US20010005667A1 - CMP platen with patterned surface - Google Patents
CMP platen with patterned surface Download PDFInfo
- Publication number
- US20010005667A1 US20010005667A1 US09/759,556 US75955601A US2001005667A1 US 20010005667 A1 US20010005667 A1 US 20010005667A1 US 75955601 A US75955601 A US 75955601A US 2001005667 A1 US2001005667 A1 US 2001005667A1
- Authority
- US
- United States
- Prior art keywords
- pad
- platen
- rotatable platen
- polishing
- recessed area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005498 polishing Methods 0.000 claims abstract description 78
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 239000000126 substance Substances 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 230000037361 pathway Effects 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 239000002984 plastic foam Substances 0.000 claims 3
- 239000000463 material Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000007517 polishing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/26—Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/12—Lapping plates for working plane surfaces
- B24B37/16—Lapping plates for working plane surfaces characterised by the shape of the lapping plate surface, e.g. grooved
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S451/00—Abrading
- Y10S451/921—Pad for lens shaping tool
Definitions
- the present invention relates to an apparatus for polishing substrates. More particularly, the invention relates to a platen/polishing pad assembly having a compliant surface to improve polishing uniformity of substrates.
- CMP chemical mechanical polishing
- the polishing process involves the introduction of a chemical slurry during the polishing process to facilitate higher removal rates and selectivity between films on the substrate surface.
- the polishing process involves holding a substrate against a polishing pad under controlled pressure, temperature and rotational speed (velocity) of the pad in the presence of the slurry or other fluid medium.
- One polishing system that is used to perform CMP is the Mirra® CMP System available from Applied Materials, Inc., and shown and described in U.S. Pat. No. 5,738,574, entitled,“Continuous Processing System for Chemical Mechanical Polishing,” the entirety of which is incorporated herein by reference.
- CMP An important goal of CMP is achieving uniform planarity of the substrate surface. Uniform planarity includes the uniform removal of material deposited on the surface of substrates as well as removing non-uniform layers which have been deposited on the substrate. Successful CMP also requires repeatability from one substrate to the next. Thus, uniformity must be achieved not only for a single substrate, but also for a series of substrates processed in a batch.
- Substrate planarity is dictated, to a large extent, by the construction of the CMP apparatus and the consumables such as slurry and pads.
- a preferred construction allows for a proper balance between rigidity (or stiffness) and compliance (or flexibility) of the polishing device, and in particular to the stiffness and compliance of the polishing pad.
- stiffness is needed to ensure within-die uniformity while sufficient compliance provides within-substrate uniformity.
- Within-substrate uniformity refers to the ability of the CMP apparatus to remove features across the diameter of the substrate regardless of substrate shape and/or topography across its surface.
- Within-die uniformity refers to the ability of the CMP apparatus to remove features within a die, regardless of size and feature density.
- Conventional polishing systems include a platen having a polishing pad disposed thereon.
- Current state of the art strongly suggests the use of more than one polishing pad to provide compliance to the pad for improved results both within-substrate and within-die.
- two pads are typically assembled together into a stack, which may be termed a “composite polishing pad.”
- a typical polishing apparatus 10 comprising a metal platen 12 having a composite polishing pad 14 mounted thereto is shown in FIG. 1. Both the composite polishing pad 14 and the platen 12 are generally disc-shaped and of equal diameters.
- the top (upper) pad 16 is brought into contact with a substrate to perform the polishing process, while the bottom (lower) pad 18 is secured to a smooth upper mounting surface of the rotatable platen 12 to provide a seating surface for the top pad 16 .
- An adhesive 20 such as a pressure sensitive adhesive (PSA) is provided on the back face of the pads 16 , 18 to bond the pads to one another and to the platen 12 .
- the top pad 16 is typically made of cast polyurethane while the bottom pad 18 is typically made of polyester felt stiffened with polyurethane resin. Other pads having different material composition are also available and known in the industry.
- the top pad 16 be stiffer than the more compliant bottom pad 18 to provide a sufficiently rigid polishing surface.
- stiffness provides better within-die uniformity, while some compliance is needed to ensure within-substrate uniformity.
- the combination of pads having the proper proportions of stiffness and flexibility can achieve good planarity and uniformity over the surface of the substrate.
- the polishing profile on a substrate can be changed or modified by changing the thickness of either or both of the upper and lower pads. The change in thickness without a change in composition can change the properties of the composite pad in terms of stiffness and compliance.
- each additional layer i.e., pad and adhesive layer, in the stack acts as a source of variation affecting the overall stiffness and/or compliance of the stack.
- a polishing device utilizing a composite polishing pad is often unable to achieve desired polishing results over a number of substrates.
- variations in compressibility, loss of within-substrate uniformity, uncontrolled wetting of the lower pad, and variation from pad to pad result due to multiple process variables.
- the planarity changes as the top pad is worn away by a process known as conditioning the pad, and planarity may decrease with increasing number of substrates polished on the pad.
- the present invention generally provides an apparatus for polishing a substrate which enhances polishing pad compliance and maintains or improves substrate and die uniformity.
- the apparatus is preferably adapted for incorporation into a chemical mechanical polishing system.
- a platen having a patterned upper surface to define a raised area and a recessed area.
- the raised area provides a rigid mounting surface for a polishing pad, while the recessed area allows for a desired degree of compliance of the pad.
- a platen having a pad disposed thereon.
- the upper surface of the platen is patterned to define a raised pad seating area and a recessed area.
- the raised area provides a rigid mounting surface for the pad and the recessed area provides a desired degree of flexibility and compliance of the pad when brought into contact with a substrate.
- a portion of the recessed area extends to the perimeter of the platen thereby forming pathways between the platen and the pad that communicate with the platen's environment.
- a patterned surface is provided and is adapted to be disposed on the upper surface of a platen to support a polishing pad thereon.
- the patterned surface is preferably a hard rubber-like material defining an upper polishing pad supporting surface having channels or other recesses formed therein to provide pad compliance.
- a platen having a patterned upper surface is provided and is coated with a rubber-like or compliant upper surface.
- the patterned surface includes both an upper pad supporting surface and a lower grooved portion for providing some compliance to the pad.
- FIG. 1 is a schematic side view of a platen and composite polishing pad assembly.
- FIG. 2 is a schematic view of a CMP system.
- FIG. 3 is a schematic view of a polishing station.
- FIG. 4 is a top view of the platen.
- FIG. 5 is a schematic side view of the platen in FIG. 4 having a pad disposed thereon.
- FIG. 6 is a top view of the platen showing an alternative embodiment.
- FIG. 7 is an exploded perspective view of a platen assembly including a patterned mat disposed between a polishing pad and a platen.
- FIG. 8 is a partial cross sectional view of a platen having a coating disposed thereon.
- the present invention generally relates to a platen having a patterned surface for mounting a pad, such as a polishing pad, thereto.
- the patterned surface includes a raised pad supporting portion and a recessed pad displacement portion.
- the raised portion defines a mounting surface for a polishing pad.
- the recessed portion provides a deflection area and is preferably vented to allow communication with the platen environment.
- FIG. 2 is a schematic view of a CMP system 30 , such as a Mirra® CMP System available from Applied Materials, Inc., located in Santa Clara, Calif.
- the system shown includes three polishing stations 32 and a loading station 34 .
- Four polishing heads 36 are rotatably mounted to a polishing head displacement mechanism 37 disposed above the polishing stations 32 and the loading station 34 .
