyethylated polyols)
- poly(oxyethylated glycerol), poly(oxyethylated sorbitol), and poly(oxyethylated glucose), and the like poly(vinyl alcohol) (“PVA”
- PPG poly(propylene glycol)
- PEG poly(oxyethylated polyols)
- PEG poly(oxyethylated sorbitol)
- glucose poly(oxyethylated glucose)
- the polymers can be homopolymers or random or block copolymers and terpolymers based on the monomers of the above polymers, straight chain or branched, or substituted or unsubstituted similar to mPEG and other capped, monofunctional PEGs having a single active site available for attachment to a linker.
- suitable additional polymers include poly(oxazoline), poly(acryloylmorpholine) (“PAcM”), and poly(vinylpyrrolidone)(“PVP”).
- PVP and poly(oxazoline) are well known polymers in the art and their preparation and use in the syntheses described above for mPEG should be readily apparent to the skilled artisan.
- Poly(acryloylmorpholine) “(PAcM)” functionalized at one end is a new polymer, the structure, preparation, and characteristics of which are described in Italian Patent Application No. MI 92 A 0 0002616, which was published May 17, 1994 and is entitled, in English, “ Polymers Of N-Acryloylmorpholine Functionalized At One End And Conjugates With Bioactive Materials And Surfaces .” Dimer polymers of molecular weight up to at least about 80,000 can be prepared using this polymer. The contents of the Italian patent application are incorporated herein by reference.
- PAcM can be used similarly to mPEG or PVP to create multi-armed structures and ultra-high molecular weight polymers.
- An example of a PAcM-disubstituted lysine having a single carboxyl moiety available for activation is shown below.
- the disubstituted compound can be purified, activated, and used in various reactions for modification of molecules and surfaces similarly to the mPEG- and PVP-disubstituted lysines described above.
- multi-armed monofunctional polymers of the invention can be used for attachment to a linker moiety to create a highly branched monofunctional structure, within the practical limits of steric hindrance.
- Schemes are represented below for activating the mPEG-disubstituted lysine product made by either the one step or two step procedures and for linking the activated mPEG-disubstituted lysine through a stable carbamate linkage to protein amino groups to prepare polymer and protein conjugates.
- Various other multisubstituted polymer derivatives as discussed above can be activated similarly.
- activating groups can be used to activate the multisubstituted polymer derivatives for attachment to surfaces and molecules. Any of the activating groups of the known derivatives of PEG can be applied to the multisubstituted structure.
- the mPEG-disubstituted lysine of the invention was functionalized by activation as the succinimidyl ester, which can be attached to protein amino groups.
- functional moieties available for activation of carboxilic acid polymer moieties for attachment to various surfaces and molecules.
- active moieties used for biological and biotechnical applications include trifluoroethylsulfonate, isocyanate, isosthiocyanate, active esters, active carbonates, various aldehydes, various sulfones, including chloroethylsulfone and vinylsulfone, maleimide, iodoacetamide, and iminoesters.
- Active esters include N-hydroxylsuccinimidyl ester.
- Active carbonates include N-hydroxylsuccinimidyl carbonate, p-nitrophenylcarbonate, and trichlorophenylcarbonate.
- a highly useful, new activating group that can be used for highly selective coupling with thiol moieties instead of amino moieties on molecules and surfaces is the vinyl sulfone moiety described in co-pending U.S. patent application Ser. No. 08/151,481, which was filed on Nov. 12, 1993, the contents of which are incorporated herein by reference.
- Various sulfone moieties can be used to activate a multi-armed structure in accordance with the invention for thiol selective coupling.
- linker fragments represented by Q and P should not contain aromatic rings or hydrolytically weak linkages such as ester linkages, such rings and such hydrolytically weak linkages may be present in the moiety represented by —Z. It may be desirable in some instances to provide a linkage between, for example, a protein or enzyme and a multisubstituted polymer derivative that has limited stability in water. Some amino acids contain aromatic moieties, and it is intended that the structure —Z include conjugates of multisubstituted monofunctional polymer derivatives with such molecules or portions of molecules.
- Enzymes were modified with activated, two-armed, mPEG-disubstituted lysine of the invention of molecular weight about 10,000 that had been prepared according to the two step procedure and activated as the succinimidyl ester as discussed above.
- the reaction is represented structurally below:
- enzymes were also modified with activated, conventional, linear mPEG of molecular weight 5,000, which was mPEG with a norleucine amino acid spacer arm activated as the succinimide.
- conventional, linear mPEG derivatives with which enzymes are modified are referred to as “linear mPEG.”
- the activated, two-armed, mPEG-disubstituted lysine of the invention is referred to as “two-armed mPEG.”
- Different procedures were used for enzyme modification depending upon the type of enzyme and the polymer used so that a similar extent of amino group modification or attachment for each enzyme could be obtained.
- Ribonuclease in a concentration of 1.5 milligrams per milliliter of buffer was modified at room temperature. Linear and two-armed mPEGs as described were added at a molar ratio of polymer to protein amino groups of 2.5:1 and 5:1, respectively. Ribonuclease has a molecular weight of 13,700 D and 11 available amino groups. Catalase has a molecular weight of 250,000 D with 112 available amino groups. Trypsin has a molecular weight of 23,000 D with 16 available amino groups. Erwinia Caratimora asparaginase has a molecular weight of 141,000 D and 92 free amino groups.
- Catalase in a concentration of 2.5 milligrams per milliliter of buffer was modified at room temperature.
- Linear and two-armed mPEGs as described were added at a molar ratio of polymer to protein amino groups of 5:1 and 10:1, respectively.
- Asparaginase in a concentration of 6 milligrams per milliliter of buffer was modified with linear mPEG at room temperature. Linear mPEG as described was added at a molar ratio of polymer to protein amino groups of 3:1. Asparaginase in a concentration of 6 milligrams per milliliter of buffer was modified with two-armed mPEG at 37° C. Two-armed mPEG of the invention as described was added at a molar ratio of polymer to protein amino groups of 3.3:1.
- the polymer and enzyme conjugates were purified by ultrafiltration and concentrated in an Amicon system with a PM 10 membrane (cut off 10,000) to eliminate N-hydroxysuccinimide and reduce polymer concentration.
- the conjugates were further purified from the excess of unreacted polymer by gel filtration chromatography on a Pharmacia Superose 12 column, operated by an FPLC instrument, using 10 mM phosphate buffer of pH 7.2, 0.15 M in NaCl, as eluent.
- Protein concentration for the native forms of ribonuclease, catalase, and trypsin was evaluated spectrophotometrically using molar extinction coefficients of 945 ⁇ 10 3 M ⁇ 1 cm ⁇ 1 , 1.67 ⁇ 10 5 M ⁇ 1 cm ⁇ 1 and 3.7 ⁇ 10 4 M ⁇ 1 cm ⁇ 1 at 280 nm, respectively.
- concentration of native asparaginase was evaluated by biuret assay. Biuret assay was also used to evaluate concentrations of the protein modified forms.
- the extent of protein modification was evaluated by one of three methods. The first is a calorimetric method described in Habeeb, A. F. S. A. (1966) Determination of free amino groups in protein by trinitrobenzensulphonic acid. Anal. Biochem. 14, 328-336. The second method is amino acid analysis after acid hydrolysis. This method was accomplished by two procedures: 1) the post-column procedure of Benson, J. V., Gordon, M. J., and Patterson, J. A. (1967) Accelerated chromatographic analysis of amino acid in physiological fluids containing vitamin and asparagine. Anal. Biol. Chem.
- the amount of bound linear mPEG was evaluated from norleucine content with respect to other protein amino acids.
- the amount of two-armed, mPEG-disubstituted lysine was determined from the increase in lysine content.
- One additional lysine is present in the hydrolysate for each bound polymer.
- Asparaginase with 53% and 40% modified protein amino groups was obtained by coupling with linear mPEG and two-armed mPEG, respectively. Enzymatic activity was increased, relative to the free enzyme, to 110% for the linear mPEG conjugate and to 133% for the two-armed mPEG conjugate.
- Enzymatic activity of native and modified enzyme was evaluated by the following methods.
- the method was used of Crook, E. M., Mathias, A. P., and Rabin, B. R. (1960) Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2′:3′ phosphate. Biochem. J. 74, 234-238.
- Catalase activity was determined by the method of Beers, R. F. and Sizer, I. W. (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195,133-140.
- the esterolytic activity of trypsin and its derivatives was determined by the method of Laskowski, M. (1955) Trypsinogen and trypsin. Methods Enzymol. 2, 26-36. Native and modified asparaginase were assayed according to a method reported by Cooney, D. A., Capizzi, R. L. and Handschumacher, R. E. (1970) Evaluation of L-asparagine metabolism in animals and man. Cancer Res. 30, 929-935.
- Proteolytic digestion was performed in 0.05 M phosphate buffer of pH 7.0.
- the free enzyme, linear mPEG and protein conjugate, and two-armed mPEG-protein conjugates were exposed to the known proteolytic enzymes trypsin, pronase, elastase or subtilisin under conditions as follows.
- trypsin autolysis rate i.e., the rate at which trypsin digests trypsin
- enzyme esterolytic activity was totally prevented in two-armed mPEG-trypsin but only reduced in the linear mPEG-trypsin conjugate.
- modification of 78% of the available protein amino groups was required.
- C Reduction of Protein Antigenicity. Protein can provoke an immune response when injected into the bloodstream. Reduction of protein immunogenicity by modification with linear and two-armed mPEG was determined and compared for the enzyme superoxidedismutase (“SOD”).
- SOD superoxidedismutase
- Anti-SOD antibodies were obtained from rabbit and purified by affinity chromatography.
- the antigens (SOD, linear mPEG-SOD, and two-armed mPEG-SOD) were labelled with tritiated succinimidyl propionate to facilitate tracing. Reaction of antigen and antibody were evaluated by radioactive counting. In a 500 ⁇ L sample, the antigen (in the range of 0-3 ⁇ g) was incubated with 2.5 ⁇ g of antibody. The results show the practical disappearance of antibody recognition for two-armed mPEG-SOD, while an appreciable antibody-antigen complex was formed for linear mPEG-SOD and native SOD.
- E. Thermal Stability of Free and Conjugated Enzymes Thermal stability of native ribonuclease, catalase and asparaginase and their linear mPEG and two-armed mPEG conjugates was evaluated in 0.5 M phosphate buffer pH 7.0 at 1 mg/ml, 9 ⁇ g/ml and 0.2 mg/ml respectively. The samples were incubated at the specified temperatures for 15 min., 10 min., and 15 min, respectively, cooled to room temperature and assayed spectrophotometrically for activity.
- Proteins and enzymes can be usefully modified by attachment to the polymer derivatives of the invention.
- Proteins and enzymes can be derived from animal sources, humans, microorganisms, and plants and can be produced by genetic engineering or synthesis. Representatives include: cytokines such as various interferons (e.g.
- interferon- ⁇ , interferon- ⁇ , interferon- ⁇ ), interleukin-2 and interleukin-3 hormones such as insulin, growth hormone-releasing factor (GRF), calcitonin, calcitonin gene related peptide (CGRP), atrial natriuretic peptide (ANP), vasopressin, corticortropin-releasing factor (CRF), vasoactive intestinal peptide (VIP), secretin, ⁇ -melanocyte-stimulating hormone ( ⁇ -MSH), adrenocorticotropic hormone (ACTH), cholecystokinin (CCK), glucagon, parathyroid hormone (PTH), somatostatin, endothelin, substance P, dynorphin, oxytocin and growth hormone-releasing peptide, tumor necrosis factor binding protein, growth factors such as growth hormone (GH), insulin-like growth factor (IGF-I, IGF-II), ⁇ -nerve growth factor ( ⁇ -NGF), basic
- the two-armed polymer derivative of the invention has a variety of related applications.
- Small molecules attached to two-armed activated mPEG derivatives of the invention can be expected to show enhanced solubility in either aqueous or organic solvents.
- Lipids and liposomes attached to the derivative of the invention can be expected to show long blood circulation lifetimes.
- Other particles than lipids and surfaces having the derivative of the invention attached can be expected to show nonfouling characteristics and to be useful as biomaterials having increased blood compatibility and avoidance of protein adsorption.
- Polymer-ligand conjugates can be prepared that are useful in two phase affinity partitioning.
- the polymers of the invention could be attached to various forms of drugs to produce prodrugs.
- Small drugs having the multisubstituted derivative attached can be expected to show altered solubility, clearance time, targeting, and other properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Polyethers (AREA)
- Polyamides (AREA)
Abstract
Description
- This application is related to and claims the benefit of the filing date of U.S. Ser. No. 08/371,065, which was filed on Jan. 10, 1995 and is entitled MULTI-ARMED, MONOFUNCTIONAL, AND HYDROLYTICALLY STABLE DERIVATIVES OF POLY(ETHYLENE GLYCOL) AND RELATED POLYMERS FOR MODIFICATION OF SURFACES AND MOLECULES.
- This invention relates to monofunctional derivatives of poly(ethylene glycol) and related polymers and to methods for their synthesis and activation for use in modifying the characteristics of surfaces and molecules.
- Improved chemical and genetic methods have made many enzymes, proteins, and other peptides and polypeptides available for use as drugs or biocatalysts having specific catalytic activity. However, limitations exist to use of these compounds.
- For example, enzymes that exhibit specific biocatalytic activity sometimes are less useful than they otherwise might be because of problems of low stability and solubility in organic solvents. During in vivo use, many proteins are cleared from circulation too rapidly. Some proteins have less water solubility than is optimal for a therapeutic agent that circulates through the bloodstream. Some proteins give rise to immunological problems when used as therapeutic agents. Immunological problems have been reported from manufactured proteins even where the compound apparently has the same basic structure as the homologous natural product. Numerous impediments to the successful use of enzymes and proteins as drugs and biocatalysts have been encountered.
- One approach to the problems that have arisen in the use of polypeptides as drugs or biocatalysts has been to link suitable hydrophilic or amphiphilic polymer derivatives to the polypeptide to create a polymer cloud surrounding the polypeptide. If the polymer derivative is soluble and stable in organic solvents, then enzyme conjugates with the polymer may acquire that solubility and stability. Biocatalysis can be extended to organic media with enzyme and polymer combinations that are soluble and stable in organic solvents.
- For in vivo use, the polymer cloud can help to protect the compound from chemical attack, to limit adverse side effects of the compound when injected into the body, and to increase the size of the compound, potentially to render useful compounds that have some medicinal benefit, but otherwise are not useful or are even harmful to an organism. For example, the polymer cloud surrounding a protein can reduce the rate of renal excretion and immunological complications and can increase resistance of the protein to proteolytic breakdown into simpler, inactive substances.
- However, despite the benefits of modifying polypeptides with polymer derivatives, additional problems have arisen. These problems typically arise in the linkage of the polymer to the polypeptide. The linkage may be difficult to form. Bifunctional or multifunctional polymer derivatives tend to cross link proteins, which can result in a loss of solubility in water, making a polymer-modified protein unsuitable for circulating through the blood stream of a living organism. Other polymer derivatives form hydrolytically unstable linkages that are quickly destroyed on injection into the blood stream. Some linking moieties are toxic. Some linkages reduce the activity of the protein or enzyme, thereby rendering the protein or enzyme less effective.
-
-
- where n can be hundreds or thousands. The terminal amino acid of a protein molecule contains a free alpha amino moiety that is reactive and to which a polymer can be attached. The fragment represented by R can contain reactive sites for protein biological activity and for attachment of polymer.
- For example, in lysine, which is an amino acid forming part of the backbone of most proteins, a reactive amino (—NH2) moiety is present in the epsilon position as well as in the alpha position. The epsilon —NH2 is free for reaction under conditions of basic pH. Much of the art has been directed to developing polymer derivatives having active moieties for attachment to the epsilon —NH2 moiety of the lysine fraction of a protein. These polymer derivatives all have in common that the lysine amino acid fraction of the protein typically is modified by polymer attachment, which can be a drawback where lysine is important to protein activity.
- Poly(ethylene glycol), which is commonly referred to simply as “PEG,” has been the nonpeptidic polymer most used so far for attachment to proteins. The PEG molecule typically is linear and can be represented structurally as
- HO—(CH2CH2O)nCH2CH2—OH
- or, more simply, as HO—PEG—OH. As shown, the PEG molecule is difunctional, and is sometimes referred to as “PEG diol.” The terminal portions of the PEG molecule are relatively nonreactive hydroxyl moieties, —OH, that can be activated, or converted to functional moieties, for attachment of the PEG to other compounds at reactive sites on the compound.
- For example, the terminal moieties of PEG diol have been functionalized as active carbonate ester for selective reaction with amino moieties by substitution of the relatively nonreactive hydroxyl moieties, —OH, with succinimidyl active ester moieties from N-hydroxy succinimide. The succinimidyl ester moiety can be represented structurally as
-
-
-
- The pendant carboxyl groups typically have been used to couple nonprotein pharmaceutical agents to the polymer. Protein pharmaceutical agents would tend to be cross linked by the multifunctional polymer with loss of protein activity.
- Multiarmed PEGs having a reactive terminal moiety on each branch have been prepared by the polymerization of ethylene oxide onto multiple hydroxyl groups of polyols including glycerol. Coupling of this type of multi-functional, branched PEG to a protein normally produces a cross-linked product with considerable loss of protein activity.
- It is desirable for many applications to cap the PEG molecule on one end with an essentially nonreactive end moiety so that the PEG molecule is monofunctional. Monofunctional PEGs are usually preferred for protein modification to avoid cross linking and loss of activity. One hydroxyl moiety on the terminus of the PEG diol molecule typically is substituted with a nonreactive methyl end moiety, CH3—. The opposite terminus typically is converted to a reactive end moiety that can be activated for attachment at a reactive site on a surface or a molecule such as a protein.
- PEG molecules having a methyl end moiety are sometimes referred to as monomethoxy-poly(ethylene glycol) and are sometimes referred to simply as “mPEG.” The mPEG polymer derivatives can be represented structurally as
- H3C—O—(CH2CH2O)n—CH2CH2—Z
- where n typically equals from about 45 to 115 and —Z is a functional moiety that is active for selective attachment to a reactive site on a molecule or surface or is a reactive moiety that can be converted to a functional moiety.
- Typically, mPEG polymers are linear polymers of molecular weight in the range of from about 1,000 to 5,000. Higher molecular weights have also been examined, up to a molecular weight of about 25,000, but these mPEGs typically are not of high purity and have not normally been useful in PEG and protein chemistry. In particular, these high molecular weight mPEGs typically contain significant percentages of PEG diol.
- Proteins and other molecules typically have a limited number and distinct type of reactive sites available for coupling, such as the epsilon —NH2 moiety of the lysine fraction of a protein. Some of these reactive sites may be responsible for a protein's biological activity. A PEG derivative that attached to a sufficient number of such sites to impart the desired characteristics can adversely affect the activity of the protein, which offsets many of the advantages otherwise to be gained.
- Attempts have been made to increase the polymer cloud volume surrounding a protein molecule without further deactivating the protein. Some PEG derivatives have been developed that have a single functional moiety located along the polymer backbone for attachment to another molecule or surface, rather than at the terminus of the polymer. Although these compounds can be considered linear, they are often referred to as “branched” and are distinguished from conventional, linear PEG derivatives since these molecules typically comprise a pair of mPEG- molecules that have been joined by their reactive end moieties to another moiety, which can be represented structurally as —T—, and that includes a reactive moiety, —Z, extending from the polymer backbone. These compounds have a general structure that can be represented as
- These monofunctional mPEG polymer derivatives show a branched structure when linked to another compound. One such branched form of mPEG with a single active binding site, —Z, has been prepared by substitution of two of the chloride atoms of trichloro-s-triazine with mPEG to make mPEG-disubstituted chlorotriazine. The third chloride is used to bind to protein. An mPEG disubstituted chlorotriazine and its synthesis are disclosed in Wada, H., Imamura, l., Sako, M., Katagiri, S., Tarui, S., Nishimura, H., and Inada, Y. (1990) Antitumor enzymes: polyethylene glycol-modified asparaginase.Ann. N.Y. Acad. Sci. 613, 95-108. Synthesis of mPEG disubstituted chlorotriazine is represented structurally below.
- However, mPEG-disubstituted chlorotriazine and the procedure used to prepare it present severe limitations because coupling to protein is highly nonselective. Several types of amino acids other than lysine are attacked and many proteins are inactivated. The intermediate is toxic. Also, the mPEG-disubstituted chlorotriazine molecule reacts with water, thus substantially precluding purification of the branched mPEG structure by commonly used chromatographic techniques in water.
- A branched mPEG with a single activation site based on coupling of mPEG to a substituted benzene ring is disclosed in European Patent Application Publication No. 473 084 A2. However, this structure contains a benzene ring that could have toxic effects if the structure is destroyed in a living organism.
- Another branched mPEG with a single activation site has been prepared through a complex synthesis in which an active succinate moiety is attached to the mPEG through a weak ester linkage that is susceptible to hydrolysis. An mPEG-OH is reacted with succinic anhydride to make the succinate. The reactive succinate is then activated as the succinimide. The synthesis, starting with the active succinimide, includes the following steps, represented structurally below.
- The mPEG activated as the succinimide, mPEG succinimidyl succinate, is reacted in the first step as shown above with norleucine. The symbol —R in the synthesis represents the n-butyl moiety of norleucine. The mPEG and norleucine conjugate (A) is activated as the succinimide in the second step by reaction with N-hydroxy succinimide. As represented in the third step, the mPEG and norleucine conjugate activated as the succinimide (B) is coupled to the alpha and epsilon amino moieties of lysine to create an mPEG disubstituted lysine (C) having a reactive carboxyl moiety. In the fourth step, the mPEG disubstituted lysine is activated as the succinimide.
- The ester linkage formed from the reaction of the mPEG-OH and succinic anhydride molecules is a weak linkage that is hydrolytically unstable. In vivo application is therefore limited. Also, purification of the branched mPEG is precluded by commonly used chromatographic techniques in water, which normally would destroy the molecule.
- The molecule also has relatively large molecular fragments between the carboxyl group activated as the succinimide and the mPEG moieties due to the number of steps in the synthesis and to the number of compounds used to create the fragments. These molecular fragments are sometimes referred to as “linkers” or “spacer arms,” and have the potential to act as antigenic sites promoting the formation of antibodies upon injection and initiating an undesirable immunological response in a living organism.
- The invention provides a branched or “multi-armed” amphiphilic polymer derivative that is monofunctional, hydrolytically stable, can be prepared in a simple, one-step reaction, and possesses no aromatic moieties in the linker fragments forming the linkages with the polymer moieties. The derivative can be prepared without any toxic linkage or potentially toxic fragments. Relatively pure polymer molecules of high molecular weight can be created. The polymer can be purified by chromatography in water. A multi-step method can be used if it is desired to have polymer arms that differ in molecular weight. The polymer arms are capped with relatively nonreactive end groups. The derivative can include a single reactive site that is located along the polymer backbone rather than on the terminal portions of the polymer moieties. The reactive site can be activated for selective reactions.
- The multi-armed polymer derivative of the invention having a single reactive site can be used for, among other things, protein modification with a high retention of protein activity. Protein and enzyme activity can be preserved and in some cases is enhanced. The single reactive site can be converted to a functional group for highly selective coupling to proteins, enzymes, and surfaces. A larger, more dense polymer cloud can be created surrounding a biomolecule with fewer attachment points to the biomolecule as compared to conventional polymer derivatives having terminal functional groups. Hydrolytically weak ester linkages can be avoided. Potentially harmful or toxic products of hydrolysis can be avoided. Large linker fragments can be avoided so as to avoid an antigenic response in living organisms. Cross linking is avoided.
-
- Polya and polyb represent nonpeptidic and substantially nonreactive water soluble polymeric arms that may be the same or different. C represents carbon. P and Q represent linkage fragments that may be the same or different and that join polymer arms polya, and polyb, respectively, to C by hydrolytically stable linkages in the absence of aromatic rings in the linkage fragments. R is a moiety selected from the group consisting of H, substantially nonreactive, usually alkyl, moieties, and linkage fragments attached by a hydrolytically stable linkage in the absence of aromatic rings to a nonpeptidic and substantially nonreactive water soluble polymeric arm. The moiety —Z comprises a moiety selected from the group consisting of moieties having a single site reactive toward nucleophilic moieties, sites that can be converted to sites reactive toward nucleophilic moieties, and the reaction product of a nucleophilic moiety and moieties having a single site reactive toward nucleophilic moieties.
- Typically, the moiety —P—CR(—Q—)—Z is the reaction product of a linker moiety and the reactive site of monofunctional, nonpeptidic polymer derivatives, polya-W and polyb-W, in which W is the reactive site. Polymer arms polya and polyb are nonpeptidic polymers and can be selected from polymers that have a single reactive moiety that can be activated for hydrolytically stable coupling to a suitable linker moiety. The linker has the general structure X—CR—(Y)—Z, in which X and Y represent fragments that contain reactive sites for coupling to the polymer reactive site W to form linkage fragments P and Q, respectively.
- In one embodiment, at least one of the polymer arms is a poly(ethylene glycol) moiety capped with an essentially nonreactive end group, such as a monomethoxy-poly(ethylene glycol) moiety (“mPEG-”), which is capped with a methyl end group, CH3—. The other branch can also be an mPEG moiety of the same or different molecular weight, another poly(ethylene glycol) moiety that is capped with an essentially nonreactive end group other than methyl, or a different nonpeptidic polymer moiety that is capped with a nonreactive end group such as a capped poly(alkylene oxide), a poly(oxyethylated polyol), a poly(olefinic alcohol), or others.