- a front-end substrate transfer region 38 is disposed adjacent to the CMP system and is considered a part of the CMP system, though the transfer region 38 may be a separate component.
- a substrate inspection station 40 is disposed on or near the substrate transfer region 38 to enable pre and/or post process inspection of substrates introduced into the system 30 .
- a substrate is loaded on a polishing head 36 at the loading station 34 and is then rotated through the three polishing stations 32 .
- the polishing stations 32 each comprise a rotating platen 41 having polishing or cleaning pads mounted thereon described in detail below with reference to FIG. 3.
- One process sequence includes a polishing pad at the first two stations and a cleaning pad at the third station to facilitate substrate cleaning at the end of the polishing process.
- the substrate is returned to the front-end substrate transfer region 38 and another substrate is retrieved from the loading station 34 for processing.
- FIG. 3 is a schematic view of a polishing station 32 and polishing head 36 used to advantage with the present invention.
- the polishing station 32 comprises a pad 44 secured to an upper surface of the rotatable platen 41 .
- the pad 44 may be any commercially available pad supplied by manufacturers such as Rodel and preferably comprises a plastic or foam such as polyurethane.
- the platen 41 is coupled to a motor 46 or other suitable drive mechanism to impart rotational movement to the platen 41 . During operation, the platen 41 is rotated at a velocity V p about a center axis X.
- the platen 12 can be rotated in either a clockwise or counterclockwise direction.
- FIG. 3 also shows the polishing head 36 mounted above the polishing station 32 .
- the polishing head 36 supports a substrate 42 for polishing.
- the polishing head 36 may comprise a vacuum-type mechanism to chuck the substrate 42 against the polishing head 36 .
- the vacuum chuck generates a negative vacuum force behind the surface of the substrate 42 to attract and hold the substrate 42 .
- the polishing head 36 typically includes a pocket (not shown) in which the substrate 42 is supported, at least initially, under vacuum. Once the substrate 42 is secured in the pocket and positioned on the pad 44 , the vacuum can be removed.
- the polishing head 36 then applies a controlled pressure behind the substrate, indicated by the arrow 48 , to the backside of the substrate 42 urging the substrate 42 against the pad 44 to facilitate polishing of the substrate surface.
- the polishing head displacement mechanism 37 rotates the polishing head 36 and the substrate 42 at a velocity V s in a clockwise or counterclockwise direction, preferably the same direction as the platen 41 .
- the polishing head displacement mechanism 37 also preferably moves the polishing head 36 radially across the platen 41 in a direction indicated by arrows 50 and 52 .
- the CMP system also includes a chemical supply system 54 for introducing a chemical slurry of a desired composition to the pad.
- the slurry provides an abrasive material which facilitates the polishing of the substrate surface, and is preferably a composition formed of solid alumina or silica.
- the chemical supply system 54 introduces the slurry as indicated by arrow 56 on the pad 44 at a selected rate.
- FIG. 4 shows a preferred embodiment of a platen 41 of the invention.
- the platen 41 comprises a patterned surface whereon a polishing pad may be disposed.
- the patterned surface has features formed therein defining a raised area and a recessed area.
- the raised area consists of a plurality of protrusions 60 while the recessed area is a plurality of intersecting grooves 62 defined by the protrusions 60 .
- the recessed area consists of two parallel sets of equally spaced orthogonally intersecting grooves 62 in a checkerboard pattern.
- Each groove 62 traverses the upper surface of the platen 41 from one perimeter to the another.
- the grooves 62 are not contained, or blocked, at either end.
- the present invention also contemplates an embodiment having blocked grooves.
- the raised area of the platen 41 , or protrusions 60 defines a pad mounting surface.
- the protrusions 60 cooperate to provide a substantially planar mounting surface 64 along a common plane A for supporting a polishing pad 44 as shown in FIG. 5.
- the pad 44 is attached using a commercially available pressure sensitive adhesive (PSA).
- PSA pressure sensitive adhesive
- the present invention eliminates the bottom pad of prior art as discussed with reference to FIG. 1.
- the necessary pad compliance is now provided by the cooperation of the recessed and raised areas, or grooves 62 and protrusions 60 , respectively.
- the protrusions 60 ensure sufficient rigidity (or stiffness) while the grooves 62 allow the proper proportion of pad compliance to accommodate a substrate's varying topography.
- the grooves 62 are preferably open at some point along their length to prevent vacuum adherence of the pad to the surface.
- the grooves 62 provide pathways between the platen 41 and the pad 44 which vent to the environment of the platen 41 as shown in FIG. 5.
- Such a construction anticipates the use of perforated pads such as those available from Rodel. The perforations in the pad allow fluid flow therethrough.
- the grooves 62 are isolated from the environment, such as where the grooves 62 comprise concentric circles enclosed at the top by a perforated pad, a partial vacuum condition may be created in the grooves 62 as a substrate is urged against the pad. In such a case, the substrate remains chucked to the pad after the polishing cycle making it difficult to remove.
- the grooves 62 By constructing the grooves 62 as shown in FIGS. 4 and 5, the grooves 62 remain at equal pressure to the ambient environment allowing easy dechucking of the substrate. Where a concentric pattern is desired, a vent channel or channels extending to the perimeter of the platen 41 can be provided to eliminate adhesion between the substrate and platen 41 . Such an embodiment is shown in FIG. 6 and described in detail below.
- the protrusions 60 and the grooves 62 shown in FIGS. 4 and 5 are defined by machining away a portion of the upper surface of the platen 41 which comprises a metal such as aluminum.
- the present invention also contemplates alternative embodiments.
- the plurality of protrusions 60 may be constructed separately from the platen 41 .
- the protrusions 60 may then be secured to the platen 41 surface by conventional methods such as brazing or welding.
- the platen 41 may comprise two separable plates with a lower plate secured to the motor 46 (shown in FIG. 3) and an upper plate comprising the patterned surface for mounting the pad 44 .
- the plates may be permanently coupled by such methods as welding, or they may be detachably coupled by temporary fasteners or clamps.
- the latter embodiment provides a versatile platen assembly having an exchangeable mounting surface.
- the dimensions of the patterned surface may be varied to achieve the desired proportions of compliance and rigidity.
- the mounting surface 64 makes up to between about 20 to 95% of the total upper surface area but may be varied according to the pad thickness and modulus, as well as the applied polishing pressure.
- the groove depth is about 0.250 inches and the groove width is about 0.062 inches.
- the total surface area of the mounting area 64 is preferably about 20-95% of the total area of the platen.
- the diameter of the platen 41 may be varied to accommodate any substrate size such as 100 mm, 200 mm or 300 mm substrates. As a result, relative sizes of the grooves and protrusions will vary accordingly.
- FIG. 4 and 5 show only one possible embodiment according to the invention.
- FIG. 6 provides a raised area and recessed area of the platen 41 .
- the platen 41 comprises a plurality of “broken” concentric grooves 65 intersected by radial grooves 66 .
- the radial grooves 66 originate at a central hub 67 thereby communicating all of the features of the recessed area.
- the embodiments described above are merely illustrative and a person skilled in the art will recognize other embodiments within the scope of the present invention.
- FIG. 7 shows a patterned mat 100 disposed on a platen 102 and having a polishing pad 103 disposed on an upper patterned mounting surface 104 .
- the patterned mat 100 has a surface profile similar to that of the platen 41 shown in FIG. 4 and described above, however, any pattern may be used to advantage.
- the platen 102 preferably comprises an untextured mounting surface (as shown in FIG.
- polishing pad 103 , patterned mat 100 , and platen 102 are secured to one another by any conventional methods such as by an adhesive.
- FIG. 11 is a partial cross sectional view of an alternative embodiment comprising a coating 110 disposed on a patterned platen 112 .
- the particular surface profile of the platen 112 shown in FIG. 11 is similar to that of the platen 41 shown in FIG. 4 but it is to be understood that any pattern may be used to advantage, such as those shown in FIGS. 7 - 9 .
- the coating 110 may be secured to the platen 112 by conventional methods such as by an adhesive.
- a polishing pad (not shown) may then be secured to the upper mounting surface 114 defined by the coating 110 and platen 112 .
- the material used for the patterned mat 100 and coating 110 is preferably determined according to the material of the platen.
- the patterned mat 100 and coating 110 comprise a material more compliant than the platen.
- the platen is made of a metal, such as aluminum or stainless steel
- the patterned mat 100 and coating 110 may comprise an elastomer such as rubber.
- Other materials which are known and unknown could be used to advantage.
- top, bottom, below, above, backside and the like are relative terms and are not intended to be limiting. Other configurations are contemplated where a substrate can be handled in different orientations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
A chemical mechanical polishing system is provided having one more polishing stations. The polishing stations include a platen and pad mounted to an upper surface of the platen. The upper surface of the platen is patterned to define a raised area and a recessed area. The raised area provides a rigid mounting surface for the pad and the recessed area provides the pad a desired degree of flexibility and compliance of the pad when brought into contact with a substrate.
Description
- 1. Field of the Invention
- The present invention relates to an apparatus for polishing substrates. More particularly, the invention relates to a platen/polishing pad assembly having a compliant surface to improve polishing uniformity of substrates.
- 2. Background of the Related Art
- In the fabrication of integrated circuits and other electronic devices, multiple layers of conducting, semiconducting and dielectric materials are deposited and removed from a substrate during the fabrication process. Often it is necessary to polish a surface of a substrate to remove high topography, surface defects, scratches or embedded particles. The polishing process is often referred to as chemical mechanical polishing (CMP) and is used to improve the quality and reliability of the electronic devices formed on the substrate.
- Typically, the polishing process involves the introduction of a chemical slurry during the polishing process to facilitate higher removal rates and selectivity between films on the substrate surface. In general, the polishing process involves holding a substrate against a polishing pad under controlled pressure, temperature and rotational speed (velocity) of the pad in the presence of the slurry or other fluid medium. One polishing system that is used to perform CMP is the Mirra® CMP System available from Applied Materials, Inc., and shown and described in U.S. Pat. No. 5,738,574, entitled,“Continuous Processing System for Chemical Mechanical Polishing,” the entirety of which is incorporated herein by reference.
- An important goal of CMP is achieving uniform planarity of the substrate surface. Uniform planarity includes the uniform removal of material deposited on the surface of substrates as well as removing non-uniform layers which have been deposited on the substrate. Successful CMP also requires repeatability from one substrate to the next. Thus, uniformity must be achieved not only for a single substrate, but also for a series of substrates processed in a batch.
- Substrate planarity is dictated, to a large extent, by the construction of the CMP apparatus and the consumables such as slurry and pads. In particular, a preferred construction allows for a proper balance between rigidity (or stiffness) and compliance (or flexibility) of the polishing device, and in particular to the stiffness and compliance of the polishing pad. In general, stiffness is needed to ensure within-die uniformity while sufficient compliance provides within-substrate uniformity. Within-substrate uniformity refers to the ability of the CMP apparatus to remove features across the diameter of the substrate regardless of substrate shape and/or topography across its surface. Within-die uniformity refers to the ability of the CMP apparatus to remove features within a die, regardless of size and feature density.
- Conventional polishing systems include a platen having a polishing pad disposed thereon. Current state of the art strongly suggests the use of more than one polishing pad to provide compliance to the pad for improved results both within-substrate and within-die. For example, two pads are typically assembled together into a stack, which may be termed a “composite polishing pad.” A
typical polishing apparatus 10 comprising ametal platen 12 having acomposite polishing pad 14 mounted thereto is shown in FIG. 1. Both thecomposite polishing pad 14 and theplaten 12 are generally disc-shaped and of equal diameters. The top (upper)pad 16, is brought into contact with a substrate to perform the polishing process, while the bottom (lower)pad 18 is secured to a smooth upper mounting surface of therotatable platen 12 to provide a seating surface for thetop pad 16. An adhesive 20, such as a pressure sensitive adhesive (PSA) is provided on the back face of thepads platen 12. Thetop pad 16 is typically made of cast polyurethane while thebottom pad 18 is typically made of polyester felt stiffened with polyurethane resin. Other pads having different material composition are also available and known in the industry. - Generally, it is preferable that the
top pad 16 be stiffer than the morecompliant bottom pad 18 to provide a sufficiently rigid polishing surface. Typically, stiffness provides better within-die uniformity, while some compliance is needed to ensure within-substrate uniformity. The combination of pads having the proper proportions of stiffness and flexibility can achieve good planarity and uniformity over the surface of the substrate. In addition, the polishing profile on a substrate can be changed or modified by changing the thickness of either or both of the upper and lower pads. The change in thickness without a change in composition can change the properties of the composite pad in terms of stiffness and compliance. - However, a number of problems are associated with the conventional composite, or stacked, pad construction. In particular, each additional layer, i.e., pad and adhesive layer, in the stack acts as a source of variation affecting the overall stiffness and/or compliance of the stack. The greater the number of layers or even variations in the thickness of pads, the greater the potential for variation. As a result, a polishing device utilizing a composite polishing pad is often unable to achieve desired polishing results over a number of substrates. Specifically, variations in compressibility, loss of within-substrate uniformity, uncontrolled wetting of the lower pad, and variation from pad to pad result due to multiple process variables. In addition, the planarity changes as the top pad is worn away by a process known as conditioning the pad, and planarity may decrease with increasing number of substrates polished on the pad.
- One solution has been to minimize the number of layers in the composite polishing pad. Thus, the goal in CMP would be to remove the bottom pad and secure the top pad directly to the upper surface of the platen. Removal of bottom pad also eliminates the need for one layer of the adhesive. However, it has been discovered that elimination of the bottom pad and mounting the polishing pad directly on the platen results in an overly rigid pad/platen assembly which compromises the compliance of the assembly. The rigidity is a consequence of directly interfacing the top pad with the non-compliant platen surface, typically made of aluminum or other metal.
- Therefore, there is a need for a platen/pad assembly which eliminates the need for a sub-pad while providing sufficient compliance during polishing.
- The present invention generally provides an apparatus for polishing a substrate which enhances polishing pad compliance and maintains or improves substrate and die uniformity. The apparatus is preferably adapted for incorporation into a chemical mechanical polishing system.
- In one aspect of the invention, a platen is provided having a patterned upper surface to define a raised area and a recessed area. The raised area provides a rigid mounting surface for a polishing pad, while the recessed area allows for a desired degree of compliance of the pad.
- In another aspect of the invention, a platen is provided having a pad disposed thereon. The upper surface of the platen is patterned to define a raised pad seating area and a recessed area. The raised area provides a rigid mounting surface for the pad and the recessed area provides a desired degree of flexibility and compliance of the pad when brought into contact with a substrate. Preferably, a portion of the recessed area extends to the perimeter of the platen thereby forming pathways between the platen and the pad that communicate with the platen's environment.