- For example, in one embodiment polya and polyb are each monomethoxy-poly(ethylene glycol) (“mPEG”) of the same or different molecular weight. The mPEG-disubstituted derivative has the general structure mPEGa—P—CH(—Q—mPEGb)—Z. The moieties mPEGa- and mPEGb- have the structure CH3—(CH2CH2O)nCH2CH2— and n may be the same or different for mPEGa and mPEGb. Molecules having values of n of from 1 to about 1,150 are contemplated.
- The linker fragments P and Q contain hydrolytically stable linkages that may be the same or different depending upon the functional moiety on the mPEG molecules and the molecular structure of the linker moiety used to join the mPEG moieties in the method for synthesizing the multi-armed structure. The linker fragments typically are alkyl fragments containing amino or thiol residues forming a linkage with the residue of the functional moiety of the polymer. Depending on the degree of substitution desired, linker fragments P and Q can include reactive sites for joining additional monofunctional nonpeptidic polymers to the multi-armed structure.
- The moiety —R can be a hydrogen atom, H, a nonreactive fragment, or, depending on the degree of substitution desired, R can include reactive sites for joining additional monofunctional nonpeptidic polymers to the multi-armed structure.
- The moiety —Z can include a reactive moiety for which the activated nonpeptidic polymers are not selective and that can be subsequently activated for attachment of the derivative to enzymes, other proteins, nucleotides, lipids, liposomes, other molecules, solids, particles, or surfaces. The moiety —Z can include a linkage fragment —Rz. Depending on the degree of substitution desired, the Rz fragment can include reactive sites for joining additional monofunctional nonpeptidic polymers to the multi-armed structure.
- Typically, the —Z moiety includes terminal functional moieties for providing linkages to reactive sites on proteins, enzymes, nucleotides, lipids, liposomes, and other materials. The moiety —Z is intended to have a broad interpretation and to include the reactive moiety of monofunctional polymer derivatives of the invention, activated derivatives, and conjugates of the derivatives with polypeptides and other substances. The invention includes biologically active conjugates comprising a biomolecule, which is a biologically active molecule, such as a protein or enzyme, linked through an activated moiety to the branched polymer derivative of the invention. The invention includes biomaterials comprising a solid such as a surface or particle linked through an activated moiety to the polymer derivatives of the invention.
-
- The reactive carboxyl moiety of hydrolytically stable mPEG-disubstituted lysine, which can also be called alpha, epsilon-mPEG lysine, provides a site for interacting with ion exchange chromatography media and thus provides a mechanism for purifying the product. These purifiable, high molecular weight, monofunctional compounds have many uses. For example, mPEG-disubstituted lysine, activated as succinimidyl ester, reacts with amino groups in enzymes under mild aqueous conditions that are compatible with the stability of most enzymes. The mPEG-disubstituted lysine of the invention, activated as the succinimidyl ester, is represented as follows:
- The invention includes methods of synthesizing the polymers of the invention. The methods comprise reacting an active suitable polymer having the structure poly-W with a linker moiety having the structure X—CR—(Y)Z to form polya-P—CR(—Q-polyb)—Z. The poly moiety in the structure poly-W can be either polya or polyb and is a polymer having a single reactive moiety W. The W moiety is an active moiety that is linked to the polymer moiety directly or through a hydrolytically stable linkage. The moieties X and Y in the structure X—CR—(Y)Z are reactive with W to form the linkage fragments Q and P, respectively. If the moiety R includes reactive sites similar to those of X and Y, then R can also be modified with a poly-W, in which the poly can be the same as or different from polya or polyb. The moiety Z normally does not include a site that is reactive with W. However, X, Y, R, and Z can each include one or more such reactive sites for preparing monofunctional polymer derivatives having more than two branches.
- The method of the invention typically can be accomplished in one or two steps. The method can include additional steps for preparing the compound poly-W and for converting a reactive Z moiety to a functional group for highly selective reactions.
- The active Z moiety includes a reactive moiety that is not reactive with W and can be activated subsequent to formation of polya-P—CR(—Q-polyb)—Z for highly selective coupling to selected reactive moieties of enzymes and other proteins or surfaces or any molecule having a reactive nucleophilic moiety for which it is desired to modify the characteristics of the molecule.
- In additional embodiments, the invention provides a multi-armed mPEG derivative for which preparation is simple and straightforward. Intermediates are water stable and thus can be carefully purified by standard aqueous chromatographic techniques. Chlorotriazine activated groups are avoided and more highly selective functional groups are used for enhanced selectivity of attachment and much less loss of activity upon coupling of the mPEG derivatives of the invention to proteins, enzymes, and other peptides. Large spacer arms between the coupled polymer and protein are avoided to avoid introducing possible antigenic sites. Toxic groups, including triazine, are avoided. The polymer backbone contains no hydrolytically weak ester linkages that could break down during in vivo applications. Monofunctional polymers of double the molecular weight as compared to the individual mPEG moieties can be provided, with mPEG dimer structures having molecular weights of up to at least about 50,000, thus avoiding the common problem of difunctional impurities present in conventional, linear mPEGs.
- FIGS.1(a), 1(b), and 1(c) illustrate the time course of digestion of ribonuclease (), conventional, linear mPEG-modified ribonuclease (◯), and ribonuclease modified with a multi-armed mPEG of the invention (▪) as assessed by enzyme activity upon incubation with pronase (FIG. 1(a)), elastase (FIG. 1(b)), and subtilisin (FIG. 1(c)).
- FIGS.2(a) and 2(b) illustrate stability toward heat (FIG. 2(a)) and pH (FIG. 2(b)) of ribonuclease (), linear mPEG-modified ribonuclease (◯), and ribonuclease modified with a multi-armed mPEG of the invention (□). FIG. 2(a) is based on data taken after a 15 minute incubation period at the indicated temperatures. FIG. 2(b) is based on data taken over a 20 hour period at different pH values.
- FIGS.3(a) and 3(b) illustrate the time course of digestion for catalase (); linear mPEG-modified catalase (◯), and catalase modified with a multi-armed mPEG of the invention (▪) as assessed by enzyme activity upon incubation with pronase (FIG. 3(a)) and trypsin (FIG. 3(b)).
- FIG. 4 illustrates the stability of catalase (), linear mPEG-modified catalase (□), and catalase modified with a multi-armed mPEG of the invention (◯) for 20 hours incubation at the indicated pH values.
- FIG. 5 illustrates the time course of digestion of asparaginase (), linear mPEG-modified asparaginase (◯), and asparaginase modified with a multi-armed mPEG of the invention (▪) as assessed by enzyme activity assay upon trypsin incubation.
- FIG. 6 illustrates the time course of autolysis of trypsin (), linear mPEG-modified trypsin (▪), and trypsin modified with a multi-armed mPEG of the invention (▴) evaluated as residual activity towards TAME (alpha N-p-tosyl-arginine methyl ester).
- I. Preparation of a Hydrolytically Stable mPEG-Disubstituted Lysine.
- Two procedures are described for the preparation of a hydrolytically stable, two-armed, mPEG-disubstituted lysine. The first procedure is a two step procedure, meaning that the lysine is substituted with each of the two mPEG moieties in separate reaction steps. Monomethoxy-poly(ethylene glycol) arms of different lengths or of the same length can be substituted onto the lysine molecule, if desired, using the two step procedure. The second procedure is a one step procedure in which the lysine molecule is substituted with each of the two mPEG moieties in a single reaction step. The one step procedure is suitable for preparing mPEG-disubstituted lysine having mPEG moieties of the same length.
- Unlike prior multisubstituted structures, no aromatic ring is present in the linkage joining the nonpeptidic polymer arms produced by either the one or two step methods described below that could result in toxicity if the molecule breaks down in vivo. No hydrolytically weak ester linkages are present in the linkage. Lengthy linkage chains that could promote an antigenic response are avoided.
- The terms “group,” “functional group,” “moiety,” “active moiety,” “reactive site,” “radical,” and similar terms are somewhat synonymous in the chemical arts and are used in the art and herein to refer to distinct, definable portions or units of a molecule or fragment of a molecule. “Reactive site,” “functional group,” and “active moiety” refer to units that perform some function or have a chemical activity and are reactive with other molecules or portions of molecules. In this sense a protein or a protein residue can be considered as a molecule and as a functional moiety when coupled to a polymer. A polymer, such as mPEG—COOH has a reactive site, the carboxyl moiety, —COOH, that can be converted to a functional group for selective reactions and attachment to proteins and linker moieties. The converted polymer is said to be activated and to have an active moiety, while the —COOH group is relatively nonreactive in comparison to an active moiety.
- The term “nonreactive” is used herein primarily to refer to a moiety that does not readily react chemically with other moieties, such as the methyl alkyl moiety. However, the term “nonreactive” should be understood to exclude carboxyl and hydroxyl moieties, which, although relatively nonreactive, can be converted to functional groups that are of selective reactivity.
- The term “biologically active” means a substance, such as a protein, lipid, or nucleotide that has some activity or function in a living organism or in a substance taken from a living organism. For example, an enzyme can catalyze chemical reactions. The term “biomaterial” is somewhat imprecise, and is used herein to refer to a solid material or particle or surface that is compatible with living organisms or tissue or fluids. For example, surfaces that contact blood, whether in vitro or in vivo, can be made nonfouling by attachment of the polymer derivatives of the invention so that proteins do not become attached to the surface.
- A. Two Step Procedure
- For the two step procedure, an activated mPEG is prepared for coupling to free lysine monomer and then the lysine monomer is disubstituted with the activated mPEG in two steps. The first step occurs in aqueous buffer. The second step occurs in dry methylene chloride. The active moiety of the mPEG for coupling to the lysine monomer can be selected from a number of activating moieties having leaving moieties that are reactive with the amino moieties of lysine monomer. A commercially available activated mPEG, mPEG-p-nitrophenylcarbonate, the preparation of which is discussed below, was used to exemplify the two step procedure.
-
- Step 1. Preparation of mPEG-monosubstituted lysine. Modification of a single lysine amino group was accomplished with mPEG-p-nitrophenylcarbonate in aqueous solution where both lysine and mPEG-p-nitrophenylcarbonate are soluble. The mPEG-p-nitrophenylcarbonate has only limited stability in aqueous solution. However, lysine is not soluble in organic solvents in which the activated mPEG is stable. Consequently, only one lysine amino group is modified by this procedure. NMR confirms that the epsilon amino group is modified. Nevertheless, the procedure allows ready chloroform extraction of mPEG-monosubstituted lysine from unreacted lysine and other water soluble by-products, and so the procedure provides a desirable monosubstituted product for disubstitution.
- To prepare the mPEG-monosubstituted lysine, 353 milligrams of lysine, which is about 2.5 millimoles, was dissolved in 20 milliliters of water at a pH of about 8.0 to 8.3. Five grams of mPEG-p-nitrophenylcarbonate of molecular weight 5,000, which is about 1 millimole, was added in portions over 3 hours. The pH was maintained at 8.3 with 0.2 N NaOH. The reaction mixture was stirred overnight at room temperature. Thereafter, the reaction mixture was cooled to 0° C. and brought to a pH of about 3 with 2 N HCl. Impurities were extracted with diethyl ether. The mPEG monosubstituted lysine, having the mPEG substituted at the epsilon amino group of lysine as confirmed by NMR analysis, was extracted three times with chloroform. The solution was dried. After concentration, the solution was added drop by drop to diethyl ether to form a precipitate. The precipitate was collected and then crystallized from absolute ethanol. The percentage of modified amino groups was 53%, calculated by calorimetric analysis.
- Step 2. Preparation of mPEG-Disubstituted Lysine. The mPEG-monosubstituted lysine product from step 1 above is soluble in organic solvents and so modification of the second lysine amino moiety can be achieved by reaction in dry methylene chloride. Activated mPEG, mPEG-p-nitrophenylcarbonate, is soluble and stable in organic solvents and can be used to modify the second lysine amino moiety.
- Triethylamine (“TEA”) was added to 4.5 grams of mPEG-monosubstituted lysine, which is about 0.86 millimoles. The mixture of TEA and mPEG-monosubstituted lysine was dissolved in 10 milliliters of anhydrous methylene chloride to reach a pH of 8.0. Four and nine tenths grams of mPEG-p-nitrophenycarbonate of molecular weight 5,000, which is 1.056 millimoles, was added over 3 hours to the solution. If it is desirable to make an mPEG disubstituted compound having mPEG arms of different lengths, then a different molecular weight mPEG could have been used. The pH was maintained at 8.0 with TEA. The reaction mixture was refluxed for 72 hours, brought to room temperature, concentrated, filtered, precipitated with diethyl ether and then crystallized in a minimum amount of hot ethanol. The excess of activated mPEG, mPEG-p-nitrophenycarbonate, was deactivated by hydrolysis in an alkaline aqueous medium by stirring overnight at room temperature. The solution was cooled to 0° C. and brought to a pH of about 3 with 2 N HCl.
- p-Nitrophenol was removed by extraction with diethyl ether. Monomethyl-poly(ethylene glycol)-disubstituted lysine and remaining traces of mPEG were extracted from the mixture three times with chloroform, dried, concentrated, precipitated with diethyl ether and crystallized from ethanol. No unreacted lysine amino groups remained in the polymer mixture as assessed by calorimetric analysis.
- Purification of mPEG-disubstituted lysine and removal of mPEG were accomplished by gel filtration chromatography using a Bio Gel P100 (Bio-Rad) column. The column measured 5 centimeters by 50 centimeters. The eluent was water. Fractions of 10 milliliters were collected. Up to 200 milligrams of material could be purified for each run. The fractions corresponding to mPEG-disubstituted lysine were revealed by iodine reaction. These fractions were pooled, concentrated, and then dissolved in ethanol and concentrated. The mPEG-disubstituted lysine product was dissolved in methylene chloride, precipitated with diethyl ether, and crystallized from ethanol.
- The mPEG-disubstituted lysine was also separated from unmodified mPEG-OH and purified by an alternative method. Ion exchange chromatography was performed on a QAE Sephadex ASO column (Pharmacia) that measured 5 centimeters by 80 centimeters. An 8.3 mM borate buffer of pH 8.9 was used. This alternative procedure permitted fractionation of a greater amount of material per run than the other method above described (up to four grams for each run).
- For both methods of purification, purified mPEG-disubstituted lysine of molecular weight 10,000, titrated with NaOH, showed that 100% of the carboxyl groups were free carboxyl groups. These results indicate that the reaction was complete and the product pure.
- The purified mPEG-disubstituted lysine was also characterized by1H—NMR on a 200 MHz Bruker instrument in dimethyl sulfoxide, d6, at a 5% weight to volume concentration. The data confirmed the expected molecular weight of 10,000 for the polymer. The chemical shifts and assignments of the protons in the mPEG-disubstituted lysine are as follows: 1.2-1.4 ppm (multiplet, 6H, methylenes 3,4,5 of lysine); 1.6 ppm (multiplet, 2H, methylene 6 of lysine); 3.14 ppm (s, 3H, terminal mPEG methoxy); 3.49 ppm (s, mPEG backbone methylene); 4.05 ppm (t, 2H, —CH2, —OCO—); 7.18 ppm (t, 1H, —NH— lysine); and 7.49 ppm (d,1H, —NH— lysine).
- The above signals are consistent with the reported structure since two different carbamate NH protons are present. The first carbamate NH proton (at 7.18 ppm) shows a triplet for coupling with the adjacent methylene group. The second carbamate NH proton (at 7.49 ppm) shows a doublet because of coupling with the α-CH of lysine. The intensity of these signals relative to the mPEG methylene peak is consistent with the 1:1 ratio between the two amide groups and the expected molecular weight of 10,000 for the polymer.
- The two step procedure described above allows polymers of different types and different lengths to be linked with a single reactive site between them. The polymer can be designed to provide a polymer cloud of custom shape for a particular application.
-
- Five grams of mPEG-OH of molecular weight 5,000, or 1 millimole, were dissolved in 120 milliliters of toluene and dried azeotropically for 3 hours. The solution was cooled to room temperature and concentrated under vacuum. Reactants added to the concentrated solution under stirring at 0° C. were 20 milliliters of anhydrous methylene chloride and 0.4 g of p-nitrophenylchloroformate, which is 2 millimoles. The pH of the reaction mixture was maintained at 8 by adding 0.28 milliliters of triethylamine (“TEA”), which is 2 millimoles. The reaction mixture was allowed to stand overnight at room temperature. Thereafter, the reaction mixture was concentrated under vacuum to about 10 milliliters, filtered, and dropped into 100 milliliters of stirred diethyl ether. A precipitate was collected from the diethyl ether by filtration and crystallized twice from ethyl acetate. Activation of mPEG was determined to be 98%. Activation was calculated spectrophotometrically on the basis of the absorption at 400 nm in alkaline media after 15 minutes of released 4-nitrophenol (ε of p-nitrophenol at 400 nm equals 17,000).
- B. One Step Procedure
-
- Except for molecular weight attributable to a longer PEG backbone in the activated mPEG used in the steps below, the mPEG disubstituted lysine of the one step procedure does not differ structurally from the mPEG disubstituted lysine of the two step procedure. It should be recognized that the identical compound, having the same molecular weight, can be prepared by either method.
- Preparation of mPEG disubstituted lysine by the one step procedure proceeded as follows: Succinimidylcarbonate mPEG of molecular weight about 20,000 was added in an amount of 10.8 grams, which is 5.4×10−4 moles, to 40 milliliters of lysine HCl solution. The lysine HCL solution was in a borate buffer of pH 8.0. The concentration was 0.826 milligrams succinimidylcarbonate mPEG per milliliter of lysine HCL solution, which is 1.76×10−4 moles. Twenty milliliters of the same buffer was added. The solution pH was maintained at 8.0 with aqueous NaOH solution for the following 8 hours. The reaction mixture was stirred at room temperature for 24 hours.
- Thereafter, the solution was diluted with 300 milliliters of deionized water. The pH of the solution was adjusted to 3.0 by the addition of oxalic acid. The solution was then extracted three times with dichloromethane. The combined dichloromethane extracts were dried with anhydrous sodium sulphate and filtered. The filtrate was concentrated to about 30 milliliters. The product, an impure mPEG disubstituted lysine, was precipitated with about 200 milliliters of cold ethyl ether. The yield was 90%.
- Nine grams of the above impure mPEG-disubstituted lysine reaction product was dissolved in 4 liters of distilled water and then loaded onto a column of DEAE Sepharose FF, which is 500 milliliters of gel equilibrated with 1500 milliliters of boric acid in a 0.5% sodium hydroxide buffer at a pH of 7.0. The loaded system was then washed with water. Impurities of succinimidylcarbonate mPEG and mPEG-monosubstituted lysine, both of molecular weight about 20,000, were washed off the column. However, the desired mPEG disubstituted lysine of molecular weight 20,000 was eluted with 10 mM NaCl. The pH of the eluate was adjusted to 3.0 with oxalic acid and then mPEG disubstituted lysine was extracted with dichloromethane, dried with sodium sulphate, concentrated, and precipitated with ethyl ether. Five and one tenth grams of purified mPEG disubstituted lysine were obtained. The molecular weight was determined to be 38,000 by gel filtration chromatography and 36,700 by potentiometric titration.
- The one step procedure is simple in application and is useful for producing high molecular weight dimers that have polymers of the same type and length linked with a single reactive site between them.
-
- Succinimidylcarbonate mPEG was prepared by dissolving 30 grams of mPEG-OH of molecular weight 20,000, which is about 1.5 millimoles, in 120 milliliters of toluene. The solution was dried azeotropically for 3 hours. The dried solution was cooled to room temperature. Added to the cooled and dried solution were 20 milliliters of anhydrous dichloromethane and 2.33 milliliters of a 20% solution of phosgene in toluene. The solution was stirred continuously for a minimum of 16 hours under a hood due to the highly toxic fumes.
- After distillation of excess phosgene and solvent, the remaining syrup, which contained mPEG chlorocarbonate, was dissolved in 100 milliliters of anhydrous dichloromethane, as represented above. To this solution was added 3 millimoles of triethylamine and 3 millimoles of N-hydroxysuccinimide. The reaction mixture remained standing at room temperature for 24 hours. Thereafter, the solution was filtered through a silica gel bed of
pore size 60 Angstroms that had been wetted with dichloromethane. The filtrate was concentrated to 70 milliliters. Succinimidylcarbonate mPEG of molecular weight about 20,000 was precipitated in ethyl ether and dried in vacuum for a minimum of 8 hours. The yield was 90%. Succinimidylcarbonate-mPEG is available commercially from Shearwater Polymers in Huntsville, Ala. -
- For the mPEG disubstituted lysines described above, —P—CR(—Q—)—Z is the reaction product of a precursor linker moiety having two reactive amino groups and active monofunctional precursors of polya and polyb that have been joined to the linker moiety at the reactive amino sites. Linker fragments Q and P contain carbamate linkages formed by joining the amino containing portions of the lysine molecule with the functional group with which the mPEG was substituted. The linker fragments are selected from —O—C(O)NH(CH2)4— and —O—C(O)NH— and are different in the exemplified polymer derivative. However, it should be recognized that P and Q could both be —O—C(O)NH(CH2)4— or —O—C(O)NH— or some other linkage fragment, as discussed below. The moiety represented by R is hydrogen, H. The moiety represented by Z is the carboxyl group, — COOH. The moieties P, R, Q, and Z are all joined to a central carbon atom.
- The nonpeptidic polymer arms, polya and polyb, are mPEG moieties mPEGa and mPEGb, respectively, and are the same on each of the linker fragments Q and P for the examples above. The mPEG moieties have a structure represented as CH3O—(CH2CH2O)nCH2CH2—. For the mPEG disubstituted lysine made by the one step method, n is about 454 to provide a molecular weight for each mPEG moiety of 20,000 and a dimer molecular weight of 40,000. For the mPEG disubstituted lysine made by the two step method, n is about 114 to provide a molecular weight for each mPEG moiety of 5,000 and a dimer molecular weight of 10,000.
- Lysine disubstituted with mPEG and having as dimer molecular weights of 10,000 and 40,000 and procedures for preparation of mPEG-disubstituted lysine have been shown. However, it should be recognized that mPEG disubstituted lysine and other multi-armed compounds of the invention can be made in a variety of molecular weights, including ultra high molecular weights. High molecular weight monofunctional PEGs are otherwise difficult to obtain.
- Polymerization of ethylene oxide to yield mPEGs usually produces molecular weights of up to about 20,000 to 25,000 g/mol. Accordingly, two-armed mPEG disubstituted lysines of molecular weight of about 40,000 to 50,000 can be made according to the invention. Higher molecular weight lysine disubstituted PEGs can be made if the chain length of the linear mPEGs is increased, up to about 100,000. Higher molecular weights can also be obtained by adding additional monofunctional nonpeptidic polymer arms to additional reactive sites on a linker moiety, within practical limits of steric hindrance. However, no unreacted active sites on the linker should remain that could interfere with the monofunctionality of the multi-armed derivative. Lower molecular weight disubstituted mPEGs can also be made, if desired, down to a molecular weight of about 100 to 200.
- It should be recognized that a wide variety of linker fragments P and Q are available, although not necessarily with equivalent results, depending on the precursor linker moiety and the functional moiety with which the activated mPEG or other nonpeptidic monofunctional polymer is substituted and from which the linker fragments result. Typically, the linker fragments will contain the reaction products of portions of linker moieties that have reactive amino and/or thiol moieties and suitably activated nonpeptidic, monofunctional, water soluble polymers.
- For example, a wide variety of activated mPEGs are available that form a wide variety of hydrolytically stable linkages with reactive amino moieties. Linkages can be selected from the group consisting of amide, amine, ether, carbamate, which are also called urethane linkages, urea, thiourea, thiocarbamate, thiocarbonate, thioether, thioester, dithiocarbonate linkages, and others. However, hydrolytically weak ester linkages and potentially toxic aromatic moieties are to be avoided.
- Hydrolytic stability of the linkages means that the linkages between the polymer arms and the linker moiety are stable in water and that the linkages do not react with water at useful pHs for an extended period of time of at least several days, and potentially indefinitely. Most proteins could be expected to lose their activity at a caustic pH of 11 or higher, so the derivatives should be stable at a pH of less than about 11.
-
-
- It should be apparent that the mPEG or other monofunctional polymer reactants can be prepared with a reactive amino moiety and then linked to a suitable linker moiety having reactive groups such as those shown above on the mPEG molecule to form hydrolytically stable linkages as discussed above. For example, the amine linkage could be formed as follows:
- Examples of various active electrophilic moieties useful for activating polymers or linking moieties for biological and biotechnical applications in which the active moiety is reacted to form hydrolytically stable linkages in the absence of aromatic moieties include trifluoroethylsulfonate, isocyanate, isosthiocyanate, active esters, active carbonates, various aldehydes, various sulfones, including chloroethylsulfone and vinylsulfone, maleimide, iodoacetamide, and iminoesters. Active esters include N-hydroxylsuccinimidyl ester. Active carbonates include N-hydroxylsuccinimidyl carbonate, p-nitrophenylcarbonate, and trichlorophenylcarbonate. These electrophilic moieties are examples of those that are suitable as Ws in the structure poly-W and as Xs and Ys in the linker structure X—CR(—Y)—Z.
- Nucleophilic moieties for forming the linkages can be amino, thiol, and hydroxyl. Hydroxyl moieties form hydrolytically stable linkages with isocyanate electrophilic moieties. Also, it should be recognized that the linker can be substituted with different nucleophilic or electrophilic moieties or both electrophilic and nucleophilic moieties depending on the active moieties on the monofunctional polymers with which the linker moiety is to be substituted.
- Linker moieties other than lysine are available for activation and for disubstitution or multisubstitution with mPEG and related polymers for creating multi-armed structures in the absence of aromatic moieties in the structure and that are hydrolytically stable. Examples of such linker moieties include those having more than one reactive site for attachment of various monofunctional polymers.