- In another aspect of the invention, a patterned surface is provided and is adapted to be disposed on the upper surface of a platen to support a polishing pad thereon. The patterned surface is preferably a hard rubber-like material defining an upper polishing pad supporting surface having channels or other recesses formed therein to provide pad compliance.
- In another aspect of the invention, a platen having a patterned upper surface is provided and is coated with a rubber-like or compliant upper surface. The patterned surface includes both an upper pad supporting surface and a lower grooved portion for providing some compliance to the pad.
- So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
- It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
- FIG. 1 is a schematic side view of a platen and composite polishing pad assembly.
- FIG. 2 is a schematic view of a CMP system.
- FIG. 3 is a schematic view of a polishing station.
- FIG. 4 is a top view of the platen.
- FIG. 5 is a schematic side view of the platen in FIG. 4 having a pad disposed thereon.
- FIG. 6 is a top view of the platen showing an alternative embodiment.
- FIG. 7 is an exploded perspective view of a platen assembly including a patterned mat disposed between a polishing pad and a platen.
- FIG. 8 is a partial cross sectional view of a platen having a coating disposed thereon.
- The present invention generally relates to a platen having a patterned surface for mounting a pad, such as a polishing pad, thereto. The patterned surface includes a raised pad supporting portion and a recessed pad displacement portion. The raised portion defines a mounting surface for a polishing pad. The recessed portion provides a deflection area and is preferably vented to allow communication with the platen environment.
- For clarity and ease of description, the following description refers primarily to a CMP system. However, the invention is equally applicable to other types of processes that utilize a platen and pad assembly for polishing or cleaning a substrate.
- FIG. 2 is a schematic view of a
CMP system 30, such as a Mirra® CMP System available from Applied Materials, Inc., located in Santa Clara, Calif. The system shown includes three polishingstations 32 and aloading station 34. Four polishing heads 36 are rotatably mounted to a polishinghead displacement mechanism 37 disposed above the polishingstations 32 and theloading station 34. A front-end substrate transfer region 38 is disposed adjacent to the CMP system and is considered a part of the CMP system, though the transfer region 38 may be a separate component. Asubstrate inspection station 40 is disposed on or near the substrate transfer region 38 to enable pre and/or post process inspection of substrates introduced into thesystem 30. - Typically, a substrate is loaded on a polishing
head 36 at theloading station 34 and is then rotated through the three polishingstations 32. The polishingstations 32 each comprise arotating platen 41 having polishing or cleaning pads mounted thereon described in detail below with reference to FIG. 3. One process sequence includes a polishing pad at the first two stations and a cleaning pad at the third station to facilitate substrate cleaning at the end of the polishing process. At the end of the cycle the substrate is returned to the front-end substrate transfer region 38 and another substrate is retrieved from theloading station 34 for processing. - FIG. 3 is a schematic view of a polishing
station 32 and polishinghead 36 used to advantage with the present invention. The polishingstation 32 comprises apad 44 secured to an upper surface of therotatable platen 41. Thepad 44 may be any commercially available pad supplied by manufacturers such as Rodel and preferably comprises a plastic or foam such as polyurethane. Theplaten 41 is coupled to amotor 46 or other suitable drive mechanism to impart rotational movement to theplaten 41. During operation, theplaten 41 is rotated at a velocity Vp about a center axis X. Theplaten 12 can be rotated in either a clockwise or counterclockwise direction. FIG. 3 also shows the polishinghead 36 mounted above the polishingstation 32. The polishinghead 36 supports asubstrate 42 for polishing. The polishinghead 36 may comprise a vacuum-type mechanism to chuck thesubstrate 42 against the polishinghead 36. During operation, the vacuum chuck generates a negative vacuum force behind the surface of thesubstrate 42 to attract and hold thesubstrate 42. The polishinghead 36 typically includes a pocket (not shown) in which thesubstrate 42 is supported, at least initially, under vacuum. Once thesubstrate 42 is secured in the pocket and positioned on thepad 44, the vacuum can be removed. The polishinghead 36 then applies a controlled pressure behind the substrate, indicated by thearrow 48, to the backside of thesubstrate 42 urging thesubstrate 42 against thepad 44 to facilitate polishing of the substrate surface. The polishinghead displacement mechanism 37 rotates the polishinghead 36 and thesubstrate 42 at a velocity Vs in a clockwise or counterclockwise direction, preferably the same direction as theplaten 41. The polishinghead displacement mechanism 37 also preferably moves the polishinghead 36 radially across theplaten 41 in a direction indicated byarrows - With reference to FIG. 3, the CMP system also includes a
chemical supply system 54 for introducing a chemical slurry of a desired composition to the pad. The slurry provides an abrasive material which facilitates the polishing of the substrate surface, and is preferably a composition formed of solid alumina or silica. During operation, thechemical supply system 54 introduces the slurry as indicated byarrow 56 on thepad 44 at a selected rate. - FIG. 4 shows a preferred embodiment of a
platen 41 of the invention. Theplaten 41 comprises a patterned surface whereon a polishing pad may be disposed. Generally, the patterned surface has features formed therein defining a raised area and a recessed area. In the embodiment shown in FIG. 4, the raised area consists of a plurality ofprotrusions 60 while the recessed area is a plurality of intersectinggrooves 62 defined by theprotrusions 60. More specifically, the recessed area consists of two parallel sets of equally spaced orthogonally intersectinggrooves 62 in a checkerboard pattern. Eachgroove 62 traverses the upper surface of theplaten 41 from one perimeter to the another. Thus, thegrooves 62 are not contained, or blocked, at either end. However, the present invention also contemplates an embodiment having blocked grooves. - The raised area of the
platen 41, orprotrusions 60, defines a pad mounting surface. Preferably, theprotrusions 60 cooperate to provide a substantially planar mountingsurface 64 along a common plane A for supporting apolishing pad 44 as shown in FIG. 5. Thepad 44 is attached using a commercially available pressure sensitive adhesive (PSA). Thus, the present invention eliminates the bottom pad of prior art as discussed with reference to FIG. 1. Further, the necessary pad compliance, previously achieved by using a bottom pad, is now provided by the cooperation of the recessed and raised areas, orgrooves 62 andprotrusions 60, respectively. Theprotrusions 60 ensure sufficient rigidity (or stiffness) while thegrooves 62 allow the proper proportion of pad compliance to accommodate a substrate's varying topography. - As noted above, the
grooves 62 are preferably open at some point along their length to prevent vacuum adherence of the pad to the surface. Thus, thegrooves 62 provide pathways between theplaten 41 and thepad 44 which vent to the environment of theplaten 41 as shown in FIG. 5. Such a construction anticipates the use of perforated pads such as those available from Rodel. The perforations in the pad allow fluid flow therethrough. Where thegrooves 62 are isolated from the environment, such as where thegrooves 62 comprise concentric circles enclosed at the top by a perforated pad, a partial vacuum condition may be created in thegrooves 62 as a substrate is urged against the pad. In such a case, the substrate remains chucked to the pad after the polishing cycle making it difficult to remove. By constructing thegrooves 62 as shown in FIGS. 4 and 5, thegrooves 62 remain at equal pressure to the ambient environment allowing easy dechucking of the substrate. Where a concentric pattern is desired, a vent channel or channels extending to the perimeter of theplaten 41 can be provided to eliminate adhesion between the substrate andplaten 41. Such an embodiment is shown in FIG. 6 and described in detail below. - Preferably, the