- Linker moieties can be synthesized to include multiple reactive sites such as amino, thiol, or hydroxyl groups for joining multiple suitably activated mPEGs or other nonpeptidic polymers to the molecule by hydrolytically stable linkages, if it is desired to design a molecule having multiple nonpeptidic polymer branches extending from one or more of the linker arm fragments. The linker moieties should also include a reactive site, such as a carboxyl or alcohol moiety, represented as —Z in the general structure above, for which the activated polymers are not selective and that can be subsequently activated for selective reactions for joining to enzymes, other proteins, surfaces, and the like.
-
-
- Other diamino alcohols and alcohols having more than two amino or other reactive groups for polymer attachment are useful. A suitably activated mPEG or other monofunctional, nonpeptidic, water soluble polymer can be attached to the amino groups on such a diamino alcohol similar to the method by which the same polymers are attached to lysine as shown above. Similarly, the amino groups can be replaced with thiol or other active groups as discussed above. However, only one hydroxyl group, which is relatively nonreactive, should be present in the —Z moiety, and can be activated subsequent to polymer substitution.
- The moiety —Z can include a reactive moiety or functional group, which normally is a carboxyl moiety, hydroxyl moiety, or activated carboxyl or hydroxyl moiety. The carboxyl and hydroxyl moieties are somewhat nonreactive as compared to the thiol, amino, and other moieties discussed above. The carboxyl and hydroxyl moieties typically remain intact when the polymer arms are attached to the linker moiety and can be subsequently activated. The carboxyl and hydroxyl moieties also provide a mechanism for purification of the multisubstituted linker moiety. The carboxyl and hydroxyl moieties provide a site for interacting with ion exchange chromatography media.
- The moiety —Z may also include a linkage fragment, represented as Rz in the moiety, which can be substituted or unsubstituted, branched or linear, and joins the reactive moiety to the central carbon. Where a reactive group of the —Z moiety is carboxyl, for activation after substitution with nonpeptidic polymers, then the —Z moiety has the structure, —Rz—COOH if the Rz fragment is present. For hydroxyl, the structure is —Rz—OH. For example, in the diamino alcohol structure discussed above, Rz is CH2. It should be understood that the carboxyl and hydroxyl moieties normally will extend from the Rz terminus, but need not necessarily do so.
- Rz can also include the reaction product of one or more reactive moieties including reactive amino, thiol, or other moieties, and a suitably activated mPEG arm or related nonpeptidic polymer arm. In the latter event, Rz can have the structure (—L-polyc)—COOH or (—L-polyc)—OH in which —L— is the reaction product of a portion of the linker moiety and a suitably activated nonpeptidic polymer, polyc-W, which is selected from the same group as polya-W and polyb-W but can be the same or different from polya-W and polyb-W.
- It is intended that —Z have a broad definition. The moiety —Z is intended to represent not only the reactive site of the multisubstituted polymeric derivative that subsequently can be converted to an active form and its attachment to the central carbon, but the activated reactive site and also the conjugation of the precursor activated site with another molecule, whether that molecule be an enzyme, other protein or polypeptide, a phospholipid, a preformed liposome, or on a surface to which the polymer derivative is attached.
- The skilled artisan should recognize that Z encompasses the currently known activating moieties in PEG chemistry and their conjugates. It should also be recognized that, although the linker fragments represented by Q and P and Rz should not contain aromatic rings or hydrolytically weak linkages such as ester linkages, such rings and such hydrolytically weak linkages may be present in the active site moiety of —Z or in a molecule joined to such active site. It may be desirable in some instances to provide a linkage between, for example, a protein or enzyme and a multisubstituted polymer derivative that has limited stability in water. Some amino acids contain aromatic moieties, and it is intended that the structure Z include conjugates of multisubstituted monofunctional polymer derivatives with such molecules or portions of molecules. Activated Zs and Zs including attached proteins and other moieties are discussed below.
- When lysine, the diamino alcohol shown above, or many other compounds are linkers, then the central carbon has a nonreactive hydrogen, H, attached thereto. In the general structure polya-P—CR(—Q-polyb)—Z, R is H. It should be recognized that the moiety R can be designed to have another substantially nonreactive moiety, such as a nonreactive methyl or other alkyl group, or can be the reaction product of one or more reactive moieties including reactive amino, thiol, or other moieties, and a suitably activated mPEG arm or related nonpeptidic polymer arm. In the latter event, R can have the structure —M-polyd, in which —M— is the reaction product of a portion of the linker moiety and a suitably activated nonpeptidic polymer, polyd-W, which is selected from the same group as polya-W and polyb-W but can be the same or different from polya-W and polyb-W.
- For example, multi-armed structures can be made having one or more mPEGs or other nonpeptidic polymer arms extending from each portion P, Q, R, and Rz, all of which portions extend from a central carbon atom, C, which multi-armed structures have a single reactive site for subsequent activation included in the structure represented by Z. Upon at least the linker fragments P and Q are located at least one active site for which the monofunctional, nonpeptidic polymers are selective. These active sites include amino moieties, thiol moieties, and other moieties as described above.
- The nonpeptidic polymer arms tend to mask antigenic properties of the linker fragment, if any. A linker fragment length of from 1 to 10 carbon atoms or the equivalent has been determined to be useful to avoid a length that could provide an antigenic site. Also, for all the linker fragments P, Q, R, and Rz, there should be an absence of aromatic moieties in the structure and the linkages should be hydrolytically stable.
- Poly(ethylene glycol) is useful in the practice of the invention for the nonpeptidic polymer arms attached to the linker fragments. PEG is used in biological applications because it has properties that are highly desirable and is generally approved for biological or biotechnical applications. PEG typically is clear, colorless, odorless, soluble in water, stable to heat, inert to many chemical agents, does not hydrolyze or deteriorate, and is nontoxic. Poly(ethylene glycol) is considered to be biocompatible, which is to say that PEG is capable of coexistence with living tissues or organisms without causing harm. More specifically, PEG is not immunogenic, which is to say that PEG does not tend to produce an immune response in the body. When attached to a moiety having some desirable function in the body, the PEG tends to mask the moiety and can reduce or eliminate any immune response so that an organism can tolerate the presence of the moiety. Accordingly, the activated PEGs of the invention should be substantially non-toxic and should not tend substantially to produce an immune response or cause clotting or other undesirable effects.
- The term “PEG” is used in the art and herein to describe any of several condensation polymers of ethylene glycol having the general formula represented by the structure
- HO—(CH2CH2O)nCH2CH2—OH
- or, more simply, as HO—PEG—OH. PEG is also known as polyoxyethylene, polyethylene oxide, polyglycol, and polyether glycol. PEG can be prepared as copolymers of ethylene oxide and many other monomers.
- Other water soluble polymers than PEG are suitable for similar modification to create multi-armed structures that can be activated for selective reactions. These other polymers include poly(vinyl alcohol) (“PVA”); other poly(alkylene oxides) such as poly(propylene glycol) (“PPG”) and the like; and poly(oxyethylated polyols) such as poly(oxyethylated glycerol), poly(oxyethylated sorbitol), and poly(oxyethylated glucose), and the like. The polymers can be homopolymers or random or block copolymers and terpolymers based on the monomers of the above polymers, straight chain or branched, or substituted or unsubstituted similar to mPEG and other capped, monofunctional PEGs having a single active site available for attachment to a linker.
- Specific examples of suitable additional polymers include poly(oxazoline), poly(acryloylmorpholine) (“PAcM”), and poly(vinylpyrrolidone)(“PVP”). PVP and poly(oxazoline) are well known polymers in the art and their preparation and use in the syntheses described above for mPEG should be readily apparent to the skilled artisan.
- An example of the synthesis of a PVP disubstituted lysine having a single carboxyl moiety available for activation is shown below. The disubstituted compound can be purified, activated, and used in various reactions for modification of molecules and surfaces similarly to the mPEG-disubstituted lysine described above.
- Poly(acryloylmorpholine) “(PAcM)” functionalized at one end is a new polymer, the structure, preparation, and characteristics of which are described in Italian Patent Application No. MI 92 A 0 0002616, which was published May 17, 1994 and is entitled, in English, “Polymers Of N-Acryloylmorpholine Functionalized At One End And Conjugates With Bioactive Materials And Surfaces.” Dimer polymers of molecular weight up to at least about 80,000 can be prepared using this polymer. The contents of the Italian patent application are incorporated herein by reference.
- PAcM can be used similarly to mPEG or PVP to create multi-armed structures and ultra-high molecular weight polymers. An example of a PAcM-disubstituted lysine having a single carboxyl moiety available for activation is shown below. The disubstituted compound can be purified, activated, and used in various reactions for modification of molecules and surfaces similarly to the mPEG- and PVP-disubstituted lysines described above.
- It should also be recognized that the multi-armed monofunctional polymers of the invention can be used for attachment to a linker moiety to create a highly branched monofunctional structure, within the practical limits of steric hindrance.
- II. Activation of mPEG-Disubstituted Lysine and Modification of Protein Amino Groups.
- Schemes are represented below for activating the mPEG-disubstituted lysine product made by either the one step or two step procedures and for linking the activated mPEG-disubstituted lysine through a stable carbamate linkage to protein amino groups to prepare polymer and protein conjugates. Various other multisubstituted polymer derivatives as discussed above can be activated similarly.
- A. Activation of mPEG Disubstituted Lysine.
-
- Six and two tenths grams of mPEG-disubstituted lysine of molecular weight 10,000, which is about 0.6 millimoles, was dissolved in 10 milliliters of anhydrous methylene chloride and cooled to 0° C. N-hydroxysuccinimide and N,N-dicyclohexylcarbodiimide (“DCC”) were added under stirring in the amounts, respectively, of 0.138 milligrams, which is about 1.2 millimoles, and 0.48 milligrams, which is about 1.2 millimoles. The reaction mixture was stirred overnight at room temperature. Precipitated dicyclohexylurea was removed by filtration and the solution was concentrated and precipitated with diethyl ether. The product, mPEG disubstituted lysine activated as the succinimidyal ester, was crystallized from ethyl acetate. The yield of esterification, calculated on the basis of hydroxysuccinimide absorption at 260 nm (produced by hydrolysis), was over 97% (ε of hydroxysuccinimide at 260 nm=8,000 m−1cm−1). The NMR spectrum was identical to that of the unactivated carboxylic acid except for the new succinimide singlet at 2.80 ppm (2Hs)
- The procedure previously described for the activation of the mPEG-disubstituted lysine of molecular weight 10,000 was also followed for the activation of the higher molecular weight polymer of molecular weight approximately 40,000 that was produced in accordance with the one step procedure discussed above. The yield was over 95% of high molecular weight mPEG-disubstituted lysine activated as the succinimidyal ester.
- It should be recognized that a number of activating groups can be used to activate the multisubstituted polymer derivatives for attachment to surfaces and molecules. Any of the activating groups of the known derivatives of PEG can be applied to the multisubstituted structure. For example, the mPEG-disubstituted lysine of the invention was functionalized by activation as the succinimidyl ester, which can be attached to protein amino groups. However, there are a wide variety of functional moieties available for activation of carboxilic acid polymer moieties for attachment to various surfaces and molecules. Examples of active moieties used for biological and biotechnical applications include trifluoroethylsulfonate, isocyanate, isosthiocyanate, active esters, active carbonates, various aldehydes, various sulfones, including chloroethylsulfone and vinylsulfone, maleimide, iodoacetamide, and iminoesters. Active esters include N-hydroxylsuccinimidyl ester. Active carbonates include N-hydroxylsuccinimidyl carbonate, p-nitrophenylcarbonate, and trichlorophenylcarbonate.
- A highly useful, new activating group that can be used for highly selective coupling with thiol moieties instead of amino moieties on molecules and surfaces is the vinyl sulfone moiety described in co-pending U.S. patent application Ser. No. 08/151,481, which was filed on Nov. 12, 1993, the contents of which are incorporated herein by reference. Various sulfone moieties can be used to activate a multi-armed structure in accordance with the invention for thiol selective coupling.
-
- It should also be recognized that, although the linker fragments represented by Q and P should not contain aromatic rings or hydrolytically weak linkages such as ester linkages, such rings and such hydrolytically weak linkages may be present in the moiety represented by —Z. It may be desirable in some instances to provide a linkage between, for example, a protein or enzyme and a multisubstituted polymer derivative that has limited stability in water. Some amino acids contain aromatic moieties, and it is intended that the structure —Z include conjugates of multisubstituted monofunctional polymer derivatives with such molecules or portions of molecules.
- B. Enzyme Modification
-
- For comparison, enzymes were also modified with activated, conventional, linear mPEG of molecular weight 5,000, which was mPEG with a norleucine amino acid spacer arm activated as the succinimide. In the discussion of enzyme modification below, conventional, linear mPEG derivatives with which enzymes are modified are referred to as “linear mPEG.” The activated, two-armed, mPEG-disubstituted lysine of the invention is referred to as “two-armed mPEG.” Different procedures were used for enzyme modification depending upon the type of enzyme and the polymer used so that a similar extent of amino group modification or attachment for each enzyme could be obtained. Generally, higher molar ratios of the two-armed mPEG were used. However, in all examples the enzymes were dissolved in a 0.2 M borate buffer of pH 8.5 to dissolve proteins. The polymers were added in small portions for about 10 minutes and stirred for over 1 hour. The amount of polymer used for modification was calculated on the basis of available amino groups in the enzyme.
- Ribonuclease in a concentration of 1.5 milligrams per milliliter of buffer was modified at room temperature. Linear and two-armed mPEGs as described were added at a molar ratio of polymer to protein amino groups of 2.5:1 and 5:1, respectively. Ribonuclease has a molecular weight of 13,700 D and 11 available amino groups. Catalase has a molecular weight of 250,000 D with 112 available amino groups. Trypsin has a molecular weight of 23,000 D with 16 available amino groups.Erwinia Caratimora asparaginase has a molecular weight of 141,000 D and 92 free amino groups.
- Catalase in a concentration of 2.5 milligrams per milliliter of buffer was modified at room temperature. Linear and two-armed mPEGs as described were added at a molar ratio of polymer to protein amino groups of 5:1 and 10:1, respectively.
- Trypsin in a concentration of 4 milligrams per milliliter of buffer was modified at 0° C. Linear and two-armed mPEGs as described were added at a molar ratio of polymer to protein amino groups of 2.5:1.
- Asparaginase in a concentration of 6 milligrams per milliliter of buffer was modified with linear mPEG at room temperature. Linear mPEG as described was added at a molar ratio of polymer to protein amino groups of 3:1. Asparaginase in a concentration of 6 milligrams per milliliter of buffer was modified with two-armed mPEG at 37° C. Two-armed mPEG of the invention as described was added at a molar ratio of polymer to protein amino groups of 3.3:1.
- The polymer and enzyme conjugates were purified by ultrafiltration and concentrated in an Amicon system with a
PM 10 membrane (cut off 10,000) to eliminate N-hydroxysuccinimide and reduce polymer concentration. The conjugates were further purified from the excess of unreacted polymer by gel filtration chromatography on a Pharmacia Superose 12 column, operated by an FPLC instrument, using 10 mM phosphate buffer of pH 7.2, 0.15 M in NaCl, as eluent. - Protein concentration for the native forms of ribonuclease, catalase, and trypsin was evaluated spectrophotometrically using molar extinction coefficients of 945×103 M−1 cm−1, 1.67×105 M−1 cm−1 and 3.7×104 M−1 cm−1 at 280 nm, respectively. The concentration of native asparaginase was evaluated by biuret assay. Biuret assay was also used to evaluate concentrations of the protein modified forms.
- The extent of protein modification was evaluated by one of three methods. The first is a calorimetric method described in Habeeb, A. F. S. A. (1966) Determination of free amino groups in protein by trinitrobenzensulphonic acid.Anal. Biochem. 14, 328-336. The second method is amino acid analysis after acid hydrolysis. This method was accomplished by two procedures: 1) the post-column procedure of Benson, J. V., Gordon, M. J., and Patterson, J. A. (1967) Accelerated chromatographic analysis of amino acid in physiological fluids containing vitamin and asparagine. Anal. Biol. Chem. 18, 288-333, and 2) pre-column derivatization by phenylisothiocyanate (PITC) according to Bidlingmeyer, B. A., Cohen, S. A., and Tarvin, T. L. (1984) Rapid analysis of amino acids using pre-column derivatization. J. Chromatography 336, 93-104.
- The amount of bound linear mPEG was evaluated from norleucine content with respect to other protein amino acids. The amount of two-armed, mPEG-disubstituted lysine was determined from the increase in lysine content. One additional lysine is present in the hydrolysate for each bound polymer.
- III. Analysis of Polymer and Enzyme Conjugates
- Five different model enzymes, ribonuclease, catalase, asparaginase, trypsin and uricase, were modified with linear, conventional mPEG of molecular weight 5000 having a norleucine amino acid spacer arm activated as succinimidl ester and with a two-armed, mPEG-disubstituted lysine of the invention prepared from the same linear, conventional mPEG as described above in connection with the two step procedure. The molecular weight of the two-armed mPEG disubstituted lysine of the invention was approximately 10,000.
- A. Comparison of Enzyme Activity. The catalytic properties of the modified enzymes were determined and compared and the results are presented in Table 1 below. To facilitate comparison, each enzyme was modified with the two polymers to a similar extent by a careful choice of polymer to enzyme ratios and reaction temperature.
- Ribonuclease with 50% and 55% of the amino groups modified with linear mPEG and two-armed mPEG, respectively, presented 86% and 94% residual activity with respect to the native enzyme. Catalase was modified with linear mPEG and with two-armed mPEG to obtain 43% and 38% modification of protein amino groups, respectively. Enzyme activity was not significantly changed after modification. Trypsin modification was at the level of 50% and 57% of amino groups with linear mPEG and with two-armed mPEG, respectively. Esterolytic activity for enzyme modified with linear mPEG and two-armed mPEG, assayed on the small substrate TAME, was increased by the modification to 120% and 125%, respectively. Asparaginase with 53% and 40% modified protein amino groups was obtained by coupling with linear mPEG and two-armed mPEG, respectively. Enzymatic activity was increased, relative to the free enzyme, to 110% for the linear mPEG conjugate and to 133% for the two-armed mPEG conjugate.
- While not wishing to be bound by theory, it is possible that in the case of trypsin and asparaginase, that modification produces a more active form of the enzyme. The Km values of the modified and unmodified forms are similar.
- For the enzyme uricase a particularly dramatic result was obtained. Modification of uricase with linear mPEG resulted in total loss of activity. While not wishing to be bound by theory, it is believed that the linear mPEG attached to an amino acid such as lysine that is critical for activity. In direct contrast, modification of 40% of the lysines of uricase with two-armed mPEG gave a conjugate retaining 70% activity.
- It is apparent that modification of enzymes with two-armed mPEG gives conjugates of equal or greater activity than those produced by conventional linear mPEG modification with monosubstituted structures, despite the fact that two-armed mPEG modification attaches twice as much polymer to the enzyme.
- Coupling two-armed mPEG to asparaginase with chlorotriazine activation as described in the background of the invention gave major loss of activity. Presumably the greater activity of enzymes modified with a two-armed mPEG of the invention results because the bulky two-armed mPEG structure is less likely than monosubstituted linear mPEG structures to penetrate into active sites of the proteins.
TABLE 1 Properties of enzymes modified by linear mPEG and two-armed mPEG. % % NH2:POLYMER MODIFI- ACTIV- Kcas ENZYMEa MOLAR RATIO CATION ITY Km (M) (min−1) Ribonuclease RN 1:0 0 100 RP1 1:2.5 50 86 RP2 1:5 55 94 Catalase CN 1:0 0 100 CP1 1:5 43 100 CP2 1:10 38 90 Trypsinb TN 1:0 0 100 8.2 × 830 10−5 TP1 1:2.5 50 120 7.6 × 1790 10−5 TP2 1:2.5 57 125 8.0 × 2310 10−5 Asparaginase AN 1:0 0 100 3.31 × 523 10−6 AP1 1:3 53 110 3.33 × 710 10−6 AP2 1:3.3 40 133 3.30 × 780 10−65 Uricase UP 1:0 0 100 UP1 1:5 45 0 UP2 1:10 40 70 - Enzymatic activity of native and modified enzyme was evaluated by the following methods. For ribonuclease, the method was used of Crook, E. M., Mathias, A. P., and Rabin, B. R. (1960) Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2′:3′ phosphate.Biochem. J. 74, 234-238. Catalase activity was determined by the method of Beers, R. F. and Sizer, I. W. (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195,133-140. The esterolytic activity of trypsin and its derivatives was determined by the method of Laskowski, M. (1955) Trypsinogen and trypsin. Methods Enzymol. 2, 26-36. Native and modified asparaginase were assayed according to a method reported by Cooney, D. A., Capizzi, R. L. and Handschumacher, R. E. (1970) Evaluation of L-asparagine metabolism in animals and man. Cancer Res. 30, 929-935. In this method, 1.1 ml containing 120 μg of a-ketoglutaric acid, 20 Ul of glutamic-oxalacetic transaminase, 30 Ul of malate dehydrogenase, 100 μg of NADH, 0.5 μg of asparaginase and 10 μmoles of asparagine were incubated in 0.122 M Tris buffer, pH 8.35, while the NADH absorbance decrease at 340 nm was followed.
- B. Proteolytic Digestion of Free Enzyme and Conjugates. The rates at which proteolytic enzymes digest and destroy proteins was determined and compared for free enzyme, enzyme modified by attachment of linear activated mPEG, and enzyme modified by attachment of an activated two-armed mPEG of the invention. The proteolytic activities of the conjugates were assayed according to the method of Zwilling, R., and Neurath, H. (1981) Invertrebate protease.Methods Enzymol. 80, 633-664. Four enzymes were used: ribonuclease, catalase, trypsin, and asparaginase. From each enzyme solution, aliquots were taken at various time intervals and enzyme activity was assayed spectrophotometrically.
- Proteolytic digestion was performed in 0.05 M phosphate buffer of pH 7.0. The free enzyme, linear mPEG and protein conjugate, and two-armed mPEG-protein conjugates were exposed to the known proteolytic enzymes trypsin, pronase, elastase or subtilisin under conditions as follows.
- For native ribonuclease and its linear and two-armed mPEG conjugates, 0.57 mg protein was digested at room temperature with 2.85 mg of pronase, or 5.7 mg of elastase, or with 0.57 mg of subtilisin in a total volume of 1 ml. Ribonuclease with 50% and 55% of the amino groups modified with linear mPEG and two-armed mPEG, respectively, was studied for stability to proteolytic digestion by pronase (FIG. 1(a)), elastase (FIG. 1(b)) and subtilisin (FIG. 1(c)). Polymer modification greatly increases the stability to digestion by all three proteolytic enzymes, but the protection offered by two-armed mPEG is much more effective as compared to linear mPEG.
- For native and linear and two-armed mPEG-modified catalase, 0.58 mg of protein were digested at room temperature with 0.58 mg of trypsin or 3.48 mg of pronase in a total volume of 1 ml. Catalase was modified with linear mPEG and two-armed mPEG to obtain 43% and 38% modification of protein amino groups, respectively. Proteolytic stability was much greater for the two-armed mPEG derivative than for the monosubstituted mPEG derivative, particularly toward pronase (FIG. 3(a)) and trypsin (FIG. 3(b)), where no digestion took place.
- Autolysis of trypsin and its linear and two-armed mPEG derivatives at 37° C. was evaluated by esterolytic activity of protein solutions at 25 mg/ml of TAME. Trypsin modification was at the level of 50% and 57% of amino groups with linear mPEG and two-armed mPEG, respectively. Modification with linear mPEG and two-armed mPEG reduced proteolytic activity of trypsin towards casein, a high molecular weight substrate: activity relative to the native enzyme was found, after 20 minutes incubation, to be 64% for the linear mPEG and protein conjugate and only 35% for the two-armed mPEG conjugate. In agreement with these results, the trypsin autolysis rate (i.e., the rate at which trypsin digests trypsin), evaluated by enzyme esterolytic activity, was totally prevented in two-armed mPEG-trypsin but only reduced in the linear mPEG-trypsin conjugate. To prevent autolysis with linear mPEG, modification of 78% of the available protein amino groups was required.
- For native and linear mPEG- and two-armed mPEG-modified asparaginase, 2.5 μg were digested at 37° C. with 0.75 mg of trypsin in a total volume of 1 ml. Asparaginase with 53% and 40% modified protein amino groups was obtained by coupling with linear mPEG and two-armed mPEG, respectively. Modification with two-armed mPEG had an impressive influence on stability towards proteolytic enzyme. Increased protection was achieved at a lower extent of modification with respect to the derivative obtained with the two-armed polymer (FIG. 5).
- These data clearly show that two-armed mPEG coupling is much more effective than conventional linear mPEG coupling in providing a protein with protection against proteolysis. While not wishing to be bound by theory, it is believed that the two-armed mPEG, having two polymer chains bound to the same site, presents increased hindrance to approaching macromolecules in comparison to linear mPEG.
- C. Reduction of Protein Antigenicity. Protein can provoke an immune response when injected into the bloodstream. Reduction of protein immunogenicity by modification with linear and two-armed mPEG was determined and compared for the enzyme superoxidedismutase (“SOD”).
- Anti-SOD antibodies were obtained from rabbit and purified by affinity chromatography. The antigens (SOD, linear mPEG-SOD, and two-armed mPEG-SOD) were labelled with tritiated succinimidyl propionate to facilitate tracing. Reaction of antigen and antibody were evaluated by radioactive counting. In a 500 μL sample, the antigen (in the range of 0-3 μg) was incubated with 2.5 μg of antibody. The results show the practical disappearance of antibody recognition for two-armed mPEG-SOD, while an appreciable antibody-antigen complex was formed for linear mPEG-SOD and native SOD.