protrusions 60 and thegrooves 62 shown in FIGS. 4 and 5 are defined by machining away a portion of the upper surface of theplaten 41 which comprises a metal such as aluminum. However, the present invention also contemplates alternative embodiments. For example, the plurality ofprotrusions 60 may be constructed separately from theplaten 41. Theprotrusions 60 may then be secured to theplaten 41 surface by conventional methods such as brazing or welding. In another alternative, theplaten 41 may comprise two separable plates with a lower plate secured to the motor 46 (shown in FIG. 3) and an upper plate comprising the patterned surface for mounting thepad 44. The plates may be permanently coupled by such methods as welding, or they may be detachably coupled by temporary fasteners or clamps. The latter embodiment provides a versatile platen assembly having an exchangeable mounting surface. - The dimensions of the patterned surface may be varied to achieve the desired proportions of compliance and rigidity. In general, the mounting
surface 64 makes up to between about 20 to 95% of the total upper surface area but may be varied according to the pad thickness and modulus, as well as the applied polishing pressure. In a specific embodiment shown in FIG. 4 having a diameter of about twenty (20) inches, the groove depth is about 0.250 inches and the groove width is about 0.062 inches. Thus, the total surface area of the mountingarea 64 is preferably about 20-95% of the total area of the platen. The diameter of theplaten 41 may be varied to accommodate any substrate size such as 100 mm, 200 mm or 300 mm substrates. As a result, relative sizes of the grooves and protrusions will vary accordingly. - It is to be understood that the present invention allows for virtually limitless design variations. FIG. 4 and5 show only one possible embodiment according to the invention. Another embodiment is shown in FIG. 6. In general, the embodiment of FIG. 6 provides a raised area and recessed area of the
platen 41. Specifically, theplaten 41 comprises a plurality of “broken”concentric grooves 65 intersected by radial grooves 66. The radial grooves 66 originate at a central hub 67 thereby communicating all of the features of the recessed area. The embodiments described above are merely illustrative and a person skilled in the art will recognize other embodiments within the scope of the present invention. - In addition to patterning the upper surface of the platen, a patterned mat, liner or other coating could be applied to or disposed over a typical platen as shown in FIGS. 7 and 8. A hard rubber-like coating could be molded or otherwise formed to provide one of the patterned surfaces described above. Thus, FIG. 7 shows a
patterned mat 100 disposed on aplaten 102 and having apolishing pad 103 disposed on an upper patterned mountingsurface 104. In the specific embodiment shown, the patternedmat 100 has a surface profile similar to that of theplaten 41 shown in FIG. 4 and described above, however, any pattern may be used to advantage. In such an embodiment, theplaten 102 preferably comprises an untextured mounting surface (as shown in FIG. 7) for securing the patternedmat 100 thereto but may also comprise a patterned surface to cooperate with the patternedmat 100 in providing additional flexibility and compliance. Thepolishing pad 103, patternedmat 100, andplaten 102 are secured to one another by any conventional methods such as by an adhesive. - FIG. 11 is a partial cross sectional view of an alternative embodiment comprising a
coating 110 disposed on apatterned platen 112. The particular surface profile of theplaten 112 shown in FIG. 11 is similar to that of theplaten 41 shown in FIG. 4 but it is to be understood that any pattern may be used to advantage, such as those shown in FIGS. 7-9. Thecoating 110 may be secured to theplaten 112 by conventional methods such as by an adhesive. A polishing pad (not shown) may then be secured to the upper mountingsurface 114 defined by thecoating 110 andplaten 112. - The material used for the patterned
mat 100 andcoating 110 is preferably determined according to the material of the platen. In general, the patternedmat 100 andcoating 110 comprise a material more compliant than the platen. For example, where the platen is made of a metal, such as aluminum or stainless steel, the patternedmat 100 andcoating 110 may comprise an elastomer such as rubber. Other materials which are known and unknown could be used to advantage. - It is to be understood that terms such as top, bottom, below, above, backside and the like are relative terms and are not intended to be limiting. Other configurations are contemplated where a substrate can be handled in different orientations.
- While foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims (27)
1. A rotatable platen assembly, comprising a patterned surface for securing a pad thereto, the patterned surface comprising:
(a) one or more raised portions disposed on the patterned surface defining a mounting surface; and
(b) a recessed area defined by the one or more raised portions.
2. The rotatable platen assembly of , wherein the recessed area comprises a plurality of grooves.
claim 1
3. The rotatable platen assembly of , wherein at least a portion of the recessed area extends to a perimeter of the rotatable platen.
claim 1
4. The rotatable platen assembly of , wherein the rotatable platen is part of a chemical mechanical polishing system.
claim 1
5. The rotatable platen assembly of , wherein the platen comprises aluminum.
claim 1
6. The rotatable platen assembly of , wherein the pad comprises polyurethane.
claim 1
7. The rotatable platen assembly of , wherein the pad comprises a plastic foam.
claim 1
8. An apparatus for polishing a substrate, comprising:
(a) a rotatable platen, comprising a patterned surface for securing a pad thereto, the patterned surface comprising:
(i) one or more raised portions defining a mounting surface; and
(ii) a recessed area defined by the one or more raised portions; and
(b) a pad disposed on the mounting surface.
9. The apparatus of , further comprising a coating disposed on the patterned surface.
claim 8
10. The apparatus of , wherein the pad comprises polyurethane.
claim 8
11. The apparatus of , wherein the pad comprises a plastic foam.
claim 8
12. The apparatus of , wherein the recessed area comprises a plurality of grooves.
claim 8
13. The apparatus of , wherein at least a portion of the recessed area extends to a perimeter of the rotatable platen.
claim 8
14. The apparatus of , wherein the recessed area and the pad define a plurality of pathways.
claim 8
15. The apparatus of , wherein at least a portion of the plurality of pathways extend to a perimeter of the rotatable platen to allow fluid communication between a backside of the pad and an environment of the rotatable platen.
claim 14
16. A substrate polishing apparatus, comprising:
(a) one or more polishing stations each including a rotatable platen wherein at least one of the rotatable platen comprises a patterned surface for securing a pad thereto, the patterned surface comprising:
(i) one or more raised portions defining a mounting surface; and
(ii) a recessed area defined by the one or more raised portions; and
(b) one or more polishing heads rotatably mounted above the rotatable platens.
17. The apparatus of , further comprising a pad disposed on the mounting surface.
claim 16
18. The apparatus of , further comprising a coating disposed on the patterned surface.
claim 16
19. The apparatus of , further comprising a motor coupled to the rotatable platen to selectively impart rotation.
claim 16
20. The apparatus of , wherein the recessed area comprises a plurality of grooves.
claim 16
21. The apparatus of , wherein the recessed area and the pad define a plurality of pathways.
claim 16
22. The apparatus of , wherein at least a portion of the plurality of pathways extend to a perimeter of the rotatable platen to allow fluid communication between a backside of the pad and an environment of the rotatable platen.
claim 21
23. A rotatable platen assembly for a polishing apparatus, comprising:
(a) a mat comprising a patterned surface disposed on the platen, the patterned surface comprising:
(i) one or more raised portions defining a mounting surface; and
(ii) a recessed area defined by the one or more raised portions; and
(b) a pad disposed on the mounting surface.