- D. Blood Clearance Times. Increased blood circulation half lives are of enormous pharmaceutical importance. The degree to which mPEG conjugation of proteins reduces kidney clearance of proteins from the blood was determined and compared for free protein, protein modified by attachment of conventional, linear activated mPEG, and protein modified by attachment of the activated two-armed mPEG of the invention. Two proteins were used. These experiments were conducted by assaying blood of mice for the presence of the protein.
- For linear mPEG-uricase and two-armed mPEG-uricase, with 40% modification of lysine groups, the half life for blood clearance was 200 and 350 minutes, respectively. For unmodified uricase the result was 50 minutes.
- For asparaginase, with 53% modification with mPEG and 40% modification with two armed mPEG, the half lives for blood clearance were 1300 and 2600 minutes, respectively. For unmodified asparaginase the result was 27 minutes.
- E. Thermal Stability of Free and Conjugated Enzymes. Thermal stability of native ribonuclease, catalase and asparaginase and their linear mPEG and two-armed mPEG conjugates was evaluated in 0.5 M phosphate buffer pH 7.0 at 1 mg/ml, 9 μg/ml and 0.2 mg/ml respectively. The samples were incubated at the specified temperatures for 15 min., 10 min., and 15 min, respectively, cooled to room temperature and assayed spectrophotometrically for activity.
- Increased thermostability was found for the modified forms of ribonuclease, as shown in FIG. 2, at pH 7.0, after 15 min. incubation at different temperatures, but no significant difference between the two polymers was observed. Data for catalase, not reported here, showed that modification did not influence catalase thermostability. A limited increase in thermal stability of linear and two-armed mPEG-modified asparaginase was also noted, but is not reported.
- F. pH Stability of the Free and Conjugated Enzymes. Unmodified and polymer-modified enzymes were incubated for 20 hrs in the following buffers: sodium acetate 0.05 M at a pH of from 4.0 to 6.0, sodium phosphate 0.05 M at pH 7.0 and sodium borate 0.05 M at a pH of from 8.0 to 11. The enzyme concentrations were 1 mg/ml, 9 μg/ml, 5 μg/ml for ribonuclease, catalase, and asparaginase respectively. The stability to incubation at various pH was evaluated on the basis of enzyme activity.
- As shown in FIG. 2b, a decrease in pH stability at acid and alkline pH values was found for the linear and two-armed mPEG-modified ribonuclease forms as compared to the native enzyme. As shown in FIG. 4, stability of the linear mPEG and two-armed mPEG conjugates with catalase was improved for incubation at low pH as compared to native catalase. However, the two-armed mPEG and linear mPEG conjugates showed equivalent pH stability. A limited increase in pH stability at acid and alkaline pH values was noted for linear and two-armed mPEG-modified asparaginase as compared to the native enzyme.
- It should be recognized that there are thousands of proteins and enzymes that can be usefully modified by attachment to the polymer derivatives of the invention. Proteins and enzymes can be derived from animal sources, humans, microorganisms, and plants and can be produced by genetic engineering or synthesis. Representatives include: cytokines such as various interferons (e.g. interferon-α, interferon-β, interferon-γ), interleukin-2 and interleukin-3), hormones such as insulin, growth hormone-releasing factor (GRF), calcitonin, calcitonin gene related peptide (CGRP), atrial natriuretic peptide (ANP), vasopressin, corticortropin-releasing factor (CRF), vasoactive intestinal peptide (VIP), secretin, α-melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), cholecystokinin (CCK), glucagon, parathyroid hormone (PTH), somatostatin, endothelin, substance P, dynorphin, oxytocin and growth hormone-releasing peptide, tumor necrosis factor binding protein, growth factors such as growth hormone (GH), insulin-like growth factor (IGF-I, IGF-II), β-nerve growth factor (β-NGF), basic fibroblast growth factor (bFGF), transforming growth factor, erythropoietin, granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), platelet-derived growth factor (PDGF) and epidermal growth factor (EGF), enzymes such as tissue plasminogen activator (t-PA), elastase, superoxide dismutase (SOD), bilirubin oxydase, catalase, uricase and asparaginase, other proteins such as ubiquitin, islet activating protein (IAP), serum thymic factor (STF), peptide-T and trypsin inhibitor, and derivatives thereof. In addition to protein modification, the two-armed polymer derivative of the invention has a variety of related applications. Small molecules attached to two-armed activated mPEG derivatives of the invention can be expected to show enhanced solubility in either aqueous or organic solvents. Lipids and liposomes attached to the derivative of the invention can be expected to show long blood circulation lifetimes. Other particles than lipids and surfaces having the derivative of the invention attached can be expected to show nonfouling characteristics and to be useful as biomaterials having increased blood compatibility and avoidance of protein adsorption. Polymer-ligand conjugates can be prepared that are useful in two phase affinity partitioning. The polymers of the invention could be attached to various forms of drugs to produce prodrugs. Small drugs having the multisubstituted derivative attached can be expected to show altered solubility, clearance time, targeting, and other properties.
- The invention claimed herein has been described with respect to particular exemplified embodiments. However, the foregoing description is not intended to limit the invention to the exemplified embodiments, and the skilled artisan should recognize that variations can be made within the scope and spirit of the invention as described in the foregoing specification. The invention includes all alternatives, modifications, and equivalents that may be included within the true spirit and scope of the invention as defined by the appended claims.
Claims (67)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/140,907 US20010007765A1 (en) | 1995-01-10 | 1998-08-27 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US10/119,546 US20030114647A1 (en) | 1995-01-10 | 2002-04-10 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US10/634,970 US7419600B2 (en) | 1995-01-10 | 2003-08-05 | Method for purifying a branched water-soluble polymer |
US12/284,357 US7786221B2 (en) | 1995-01-10 | 2008-09-20 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US12/849,683 US8354477B2 (en) | 1995-01-10 | 2010-08-03 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US13/714,917 US8546493B2 (en) | 1995-01-10 | 2012-12-14 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37106595A | 1995-01-10 | 1995-01-10 | |
US08/443,383 US5932462A (en) | 1995-01-10 | 1995-05-17 | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US09/140,907 US20010007765A1 (en) | 1995-01-10 | 1998-08-27 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/443,383 Continuation US5932462A (en) | 1995-01-10 | 1995-05-17 | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US93986701A Continuation | 1995-01-10 | 2001-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010007765A1 true US20010007765A1 (en) | 2001-07-12 |
Family
ID=27005224
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/443,383 Expired - Lifetime US5932462A (en) | 1995-01-10 | 1995-05-17 | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US09/140,907 Abandoned US20010007765A1 (en) | 1995-01-10 | 1998-08-27 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US10/119,546 Abandoned US20030114647A1 (en) | 1995-01-10 | 2002-04-10 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US10/634,970 Expired - Fee Related US7419600B2 (en) | 1995-01-10 | 2003-08-05 | Method for purifying a branched water-soluble polymer |
US12/284,357 Expired - Fee Related US7786221B2 (en) | 1995-01-10 | 2008-09-20 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US12/849,683 Expired - Fee Related US8354477B2 (en) | 1995-01-10 | 2010-08-03 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US13/714,917 Expired - Fee Related US8546493B2 (en) | 1995-01-10 | 2012-12-14 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/443,383 Expired - Lifetime US5932462A (en) | 1995-01-10 | 1995-05-17 | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/119,546 Abandoned US20030114647A1 (en) | 1995-01-10 | 2002-04-10 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US10/634,970 Expired - Fee Related US7419600B2 (en) | 1995-01-10 | 2003-08-05 | Method for purifying a branched water-soluble polymer |
US12/284,357 Expired - Fee Related US7786221B2 (en) | 1995-01-10 | 2008-09-20 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US12/849,683 Expired - Fee Related US8354477B2 (en) | 1995-01-10 | 2010-08-03 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US13/714,917 Expired - Fee Related US8546493B2 (en) | 1995-01-10 | 2012-12-14 | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
Country Status (3)
Country | Link |
---|---|
US (7) | US5932462A (en) |
AU (1) | AU4755596A (en) |
WO (1) | WO1996021469A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020107389A1 (en) * | 1992-07-15 | 2002-08-08 | Coutts Stephen M. | Conjugates of chemically defined non-polymeric valency platform molecules and biologically active molecules |
US20030018190A1 (en) * | 1998-12-09 | 2003-01-23 | Jones David S. | Valency platform molecules comprising carbamate linkages |
US8440309B2 (en) | 2011-01-31 | 2013-05-14 | Confluent Surgical, Inc. | Crosslinked polymers with the crosslinker as therapeutic for sustained release |
Families Citing this family (701)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6011020A (en) * | 1990-06-11 | 2000-01-04 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligand complexes |
US6168778B1 (en) | 1990-06-11 | 2001-01-02 | Nexstar Pharmaceuticals, Inc. | Vascular endothelial growth factor (VEGF) Nucleic Acid Ligand Complexes |
US6465188B1 (en) | 1990-06-11 | 2002-10-15 | Gilead Sciences, Inc. | Nucleic acid ligand complexes |
US6147204A (en) * | 1990-06-11 | 2000-11-14 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligand complexes |
US6395888B1 (en) * | 1996-02-01 | 2002-05-28 | Gilead Sciences, Inc. | High affinity nucleic acid ligands of complement system proteins |
US6191105B1 (en) | 1993-05-10 | 2001-02-20 | Protein Delivery, Inc. | Hydrophilic and lipophilic balanced microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents such as insulin |
US5919455A (en) * | 1993-10-27 | 1999-07-06 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US6057287A (en) | 1994-01-11 | 2000-05-02 | Dyax Corp. | Kallikrein-binding "Kunitz domain" proteins and analogues thereof |
US5545553A (en) * | 1994-09-26 | 1996-08-13 | The Rockefeller University | Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them |
US5932462A (en) * | 1995-01-10 | 1999-08-03 | Shearwater Polymers, Inc. | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US5859228A (en) * | 1995-05-04 | 1999-01-12 | Nexstar Pharmaceuticals, Inc. | Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes |
US8071737B2 (en) | 1995-05-04 | 2011-12-06 | Glead Sciences, Inc. | Nucleic acid ligand complexes |
ES2093593T1 (en) * | 1995-05-05 | 1997-01-01 | Hoffmann La Roche | RECOMBINANT OBESE PROTEINS (OB). |
US6229002B1 (en) | 1995-06-07 | 2001-05-08 | Nexstar Pharmaceuticlas, Inc. | Platelet derived growth factor (PDGF) nucleic acid ligand complexes |
PT1704878E (en) | 1995-12-18 | 2013-07-17 | Angiodevice Internat Gmbh | Crosslinked polymer compositions and methods for their use |
US6833408B2 (en) | 1995-12-18 | 2004-12-21 | Cohesion Technologies, Inc. | Methods for tissue repair using adhesive materials |
US6025324A (en) * | 1996-05-15 | 2000-02-15 | Hoffmann-La Roche Inc. | Pegylated obese (ob) protein compositions |
TW517067B (en) * | 1996-05-31 | 2003-01-11 | Hoffmann La Roche | Interferon conjugates |
US6566406B1 (en) * | 1998-12-04 | 2003-05-20 | Incept, Llc | Biocompatible crosslinked polymers |
AU4648697A (en) * | 1996-09-23 | 1998-04-14 | Chandrashekar Pathak | Methods and devices for preparing protein concentrates |
US8003705B2 (en) * | 1996-09-23 | 2011-08-23 | Incept Llc | Biocompatible hydrogels made with small molecule precursors |
US6214966B1 (en) * | 1996-09-26 | 2001-04-10 | Shearwater Corporation | Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution |
US6056973A (en) * | 1996-10-11 | 2000-05-02 | Sequus Pharmaceuticals, Inc. | Therapeutic liposome composition and method of preparation |
US6426335B1 (en) | 1997-10-17 | 2002-07-30 | Gilead Sciences, Inc. | Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes |
US6051698A (en) * | 1997-06-06 | 2000-04-18 | Janjic; Nebojsa | Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes |
US6258351B1 (en) | 1996-11-06 | 2001-07-10 | Shearwater Corporation | Delivery of poly(ethylene glycol)-modified molecules from degradable hydrogels |
US6743248B2 (en) | 1996-12-18 | 2004-06-01 | Neomend, Inc. | Pretreatment method for enhancing tissue adhesion |
US20040176801A1 (en) * | 1997-03-12 | 2004-09-09 | Neomend, Inc. | Pretreatment method for enhancing tissue adhesion |
US20030191496A1 (en) * | 1997-03-12 | 2003-10-09 | Neomend, Inc. | Vascular sealing device with microwave antenna |
US6371975B2 (en) | 1998-11-06 | 2002-04-16 | Neomend, Inc. | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers |
EP0975691B1 (en) * | 1997-04-21 | 2010-10-13 | California Institute Of Technology | Multifunctional polymeric coatings |
JP2002516615A (en) * | 1997-06-25 | 2002-06-04 | ノボザイムス アクティーゼルスカブ | Denatured polypeptide |
US6284246B1 (en) * | 1997-07-30 | 2001-09-04 | The Procter & Gamble Co. | Modified polypeptides with high activity and reduced allergenicity |
US6583251B1 (en) | 1997-09-08 | 2003-06-24 | Emory University | Modular cytomimetic biomaterials, transport studies, preparation and utilization thereof |
CN1276730A (en) * | 1997-09-18 | 2000-12-13 | 霍夫曼-拉罗奇有限公司 | Use of IFN-alpha and amantadine for treatment of chronic hepatitis C |
EP0922446A1 (en) | 1997-12-03 | 1999-06-16 | Applied Research Systems Ars Holding N.V. | Solution-phase site-specific preparation of GRF-PEG conjugates |
AU741166B2 (en) * | 1997-12-12 | 2001-11-22 | Macromed, Inc. | Heterofunctionalized star-shaped poly(ethylene glycols) for protein modification |
WO1999045964A1 (en) | 1998-03-12 | 1999-09-16 | Shearwater Polymers, Incorporated | Poly(ethylene glycol) derivatives with proximal reactive groups |
US7953788B2 (en) | 2001-09-29 | 2011-05-31 | Siebel Systems, Inc. | System and method for queuing data for an application server |
TR200003161T2 (en) | 1998-04-28 | 2001-01-22 | Applied Research Systems Ars Holding N.V. | Polyol-IFN-Beta conjugates |
ES2309618T3 (en) * | 1998-04-28 | 2008-12-16 | Laboratoires Serono Sa | CONJUGATES OF LHRH-PEG ANALOGS. |
EP1588717B1 (en) * | 1998-04-28 | 2008-07-02 | Laboratoires Serono SA | PEG-LHRH analog conjugates |
US6258782B1 (en) | 1998-05-20 | 2001-07-10 | Trimeris, Inc. | Hybrid polypeptides with enhanced pharmacokinetic properties |
US6656906B1 (en) * | 1998-05-20 | 2003-12-02 | Trimeris, Inc. | Hybrid polypeptides with enhanced pharmacokinetic properties |
WO1999064016A1 (en) * | 1998-06-08 | 1999-12-16 | F. Hoffmann-La Roche Ag | Use of peg-ifn-alpha and ribavirin for the treatment of chronic hepatitis c |
CA2728907C (en) * | 1998-08-06 | 2015-11-24 | Mountain View Pharmaceuticals, Inc. | Peg-urate oxidase conjugates and use thereof |
US6783965B1 (en) * | 2000-02-10 | 2004-08-31 | Mountain View Pharmaceuticals, Inc. | Aggregate-free urate oxidase for preparation of non-immunogenic polymer conjugates |
US6703381B1 (en) | 1998-08-14 | 2004-03-09 | Nobex Corporation | Methods for delivery therapeutic compounds across the blood-brain barrier |
US6632457B1 (en) | 1998-08-14 | 2003-10-14 | Incept Llc | Composite hydrogel drug delivery systems |
AU759991B2 (en) * | 1998-08-26 | 2003-05-01 | Neo Mend, Inc. | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures |
US6994686B2 (en) | 1998-08-26 | 2006-02-07 | Neomend, Inc. | Systems for applying cross-linked mechanical barriers |
US6458147B1 (en) | 1998-11-06 | 2002-10-01 | Neomend, Inc. | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue |
KR20010079898A (en) | 1998-09-22 | 2001-08-22 | 데이비드 엠 모이어 | Personal care compositions containing active proteins tethered to a water insoluble substrate |
US6949114B2 (en) | 1998-11-06 | 2005-09-27 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US6830756B2 (en) | 1998-11-06 | 2004-12-14 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US6899889B1 (en) * | 1998-11-06 | 2005-05-31 | Neomend, Inc. | Biocompatible material composition adaptable to diverse therapeutic indications |
US7279001B2 (en) * | 1998-11-06 | 2007-10-09 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US6958212B1 (en) * | 1999-02-01 | 2005-10-25 | Eidgenossische Technische Hochschule Zurich | Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds |
ES2632564T3 (en) | 1999-02-01 | 2017-09-14 | Eidgenössische Technische Hochschule Zürich | Bio-materials formed by nucleophilic addition reaction to conjugated unsaturated groups |
EP1190252B1 (en) * | 1999-04-28 | 2008-12-31 | Eidgenössische Technische Hochschule Zürich | Polyionic coatings in analytic and sensor devices |
CN1358171A (en) * | 1999-06-08 | 2002-07-10 | 拉卓拉药物公司 | Valency platform molecules comprising aminooxy groups |
US6309633B1 (en) | 1999-06-19 | 2001-10-30 | Nobex Corporation | Amphiphilic drug-oligomer conjugates with hydroyzable lipophile components and methods for making and using the same |
US7169889B1 (en) | 1999-06-19 | 2007-01-30 | Biocon Limited | Insulin prodrugs hydrolyzable in vivo to yield peglylated insulin |
CZ299516B6 (en) * | 1999-07-02 | 2008-08-20 | F. Hoffmann-La Roche Ag | Erythropoietin glycoprotein conjugate, process for its preparation and use and pharmaceutical composition containing thereof |
PE20010288A1 (en) | 1999-07-02 | 2001-03-07 | Hoffmann La Roche | ERYTHROPOYETIN DERIVATIVES |
US6541508B2 (en) | 1999-09-13 | 2003-04-01 | Nobex Corporation | Taxane prodrugs |
US6713454B1 (en) * | 1999-09-13 | 2004-03-30 | Nobex Corporation | Prodrugs of etoposide and etoposide analogs |
US6380405B1 (en) | 1999-09-13 | 2002-04-30 | Nobex Corporation | Taxane prodrugs |
US6303119B1 (en) | 1999-09-22 | 2001-10-16 | The Procter & Gamble Company | Personal care compositions containing subtilisin enzymes bound to water insoluble substrates |
AU782298B2 (en) * | 1999-10-04 | 2005-07-14 | Nektar Therapeutics | Polymer stabilized neuropeptides |
US7074878B1 (en) | 1999-12-10 | 2006-07-11 | Harris J Milton | Hydrolytically degradable polymers and hydrogels made therefrom |
US6348558B1 (en) | 1999-12-10 | 2002-02-19 | Shearwater Corporation | Hydrolytically degradable polymers and hydrogels made therefrom |
US6638906B1 (en) | 1999-12-13 | 2003-10-28 | Nobex Corporation | Amphiphilic polymers and polypeptide conjugates comprising same |
EP2070968A3 (en) | 1999-12-22 | 2013-07-24 | Nektar Therapeutics | Method for the Preparation of 1-Benzotriazolyl Carbonate Esters of Poly(ethylene glycol) |
AU2223401A (en) | 1999-12-24 | 2001-07-09 | Kyowa Hakko Kogyo Co. Ltd. | Branched polyalkylene glycols |
JP2003519478A (en) | 2000-01-10 | 2003-06-24 | マキシゲン・ホールディングズ・リミテッド | G-CSF conjugate |
JP2003521930A (en) | 2000-02-11 | 2003-07-22 | マキシゲン・エイピーエス | Factor VII or Factor VIIa-like molecule |
AU2001257577A1 (en) | 2000-02-28 | 2001-09-03 | Shearwater Corporation | Water-soluble polymer conjugates of artelinic acid |
US6756037B2 (en) | 2000-03-31 | 2004-06-29 | Enzon, Inc. | Polymer conjugates of biologically active agents and extension moieties for facilitating conjugation of biologically active agents to polymeric terminal groups |
US6777387B2 (en) | 2000-03-31 | 2004-08-17 | Enzon Pharmaceuticals, Inc. | Terminally-branched polymeric linkers containing extension moieties and polymeric conjugates containing the same |
EP1272237A1 (en) | 2000-04-13 | 2003-01-08 | Emory University | Antithrombogenic membrane mimetic compositions and methods |
US7291673B2 (en) * | 2000-06-02 | 2007-11-06 | Eidgenossiche Technische Hochschule Zurich | Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds |
US6951939B2 (en) | 2000-06-08 | 2005-10-04 | La Jolla Pharmaceutical Company | Multivalent platform molecules comprising high molecular weight polyethylene oxide |
IL153789A0 (en) * | 2000-07-12 | 2003-07-31 | Gryphon Therapeutics Inc | Chemokine receptor modulators, production and use |
JP2004512062A (en) | 2000-07-28 | 2004-04-22 | エモリー ユニバーシテイ | Biological components consisting of artificial membranes |
US7118737B2 (en) * | 2000-09-08 | 2006-10-10 | Amylin Pharmaceuticals, Inc. | Polymer-modified synthetic proteins |
AU7338501A (en) * | 2000-09-08 | 2002-03-22 | Gryphon Sciences | Polymer-modified synthetic proteins |
EP1324779B1 (en) | 2000-09-29 | 2011-07-20 | Schering Corporation | Pegylated interleukin-10 |
US7132475B2 (en) * | 2000-10-19 | 2006-11-07 | Ecole Polytechnique Federale De Lausanne | Block copolymers for multifunctional self-assembled systems |
TW593427B (en) * | 2000-12-18 | 2004-06-21 | Nektar Therapeutics Al Corp | Synthesis of high molecular weight non-peptidic polymer derivatives |
US7053150B2 (en) * | 2000-12-18 | 2006-05-30 | Nektar Therapeutics Al, Corporation | Segmented polymers and their conjugates |
JP2004526691A (en) | 2001-01-12 | 2004-09-02 | エモリー ユニバーシティ | Sugar polymer and free radical polymerization method |