24. The rotatable platen assembly of , wherein the recessed area comprises a plurality of grooves.
claim 23
25. The rotatable platen assembly of , wherein at least a portion of the recessed area extends to a perimeter of the rotatable platen.
claim 23
26. The rotatable platen assembly of , wherein the platen comprises aluminum.
claim 23
27. The rotatable platen assembly of , wherein the pad comprises a plastic foam.
claim 23
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/759,556 US6592438B2 (en) | 1999-04-02 | 2001-01-12 | CMP platen with patterned surface |
US10/619,745 US20040053566A1 (en) | 2001-01-12 | 2003-07-15 | CMP platen with patterned surface |
US10/680,631 US20040072518A1 (en) | 1999-04-02 | 2003-10-07 | Platen with patterned surface for chemical mechanical polishing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/285,508 US6220942B1 (en) | 1999-04-02 | 1999-04-02 | CMP platen with patterned surface |
US09/287,575 US6217426B1 (en) | 1999-04-06 | 1999-04-06 | CMP polishing pad |
US09/759,556 US6592438B2 (en) | 1999-04-02 | 2001-01-12 | CMP platen with patterned surface |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/285,508 Continuation US6220942B1 (en) | 1999-04-02 | 1999-04-02 | CMP platen with patterned surface |
US09/287,575 Continuation US6217426B1 (en) | 1999-04-02 | 1999-04-06 | CMP polishing pad |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/619,745 Continuation US20040053566A1 (en) | 1999-04-02 | 2003-07-15 | CMP platen with patterned surface |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010005667A1 true US20010005667A1 (en) | 2001-06-28 |
US6592438B2 US6592438B2 (en) | 2003-07-15 |
Family
ID=23103507
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/287,575 Expired - Fee Related US6217426B1 (en) | 1999-04-02 | 1999-04-06 | CMP polishing pad |
US09/759,556 Expired - Lifetime US6592438B2 (en) | 1999-04-02 | 2001-01-12 | CMP platen with patterned surface |
US09/759,858 Expired - Lifetime US6575825B2 (en) | 1999-04-06 | 2001-01-12 | CMP polishing pad |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/287,575 Expired - Fee Related US6217426B1 (en) | 1999-04-02 | 1999-04-06 | CMP polishing pad |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/759,858 Expired - Lifetime US6575825B2 (en) | 1999-04-06 | 2001-01-12 | CMP polishing pad |
Country Status (3)
Country | Link |
---|---|
US (3) | US6217426B1 (en) |
JP (1) | JP2001018165A (en) |
TW (1) | TW467803B (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136684A1 (en) * | 2002-01-22 | 2003-07-24 | Applied Materials, Inc. | Endpoint detection for electro chemical mechanical polishing and electropolishing processes |
EP1361023A2 (en) * | 2002-05-07 | 2003-11-12 | Applied Materials, Inc. | Polishing articles for electrochemical mechanical polishing of substrates |
US20040053560A1 (en) * | 2002-09-16 | 2004-03-18 | Lizhong Sun | Control of removal profile in electrochemically assisted CMP |
US20040072445A1 (en) * | 2002-07-11 | 2004-04-15 | Applied Materials, Inc. | Effective method to improve surface finish in electrochemically assisted CMP |
US20040082288A1 (en) * | 1999-05-03 | 2004-04-29 | Applied Materials, Inc. | Fixed abrasive articles |
US6783437B1 (en) | 2003-05-08 | 2004-08-31 | Texas Instruments Incorporated | Edge-sealed pad for CMP process |
US20040173461A1 (en) * | 2003-03-04 | 2004-09-09 | Applied Materials, Inc. | Method and apparatus for local polishing control |
US20040182721A1 (en) * | 2003-03-18 | 2004-09-23 | Applied Materials, Inc. | Process control in electro-chemical mechanical polishing |
US20040266327A1 (en) * | 2000-02-17 | 2004-12-30 | Liang-Yuh Chen | Conductive polishing article for electrochemical mechanical polishing |
US20040266085A1 (en) * | 2000-12-18 | 2004-12-30 | Applied Materials, Inc. | Integrated multi-step gap fill and all feature planarization for conductive materials |
US20050022931A1 (en) * | 2003-07-28 | 2005-02-03 | Chung-Ki Min | Chemical mechanical polishing apparatus |
US20050032462A1 (en) * | 2003-08-07 | 2005-02-10 | 3M Innovative Properties Company | In situ activation of a three-dimensional fixed abrasive article |
US20050061674A1 (en) * | 2002-09-16 | 2005-03-24 | Yan Wang | Endpoint compensation in electroprocessing |
US6884153B2 (en) | 2000-02-17 | 2005-04-26 | Applied Materials, Inc. | Apparatus for electrochemical processing |
US20050098446A1 (en) * | 2003-10-03 | 2005-05-12 | Applied Materials, Inc. | Multi-layer polishing pad |
US20050121141A1 (en) * | 2003-11-13 | 2005-06-09 | Manens Antoine P. | Real time process control for a polishing process |
US20050124262A1 (en) * | 2003-12-03 | 2005-06-09 | Applied Materials, Inc. | Processing pad assembly with zone control |
US20050173259A1 (en) * | 2004-02-06 | 2005-08-11 | Applied Materials, Inc. | Endpoint system for electro-chemical mechanical polishing |
US20050178743A1 (en) * | 2002-09-16 | 2005-08-18 | Applied Materials, Inc. | Process control in electrochemically assisted planarization |
US20050221723A1 (en) * | 2003-10-03 | 2005-10-06 | Applied Materials, Inc. | Multi-layer polishing pad for low-pressure polishing |
US6962524B2 (en) | 2000-02-17 | 2005-11-08 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US6991528B2 (en) | 2000-02-17 | 2006-01-31 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US20060021974A1 (en) * | 2004-01-29 | 2006-02-02 | Applied Materials, Inc. | Method and composition for polishing a substrate |
US7029365B2 (en) | 2000-02-17 | 2006-04-18 | Applied Materials Inc. | Pad assembly for electrochemical mechanical processing |
US7059948B2 (en) | 2000-12-22 | 2006-06-13 | Applied Materials | Articles for polishing semiconductor substrates |
US7077721B2 (en) | 2000-02-17 | 2006-07-18 | Applied Materials, Inc. | Pad assembly for electrochemical mechanical processing |
US20060166500A1 (en) * | 2005-01-26 | 2006-07-27 | Applied Materials, Inc. | Electroprocessing profile control |
US20060163074A1 (en) * | 2002-09-16 | 2006-07-27 | Applied Materials, Inc. | Algorithm for real-time process control of electro-polishing |
US7084064B2 (en) | 2004-09-14 | 2006-08-01 | Applied Materials, Inc. | Full sequence metal and barrier layer electrochemical mechanical processing |
US7125477B2 (en) | 2000-02-17 | 2006-10-24 | Applied Materials, Inc. | Contacts for electrochemical processing |
US7137879B2 (en) | 2001-04-24 | 2006-11-21 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
WO2007030347A2 (en) * | 2005-09-06 | 2007-03-15 | Freescale Semiconductor | Grooved platen with channels or pathway to ambient air |
EP1764189A1 (en) * | 2005-09-16 | 2007-03-21 | JSR Corporation | Method of manufacturing chemical mechanical polishing pad |
US7303462B2 (en) | 2000-02-17 | 2007-12-04 | Applied Materials, Inc. | Edge bead removal by an electro polishing process |
US7303662B2 (en) | 2000-02-17 | 2007-12-04 | Applied Materials, Inc. | Contacts for electrochemical processing |
USD559066S1 (en) * | 2004-10-26 | 2008-01-08 | Jsr Corporation | Polishing pad |
US7329174B2 (en) * | 2004-05-20 | 2008-02-12 | Jsr Corporation | Method of manufacturing chemical mechanical polishing pad |
US20080035474A1 (en) * | 2006-07-07 | 2008-02-14 | You Wang | Apparatus for electroprocessing a substrate with edge profile control |
US7344432B2 (en) | 2001-04-24 | 2008-03-18 | Applied Materials, Inc. | Conductive pad with ion exchange membrane for electrochemical mechanical polishing |
US7374644B2 (en) | 2000-02-17 | 2008-05-20 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7390744B2 (en) | 2004-01-29 | 2008-06-24 | Applied Materials, Inc. | Method and composition for polishing a substrate |
US7427340B2 (en) | 2005-04-08 | 2008-09-23 | Applied Materials, Inc. | Conductive pad |
US20080242202A1 (en) * | 2007-04-02 | 2008-10-02 | Yuchun Wang | Extended pad life for ecmp and barrier removal |
US7520968B2 (en) | 2004-10-05 | 2009-04-21 | Applied Materials, Inc. | Conductive pad design modification for better wafer-pad contact |
US7670468B2 (en) | 2000-02-17 | 2010-03-02 | Applied Materials, Inc. | Contact assembly and method for electrochemical mechanical processing |
US7678245B2 (en) | 2000-02-17 | 2010-03-16 | Applied Materials, Inc. | Method and apparatus for electrochemical mechanical processing |
US20100099340A1 (en) * | 2008-10-16 | 2010-04-22 | Applied Materials, Inc. | Textured platen |
WO2017165216A1 (en) * | 2016-03-24 | 2017-09-28 | Applied Materials, Inc. | Textured small pad for chemical mechanical polishing |
US10105812B2 (en) | 2014-07-17 | 2018-10-23 | Applied Materials, Inc. | Polishing pad configuration and polishing pad support |
Families Citing this family (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2786118B1 (en) * | 1998-11-19 | 2000-12-22 | Lam Plan Sa | LAPPING OR POLISHING DEVICE |
US6413388B1 (en) * | 2000-02-23 | 2002-07-02 | Nutool Inc. | Pad designs and structures for a versatile materials processing apparatus |
US6217426B1 (en) * | 1999-04-06 | 2001-04-17 | Applied Materials, Inc. | CMP polishing pad |
US6379229B1 (en) * | 1999-05-17 | 2002-04-30 | Ebara Corporation | Polishing apparatus |
US20060131177A1 (en) * | 2000-02-23 | 2006-06-22 | Jeffrey Bogart | Means to eliminate bubble entrapment during electrochemical processing of workpiece surface |
US7141146B2 (en) * | 2000-02-23 | 2006-11-28 | Asm Nutool, Inc. | Means to improve center to edge uniformity of electrochemical mechanical processing of workpiece surface |
US20090020437A1 (en) * | 2000-02-23 | 2009-01-22 | Basol Bulent M | Method and system for controlled material removal by electrochemical polishing |
US6924641B1 (en) * | 2000-05-19 | 2005-08-02 | Applied Materials, Inc. | Method and apparatus for monitoring a metal layer during chemical mechanical polishing |
US8485862B2 (en) | 2000-05-19 | 2013-07-16 | Applied Materials, Inc. | Polishing pad for endpoint detection and related methods |
US7374477B2 (en) * | 2002-02-06 | 2008-05-20 | Applied Materials, Inc. | Polishing pads useful for endpoint detection in chemical mechanical polishing |
US6561891B2 (en) * | 2000-05-23 | 2003-05-13 | Rodel Holdings, Inc. | Eliminating air pockets under a polished pad |
US6666751B1 (en) * | 2000-07-17 | 2003-12-23 | Micron Technology, Inc. | Deformable pad for chemical mechanical polishing |
US6454644B1 (en) * | 2000-07-31 | 2002-09-24 | Ebara Corporation | Polisher and method for manufacturing same and polishing tool |
US6612917B2 (en) * | 2001-02-07 | 2003-09-02 | 3M Innovative Properties Company | Abrasive article suitable for modifying a semiconductor wafer |
US6632129B2 (en) | 2001-02-15 | 2003-10-14 | 3M Innovative Properties Company | Fixed abrasive article for use in modifying a semiconductor wafer |
US6608495B2 (en) | 2001-03-19 | 2003-08-19 | Applied Materials, Inc. | Eddy-optic sensor for object inspection |
US6966816B2 (en) * | 2001-05-02 | 2005-11-22 | Applied Materials, Inc. | Integrated endpoint detection system with optical and eddy current monitoring |
US6857941B2 (en) * | 2001-06-01 | 2005-02-22 | Applied Materials, Inc. | Multi-phase polishing pad |
US6659846B2 (en) | 2001-09-17 | 2003-12-09 | Agere Systems, Inc. | Pad for chemical mechanical polishing |
US7070480B2 (en) | 2001-10-11 | 2006-07-04 | Applied Materials, Inc. | Method and apparatus for polishing substrates |
US6811466B1 (en) * | 2001-12-28 | 2004-11-02 | Applied Materials, Inc. | System and method for in-line metal profile measurement |
JP3843933B2 (en) * | 2002-02-07 | 2006-11-08 | ソニー株式会社 | Polishing pad, polishing apparatus and polishing method |
CN100356515C (en) | 2002-04-03 | 2007-12-19 | 东邦工程株式会社 | Polishing pad and semiconductor substrate manufacturing method using the polishing pad |
US6705923B2 (en) * | 2002-04-25 | 2004-03-16 | Taiwan Semiconductor Manufacturing Co., Ltd | Chemical mechanical polisher equipped with chilled wafer holder and polishing pad and method of using |
US7166247B2 (en) * | 2002-06-24 | 2007-01-23 | Micron Technology, Inc. | Foamed mechanical planarization pads made with supercritical fluid |
US20040108063A1 (en) * | 2002-12-04 | 2004-06-10 | Ebara Technologies | Method and polishing pad design enabling improved wafer removal from a polishing pad in a CMP process |
US20070131563A1 (en) * | 2003-04-14 | 2007-06-14 | Asm Nutool, Inc. | Means to improve center to edge uniformity of electrochemical mechanical processing of workpiece surface |
JP4292025B2 (en) * | 2003-05-23 | 2009-07-08 | Jsr株式会社 | Polishing pad |
US20040259479A1 (en) * | 2003-06-23 | 2004-12-23 | Cabot Microelectronics Corporation | Polishing pad for electrochemical-mechanical polishing |
KR100590202B1 (en) * | 2003-08-29 | 2006-06-15 | 삼성전자주식회사 | Polishing pads and forming method thereof |
US20050060942A1 (en) * | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Structured abrasive article |
US7300479B2 (en) * | 2003-09-23 | 2007-11-27 | 3M Innovative Properties Company | Compositions for abrasive articles |
US20050060944A1 (en) * | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Method of making a coated abrasive |
US7267700B2 (en) * | 2003-09-23 | 2007-09-11 | 3M Innovative Properties Company | Structured abrasive with parabolic sides |
US20050060941A1 (en) * | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Abrasive article and methods of making the same |
US20050060945A1 (en) * | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Method of making a coated abrasive |
US20050064805A1 (en) * | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Structured abrasive article |