TWI246524B (en) | 2001-01-19 | 2006-01-01 | Shearwater Corp | Multi-arm block copolymers as drug delivery vehicles |
US7265186B2 (en) * | 2001-01-19 | 2007-09-04 | Nektar Therapeutics Al, Corporation | Multi-arm block copolymers as drug delivery vehicles |
CA2436623C (en) * | 2001-01-30 | 2011-08-02 | Kyowa Hakko Kogyo Co., Ltd. | Branched polyalkylene glycols |
US6867183B2 (en) | 2001-02-15 | 2005-03-15 | Nobex Corporation | Pharmaceutical compositions of insulin drug-oligomer conjugates and methods of treating diseases therewith |
US7060675B2 (en) | 2001-02-15 | 2006-06-13 | Nobex Corporation | Methods of treating diabetes mellitus |
MXPA03007619A (en) | 2001-02-27 | 2003-12-04 | Maxygen Aps | New interferon beta-like molecules. |
WO2002074158A2 (en) * | 2001-03-20 | 2002-09-26 | Eidgenossische Technische Hochschule Zurich | Two-phase processing of thermosensitive polymers for use as biomaterials |
US6858580B2 (en) | 2001-06-04 | 2005-02-22 | Nobex Corporation | Mixtures of drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same |
US7713932B2 (en) | 2001-06-04 | 2010-05-11 | Biocon Limited | Calcitonin drug-oligomer conjugates, and uses thereof |
US6828305B2 (en) | 2001-06-04 | 2004-12-07 | Nobex Corporation | Mixtures of growth hormone drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same |
US6828297B2 (en) | 2001-06-04 | 2004-12-07 | Nobex Corporation | Mixtures of insulin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same |
US6713452B2 (en) | 2001-06-04 | 2004-03-30 | Nobex Corporation | Mixtures of calcitonin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same |
US20040077835A1 (en) * | 2001-07-12 | 2004-04-22 | Robin Offord | Chemokine receptor modulators, production and use |
EP1419191B1 (en) | 2001-08-22 | 2007-10-17 | Bioartificial Gel Technologies Inc. | Process for the preparation of activated polyethylene glycols |
KR100761652B1 (en) * | 2001-08-25 | 2007-10-04 | 동아제약주식회사 | Various polymer derivatives and conjugates that bind to proteins or peptides |
US7030082B2 (en) * | 2001-09-07 | 2006-04-18 | Nobex Corporation | Pharmaceutical compositions of drug-oligomer conjugates and methods of treating disease therewith |
US6770625B2 (en) | 2001-09-07 | 2004-08-03 | Nobex Corporation | Pharmaceutical compositions of calcitonin drug-oligomer conjugates and methods of treating diseases therewith |
US7312192B2 (en) * | 2001-09-07 | 2007-12-25 | Biocon Limited | Insulin polypeptide-oligomer conjugates, proinsulin polypeptide-oligomer conjugates and methods of synthesizing same |
US6913903B2 (en) | 2001-09-07 | 2005-07-05 | Nobex Corporation | Methods of synthesizing insulin polypeptide-oligomer conjugates, and proinsulin polypeptide-oligomer conjugates and methods of synthesizing same |
US7196059B2 (en) | 2001-09-07 | 2007-03-27 | Biocon Limited | Pharmaceutical compositions of insulin drug-oligomer conjugates and methods of treating diseases therewith |
US7166571B2 (en) * | 2001-09-07 | 2007-01-23 | Biocon Limited | Insulin polypeptide-oligomer conjugates, proinsulin polypeptide-oligomer conjugates and methods of synthesizing same |
US6908963B2 (en) | 2001-10-09 | 2005-06-21 | Nektar Therapeutics Al, Corporation | Thioester polymer derivatives and method of modifying the N-terminus of a polypeptide therewith |
US7214660B2 (en) * | 2001-10-10 | 2007-05-08 | Neose Technologies, Inc. | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
US7157277B2 (en) | 2001-11-28 | 2007-01-02 | Neose Technologies, Inc. | Factor VIII remodeling and glycoconjugation of Factor VIII |
US7173003B2 (en) | 2001-10-10 | 2007-02-06 | Neose Technologies, Inc. | Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF |
US7795210B2 (en) | 2001-10-10 | 2010-09-14 | Novo Nordisk A/S | Protein remodeling methods and proteins/peptides produced by the methods |
CN105131104B (en) | 2001-10-10 | 2018-11-16 | 诺和诺德公司 | The reconstruct and sugar conjugation of peptide |
US7696163B2 (en) | 2001-10-10 | 2010-04-13 | Novo Nordisk A/S | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
US7179617B2 (en) * | 2001-10-10 | 2007-02-20 | Neose Technologies, Inc. | Factor IX: remolding and glycoconjugation of Factor IX |
US8008252B2 (en) * | 2001-10-10 | 2011-08-30 | Novo Nordisk A/S | Factor VII: remodeling and glycoconjugation of Factor VII |
JP4814488B2 (en) | 2001-10-18 | 2011-11-16 | ネクター セラピューティックス | Polymer conjugate opioid antagonist |
US7026440B2 (en) | 2001-11-07 | 2006-04-11 | Nektar Therapeutics Al, Corporation | Branched polymers and their conjugates |
CA2465090C (en) * | 2001-11-09 | 2010-02-02 | Enzon, Inc. | Polymeric thiol-linked prodrugs employing benzyl elimination systems |
US20030171285A1 (en) * | 2001-11-20 | 2003-09-11 | Finn Rory F. | Chemically-modified human growth hormone conjugates |
US7473680B2 (en) | 2001-11-28 | 2009-01-06 | Neose Technologies, Inc. | Remodeling and glycoconjugation of peptides |
DE60323936D1 (en) * | 2002-01-14 | 2008-11-20 | Gen Hospital Corp | BIOABEAABLE POLYCETALES, METHOD FOR THE PRODUCTION THEREOF, AND THEIR USE |
CN1176137C (en) * | 2002-01-15 | 2004-11-17 | 泛亚生物技术有限公司 | Multi-arm fork type functional polyethylene glycol preparation method and its application in medicine |
US7144978B2 (en) * | 2002-01-15 | 2006-12-05 | Pan Asia Bio Co., Ltd. | Multidrop tree branching functional polyethylene glycol, methods of preparing and using same |
ES2291613T3 (en) | 2002-01-16 | 2008-03-01 | Biocompatibles Uk Limited | CONJUGATES OF POLYMERS. |
NZ534708A (en) | 2002-01-18 | 2007-05-31 | Biogen Idec Inc | Polyalkylene glycol with moiety for conjugating biologically active compound |
AU2003216379A1 (en) * | 2002-02-22 | 2003-09-09 | Control Delivery Systems, Inc. | Method for treating otic disorders |
JP4284412B2 (en) * | 2002-03-01 | 2009-06-24 | 独立行政法人産業技術総合研究所 | Cell and liposome immobilization body and immobilization method thereof |
US20030179692A1 (en) * | 2002-03-19 | 2003-09-25 | Yoshitaka Ohotomo | Storage medium |
US7557195B2 (en) * | 2002-03-20 | 2009-07-07 | Biopolymed, Inc. | Stoichiometric conjugates of biocompatible polymers at the unpaired cysteine residue of the wild-type G-CSF |
US8282912B2 (en) * | 2002-03-22 | 2012-10-09 | Kuros Biosurgery, AG | Compositions for tissue augmentation |
ITMI20020951A1 (en) * | 2002-05-06 | 2003-11-06 | Univ Degli Studi Trieste | MULTIFUNCTIONAL DERIVATIVES OF POLYETHYLENGLICLE THEIR PREPARATION AND USE |
EP1534753B1 (en) * | 2002-05-28 | 2011-08-03 | UCB Pharma, S.A. | Peg positional isomer of an anti-tnfalpha antibody (cdp870) |
DK1531791T3 (en) | 2002-06-07 | 2010-11-01 | Dyax Corp | Prevention and restriction of ischemia |
US7153829B2 (en) | 2002-06-07 | 2006-12-26 | Dyax Corp. | Kallikrein-inhibitor therapies |
US7601688B2 (en) | 2002-06-13 | 2009-10-13 | Biocon Limited | Methods of reducing hypoglycemic episodes in the treatment of diabetes mellitus |
MXPA04012496A (en) | 2002-06-21 | 2005-09-12 | Novo Nordisk Healthcare Ag | Pegylated factor vii glycoforms. |
WO2004000366A1 (en) | 2002-06-21 | 2003-12-31 | Novo Nordisk Health Care Ag | Pegylated factor vii glycoforms |
ES2254725T3 (en) * | 2002-06-29 | 2006-06-16 | Aquanova German Solubilisate Technologies (Agt) Gmbh | CONCENTRATES OF ISOFLAVONES AND METHODS FOR PREPARATION. |
US7598224B2 (en) | 2002-08-20 | 2009-10-06 | Biosurface Engineering Technologies, Inc. | Dual chain synthetic heparin-binding growth factor analogs |
US8227411B2 (en) * | 2002-08-20 | 2012-07-24 | BioSurface Engineering Technologies, Incle | FGF growth factor analogs |
US7166574B2 (en) * | 2002-08-20 | 2007-01-23 | Biosurface Engineering Technologies, Inc. | Synthetic heparin-binding growth factor analogs |
WO2004019861A2 (en) * | 2002-08-28 | 2004-03-11 | Pharmacia Corporation | Stable ph optimized formulation of a modified antibody |
US20040247588A1 (en) * | 2002-08-28 | 2004-12-09 | Johnson Robert E. | Formulations of modified antibodies and methods of making the same |
WO2004019991A2 (en) * | 2002-08-30 | 2004-03-11 | F. Hoffmann-La Roche Ag | Scatter factor/hepatocyte growth factor antagonist nk4 for the treatment of glioma |
ATE361761T1 (en) * | 2002-09-27 | 2007-06-15 | Hoffmann La Roche | POLY(ETHYLENE GLYCOL) CONJUGATES OF INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN-4 |
US20040062748A1 (en) | 2002-09-30 | 2004-04-01 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
US8129330B2 (en) * | 2002-09-30 | 2012-03-06 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
PA8588901A1 (en) * | 2002-11-20 | 2005-02-04 | Pharmacia Corp | CONJUGATES OF N-TERMINAL HUMAN GROWTH HORMONE HORMONE AND PROCESS FOR PREPARATION |
US8853376B2 (en) | 2002-11-21 | 2014-10-07 | Archemix Llc | Stabilized aptamers to platelet derived growth factor and their use as oncology therapeutics |
US7648962B2 (en) * | 2002-11-26 | 2010-01-19 | Biocon Limited | Natriuretic compounds, conjugates, and uses thereof |
SG159387A1 (en) | 2002-11-26 | 2010-03-30 | Biocon Ltd In | Modified natriuretic compounds, conjugates, and uses thereof |
NZ541122A (en) * | 2002-12-26 | 2008-09-26 | Mountain View Pharmaceuticals | Polymer conjugates of cytokines, chemokines, growth factors, polypeptide hormones and antagonists thereof with preserved receptor-binding activity |
RS20050502A (en) * | 2002-12-26 | 2007-08-03 | Mountain View Pharmaceuticals Inc., | Polymer conjugates of interferon- beta with enhanced biological potency |
WO2004061094A1 (en) | 2002-12-30 | 2004-07-22 | Gryphon Therapeutics, Inc. | Water-soluble thioester and selenoester compounds and methods for making and using the same |
US7432331B2 (en) | 2002-12-31 | 2008-10-07 | Nektar Therapeutics Al, Corporation | Hydrolytically stable maleimide-terminated polymers |
US7208145B2 (en) * | 2002-12-31 | 2007-04-24 | Nektar Therapeutics Al, Corporation | Polymeric reagents comprising a ketone or a related functional group |
CA2509153C (en) * | 2002-12-31 | 2013-04-16 | Nektar Therapeutics Al, Corporation | Hydrolytically stable maleimide-terminated polymers |
CA2509260C (en) | 2002-12-31 | 2012-10-02 | Nektar Therapeutics Al, Corporation | Maleamic acid polymer derivatives and their bioconjugates |
US20060014248A1 (en) * | 2003-01-06 | 2006-01-19 | Xencor, Inc. | TNF super family members with altered immunogenicity |
KR101207247B1 (en) | 2003-01-06 | 2012-12-03 | 넥타르 테라퓨틱스 | Thiol-selective water-soluble polymer derivatives |
US20050221443A1 (en) * | 2003-01-06 | 2005-10-06 | Xencor, Inc. | Tumor necrosis factor super family agonists |
US20050130892A1 (en) * | 2003-03-07 | 2005-06-16 | Xencor, Inc. | BAFF variants and methods thereof |
US7553930B2 (en) * | 2003-01-06 | 2009-06-30 | Xencor, Inc. | BAFF variants and methods thereof |
GB0301014D0 (en) * | 2003-01-16 | 2003-02-19 | Biocompatibles Ltd | Conjugation reactions |
WO2004074345A2 (en) * | 2003-02-19 | 2004-09-02 | Pharmacia Corporation | Carbonate esters of polyethylene glycol activated by means of oxalate esters |
MXPA05009169A (en) | 2003-02-26 | 2005-11-17 | Nektar Therapeutics Al Corp | Polymer-factor viii moiety conjugates. |
US20060104968A1 (en) | 2003-03-05 | 2006-05-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases |
US7871607B2 (en) | 2003-03-05 | 2011-01-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
KR20050118273A (en) * | 2003-03-05 | 2005-12-16 | 할로자임, 아이엔씨 | Soluble hyaluronidase glycoprotein (shasegp), process for preparing the same, uses and pharmaceutical compositions comprising thereof |
US20090123367A1 (en) * | 2003-03-05 | 2009-05-14 | Delfmems | Soluble Glycosaminoglycanases and Methods of Preparing and Using Soluble Glycosaminoglycanases |
US7803777B2 (en) * | 2003-03-14 | 2010-09-28 | Biogenerix Ag | Branched water-soluble polymers and their conjugates |
US7587286B2 (en) * | 2003-03-31 | 2009-09-08 | Xencor, Inc. | Methods for rational pegylation of proteins |
US7610156B2 (en) * | 2003-03-31 | 2009-10-27 | Xencor, Inc. | Methods for rational pegylation of proteins |
US7642340B2 (en) | 2003-03-31 | 2010-01-05 | Xencor, Inc. | PEGylated TNF-α variant proteins |
EP2338333B1 (en) | 2003-04-09 | 2017-09-06 | ratiopharm GmbH | Glycopegylation methods and proteins/peptides produced by the methods |
WO2006127896A2 (en) * | 2005-05-25 | 2006-11-30 | Neose Technologies, Inc. | Glycopegylated factor ix |
US8791070B2 (en) | 2003-04-09 | 2014-07-29 | Novo Nordisk A/S | Glycopegylated factor IX |
US7691603B2 (en) * | 2003-04-09 | 2010-04-06 | Novo Nordisk A/S | Intracellular formation of peptide conjugates |
ATE459647T1 (en) | 2003-04-15 | 2010-03-15 | Glaxosmithkline Llc | HUMAN IL-18 SUBSTITUTION MUTANTS AND THEIR CONJUGATES |
ES2380093T3 (en) | 2003-05-09 | 2012-05-08 | Biogenerix Ag | Compositions and methods for the preparation of human growth hormone glycosylation mutants |
EP2644206B1 (en) * | 2003-05-23 | 2019-04-03 | Nektar Therapeutics | PEG derivatives containing two PEG chains |
US7947261B2 (en) * | 2003-05-23 | 2011-05-24 | Nektar Therapeutics | Conjugates formed from polymer derivatives having particular atom arrangements |
SI1656410T1 (en) * | 2003-07-22 | 2010-07-30 | Nektar Therapeutics | Method for preparing functionalized polymers from polymer alcohols |
US9005625B2 (en) | 2003-07-25 | 2015-04-14 | Novo Nordisk A/S | Antibody toxin conjugates |
WO2005014049A2 (en) * | 2003-08-08 | 2005-02-17 | Novo Nordisk A/S | Synthesis and application of new structural well defined branched polymers as conjugating agents for peptides |
CN1934255B (en) * | 2003-08-27 | 2012-07-11 | 奥普索特克公司 | Combination therapy for the treatment of ocular neovascular disorders |
EP1663281B1 (en) * | 2003-08-29 | 2013-12-25 | Dyax Corp. | Poly-pegylated protease inhibitors |
EP2322569B1 (en) * | 2003-10-09 | 2020-08-26 | Ambrx, Inc. | Polymer derivatives for the selective modification of proteins |
CN1867581B (en) | 2003-10-10 | 2012-02-01 | 诺沃挪第克公司 | IL-21 derivatives |
EP1675871A2 (en) | 2003-10-10 | 2006-07-05 | Xencor Inc. | Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders |
EP2633866A3 (en) | 2003-10-17 | 2013-12-18 | Novo Nordisk A/S | Combination therapy |
US20050214250A1 (en) | 2003-11-06 | 2005-09-29 | Harris J M | Method of preparing carboxylic acid functionalized polymers |
WO2005051327A2 (en) * | 2003-11-24 | 2005-06-09 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
US20080305992A1 (en) | 2003-11-24 | 2008-12-11 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
US8633157B2 (en) | 2003-11-24 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated erythropoietin |
US7956032B2 (en) * | 2003-12-03 | 2011-06-07 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
US20060040856A1 (en) * | 2003-12-03 | 2006-02-23 | Neose Technologies, Inc. | Glycopegylated factor IX |
EP1694315A4 (en) * | 2003-12-03 | 2009-10-28 | Novo Nordisk As | GLYCOPEGYLATED FACTOR IX |
WO2005055946A2 (en) * | 2003-12-03 | 2005-06-23 | Neose Technologies, Inc. | Glycopegylated granulocyte colony stimulating factor |
WO2005056636A2 (en) | 2003-12-03 | 2005-06-23 | Nektar Therapeutics Al, Corporation | Method of preparing maleimide functionalized polymers |
US20080318850A1 (en) * | 2003-12-03 | 2008-12-25 | Neose Technologies, Inc. | Glycopegylated Factor Ix |
SI1694363T1 (en) | 2003-12-16 | 2014-03-31 | Nektar Therapeutics | Monodisperse PEGylated naloxol compositions |
US20060182692A1 (en) | 2003-12-16 | 2006-08-17 | Fishburn C S | Chemically modified small molecules |
KR20060135661A (en) | 2003-12-18 | 2006-12-29 | 노보 노르디스크 에이/에스 | Novel glp-1 compounds |
GB0329825D0 (en) * | 2003-12-23 | 2004-01-28 | Celltech R&D Ltd | Biological products |
NZ548123A (en) * | 2004-01-08 | 2010-05-28 | Novo Nordisk As | O-linked glycosylation of peptides |
EP1720892B1 (en) * | 2004-01-26 | 2013-07-24 | BioGeneriX AG | Branched polymer-modified sugars and nucleotides |
NZ548255A (en) | 2004-02-02 | 2010-10-29 | Ambrx Inc | Modified human interferon polypeptides and their uses |
WO2006069220A2 (en) | 2004-12-22 | 2006-06-29 | Ambrx, Inc. | Modified human growth hormone |
US7414028B1 (en) * | 2004-02-04 | 2008-08-19 | Biosurface Engineering Technologies, Inc. | Growth factor analogs |
US7528105B1 (en) | 2004-02-10 | 2009-05-05 | Biosurface Engineering Technologies | Heterodimeric chain synthetic heparin-binding growth factor analogs |
US20080227696A1 (en) * | 2005-02-22 | 2008-09-18 | Biosurface Engineering Technologies, Inc. | Single branch heparin-binding growth factor analogs |
US20060024347A1 (en) * | 2004-02-10 | 2006-02-02 | Biosurface Engineering Technologies, Inc. | Bioactive peptide coatings |
US7671012B2 (en) | 2004-02-10 | 2010-03-02 | Biosurface Engineering Technologies, Inc. | Formulations and methods for delivery of growth factor analogs |
US7803931B2 (en) | 2004-02-12 | 2010-09-28 | Archemix Corp. | Aptamer therapeutics useful in the treatment of complement-related disorders |
US6887952B1 (en) * | 2004-02-12 | 2005-05-03 | Biosite, Inc. | N-aryl-carbamic acid ester-derived and valeric acid ester-derived cross-linkers and conjugates, and methods for their synthesis and use |
JP4895826B2 (en) | 2004-02-20 | 2012-03-14 | バイオサーフェス エンジニアリング テクノロジーズ,インク. | Bone morphogenetic protein-2 positive modulator |
US7833978B2 (en) | 2004-02-20 | 2010-11-16 | Emory University | Thrombomodulin derivatives and conjugates |
US7351787B2 (en) * | 2004-03-05 | 2008-04-01 | Bioartificial Gel Technologies, Inc. | Process for the preparation of activated polyethylene glycols |
US9446139B2 (en) * | 2004-03-15 | 2016-09-20 | Nektar Therapeutics | Polymer-based compositions and conjugates of HIV entry inhibitors |
CA2560259C (en) * | 2004-03-17 | 2016-08-16 | Anticancer, Inc. | Methods for increasing protein polyethylene glycol (peg) conjugation |
CA2557782A1 (en) * | 2004-03-17 | 2005-10-06 | Eli Lilly And Company | Glycol linked fgf-21 compounds |
US7824672B2 (en) | 2004-03-26 | 2010-11-02 | Emory University | Method for coating living cells |
WO2005115477A2 (en) | 2004-04-13 | 2005-12-08 | Quintessence Biosciences, Inc. | Non-natural ribonuclease conjugates as cytotoxic agents |
WO2005107815A2 (en) * | 2004-05-03 | 2005-11-17 | Nektar Therapeutics Al, Corporation | Polymer derivatives comprising an imide branching point |
WO2005108463A2 (en) * | 2004-05-03 | 2005-11-17 | Nektar Therapeutics Al, Corporation | Branched polyethylen glycol derivates comprising an acetal or ketal branching point |
MXPA06014307A (en) * | 2004-06-08 | 2007-03-12 | Alza Corp | Preparation of macromolecular conjugates by four-component condensation reaction. |
JP2008503217A (en) * | 2004-06-18 | 2008-02-07 | アンブレツクス・インコーポレイテツド | Novel antigen-binding polypeptides and their use |
US20080300173A1 (en) | 2004-07-13 | 2008-12-04 | Defrees Shawn | Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1] |
DE602005025355D1 (en) * | 2004-07-16 | 2011-01-27 | Nektar Therapeutics San Carlos | CONJUGATE CONTAINS GM-CSF AND A POLYMER |
AU2005269753B2 (en) | 2004-07-19 | 2011-08-18 | Biocon Limited | Insulin-oligomer conjugates, formulations and uses thereof |
JP2008507280A (en) * | 2004-07-21 | 2008-03-13 | アンブレツクス・インコーポレイテツド | Biosynthetic polypeptides using non-naturally encoded amino acids |
US20060040377A1 (en) * | 2004-08-17 | 2006-02-23 | Biocept, Inc. | Protein microarrays |
WO2006031583A2 (en) * | 2004-09-09 | 2006-03-23 | Biosite Incorporated | Methods and compositions for measuring canine bnp and uses thereof |
EP1799249A2 (en) | 2004-09-10 | 2007-06-27 | Neose Technologies, Inc. | Glycopegylated interferon alpha |
WO2006034455A2 (en) | 2004-09-23 | 2006-03-30 | Vasgene Therapeutics, Inc. | Polipeptide compounds for inhibiting angiogenesis and tumor growth |
US7235530B2 (en) | 2004-09-27 | 2007-06-26 | Dyax Corporation | Kallikrein inhibitors and anti-thrombolytic agents and uses thereof |
EP1814573B1 (en) | 2004-10-29 | 2016-03-09 | ratiopharm GmbH | Remodeling and glycopegylation of fibroblast growth factor (fgf) |
ES2357089T5 (en) | 2004-12-21 | 2014-02-24 | Nektar Therapeutics | Stabilized polymer thiol reagents |
MX2007007581A (en) * | 2004-12-22 | 2007-07-24 | Ambrx Inc | Compositions of aminoacyl-trna synthetase and uses thereof. |
WO2006069246A2 (en) | 2004-12-22 | 2006-06-29 | Ambrx, Inc. | Compositions containing, methods involving, and uses of non-natural amino acids and polypeptides |
KR101224781B1 (en) | 2004-12-22 | 2013-01-21 | 암브룩스, 인코포레이티드 | Formulations of human growth hormone comprising a non-naturally encoded amino acid |
EP1674113A1 (en) * | 2004-12-22 | 2006-06-28 | F. Hoffmann-La Roche Ag | Conjugates of insulin-like growth factor-1 (IGF-1) and poly(ethylene glycol) |
NZ555206A (en) | 2004-12-22 | 2010-09-30 | Ambrx Inc | Methods for expression and purification of recombinant human growth hormone |
NZ556436A (en) * | 2005-01-10 | 2010-11-26 | Biogenerix Ag | Glycopegylated granulocyte colony stimulating factor |
US7879979B2 (en) * | 2005-01-21 | 2011-02-01 | Alere International | Arginine analogs, and methods for their synthesis and use |
EP1683573B1 (en) * | 2005-01-25 | 2009-08-05 | Varian B.V. | Chromatography columns |
US7365127B2 (en) * | 2005-02-04 | 2008-04-29 | Enzon Pharmaceuticals, Inc. | Process for the preparation of polymer conjugates |
CA2595633C (en) * | 2005-02-09 | 2013-11-19 | Ahmad R. Hadba | Synthetic sealants |
US8012488B2 (en) | 2005-02-18 | 2011-09-06 | Nof Corporation | Polyoxyalkylene derivative |
EP1861125A2 (en) * | 2005-03-23 | 2007-12-05 | Nektar Therapeutics Al, Corporation | Conjugates of an hgh moiety and peg derivatives |
EP1866427A4 (en) * | 2005-03-30 | 2010-09-01 | Novo Nordisk As | MANUFACTURING PROCESS FOR THE PRODUCTION OF CULTIVE PEPTIDES IN CELL LINES OF INSECTS |
US20060222596A1 (en) | 2005-04-01 | 2006-10-05 | Trivascular, Inc. | Non-degradable, low swelling, water soluble radiopaque hydrogel polymer |
CA2602654A1 (en) | 2005-04-05 | 2006-10-12 | Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa | Method for shielding functional sites or epitopes on proteins |
EP1871795A4 (en) * | 2005-04-08 | 2010-03-31 | Biogenerix Ag | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
JP2008535500A (en) | 2005-04-11 | 2008-09-04 | サビエント ファーマセウティカルズ インク. | Mutant urate oxidase and use thereof |
WO2006110761A2 (en) | 2005-04-11 | 2006-10-19 | Savient Pharmaceuticals, Inc. | A variant form of urate oxidase and use thereof |
US8148123B2 (en) | 2005-04-11 | 2012-04-03 | Savient Pharmaceuticals, Inc. | Methods for lowering elevated uric acid levels using intravenous injections of PEG-uricase |
US20080159976A1 (en) * | 2005-04-11 | 2008-07-03 | Jacob Hartman | Methods for lowering elevated uric acid levels using intravenous injections of PEG-uricase |
EP1885403B1 (en) | 2005-04-12 | 2013-05-08 | Nektar Therapeutics | Poly(ethyleneglycol) conjugates of Lysostaphin |
US7833979B2 (en) * | 2005-04-22 | 2010-11-16 | Amgen Inc. | Toxin peptide therapeutic agents |
EA012442B1 (en) | 2005-05-13 | 2009-10-30 | Эли Лилли Энд Компани | Glp-1 pegylated compounds |
EP1883425A1 (en) * | 2005-05-23 | 2008-02-06 | Universite De Geneve | Injectable superparamagnetic nanoparticles for treatment by hyperthermia and use for forming an hyperthermic implant |
WO2006127910A2 (en) | 2005-05-25 | 2006-11-30 | Neose Technologies, Inc. | Glycopegylated erythropoietin formulations |
EP1891141B1 (en) * | 2005-05-31 | 2016-11-16 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Triblock copolymers for cytoplasmic delivery of gene-based drugs |
SG165353A1 (en) * | 2005-06-03 | 2010-10-28 | Ambrx Inc | Improved human interferon molecules and their uses |
RS53968B1 (en) | 2005-06-16 | 2015-08-31 | Nektar Therapeutics | Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates |
ES2553160T3 (en) | 2005-06-17 | 2015-12-04 | Novo Nordisk Health Care Ag | Selective reduction and derivatization of engineered Factor VII proteins comprising at least one non-native cysteine |
US8728493B2 (en) * | 2005-06-17 | 2014-05-20 | Nektar Therapeutics | Polymer based compositions and conjugates of non-steroidal anti-inflammatory drugs |
ATE524509T1 (en) * | 2005-07-18 | 2011-09-15 | Nektar Therapeutics | BRANCHED FUNCTIONALIZED POLYMERS USING BRANCHED POLYOLS AS CORE |
KR101334541B1 (en) * | 2005-07-19 | 2013-11-28 | 넥타르 테라퓨틱스 | Method for preparing polymer maleimides |
MX2008001328A (en) | 2005-07-29 | 2008-04-09 | Nektar Therapeutics Al Corp | Methods for preparing carbonate esters of poly(etylene glycol). |
US8008453B2 (en) | 2005-08-12 | 2011-08-30 | Amgen Inc. | Modified Fc molecules |
NZ565294A (en) | 2005-08-18 | 2010-06-25 | Ambrx Inc | Compositions of tRNA and uses thereof |
JP2009515508A (en) * | 2005-08-19 | 2009-04-16 | ネオス テクノロジーズ インコーポレイテッド | GlycoPEGylated Factor VII and Factor VIIA |
US20070105755A1 (en) | 2005-10-26 | 2007-05-10 | Neose Technologies, Inc. | One pot desialylation and glycopegylation of therapeutic peptides |
KR100664969B1 (en) * | 2005-08-26 | 2007-01-04 | 아이디비켐(주) | Manufacturing method of high purity methoxy polyethylene glycol and their derivatives |
US20090048440A1 (en) | 2005-11-03 | 2009-02-19 | Neose Technologies, Inc. | Nucleotide Sugar Purification Using Membranes |
DK1954710T3 (en) * | 2005-11-08 | 2011-06-27 | Ambrx Inc | Accelerators for modification of unnatural amino acids and unnatural amino acid polypeptides |
JP2009520949A (en) * | 2005-11-16 | 2009-05-28 | アンブルックス,インコーポレイテッド | Compositions and methods containing unnatural amino acids |
CU23556A1 (en) * | 2005-11-30 | 2010-07-20 | Ct Ingenieria Genetica Biotech | POLYMER STRUCTURE SIMILAR TO DENDRÍMERO FOR THE OBTAINING OF CONJUGATES OF PHARMACEUTICAL INTEREST |
WO2007070659A2 (en) * | 2005-12-14 | 2007-06-21 | Ambrx, Inc. | Compositions containing, methods involving, and uses of non-natural amino acids and polypeptides |
EP1968644B1 (en) | 2005-12-16 | 2012-06-27 | Nektar Therapeutics | Polymer conjugates of glp-1 |
US7743730B2 (en) * | 2005-12-21 | 2010-06-29 | Lam Research Corporation | Apparatus for an optimized plasma chamber grounded electrode assembly |
RU2457854C2 (en) | 2005-12-30 | 2012-08-10 | Цзэньсунь (Шанхай) Сайенс Энд Текнолоджи Лимитед | Prolonged release of neuregulin for improvement in cardiac function |
EP2319542B1 (en) | 2006-02-21 | 2018-03-21 | Nektar Therapeutics | Segmented degradable polymers and conjugates made therefrom |
EP2471811B1 (en) | 2006-02-22 | 2015-09-16 | Merck Sharp & Dohme Corp. | Oxyntomodulin derivatives |
CN101500614B (en) * | 2006-02-28 | 2011-08-10 | 雷迪实验室(欧洲)有限公司 | Method for making polyethylene glycol carbonates |
EP4159220A1 (en) | 2006-03-08 | 2023-04-05 | Archemix LLC | Complement binding aptamers and anti-c5 agents useful in the treatment of ocular disorders |
BRPI0708895A2 (en) | 2006-03-13 | 2011-06-28 | Liat Mintz | use of ghrelin joint variant to treat cachexia and / or anorexia and / or anorexia-cachexia and / or malnutrition and / or lipodystrophy and / or muscle atrophy and / or appetite stimulation |
US8795709B2 (en) * | 2006-03-29 | 2014-08-05 | Incept Llc | Superabsorbent, freeze dried hydrogels for medical applications |
EP2001518B1 (en) * | 2006-03-30 | 2013-07-10 | Palatin Technologies, Inc. | Cyclic natriuretic peptide constructs |
AU2007233123A1 (en) * | 2006-03-30 | 2007-10-11 | Palatin Technologies, Inc. | Linear natriuretic peptide constructs |
US8580746B2 (en) * | 2006-03-30 | 2013-11-12 | Palatin Technologies, Inc. | Amide linkage cyclic natriuretic peptide constructs |
CA2648582C (en) | 2006-04-07 | 2016-12-06 | Nektar Therapeutics Al, Corporation | Conjugates of an anti-tnf-alpha antibody |
CN101622270B (en) * | 2006-04-12 | 2014-01-01 | 萨文特医药公司 | Method for purification of proteins with cationic surfactant |
CA2648936C (en) | 2006-04-20 | 2013-07-09 | Amgen Inc. | Glp-1 compounds |
AU2007240680B2 (en) | 2006-04-21 | 2013-05-02 | Nektar Therapeutics | Stereoselective reduction of a morphinone |
EP2444499A3 (en) | 2006-05-02 | 2012-05-09 | Allozyne, Inc. | Amino acid substituted molecules |
US20080096819A1 (en) | 2006-05-02 | 2008-04-24 | Allozyne, Inc. | Amino acid substituted molecules |
CN101484576A (en) | 2006-05-24 | 2009-07-15 | 诺沃-诺迪斯克保健股份有限公司 | Factor IX analogues having prolonged in vivo half life |
US7872068B2 (en) * | 2006-05-30 | 2011-01-18 | Incept Llc | Materials formable in situ within a medical device |
US7820172B1 (en) | 2006-06-01 | 2010-10-26 | Biosurface Engineering Technologies, Inc. | Laminin-derived multi-domain peptides |
WO2007150053A2 (en) | 2006-06-22 | 2007-12-27 | Biosurface Engineering Technologies, Inc. | Composition and method for delivery of bmp-2 amplifier/co-activator for enhancement of osteogenesis |
US8840882B2 (en) * | 2006-06-23 | 2014-09-23 | Quintessence Biosciences, Inc. | Modified ribonucleases |
US8008948B2 (en) * | 2006-07-06 | 2011-08-30 | Denso Corporation | Peak voltage detector circuit and binarizing circuit including the same circuit |
US8298801B2 (en) * | 2006-07-17 | 2012-10-30 | Quintessence Biosciences, Inc. | Methods and compositions for the treatment of cancer |
WO2008011633A2 (en) | 2006-07-21 | 2008-01-24 | Neose Technologies, Inc. | Glycosylation of peptides via o-linked glycosylation sequences |
WO2008011165A2 (en) * | 2006-07-21 | 2008-01-24 | Nektar Therapeutics Al, Corporation | Polymeric reagents comprising a terminal vinylic group and conjugates formed therefrom |
CN101484469B (en) * | 2006-08-31 | 2012-12-12 | 弗·哈夫曼-拉罗切有限公司 | Method for the production of insulin-like growth factor-I |
CL2007002502A1 (en) | 2006-08-31 | 2008-05-30 | Hoffmann La Roche | VARIANTS OF THE SIMILAR GROWTH FACTOR TO HUMAN INSULIN-1 (IGF-1) PEGILATED IN LISIN; METHOD OF PRODUCTION; FUSION PROTEIN THAT UNDERSTANDS IT; AND ITS USE TO TREAT ALZHEIMER'S DISEASE. |
CN101541955B (en) * | 2006-09-08 | 2016-09-28 | Ambrx公司 | Heterozygosis for vertebrate cells suppresses tRNA |
EP2615108B1 (en) | 2006-09-08 | 2016-10-26 | Ambrx, Inc. | Modified human plasma polypeptide or fc scaffolds and thier uses |
PT2064333E (en) * | 2006-09-08 | 2014-06-09 | Ambrx Inc | Suppressor trna transcription in vertebrate cells |
WO2008033847A2 (en) | 2006-09-11 | 2008-03-20 | Emory University | Modified protein polymers |
US7985783B2 (en) | 2006-09-21 | 2011-07-26 | The Regents Of The University Of California | Aldehyde tags, uses thereof in site-specific protein modification |
NO346530B1 (en) | 2006-09-28 | 2022-09-26 | Merck Sharp & Dohme | Applications of pegylated interleukin-10 (PEG-IL-10) to prevent metastases of cancer or tumor in the lungs. |
JP2010505874A (en) | 2006-10-03 | 2010-02-25 | ノヴォ ノルディスク アー/エス | Purification method for polypeptide conjugates |
SI2068907T1 (en) | 2006-10-04 | 2018-01-31 | Novo Nordisk A/S | Glycerol linked pegylated sugars and glycopeptides |
WO2008051383A2 (en) * | 2006-10-19 | 2008-05-02 | Amgen Inc. | Use of alcohol co-solvents to improve pegylation reaction yields |
AU2007343796A1 (en) * | 2006-10-25 | 2008-07-24 | Amgen Inc. | Toxin peptide therapeutic agents |
US20080207487A1 (en) * | 2006-11-02 | 2008-08-28 | Neose Technologies, Inc. | Manufacturing process for the production of polypeptides expressed in insect cell-lines |
DE602007005165D1 (en) * | 2006-11-07 | 2010-04-15 | Dsm Ip Assets Bv | CARBAMATE, THIOCARBAMATE OR CARBAMIDE WITH A BIOMOLECULAR GROUPING |
KR20090110295A (en) | 2006-11-22 | 2009-10-21 | 에드넥서스, 어 브리스톨-마이어스 스퀴브 알&디 컴파니 | Targeted Therapeutics Based on Engineered Proteins for Tyrosine Kinase Receptors Including IGF-IR |
EP2104515B1 (en) * | 2006-11-30 | 2018-11-14 | Nektar Therapeutics | Method for preparing a polymer conjugate |
JP5340956B2 (en) * | 2006-12-20 | 2013-11-13 | アーケマ・インコーポレイテッド | Encapsulation and / or binding of polymers |
EP2097108B1 (en) * | 2006-12-27 | 2014-02-12 | Nektar Therapeutics | Factor ix moiety-polymer conjugates having a releaseable linkage |
AU2007340382B2 (en) | 2006-12-27 | 2013-06-27 | Nektar Therapeutics | Von Willebrand Factor- and Factor VIII-polymer conjugates having a releasable linkage |
KR101414847B1 (en) | 2007-01-18 | 2014-07-03 | 일라이 릴리 앤드 캄파니 | Pegylated A [beta] FAB |
US20080254188A1 (en) * | 2007-02-01 | 2008-10-16 | National Research Council Of Canada | Formulations of lipophilic bioactive molecules |
US20100144599A1 (en) | 2007-02-02 | 2010-06-10 | Bristol-Myers Squibb Company | Vegf pathway blockade |
US9102916B2 (en) * | 2007-02-27 | 2015-08-11 | Trustees Of Tufts College | Tissue-engineered silk organs |
US20090227981A1 (en) * | 2007-03-05 | 2009-09-10 | Bennett Steven L | Low-Swelling Biocompatible Hydrogels |
US20090227689A1 (en) * | 2007-03-05 | 2009-09-10 | Bennett Steven L | Low-Swelling Biocompatible Hydrogels |
KR20160121601A (en) | 2007-03-30 | 2016-10-19 | 암브룩스, 인코포레이티드 | Modified fgf-21 polypeptides and their uses |
EP2144923B1 (en) | 2007-04-03 | 2013-02-13 | BioGeneriX AG | Methods of treatment using glycopegylated g-csf |
DK2136850T3 (en) | 2007-04-13 | 2012-04-10 | Kuros Biosurgery Ag | Polymer fabric seal |
MX2009011870A (en) | 2007-05-02 | 2009-11-12 | Ambrx Inc | Modified interferon beta polypeptides and their uses. |
CA2840407A1 (en) | 2007-05-22 | 2008-12-18 | Amgen Inc. | Compositions and methods for producing bioactive fusion proteins |
WO2009027844A2 (en) * | 2007-05-25 | 2009-03-05 | Celtic Pharma Management L.P. | Crf conjugates with extended half-lives |
CA2688431C (en) | 2007-05-29 | 2016-07-05 | Trustees Of Tufts College | Method for silk fibroin gelation using sonication |
MX2009013259A (en) | 2007-06-12 | 2010-01-25 | Novo Nordisk As | Improved process for the production of nucleotide sugars. |
AR067536A1 (en) * | 2007-07-17 | 2009-10-14 | Hoffmann La Roche | METHOD FOR OBTAINING A MONO-PEGILATED ERYTHROPOYETIN IN A SUBSTANTIALLY HOMOGENOUS FORM |
CL2008002053A1 (en) * | 2007-07-17 | 2009-05-22 | Hoffmann La Roche | Method for the purification of a monopeglated erythropoietin (epompeg) which consists of providing a solution containing mono, poly and non-peglated erythropoietin and passing it through two steps of cation exchange chromatography and a method to produce epo mpeg that includes a purification method. |
US8067028B2 (en) * | 2007-08-13 | 2011-11-29 | Confluent Surgical Inc. | Drug delivery device |
CL2008002399A1 (en) * | 2007-08-16 | 2009-01-02 | Pharmaessentia Corp | Substantially pure conjugate having a polymeric portion, a protein portion (interferon alpha 2b) and an aliphatic binder of 1 to 10 carbon atoms, useful in the treatment of hepatitis b or c. |
CA2707840A1 (en) | 2007-08-20 | 2009-02-26 | Allozyne, Inc. | Amino acid substituted molecules |
JP2010536870A (en) * | 2007-08-21 | 2010-12-02 | ジェンザイム・コーポレーション | Treatment with kallikrein inhibitors |
US8207112B2 (en) | 2007-08-29 | 2012-06-26 | Biogenerix Ag | Liquid formulation of G-CSF conjugate |
US8088884B2 (en) * | 2007-09-27 | 2012-01-03 | Serina Therapeutics, Inc. | Multi-armed forms of activated polyoxazoline and methods of synthesis thereof |
US8697062B2 (en) * | 2007-10-08 | 2014-04-15 | Quintessence Biosciences, Inc. | Compositions and methods for ribonuclease-based therapeutics |
ES2664822T3 (en) | 2007-10-16 | 2018-04-23 | Biocon Limited | A solid pharmaceutical composition orally administrable and a process thereof |
AU2008317383B2 (en) | 2007-10-23 | 2013-11-14 | Nektar Therapeutics | Hydroxyapatite-targeting multiarm polymers and conjugates made therefrom |
NZ603812A (en) | 2007-11-20 | 2014-06-27 | Ambrx Inc | Modified insulin polypeptides and their uses |
EP2669313B1 (en) | 2008-01-11 | 2016-03-23 | Serina Therapeutics, Inc. | Multifunctional forms of polyoxazoline copolymers and drug compositions comprising the same |
US8101706B2 (en) | 2008-01-11 | 2012-01-24 | Serina Therapeutics, Inc. | Multifunctional forms of polyoxazoline copolymers and drug compositions comprising the same |
US7862538B2 (en) * | 2008-02-04 | 2011-01-04 | Incept Llc | Surgical delivery system for medical sealant |
CA2712606A1 (en) | 2008-02-08 | 2009-08-13 | Ambrx, Inc. | Modified leptin polypeptides and their uses |
PL2257311T3 (en) | 2008-02-27 | 2014-09-30 | Novo Nordisk As | Conjugated factor viii molecules |
TWI395593B (en) | 2008-03-06 | 2013-05-11 | Halozyme Inc | In vivo temporal control of activatable matrix-degrading enzymes |
RU2010144014A (en) * | 2008-04-03 | 2012-05-27 | Ф. Хоффманн-Ля Рош Аг (Ch) | APPLICATION OF PEGILIATED IGF-I OPTIONS FOR TREATMENT OF NEUROMUSCULAR DISORDERS |
MX2010010313A (en) * | 2008-04-03 | 2010-11-05 | Hoffmann La Roche | Pegylated insulin-like-growth-factor assay. |
KR101647932B1 (en) | 2008-04-14 | 2016-08-11 | 할로자임, 아이엔씨 | Modified hyaluronidases and uses in treating hyaluronan-associated diseases and conditions |
TWI394580B (en) | 2008-04-28 | 2013-05-01 | Halozyme Inc | Super fast-acting insulin compositions |
WO2009134396A2 (en) * | 2008-04-30 | 2009-11-05 | Neutron Row | Methods of using corticotropin-releasing factor for the treatment of cancer |
EP2293818B1 (en) * | 2008-05-16 | 2021-04-28 | Nektar Therapeutics | Conjugates of butyrylcholinesterase and a polymer |
EP2291399B1 (en) | 2008-05-22 | 2014-06-25 | Bristol-Myers Squibb Company | Multivalent fibronectin based scaffold domain proteins |
ES2654387T3 (en) | 2008-07-23 | 2018-02-13 | Ambrx, Inc. | Modified bovine G-CSF polypeptides and their uses |
WO2010014874A2 (en) * | 2008-07-31 | 2010-02-04 | Pharmaessentia Corp. | Peptide-polymer conjugates |
WO2010014258A2 (en) * | 2008-08-01 | 2010-02-04 | Nektar Therapeutics Al, Corporation | Conjugates having a releasable linkage |
MX2011001583A (en) | 2008-08-11 | 2011-04-04 | Nektar Therapeutics | Multi-arm polymeric alkanoate conjugates. |
WO2010021720A1 (en) | 2008-08-19 | 2010-02-25 | Nektar Therapeutics | Conjugates of small-interfering nucleic acids |
US8492503B2 (en) | 2008-09-11 | 2013-07-23 | Nektar Therapeutics | Polymeric alpha-hydroxy aldehyde and ketone reagents and conjugation method |
US20110171161A1 (en) * | 2008-09-19 | 2011-07-14 | Nektar Therapeutics | Polymer conjugates of protegrin peptides |
EP2340050A2 (en) * | 2008-09-19 | 2011-07-06 | Nektar Therapeutics | Polymer conjugates of aod-like peptides |
WO2010033227A1 (en) * | 2008-09-19 | 2010-03-25 | Nektar Therapeutics | Polymer conjugates of thymosin alpha 1 peptides |
EP2334336A1 (en) * | 2008-09-19 | 2011-06-22 | Nektar Therapeutics | Polymer conjugates of osteocalcin peptides |
US8449872B2 (en) | 2008-09-19 | 2013-05-28 | Nektar Therapeutics | Polymer conjugates of nesiritide peptides |
WO2010033220A2 (en) * | 2008-09-19 | 2010-03-25 | Nektar Therapeutics | Modified therapeutics peptides, methods of their preparation and use |
US20110165112A1 (en) * | 2008-09-19 | 2011-07-07 | Nektar Therapeutics | Polymer conjugates of c-peptides |
WO2010033240A2 (en) | 2008-09-19 | 2010-03-25 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
EP2334333A1 (en) * | 2008-09-19 | 2011-06-22 | Nektar Therapeutics | Polymer conjugates of v681-like peptides |
EP2340047A1 (en) * | 2008-09-19 | 2011-07-06 | Nektar Therapeutics | Polymer conjugates of kiss1 peptides |
US20110171165A1 (en) * | 2008-09-19 | 2011-07-14 | Nektar Therapeutics | Polymer conjugates of opioid growth factor peptides |
US20110171164A1 (en) * | 2008-09-19 | 2011-07-14 | Nektar Therapeutics | Polymer conjugates of glp-2-like peptides |
EP2340046A2 (en) * | 2008-09-19 | 2011-07-06 | Nektar Therapeutics | Polymer conjugates of ziconotide peptides |
EA201170493A1 (en) | 2008-09-26 | 2011-10-31 | Амбркс, Инк. | MICROORGANISMS AND VACCINES DEPENDING ON REPLICATION OF NON-NATURAL AMINO ACIDS |
DK2342223T3 (en) | 2008-09-26 | 2017-07-24 | Ambrx Inc | Modified animal erythropoietin polypeptides and their uses |
JP2012504423A (en) | 2008-10-01 | 2012-02-23 | クインテッセンス バイオサイエンシズ,インコーポレーテッド | Therapeutic ribonuclease |
TWI496582B (en) | 2008-11-24 | 2015-08-21 | 必治妥美雅史谷比公司 | Bispecific egfr/igfir binding molecules |
US9271929B2 (en) | 2008-11-25 | 2016-03-01 | École Polytechnique Fédérale De Lausanne (Epfl) | Block copolymers and uses thereof |
HUE043591T2 (en) | 2008-12-09 | 2019-08-28 | Halozyme Inc | Extended soluble PH20 polypeptides and their use |
CN103601800B (en) | 2008-12-17 | 2015-10-21 | 默沙东公司 | The production of single and double PEG IL10 and purposes |
CA2744235A1 (en) * | 2009-01-06 | 2010-07-15 | Dyax Corp. | Treatment of mucositis with kallikrein inhibitors |
WO2010080720A2 (en) | 2009-01-12 | 2010-07-15 | Nektar Therapeutics | Conjugates of a lysosomal enzyme moiety and a water soluble polymer |
WO2010093873A2 (en) | 2009-02-12 | 2010-08-19 | Incept, Llc | Drug delivery through hydrogel plugs |
CA2754896C (en) * | 2009-03-09 | 2017-11-28 | Molecular Express, Inc. | Methods and compositions for liposomal formulation of antigens and uses thereof |
JP5569787B2 (en) * | 2009-03-31 | 2014-08-13 | 日油株式会社 | Purification method of high molecular weight polyethylene glycol compound |
CN102482340B (en) | 2009-04-06 | 2015-05-13 | 诺沃—诺迪斯克有限公司 | Targeted delivery of factor viii proteins to platelets |
US8067201B2 (en) * | 2009-04-17 | 2011-11-29 | Bristol-Myers Squibb Company | Methods for protein refolding |
CN101870728A (en) | 2009-04-23 | 2010-10-27 | 派格生物医药(苏州)有限公司 | Novel Exendin variant and conjugate thereof |
JP5684239B2 (en) * | 2009-05-04 | 2015-03-11 | インセプト・リミテッド・ライアビリティ・カンパニーIncept Llc | Biomaterial for track and puncture closure |
CA2764872C (en) | 2009-06-09 | 2018-07-24 | Prolong Pharmaceuticals, LLC | Hemoglobin compositions |
HUP1200205A3 (en) | 2009-06-25 | 2012-09-28 | Savient Pharmaceuticals | Method and kits for perdicting infusion reaction risk and antibody-mediated low of response by monitoring serum uric acid during pegylated uricare therapy |
WO2011003633A1 (en) | 2009-07-06 | 2011-01-13 | Alize Pharma Ii | Pegylated l-asparaginase |
US8916693B2 (en) | 2009-09-17 | 2014-12-23 | Nektar Therapeutics | Monoconjugated chitosans as delivery agents for small interfering nucleic acids |
KR101441768B1 (en) | 2009-09-17 | 2014-09-17 | 박스터 헬쓰케어 에스에이 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
US9074302B2 (en) | 2009-09-28 | 2015-07-07 | Trustees Of Tufts College | Methods of making drawn silk fibers |
WO2011053675A2 (en) | 2009-10-30 | 2011-05-05 | Cns Therapeutics, Inc. | Improved neurturin molecules |
US20110136727A1 (en) * | 2009-11-20 | 2011-06-09 | Sergei Svarovsky | Compositions and methods for rapid selection of pathogen binding agents |
CN107674121A (en) | 2009-12-21 | 2018-02-09 | Ambrx 公司 | Bovine somatotropin polypeptide and its purposes by modification |
KR20120123365A (en) | 2009-12-21 | 2012-11-08 | 암브룩스, 인코포레이티드 | Modified porcine somatotropin polypeptides and their uses |
AR079344A1 (en) | 2009-12-22 | 2012-01-18 | Lilly Co Eli | PEPTIDAL ANALOG OF OXINTOMODULIN, PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS AND USES TO PREPARE A USEFUL MEDICINAL PRODUCT TO TREAT NON-INSULINED INDEPENDENT DIABETES AND / OR OBESITY |
AR079345A1 (en) | 2009-12-22 | 2012-01-18 | Lilly Co Eli | OXINTOMODULINE PEPTIDAL ANALOG |
US20110152188A1 (en) * | 2009-12-23 | 2011-06-23 | Hanns-Christian Mahler | Pharmaceutical compositions of igf/i proteins |
US8822653B2 (en) | 2010-01-06 | 2014-09-02 | Dyax Corp. | Plasma kallikrein binding proteins |
EP2533813B1 (en) | 2010-02-11 | 2016-06-01 | F.Hoffmann-La Roche Ag | Protein conjugates for trypsin mediated pegylation by transamidation and methods |
EP2536753B1 (en) | 2010-02-16 | 2017-12-20 | Novo Nordisk A/S | Factor viii molecules with reduced vwf binding |
JP2013519699A (en) | 2010-02-16 | 2013-05-30 | ノヴォ ノルディスク アー/エス | Factor VIII fusion protein |
CA2791278C (en) | 2010-02-25 | 2015-11-24 | The Johns Hopkins University | Sustained delivery of therapeutic agents to an eye compartment |
JP6148013B2 (en) | 2010-03-05 | 2017-06-14 | リグショスピタレト | Chimera inhibitor molecule of complement activation |
CA2797093C (en) | 2010-04-26 | 2019-10-29 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase |
JP6294074B2 (en) | 2010-04-27 | 2018-03-14 | エータイアー ファーマ, インコーポレイテッド | Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of isoleucyl-tRNA synthetase |
AU2011248489B2 (en) | 2010-04-28 | 2016-10-06 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl tRNA synthetases |
US9068177B2 (en) | 2010-04-29 | 2015-06-30 | Atyr Pharma, Inc | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-tRNA synthetases |
CN103118693B (en) | 2010-04-29 | 2017-05-03 | Atyr 医药公司 | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl tRNA synthetases |
US8986680B2 (en) | 2010-04-29 | 2015-03-24 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases |
WO2011140132A2 (en) | 2010-05-03 | 2011-11-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases |
WO2011139986A2 (en) | 2010-05-03 | 2011-11-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases |
EP2566496B1 (en) | 2010-05-03 | 2018-02-28 | aTyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-trna synthetases |
EP2566499B1 (en) | 2010-05-04 | 2017-01-25 | aTyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-trna synthetase complex |
JP2013528374A (en) | 2010-05-10 | 2013-07-11 | パーシード セラピューティクス リミテッド ライアビリティ カンパニー | Polypeptide inhibitors of VLA4 |
AU2011252990B2 (en) | 2010-05-14 | 2017-04-20 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-tRNA synthetases |
US9034598B2 (en) | 2010-05-17 | 2015-05-19 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of leucyl-tRNA synthetases |
US8927488B2 (en) | 2010-05-17 | 2015-01-06 | Cebix, Inc. | Pegylated C-peptide |
CN103180339B (en) | 2010-05-26 | 2016-04-27 | 百时美施贵宝公司 | There is the scaffold protein based on fibronectin of the stability of improvement |
WO2011153277A2 (en) | 2010-06-01 | 2011-12-08 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of lysyl-trna synthetases |
MX2013000204A (en) * | 2010-07-01 | 2013-06-28 | Horian America Corp | Process for the preparation of poly(alkylene oxide) derivatives for modification of biologically active molecules and materials. |
WO2012021247A2 (en) | 2010-07-12 | 2012-02-16 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases |
CA2806058C (en) | 2010-07-20 | 2016-09-13 | Halozyme, Inc. | Adverse side-effects associated with administration of anti-hyaluronan agents and methods for ameliorating or preventing the side-effects |
MA34521B1 (en) | 2010-08-17 | 2013-09-02 | Ambrx Inc | MODIFIED RELAXINE POLYPEPTIDES AND USES THEREOF |
US9567386B2 (en) | 2010-08-17 | 2017-02-14 | Ambrx, Inc. | Therapeutic uses of modified relaxin polypeptides |
JP5964304B2 (en) | 2010-08-25 | 2016-08-03 | エータイアー ファーマ, インコーポレイテッド | Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of tyrosyl-tRNA synthetase |
WO2012039979A2 (en) | 2010-09-10 | 2012-03-29 | The Johns Hopkins University | Rapid diffusion of large polymeric nanoparticles in the mammalian brain |
PL2616101T3 (en) | 2010-09-14 | 2015-01-30 | Hoffmann La Roche | Method for purifying pegylated erythropoietin |
US8961501B2 (en) | 2010-09-17 | 2015-02-24 | Incept, Llc | Method for applying flowable hydrogels to a cornea |
AR083006A1 (en) | 2010-09-23 | 2013-01-23 | Lilly Co Eli | FORMULATIONS FOR THE STIMULATING FACTOR OF COLONIES OF GRANULOCITS (G-CSF) BOVINE AND VARIANTS OF THE SAME |
CA2815285C (en) | 2010-10-19 | 2019-12-31 | Trustees Of Tufts College | Silk fibroin-based microneedles and methods of making the same |
WO2012054861A1 (en) | 2010-10-22 | 2012-04-26 | Nektar Therapeutics | Glp-1 polymer conjugates having a releasable linkage |
WO2012054822A1 (en) | 2010-10-22 | 2012-04-26 | Nektar Therapeutics | Pharmacologically active polymer-glp-1 conjugates |
SI2637694T1 (en) | 2010-11-12 | 2021-06-30 | Nektar Therapeutics | Conjugates of an il-2 moiety and a polymer |
CN103270084A (en) * | 2010-12-21 | 2013-08-28 | 日油株式会社 | Purification method of carboxyl-containing polyethylene oxide derivatives |
WO2012088422A1 (en) | 2010-12-22 | 2012-06-28 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of taxane-based compounds |
WO2012088445A1 (en) | 2010-12-22 | 2012-06-28 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of cabazitaxel-based compounds |
US9827326B2 (en) | 2010-12-23 | 2017-11-28 | Nektar Therapeutics | Polymer-sunitinib conjugates |
EP2654797B1 (en) | 2010-12-23 | 2017-11-08 | Nektar Therapeutics | Polymer-des-ethyl sunitinib conjugates |
US9943605B2 (en) | 2010-12-23 | 2018-04-17 | Nektar Therapeutics | Polymer-semaxanib moiety conjugates |
US8163869B1 (en) | 2010-12-27 | 2012-04-24 | Nof Corporation | Purification method of carboxyl group-containing polyoxyethylene derivative |
US8816055B2 (en) | 2011-01-06 | 2014-08-26 | Dyax Corp. | Plasma kallikrein binding proteins |
WO2012109363A2 (en) | 2011-02-08 | 2012-08-16 | The Johns Hopkins University | Mucus penetrating gene carriers |
JP2014510045A (en) | 2011-02-08 | 2014-04-24 | ハロザイム インコーポレイテッド | Hyaluronan degrading enzyme composition and lipid preparation and its use for the treatment of benign prostatic hypertrophy |
RU2013142015A (en) | 2011-03-02 | 2015-04-10 | Ново Нордиск А/С | TARGETING THE BLOOD COAGING FACTORS TO THE TLT-1 RECEPTOR ON THE SURFACE OF ACTIVATED Platelets |
SG10201601789TA (en) | 2011-03-16 | 2016-04-28 | Amgen Inc | Potent And Selective Inhibitors Of Nav1.3 And Nav1.7 |
WO2012145652A1 (en) | 2011-04-20 | 2012-10-26 | Trustees Of Tufts College | Dynamic silk coatings for implantable devices |
WO2012158678A1 (en) | 2011-05-17 | 2012-11-22 | Bristol-Myers Squibb Company | Methods for maintaining pegylation of polypeptides |
WO2012166555A1 (en) | 2011-05-27 | 2012-12-06 | Nektar Therapeutics | Water - soluble polymer - linked binding moiety and drug compounds |
NZ618331A (en) | 2011-06-17 | 2016-04-29 | Halozyme Inc | Stable formulations of a hyaluronan-degrading enzyme |
EA201400030A1 (en) | 2011-06-17 | 2014-07-30 | Галозим, Инк. | METHOD OF CONTINUOUS SUBDITIONAL INSULIN INJECTION WITH USE OF ENZYME DESTRUCTING HYALURONANE |
US20130011378A1 (en) | 2011-06-17 | 2013-01-10 | Tzung-Horng Yang | Stable formulations of a hyaluronan-degrading enzyme |
US20130090294A1 (en) | 2011-06-28 | 2013-04-11 | Alternative Innovative Technologies Llc | Novel methods of use of hsp70 for increased performance or treatment of hsp70 related disorders |
EP2726502A1 (en) | 2011-07-01 | 2014-05-07 | Bayer Intellectual Property GmbH | Relaxin fusion polypeptides and uses thereof |
HUE029855T2 (en) | 2011-07-05 | 2017-04-28 | Bioasis Technologies Inc | P97-antibody conjugates |
WO2013020079A2 (en) | 2011-08-04 | 2013-02-07 | Nektar Therapeutics | Conjugates of an il-11 moiety and a polymer |
US20130052130A1 (en) * | 2011-08-30 | 2013-02-28 | University Of Washington | Branched Discreet PEG Constructs |
US10226417B2 (en) | 2011-09-16 | 2019-03-12 | Peter Jarrett | Drug delivery systems and applications |
WO2013040501A1 (en) | 2011-09-16 | 2013-03-21 | Pharmathene, Inc. | Compositions and combinations of organophosphorus bioscavengers and hyaluronan-degrading enzymes, and uses thereof |
TWI596110B (en) | 2011-09-23 | 2017-08-21 | 諾佛 儂迪克股份有限公司 | Novel glucagon analogues |
RU2014114849A (en) | 2011-10-14 | 2015-11-20 | Алтернатив Инновейтив Текнолоджиз Ллц | Degradation-resistant derivatives of proteins of heat shock-70 (btsh70) and methods of their application (options) |
KR101828828B1 (en) | 2011-10-24 | 2018-03-29 | 할로자임, 아이엔씨 | Companion diagnostic for anti-hyaluronan agent therapy and methods of use thereof |
JP2015504038A (en) | 2011-10-31 | 2015-02-05 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Fibronectin binding domain with reduced immunogenicity |
WO2013075117A2 (en) | 2011-11-17 | 2013-05-23 | John Wahren | Pegylated c-peptide |
CA2858161C (en) | 2011-12-05 | 2020-03-10 | Incept, Llc | Medical organogel processes and compositions |
WO2013101509A2 (en) | 2011-12-15 | 2013-07-04 | Alternative Innovative Technologies Llc | Hsp70 fusion protein conjugates and uses thereof |
PL3130347T3 (en) | 2011-12-30 | 2020-04-30 | Halozyme, Inc. | Ph20 polypeptide variants, formulations and uses thereof |
KR101811917B1 (en) | 2012-01-19 | 2017-12-22 | 더 존스 홉킨스 유니버시티 | Nanoparticles formulations with enhanced mucus penetration |
RU2659423C2 (en) | 2012-02-16 | 2018-07-02 | ЭйТИР ФАРМА, ИНК. | Hystidil-trna-synthetase for treatment of autoimmune and inflammatory diseases |
US20150038435A1 (en) | 2012-03-01 | 2015-02-05 | Novo Nordisk A/S | N-terminally modified oligopeptides and uses thereof |
WO2013138338A2 (en) | 2012-03-12 | 2013-09-19 | Massachusetts Institute Of Technology | Methods for treating tissue damage associated with ischemia with apoliporotein d |
EA030318B1 (en) | 2012-03-16 | 2018-07-31 | Дзе Джонс Хопкинс Юниверсити | Non-linear multiblock copolymer-drug conjugates for the delivery of active agents |
WO2013138343A1 (en) | 2012-03-16 | 2013-09-19 | The Johns Hopkins University | Controlled release formulations for the delivery of hif-1 inhibitors |
CA2868883C (en) | 2012-03-30 | 2022-10-04 | Sorrento Therapeutics Inc. | Fully human antibodies that bind to vegfr2 |
WO2013151774A1 (en) | 2012-04-04 | 2013-10-10 | Halozyme, Inc. | Combination therapy with an anti - hyaluronan agent and a tumor - targeted taxane |
MX363119B (en) | 2012-05-01 | 2019-03-11 | Novo Nordisk As | Pharmaceutical composition. |
CA2872519C (en) | 2012-05-04 | 2017-09-05 | The Johns Hopkins University | Lipid-based drug carriers for rapid penetration through mucus linings |
US9533068B2 (en) * | 2012-05-04 | 2017-01-03 | The Johns Hopkins University | Drug loaded microfiber sutures for ophthalmic application |
JP6195911B2 (en) | 2012-05-17 | 2017-09-13 | エクステンド バイオサイエンシズ インコーポレーテッドExtend Biosciences, Inc | Carrier for improved drug delivery |
US9844582B2 (en) | 2012-05-22 | 2017-12-19 | Massachusetts Institute Of Technology | Synergistic tumor treatment with extended-PK IL-2 and therapeutic agents |
BR112014029883B1 (en) | 2012-05-31 | 2023-10-24 | Sorrento Therapeutics Inc. | ANTI-PD-L1 RECOMBINANT ANTIBODY AND USE OF AN ANTI-PD-L1 RECOMBINANT ANTIBODY |
JP6498600B2 (en) | 2012-06-08 | 2019-04-10 | ストロ バイオファーマ インコーポレーテッド | Antibodies containing site-specific unnatural amino acid residues, methods for their preparation, and methods for their use |
US9650331B2 (en) | 2012-06-18 | 2017-05-16 | Polytherics Limited | Conjugation reagents |
GB201210770D0 (en) | 2012-06-18 | 2012-08-01 | Polytherics Ltd | Novel conjugation reagents |
US10377827B2 (en) | 2012-06-21 | 2019-08-13 | Sorrento Therapeutics, Inc. | Antigen binding proteins that bind c-met |
WO2013192596A2 (en) | 2012-06-22 | 2013-12-27 | Sorrento Therapeutics Inc. | Antigen binding proteins that bind ccr2 |
EP2863955B1 (en) | 2012-06-26 | 2016-11-23 | Sutro Biopharma, Inc. | Modified fc proteins comprising site-specific non-natural amino acid residues, conjugates of the same, methods of their preparation and methods of their use |
WO2014012101A1 (en) | 2012-07-13 | 2014-01-16 | Trustees Of Tufts College | Silk powder compaction for production of constructs with high mechanical strength and stiffness |
EP2880156B1 (en) | 2012-07-31 | 2017-08-23 | biOasis Technologies Inc | Dephosphorylated lysosomal storage disease proteins and methods of use thereof |
WO2014036492A1 (en) | 2012-08-31 | 2014-03-06 | Sutro Biopharma, Inc. | Modified amino acids comprising an azido group |
LT3564258T (en) | 2012-09-13 | 2021-08-25 | Bristol-Myers Squibb Company | Fibronectin based scaffold domain proteins that bind to myostatin |
WO2014056926A1 (en) * | 2012-10-11 | 2014-04-17 | Ascendis Pharma A/S | Hydrogel prodrugs |
US9278124B2 (en) | 2012-10-16 | 2016-03-08 | Halozyme, Inc. | Hypoxia and hyaluronan and markers thereof for diagnosis and monitoring of diseases and conditions and related methods |
JP2016500058A (en) | 2012-11-12 | 2016-01-07 | レッドウッド バイオサイエンス, インコーポレイテッド | Methods for producing compounds and conjugates |
US9310374B2 (en) | 2012-11-16 | 2016-04-12 | Redwood Bioscience, Inc. | Hydrazinyl-indole compounds and methods for producing a conjugate |
WO2014078733A1 (en) | 2012-11-16 | 2014-05-22 | The Regents Of The University Of California | Pictet-spengler ligation for protein chemical modification |
EP2935311B1 (en) | 2012-12-20 | 2021-03-31 | Amgen Inc. | Apj receptor agonists and uses thereof |
EP2947111B1 (en) * | 2013-01-17 | 2018-03-07 | Xiamen Sinopeg Biotech Co., Ltd. | Monofunctional branched polyethyleneglycol and bio-related substance modified by same |
EP2951206A2 (en) | 2013-02-01 | 2015-12-09 | Bristol-Myers Squibb Company | Fibronectin based scaffold proteins |
RU2698315C2 (en) | 2013-02-04 | 2019-08-26 | В.Л. Гор Энд Ассошиейтс, Инк. | Coating for substrate |
US9272075B2 (en) | 2013-02-04 | 2016-03-01 | W.L. Gore & Associates, Inc. | Coating for substrate |
US10568975B2 (en) | 2013-02-05 | 2020-02-25 | The Johns Hopkins University | Nanoparticles for magnetic resonance imaging tracking and methods of making and using thereof |
TW201446792A (en) | 2013-03-12 | 2014-12-16 | Amgen Inc | Potent and selective inhibitors of Nav1.7 |
CN105263958B (en) | 2013-03-13 | 2019-09-27 | 比奥阿赛斯技术有限公司 | p97 Fragment and Its Application |
AU2014239248B2 (en) | 2013-03-14 | 2017-02-23 | Alere San Diego, Inc. | 6-Acetylmorphine analogs, and methods for their synthesis and use |
US11376329B2 (en) | 2013-03-15 | 2022-07-05 | Trustees Of Tufts College | Low molecular weight silk compositions and stabilizing silk compositions |
KR102457668B1 (en) | 2013-03-15 | 2022-10-21 | 트러스티즈 오브 터프츠 칼리지 | Low molecular weight silk compositions and stabilizing silk compositions |
WO2014140240A1 (en) | 2013-03-15 | 2014-09-18 | Novo Nordisk A/S | Antibodies capable of specifically binding two epitopes on tissue factor pathway inhibitor |
RS59124B1 (en) | 2013-04-18 | 2019-09-30 | Novo Nordisk As | Stable, protracted glp-1/glucagon receptor co-agonists for medical use |
CN105209054A (en) | 2013-04-18 | 2015-12-30 | 阿尔莫生物科技股份有限公司 | Methods of using interleukin-10 for treating diseases and disorders |
WO2014176458A2 (en) | 2013-04-24 | 2014-10-30 | Trustees Of Tufts College | Bioresorbable biopolymer anastomosis devices |
CN111423511B (en) | 2013-05-31 | 2024-02-23 | 索伦托药业有限公司 | Antigen binding proteins that bind to PD-1 |
WO2014204816A2 (en) | 2013-06-17 | 2014-12-24 | Armo Biosciences, Inc. | Method for assessing protein identity and stability |
TW201534726A (en) | 2013-07-03 | 2015-09-16 | Halozyme Inc | Thermally stable PH20 hyaluronidase variants and uses thereof |
EP3019522B1 (en) | 2013-07-10 | 2017-12-13 | Sutro Biopharma, Inc. | Antibodies comprising multiple site-specific non-natural amino acid residues, methods of their preparation and methods of their use |
BR112016000546A2 (en) | 2013-07-12 | 2017-11-21 | Ophthotech Corp | methods to treat or prevent eye conditions |
WO2015013510A1 (en) | 2013-07-25 | 2015-01-29 | Ecole Polytechnique Federale De Lausanne Epfl | High aspect ratio nanofibril materials |
WO2015023979A1 (en) * | 2013-08-16 | 2015-02-19 | Equip, Llc | Discrete peg constructs |
EP3038657A2 (en) | 2013-08-28 | 2016-07-06 | Bioasis Technologies Inc. | Cns-targeted conjugates having modified fc regions and methods of use thereof |
CA2920679A1 (en) | 2013-08-30 | 2015-03-05 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
WO2015054658A1 (en) | 2013-10-11 | 2015-04-16 | Sutro Biopharma, Inc. | Modified amino acids comprising tetrazine functional groups, methods of preparation, and methods of their use |
WO2015066557A1 (en) | 2013-10-31 | 2015-05-07 | Resolve Therapeutics, Llc | Therapeutic nuclease molecules with altered glycosylation and methods |
CN105848674A (en) | 2013-11-11 | 2016-08-10 | 阿尔莫生物科技股份有限公司 | Methods of using interleukin-10 for treating diseases and disorders |
CA3178867A1 (en) | 2013-11-27 | 2015-06-04 | Redwood Bioscience, Inc. | Hydrazinyl-pyrrolo compounds and methods for producing a conjugate |
CN105934257B (en) | 2013-12-06 | 2020-10-09 | 韩捷 | Bioreversible introducing group for nitrogen and hydroxyl-containing drugs |
CU20140003A7 (en) * | 2014-01-08 | 2015-08-27 | Ct De Inmunología Molecular Biofarmacuba | CONJUGATE UNDERSTANDING ERYTHROPOYETIN AND A RAMIFIED POLYMER STRUCTURE |
WO2015127368A1 (en) | 2014-02-23 | 2015-08-27 | The Johns Hopkins University | Hypotonic microbicidal formulations and methods of use |
US10428158B2 (en) | 2014-03-27 | 2019-10-01 | Dyax Corp. | Compositions and methods for treatment of diabetic macular edema |
MA39711A (en) | 2014-04-03 | 2015-10-08 | Nektar Therapeutics | Conjugates of an il-15 moiety and a polymer |
CN103980494B (en) * | 2014-04-21 | 2016-04-13 | 国家纳米科学中心 | A kind of polypeptide polymer with anti-tumor activity and its preparation method and application |
JP7059003B2 (en) | 2014-05-14 | 2022-04-25 | トラスティーズ・オブ・ダートマス・カレッジ | Deimmunized lysostaphin and how to use |
US10293043B2 (en) | 2014-06-02 | 2019-05-21 | Armo Biosciences, Inc. | Methods of lowering serum cholesterol |
EP3151852A1 (en) | 2014-06-04 | 2017-04-12 | Novo Nordisk A/S | Glp-1/glucagon receptor co-agonists for medical use |
CA2951391C (en) | 2014-06-10 | 2021-11-02 | Amgen Inc. | Apelin polypeptides |
US20170216403A1 (en) | 2014-08-12 | 2017-08-03 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2, a therapeutic antibody, and an immune checkpoint blocker |
CA2957717C (en) | 2014-08-12 | 2021-10-19 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2 and integrin-binding-fc-fusion protein |
CA2957764C (en) | 2014-08-13 | 2019-07-02 | The Johns Hopkins University | Glucocorticoid-loaded nanoparticles for prevention of corneal allograft rejection and neovascularization |
WO2016028523A2 (en) | 2014-08-22 | 2016-02-25 | Sorrento Therapeutics, Inc. | Antigen binding proteins that bind cxcr3 |
TR201907471T4 (en) | 2014-08-28 | 2019-06-21 | Halozyme Inc | Combination therapy with a hyaluronan degrading enzyme and an immune checkpoint inhibitor. |
JP2017536098A (en) | 2014-10-14 | 2017-12-07 | アルモ・バイオサイエンシーズ・インコーポレイテッド | Interleukin-15 composition and use thereof |
CN108064282A (en) | 2014-10-14 | 2018-05-22 | 哈洛齐梅公司 | Adenosine deaminase -2 (ADA2), its variant composition and use its method |
US9789197B2 (en) | 2014-10-22 | 2017-10-17 | Extend Biosciences, Inc. | RNAi vitamin D conjugates |
WO2016065042A1 (en) | 2014-10-22 | 2016-04-28 | Extend Biosciences, Inc. | Therapeutic vitamin d conjugates |
US9616109B2 (en) | 2014-10-22 | 2017-04-11 | Extend Biosciences, Inc. | Insulin vitamin D conjugates |
CN107106655A (en) | 2014-10-22 | 2017-08-29 | 阿尔莫生物科技股份有限公司 | The method that disease and illness are treated using interleukin 10 |
UA123763C2 (en) | 2014-10-23 | 2021-06-02 | Енджіем Байофармасьютикалз, Інк. | PHARMACEUTICAL COMPOSITION FOR CONTROL OR TREATMENT OF FGF19 DISEASE OR DISORDER |
SMT202100388T1 (en) | 2014-10-24 | 2021-09-14 | Bristol Myers Squibb Co | Modified fgf-21 polypeptides and uses thereof |
MY191506A (en) | 2014-11-06 | 2022-06-28 | Pharmaessentia Corp | Dosage regimen for pegylated interferon |
DK3221332T3 (en) | 2014-11-19 | 2019-07-29 | Nzp Uk Ltd | MANUFACTURING STEROID FXR MODULATORS |
WO2016079519A1 (en) | 2014-11-19 | 2016-05-26 | Dextra Laboratories Limited | 6.alpha.-alkyl-3,7-dione steroids as intermediates for the production of steroidal fxr modulators |
EP3221331B1 (en) | 2014-11-19 | 2019-09-18 | Nzp Uk Limited | 6-alkyl-7-hydroxy-4-en-3-one steroids as intermediates for the production of steroidal fxr modulators |
CN107207558B (en) | 2014-11-19 | 2019-10-29 | Nzp英国有限公司 | 6 alpha-alkyl-6, 7-diketosteroids as intermediates for the preparation of steroid FXR modulators |
CA2968961A1 (en) | 2014-11-25 | 2016-06-02 | Bristol-Myers Squibb Company | Methods and compositions for 18f-radiolabeling of biologics |
CN107406494B (en) | 2014-11-25 | 2022-03-25 | 百时美施贵宝公司 | Novel PD-L1-binding peptides for imaging |
EP3247406A1 (en) | 2015-01-20 | 2017-11-29 | The Johns Hopkins University | Compositions for the sustained release of anti-glaucoma agents to control intraocular pressure |
AU2016211696B2 (en) | 2015-01-27 | 2018-05-10 | The Johns Hopkins University | Hypotonic hydrogel formulations for enhanced transport of active agents at mucosal surfaces |
US10618970B2 (en) | 2015-02-03 | 2020-04-14 | Armo Biosciences, Inc. | Method of treating cancer with IL-10 and antibodies that induce ADCC |
WO2016130898A2 (en) | 2015-02-13 | 2016-08-18 | Sorrento Therapeutics, Inc. | Antibody therapeutics that bind ctla4 |
US10059774B2 (en) | 2015-04-08 | 2018-08-28 | Sorrento Therapeutics, Inc. | Antibody therapeutics that bind CD38 |
CN107922474A (en) | 2015-04-24 | 2018-04-17 | Viiv保健英国第五有限公司 | Target the polypeptide of HIV fusions |
AU2016257724B2 (en) | 2015-05-01 | 2021-02-25 | Allysta Pharmaceuticals, Inc. | Adiponectin peptidomimetics for treating ocular disorders |
EP3302547A1 (en) | 2015-05-28 | 2018-04-11 | Armo Biosciences, Inc. | Pegylated interleukin-10 for use in treating cancer |
CA2986774A1 (en) | 2015-05-29 | 2016-12-08 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
KR20240025721A (en) | 2015-06-15 | 2024-02-27 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | Methods and compositions for treating age-associated conditions |
MX2018002298A (en) | 2015-08-25 | 2018-07-06 | Armo Biosciences Inc | Methods of using interleukin-10 for treating diseases and disorders. |
US10584160B2 (en) | 2015-09-23 | 2020-03-10 | Bristol-Myers Squibb Company | Glypican-3-binding fibronectin based scaffold molecules |
US10335406B2 (en) | 2015-10-01 | 2019-07-02 | Elysium Therapeutics, Inc. | Opioid compositions resistant to overdose and abuse |
GB2556817B (en) | 2015-10-01 | 2019-11-06 | Elysium Therapeutics Inc | Polysubunit opioid prodrugs resistant to overdose and abuse |
US12233104B2 (en) | 2015-10-08 | 2025-02-25 | Nektar Therapeutics | Combination of an IL-2RBETA-selective agonist and a long-acting IL-15 agonist |
US10744185B2 (en) | 2015-11-09 | 2020-08-18 | Ngm Biopharmaceuticals, Inc. | Methods of using variants of FGF19 polypeptides for the treatment of pruritus |
IL259186B2 (en) | 2015-11-09 | 2023-03-01 | Scherer Technologies Llc R P | Anti-cd22 antibody-maytansine conjugates and methods of use thereof |
US11013756B2 (en) | 2015-12-04 | 2021-05-25 | Zenyaku Kogyo Co., Ltd. | Anti-IL-17 aptamer having improved retention in blood |
MX2018007042A (en) | 2015-12-11 | 2018-08-15 | Dyax Corp | Plasma kallikrein inhibitors and uses thereof for treating hereditary angioedema attack. |
WO2017132617A1 (en) | 2016-01-27 | 2017-08-03 | Sutro Biopharma, Inc. | Anti-cd74 antibody conjugates, compositions comprising anti-cd74 antibody conjugates and methods of using anti-cd74 antibody conjugates |
KR20190026642A (en) | 2016-01-29 | 2019-03-13 | 소렌토 쎄라퓨틱스, 인코포레이티드 | The antigen-binding protein that binds to PD-L1 |
WO2017147298A1 (en) | 2016-02-23 | 2017-08-31 | The Regents Of The University Of Colorado, A Body Corporate | Peptide-based methods for treating neurological injury |
CA3054286A1 (en) | 2016-03-01 | 2017-09-08 | The Board Of Trustees Of The University Of Illinois | L-asparaginase variants and fusion proteins with reduced l-glutaminase activity and enhanced stability |
US20190022016A1 (en) | 2016-03-02 | 2019-01-24 | The Johns Hopkins University | Compositions for sustained release of anti-glaucoma agents to control intraocular pressure |
WO2017160599A1 (en) | 2016-03-14 | 2017-09-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Use of cd300b antagonists to treat sepsis and septic shock |
US11192857B2 (en) | 2016-05-18 | 2021-12-07 | Alere San Diego, Inc. | 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine analogs and methods for their synthesis and use |
GB201608777D0 (en) | 2016-05-18 | 2016-06-29 | Dextra Lab Ltd | Compounds |
GB201608776D0 (en) | 2016-05-18 | 2016-06-29 | Dextra Lab Ltd | Methods and compounds |
US10994033B2 (en) | 2016-06-01 | 2021-05-04 | Bristol-Myers Squibb Company | Imaging methods using 18F-radiolabeled biologics |
DK3478830T3 (en) | 2016-07-01 | 2024-05-21 | Resolve Therapeutics Llc | OPTIMIZED BINUCLEASE FUSIONS AND METHODS |
CA3027143A1 (en) | 2016-07-15 | 2018-01-18 | F. Hoffmann-La Roche Ag | Method for purifying pegylated erythropoietin |
US11628205B2 (en) | 2016-07-22 | 2023-04-18 | Nektar Therapeutics | Conjugates of a factor VIII moiety having an oxime-containing linkage |
US11248313B2 (en) | 2016-08-01 | 2022-02-15 | Trustees Of Tufts College | Biomimetic mechanical tension driven fabrication of nanofibrillar architecture |
CN109562167A (en) | 2016-08-09 | 2019-04-02 | 伊莱利利公司 | Combination therapy |
JP7022746B2 (en) | 2016-10-24 | 2022-02-18 | ノヴォ ノルディスク アー/エス | Bioassay for insulin preparations |
US10350266B2 (en) | 2017-01-10 | 2019-07-16 | Nodus Therapeutics, Inc. | Method of treating cancer with a multiple integrin binding Fc fusion protein |
JP2020505438A (en) | 2017-01-10 | 2020-02-20 | ノダス・セラピューティクスNodus Therapeutics | Combination cancer therapy using integrin binding polypeptide-Fc fusion protein and immunomodulator |
EP3580232B1 (en) | 2017-02-08 | 2023-09-20 | Bristol-Myers Squibb Company | Modified relaxin polypeptides comprising a pharmacokinetic enhancer and uses thereof |
EP3595663A4 (en) | 2017-03-17 | 2021-01-13 | Elysium Therapeutics, Inc. | Polysubunit opioid prodrugs resistant to overdose and abuse |
JP6935059B2 (en) | 2017-03-30 | 2021-09-15 | 日油株式会社 | A method for purifying polyethylene glycol having one carboxyl group |
IL270634B1 (en) | 2017-05-15 | 2025-02-01 | Nektar Therapeutics | Long-acting interleukin-15 receptor agonists and related immunotherapeutic compositions and methods |
MY204084A (en) | 2017-06-11 | 2024-08-06 | Molecular Express Inc | Methods and compositions for substance use disorder vaccine formulations and uses thereof |
US10174302B1 (en) | 2017-06-21 | 2019-01-08 | Xl-Protein Gmbh | Modified L-asparaginase |
CA3067851C (en) | 2017-06-22 | 2023-01-31 | Catalyst Biosciences, Inc. | Modified membrane type serine protease 1 (mtsp-1) polypeptides and methods of use |
EP3658588A1 (en) | 2017-07-26 | 2020-06-03 | Sutro Biopharma, Inc. | Methods of using anti-cd74 antibodies and antibody conjugates in treatment of t-cell lymphoma |
CA3106549A1 (en) | 2017-08-11 | 2019-02-14 | The Board Of Trustees Of The University Of Illinois | Truncated guinea pig l-asparaginase variants and methods of use |
WO2019036605A2 (en) | 2017-08-17 | 2019-02-21 | Massachusetts Institute Of Technology | Multiple specificity binders of cxc chemokines and uses thereof |
WO2019040674A1 (en) | 2017-08-22 | 2019-02-28 | Sanabio, Llc | Soluble interferon receptors and uses thereof |
AU2018333945A1 (en) | 2017-09-18 | 2020-03-26 | Sutro Biopharma, Inc. | Anti- folate receptor alpha antibody conjugates and their uses |
WO2019063958A1 (en) | 2017-09-27 | 2019-04-04 | The University Of York | Bioconjugation of polypeptides |
KR102020995B1 (en) | 2017-10-30 | 2019-09-16 | 한국코러스 주식회사 | A method of preparing gcsf and polyol_conjugated conjugates with high yield |
US20200353050A1 (en) | 2017-11-10 | 2020-11-12 | Armo Biosciences, Inc. | Compositions and methods of use of interleukin-10 in combination with immune check-point pathway inhibitors |
MX2020005041A (en) | 2017-11-21 | 2020-10-12 | Univ Leland Stanford Junior | Partial agonists of interleukin-2. |
CN111094462A (en) | 2017-12-26 | 2020-05-01 | 贝克顿·迪金森公司 | Deep ultraviolet excitable water-solvated polymer dyes |
JP7137625B2 (en) | 2017-12-29 | 2022-09-14 | エフ.ホフマン-ラ ロシュ アーゲー | Methods for providing PEGylated protein compositions |
JP7410860B2 (en) | 2017-12-29 | 2024-01-10 | エフ. ホフマン-ラ ロシュ アーゲー | Method for providing PEGylated protein compositions |
SG11202005952TA (en) | 2017-12-29 | 2020-07-29 | Hoffmann La Roche | Process for providing pegylated protein composition |
CN119242071A (en) | 2018-03-30 | 2025-01-03 | 贝克顿·迪金森公司 | Water-soluble polymeric dyes containing pendant chromophores |
US20190351031A1 (en) | 2018-05-16 | 2019-11-21 | Halozyme, Inc. | Methods of selecting subjects for combination cancer therapy with a polymer-conjugated soluble ph20 |
KR102167755B1 (en) | 2018-05-23 | 2020-10-19 | 주식회사 큐어바이오 | Fragmented GRS polypeptide, mutants thereof and use thereof |
JP7097465B2 (en) | 2018-06-19 | 2022-07-07 | アルモ・バイオサイエンシーズ・インコーポレイテッド | Composition of IL-10 agent to be used in combination with chimeric antigen receptor cell therapy and its usage |
US20220162336A1 (en) | 2018-07-22 | 2022-05-26 | Bioasis Technologies, Inc. | Treatment of lymphatic metastases |
AU2019337610A1 (en) | 2018-09-11 | 2021-05-06 | Ambrx, Inc. | Interleukin-2 polypeptide conjugates and their uses |
US20220047716A1 (en) | 2018-09-17 | 2022-02-17 | Sutro Biopharma, Inc. | Combination therapies with anti-folate receptor antibody conjugates |
BR102018069598A2 (en) * | 2018-09-25 | 2020-04-07 | Fundação Oswaldo Cruz | liposomal formulation, pharmaceutical composition, use of a liposomal formulation, method for treating cancer, and, process for preparing a liposomal formulation |
CN110964116A (en) | 2018-09-26 | 2020-04-07 | 北京辅仁瑞辉生物医药研究院有限公司 | GLP1-Fc fusion protein and its conjugates |
WO2020068261A1 (en) | 2018-09-28 | 2020-04-02 | Massachusetts Institute Of Technology | Collagen-localized immunomodulatory molecules and methods thereof |
EP3867265A1 (en) | 2018-10-19 | 2021-08-25 | Ambrx, Inc. | Interleukin-10 polypeptide conjugates, dimers thereof, and their uses |
US20200262887A1 (en) | 2018-11-30 | 2020-08-20 | Opko Ireland Global Holdings, Ltd. | Oxyntomodulin peptide analog formulations |
US11613744B2 (en) | 2018-12-28 | 2023-03-28 | Vertex Pharmaceuticals Incorporated | Modified urokinase-type plasminogen activator polypeptides and methods of use |
MY205567A (en) | 2018-12-28 | 2024-10-26 | Vertex Pharma | Modified urokinase-type plasminogen activator polypeptides and methods of use |
SG11202106686PA (en) | 2019-01-04 | 2021-07-29 | Resolve Therapeutics Llc | Treatment of sjogren's disease with nuclease fusion proteins |
EP3911668A1 (en) | 2019-01-18 | 2021-11-24 | The Regents of the University of Colorado, a body corporate | Amphipathic alpha-helical antimicrobial peptides treat infections by gram-negative pathogens |
WO2020154032A1 (en) | 2019-01-23 | 2020-07-30 | Massachusetts Institute Of Technology | Combination immunotherapy dosing regimen for immune checkpoint blockade |
US12121566B2 (en) | 2019-01-30 | 2024-10-22 | Horizon Therapeutics Usa, Inc. | Methods for treating gout |
US20220226488A1 (en) | 2019-02-12 | 2022-07-21 | Ambrx, Inc. | Compositions containing, methods and uses of antibody-tlr agonist conjugates |
WO2020227105A1 (en) | 2019-05-03 | 2020-11-12 | Sutro Biopharma, Inc. | Anti-bcma antibody conjugates |
EP3980423A1 (en) | 2019-06-10 | 2022-04-13 | Sutro Biopharma, Inc. | 5h-pyrrolo[3,2-d]pyrimidine-2,4-diamino compounds and antibody conjugates thereof |
EP3983410A1 (en) | 2019-06-17 | 2022-04-20 | Sutro Biopharma, Inc. | 1-(4-(aminomethyl)benzyl)-2-butyl-2h-pyrazolo[3,4-c]quinolin-4-amine derivatives and related compounds as toll-like receptor (tlr) 7/8 agonists, as well as antibody drug conjugates thereof for use in cancer therapy and diagnosis |
CN112175088B (en) | 2019-07-02 | 2023-03-28 | 江苏晟斯生物制药有限公司 | FIX fusion proteins, conjugates and uses thereof |
JP2022545917A (en) | 2019-08-27 | 2022-11-01 | トニックス ファーマ リミテッド | Modified TFF2 polypeptide |
WO2021077058A1 (en) | 2019-10-19 | 2021-04-22 | Ramea Llc | Extended half-life g-csf and gm-csf vitamin d conjugates |
JP2023505256A (en) | 2019-12-05 | 2023-02-08 | ソレント・セラピューティクス・インコーポレイテッド | Compositions and methods comprising anti-CD47 antibodies in combination with tumor-targeting antibodies |
WO2021127487A2 (en) | 2019-12-20 | 2021-06-24 | Regeneron Pharmaceuticals, Inc. | Novel il2 agonists and methods of use thereof |
KR20220123402A (en) * | 2019-12-27 | 2022-09-06 | 니치유 가부시키가이샤 | Method for Purification of Polyethylene Glycol Compounds |
CA3168986A1 (en) | 2020-02-26 | 2021-09-02 | Sorrento Therapeutics, Inc. | Activatable antigen binding proteins with universal masking moieties |
JP2023515633A (en) | 2020-02-28 | 2023-04-13 | ブリストル-マイヤーズ スクイブ カンパニー | Radiolabeled fibronectin-based scaffolds and antibodies and their theranostic uses |
WO2021178597A1 (en) | 2020-03-03 | 2021-09-10 | Sutro Biopharma, Inc. | Antibodies comprising site-specific glutamine tags, methods of their preparation and methods of their use |
IL296099A (en) | 2020-03-11 | 2022-11-01 | Ambrx Inc | Interleukin-2 polypeptide conjugates and methods of using them |
WO2021195089A1 (en) | 2020-03-23 | 2021-09-30 | Sorrento Therapeutics, Inc. | Fc-coronavirus antigen fusion proteins, and nucleic acids, vectors, compositions and methods of use thereof |
CA3176515A1 (en) | 2020-04-22 | 2021-10-28 | Merck Sharp & Dohme Llc | Human interleukin-2 conjugates biased for the interleukin-2 receptor beta gammac dimer and conjugated to a nonpeptidic, water-soluble polymer |
JP2023524464A (en) | 2020-04-30 | 2023-06-12 | サイロパ ビー.ブイ. | Anti-CD103 antibody |
AU2021270563A1 (en) | 2020-05-12 | 2022-12-15 | Regeneron Pharmaceuticals, Inc. | Novel IL10 agonists and methods of use thereof |
US20210355468A1 (en) | 2020-05-18 | 2021-11-18 | Bioasis Technologies, Inc. | Compositions and methods for treating lewy body dementia |
US20210393787A1 (en) | 2020-06-17 | 2021-12-23 | Bioasis Technologies, Inc. | Compositions and methods for treating frontotemporal dementia |
WO2021263166A1 (en) | 2020-06-26 | 2021-12-30 | Sorrento Therapeutics, Inc. | Anti-pd1 antibodies and uses thereof |
CA3165342A1 (en) | 2020-06-29 | 2022-01-06 | James Arthur Posada | Treatment of sjogren's syndrome with nuclease fusion proteins |
CA3128035A1 (en) | 2020-08-13 | 2022-02-13 | Bioasis Technologies, Inc. | Combination therapies for delivery across the blood brain barrier |
JP2023538071A (en) | 2020-08-20 | 2023-09-06 | アンブルックス,インコーポレイテッド | Antibody-TLR agonist conjugates, methods and uses thereof |
WO2022103983A2 (en) | 2020-11-11 | 2022-05-19 | Sutro Biopharma, Inc. | Fluorenylmethyloxycarbonyl and fluorenylmethylaminocarbonyl compounds, protein conjugates thereof, and methods for their use |
US20220313798A1 (en) | 2021-03-30 | 2022-10-06 | Jazz Pharmaceuticals Ireland Ltd. | Dosing of recombinant l-asparaginase |
IL307282A (en) | 2021-04-03 | 2023-11-01 | Ambrx Inc | Anti-her2 antibody-drug conjugates and uses thereof |
WO2022232488A1 (en) | 2021-04-30 | 2022-11-03 | Celgene Corporation | Combination therapies using an anti-bcma antibody drug conjugate (adc) in combination with a gamma secretase inhibitor (gsi) |
CA3229369A1 (en) | 2021-08-16 | 2023-02-23 | Regeneron Pharmaceuticals, Inc. | Novel il27 receptor agonists and methods of use thereof |
EP4155349A1 (en) | 2021-09-24 | 2023-03-29 | Becton, Dickinson and Company | Water-soluble yellow green absorbing dyes |
EP4430079A1 (en) | 2021-11-11 | 2024-09-18 | Regeneron Pharmaceuticals, Inc. | Cd20-pd1 binding molecules and methods of use thereof |
GB202117727D0 (en) | 2021-12-08 | 2022-01-19 | Univ Edinburgh | Fap detection |
WO2024006272A1 (en) | 2022-06-27 | 2024-01-04 | Sutro Biopharma, Inc. | β-GLUCURONIDE LINKER-PAYLOADS, PROTEIN CONJUGATES THEREOF, AND METHODS THEREOF |
TW202408589A (en) | 2022-06-30 | 2024-03-01 | 美商舒卓生物製藥公司 | Anti-ror1 antibodies and antibody conjugates, compositions comprising anti‑ror1 antibodies or antibody conjugates, and methods of making and using anti-ror1 antibodies and antibody conjugates |
AU2023298234A1 (en) | 2022-07-01 | 2025-01-16 | Beckman Coulter, Inc. | Novel fluorescent dyes and polymers from dihydrophenanthrene derivatives |
WO2024015529A2 (en) | 2022-07-14 | 2024-01-18 | Jazz Pharmaceuticals Ireland Ltd. | Combination therapies involving l-asparaginase |
WO2024015229A1 (en) | 2022-07-15 | 2024-01-18 | Sutro Biopharma, Inc. | Protease/enzyme cleavable linker-payloads and protein conjugates |
WO2024044780A1 (en) | 2022-08-26 | 2024-02-29 | Sutro Biopharma, Inc. | Interleukin-18 variants and uses thereof |
WO2024044327A1 (en) | 2022-08-26 | 2024-02-29 | Beckman Coulter, Inc. | Dhnt monomers and polymer dyes with modified photophysical properties |
WO2024072637A2 (en) | 2022-09-30 | 2024-04-04 | Extend Biosciences, Inc. | Long-acting parathyroid hormone |
WO2024098023A2 (en) | 2022-11-04 | 2024-05-10 | Sutro Biopharma, Inc. | Interferon alpha polypeptides and conjugates |
CN116178733B (en) * | 2023-03-03 | 2023-08-01 | 浙江博美生物技术有限公司 | Branched monodisperse PEG derivative based on trifunctional amino acid, preparation method and application |
WO2024196805A1 (en) | 2023-03-17 | 2024-09-26 | Beckman Coulter, Inc. | Benzothienopyrrole cyanine dyes |
WO2024233926A1 (en) | 2023-05-10 | 2024-11-14 | Regeneron Pharmaceuticals, Inc. | Cd20-pd1 binding molecules and methods of use thereof |
WO2025006676A2 (en) | 2023-06-27 | 2025-01-02 | Firecyte Therapeutics, Inc. | Insulin-like growth factor binding protein like 1 (igfbpl1) compositions and methods of use thereof |
US20250108048A1 (en) | 2023-07-31 | 2025-04-03 | Sutro Biopharma, Inc. | Sting agonist compounds and conjugates |
US12269875B2 (en) | 2023-08-03 | 2025-04-08 | Jeff R. Peterson | Gout flare prevention methods using IL-1BETA blockers |
WO2025064842A1 (en) | 2023-09-21 | 2025-03-27 | Beckman Coulter, Inc. | Dihydrophenanthrene (dhp) bridged dyes for use in flow cytometry |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US40076A (en) * | 1863-09-22 | Improvement in molds for | ||
US52430A (en) * | 1866-02-06 | Improved heel-cutter | ||
US52443A (en) * | 1866-02-06 | Improved brad-awl handle | ||
US4179337A (en) * | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4722906A (en) * | 1982-09-29 | 1988-02-02 | Bio-Metric Systems, Inc. | Binding reagents and methods |
US4650909A (en) * | 1984-11-28 | 1987-03-17 | Yoakum George H | Polyethylene glycol (PEG) reagent |
EP0310361A3 (en) * | 1987-09-30 | 1989-05-24 | Beckman Instruments, Inc. | Tridentate conjugate and method of use thereof |
US5122614A (en) * | 1989-04-19 | 1992-06-16 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5324844A (en) * | 1989-04-19 | 1994-06-28 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
JP2997004B2 (en) * | 1989-05-26 | 2000-01-11 | 住友製薬株式会社 | Polyethylene glycol derivative, modified peptide and method for producing the same |
ES2085297T3 (en) * | 1989-05-27 | 1996-06-01 | Sumitomo Pharma | PROCEDURE FOR PREPARING DERIVATIVES OF POLY (ETHYLENE GLYCOL) AND MODIFIED PROTEIN. |
JP3051145B2 (en) * | 1990-08-28 | 2000-06-12 | 住友製薬株式会社 | Novel polyethylene glycol derivative modified peptide |
US5359030A (en) * | 1993-05-10 | 1994-10-25 | Protein Delivery, Inc. | Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same |
EP0632082B1 (en) * | 1993-06-29 | 1997-04-02 | "HEYLECINA", Société Anonyme | Preparation of activated carbamates of poly(alkylene glycol) and their use |
US5643575A (en) * | 1993-10-27 | 1997-07-01 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5605976A (en) * | 1995-05-15 | 1997-02-25 | Enzon, Inc. | Method of preparing polyalkylene oxide carboxylic acids |
US5919455A (en) * | 1993-10-27 | 1999-07-06 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5932462A (en) | 1995-01-10 | 1999-08-03 | Shearwater Polymers, Inc. | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US5756593A (en) * | 1995-05-15 | 1998-05-26 | Enzon, Inc. | Method of preparing polyalkyene oxide carboxylic acids |
US5747639A (en) * | 1996-03-06 | 1998-05-05 | Amgen Boulder Inc. | Use of hydrophobic interaction chromatography to purify polyethylene glycols |
WO1999045964A1 (en) * | 1998-03-12 | 1999-09-16 | Shearwater Polymers, Incorporated | Poly(ethylene glycol) derivatives with proximal reactive groups |
TR200003161T2 (en) * | 1998-04-28 | 2001-01-22 | Applied Research Systems Ars Holding N.V. | Polyol-IFN-Beta conjugates |
-
1995
- 1995-05-17 US US08/443,383 patent/US5932462A/en not_active Expired - Lifetime
-
1996
- 1996-01-11 WO PCT/US1996/000474 patent/WO1996021469A1/en active Application Filing
- 1996-01-11 AU AU47555/96A patent/AU4755596A/en not_active Abandoned
-
1998
- 1998-08-27 US US09/140,907 patent/US20010007765A1/en not_active Abandoned
-
2002
- 2002-04-10 US US10/119,546 patent/US20030114647A1/en not_active Abandoned
-
2003
- 2003-08-05 US US10/634,970 patent/US7419600B2/en not_active Expired - Fee Related
-
2008
- 2008-09-20 US US12/284,357 patent/US7786221B2/en not_active Expired - Fee Related
-
2010
- 2010-08-03 US US12/849,683 patent/US8354477B2/en not_active Expired - Fee Related
-
2012
- 2012-12-14 US US13/714,917 patent/US8546493B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020107389A1 (en) * | 1992-07-15 | 2002-08-08 | Coutts Stephen M. | Conjugates of chemically defined non-polymeric valency platform molecules and biologically active molecules |
US20050026856A1 (en) * | 1992-07-15 | 2005-02-03 | Coutts Stephen M. | Chemically defined non-polymeric valency platvorm molecules and conjugates thereof |
US7115581B2 (en) | 1992-07-15 | 2006-10-03 | La Jolla Pharmaceutical Company | Chemically-defined non-polymeric valency platform molecules and conjugates thereof |
US7351855B2 (en) | 1992-07-15 | 2008-04-01 | La Jolla Pharmaceutical Company | Chemically defined non-polymeric valency platform molecules and conjugates thereof |
US20030018190A1 (en) * | 1998-12-09 | 2003-01-23 | Jones David S. | Valency platform molecules comprising carbamate linkages |
US8440309B2 (en) | 2011-01-31 | 2013-05-14 | Confluent Surgical, Inc. | Crosslinked polymers with the crosslinker as therapeutic for sustained release |
US8889889B2 (en) | 2011-01-31 | 2014-11-18 | Confluent Surgical, Inc. | Crosslinked polymers with the crosslinker as therapeutic for sustained release |
Also Published As
Publication number | Publication date |
---|---|
US7786221B2 (en) | 2010-08-31 |
WO1996021469A1 (en) | 1996-07-18 |
US20050090650A1 (en) | 2005-04-28 |
US7419600B2 (en) | 2008-09-02 |
US20090054590A1 (en) | 2009-02-26 |
AU4755596A (en) | 1996-07-31 |
US5932462A (en) | 1999-08-03 |
US20030114647A1 (en) | 2003-06-19 |
US8546493B2 (en) | 2013-10-01 |
US8354477B2 (en) | 2013-01-15 |
US20130177961A1 (en) | 2013-07-11 |
US20100298496A1 (en) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7786221B2 (en) | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules | |
US10456476B2 (en) | Method involving 1-benzotriazolyl carbonate esters of poly(ethylene glycol) | |
US6992168B2 (en) | Sterically hindered poly(ethylene glycol) alkanoic acids and derivatives thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHEARWATER CORPORATION, ALABAMA Free format text: CHANGE OF NAME;ASSIGNOR:SHEARWATER POLYMERS, INC.;REEL/FRAME:011295/0671 Effective date: 20000927 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NEKTAR THERAPEUTICS, CALIFORNIA Free format text: MERGER;ASSIGNOR:NEKTAR THERAPEUTICS AL, CORPORATION;REEL/FRAME:023196/0394 Effective date: 20090731 Owner name: NEKTAR THERAPEUTICS,CALIFORNIA Free format text: MERGER;ASSIGNOR:NEKTAR THERAPEUTICS AL, CORPORATION;REEL/FRAME:023196/0394 Effective date: 20090731 |