JP4877448B2 (en) * | 2003-11-04 | 2012-02-15 | Jsr株式会社 | Chemical mechanical polishing pad |
US7442116B2 (en) * | 2003-11-04 | 2008-10-28 | Jsr Corporation | Chemical mechanical polishing pad |
TWI227521B (en) * | 2003-11-12 | 2005-02-01 | United Microelectronics Corp | Polishing element |
US20050148289A1 (en) * | 2004-01-06 | 2005-07-07 | Cabot Microelectronics Corp. | Micromachining by chemical mechanical polishing |
US6951509B1 (en) * | 2004-03-09 | 2005-10-04 | 3M Innovative Properties Company | Undulated pad conditioner and method of using same |
USD559064S1 (en) | 2004-03-17 | 2008-01-08 | Jsr Corporation | Polishing pad |
USD559063S1 (en) * | 2004-03-17 | 2008-01-08 | Jsr Corporation | Polishing pad |
TWI293266B (en) * | 2004-05-05 | 2008-02-11 | Iv Technologies Co Ltd | A single-layer polishing pad and a method of producing the same |
US7354334B1 (en) * | 2004-05-07 | 2008-04-08 | Applied Materials, Inc. | Reducing polishing pad deformation |
TWI254354B (en) * | 2004-06-29 | 2006-05-01 | Iv Technologies Co Ltd | An inlaid polishing pad and a method of producing the same |
JP2006068869A (en) * | 2004-09-03 | 2006-03-16 | Inoac Corp | Polishing pad |
USD559648S1 (en) * | 2004-10-05 | 2008-01-15 | Jsr Corporation | Polishing pad |
TWD111897S1 (en) * | 2004-10-05 | 2006-07-11 | 股份有限公司 | Grinding pads |
USD560457S1 (en) * | 2004-10-05 | 2008-01-29 | Jsr Corporation | Polishing pad |
JP3872081B2 (en) | 2004-12-29 | 2007-01-24 | 東邦エンジニアリング株式会社 | Polishing pad |
US7182677B2 (en) * | 2005-01-14 | 2007-02-27 | Applied Materials, Inc. | Chemical mechanical polishing pad for controlling polishing slurry distribution |
US20060252266A1 (en) * | 2005-05-09 | 2006-11-09 | Chih-Yueh Lee | Cmp process of high selectivity |
US7549914B2 (en) * | 2005-09-28 | 2009-06-23 | Diamex International Corporation | Polishing system |
TWI288048B (en) * | 2005-10-20 | 2007-10-11 | Iv Technologies Co Ltd | A polishing pad and producing method thereof |
US20070153453A1 (en) * | 2006-01-05 | 2007-07-05 | Applied Materials, Inc. | Fully conductive pad for electrochemical mechanical processing |
US20070235344A1 (en) * | 2006-04-06 | 2007-10-11 | Applied Materials, Inc. | Process for high copper removal rate with good planarization and surface finish |
US20070251832A1 (en) * | 2006-04-27 | 2007-11-01 | Applied Materials, Inc. | Method and apparatus for electrochemical mechanical polishing of cu with higher liner velocity for better surface finish and higher removal rate during clearance |
TWI287486B (en) * | 2006-05-04 | 2007-10-01 | Iv Technologies Co Ltd | Polishing pad and method thereof |
CN101073880B (en) * | 2006-05-16 | 2010-08-11 | 智胜科技股份有限公司 | Polishing pad and method for manufacturing the same |
US8389099B1 (en) | 2007-06-01 | 2013-03-05 | Rubicon Technology, Inc. | Asymmetrical wafer configurations and method for creating the same |
US8348720B1 (en) | 2007-06-19 | 2013-01-08 | Rubicon Technology, Inc. | Ultra-flat, high throughput wafer lapping process |
US20090047884A1 (en) * | 2007-08-15 | 2009-02-19 | Ppg Industries Ohio, Inc. | Chemical mechanical polishing pad structure minimizing trapped air and polishing fluid intrusion |
US8337278B2 (en) * | 2007-09-24 | 2012-12-25 | Applied Materials, Inc. | Wafer edge characterization by successive radius measurements |
KR101577988B1 (en) * | 2007-12-31 | 2015-12-16 | 에프엔에스테크 주식회사 | Chemical-mechanical planarization pad |
TW201006609A (en) * | 2008-06-09 | 2010-02-16 | Applied Materials Inc | CMP pad identification and layer ratio modeling |
US20120302148A1 (en) * | 2011-05-23 | 2012-11-29 | Rajeev Bajaj | Polishing pad with homogeneous body having discrete protrusions thereon |
US9067298B2 (en) | 2011-11-29 | 2015-06-30 | Nexplanar Corporation | Polishing pad with grooved foundation layer and polishing surface layer |
US9067297B2 (en) | 2011-11-29 | 2015-06-30 | Nexplanar Corporation | Polishing pad with foundation layer and polishing surface layer |
US9597769B2 (en) | 2012-06-04 | 2017-03-21 | Nexplanar Corporation | Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer |
US9308620B2 (en) | 2013-09-18 | 2016-04-12 | Texas Instruments Incorporated | Permeated grooving in CMP polishing pads |
WO2015161210A1 (en) * | 2014-04-17 | 2015-10-22 | Cabot Microelectronics Corporation | Cmp polishing pad with columnar structure and methods related thereto |
US9844800B2 (en) * | 2014-04-23 | 2017-12-19 | Applied Materials, Inc. | Systems, methods and apparatus for post-chemical mechanical planarization substrate cleaning |
US9873180B2 (en) | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
US20160101500A1 (en) * | 2014-10-09 | 2016-04-14 | Applied Materials, Inc. | Chemical mechanical polishing pad with internal channels |
US9776361B2 (en) | 2014-10-17 | 2017-10-03 | Applied Materials, Inc. | Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles |
US10399201B2 (en) | 2014-10-17 | 2019-09-03 | Applied Materials, Inc. | Advanced polishing pads having compositional gradients by use of an additive manufacturing process |
US10875145B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Polishing pads produced by an additive manufacturing process |
US11745302B2 (en) | 2014-10-17 | 2023-09-05 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
CN107078048B (en) | 2014-10-17 | 2021-08-13 | 应用材料公司 | CMP pad construction with composite properties using additive manufacturing process |
US10821573B2 (en) | 2014-10-17 | 2020-11-03 | Applied Materials, Inc. | Polishing pads produced by an additive manufacturing process |
US10875153B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Advanced polishing pad materials and formulations |
US10618141B2 (en) | 2015-10-30 | 2020-04-14 | Applied Materials, Inc. | Apparatus for forming a polishing article that has a desired zeta potential |
US10593574B2 (en) | 2015-11-06 | 2020-03-17 | Applied Materials, Inc. | Techniques for combining CMP process tracking data with 3D printed CMP consumables |
US10391605B2 (en) | 2016-01-19 | 2019-08-27 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
US10596763B2 (en) | 2017-04-21 | 2020-03-24 | Applied Materials, Inc. | Additive manufacturing with array of energy sources |
US11471999B2 (en) | 2017-07-26 | 2022-10-18 | Applied Materials, Inc. | Integrated abrasive polishing pads and manufacturing methods |
US11072050B2 (en) | 2017-08-04 | 2021-07-27 | Applied Materials, Inc. | Polishing pad with window and manufacturing methods thereof |
WO2019032286A1 (en) | 2017-08-07 | 2019-02-14 | Applied Materials, Inc. | Abrasive delivery polishing pads and manufacturing methods thereof |
NL2022445A (en) * | 2018-02-06 | 2019-02-18 | Asml Holding Nv | System, Device and Method for Reconditioning a Substrate Support |
CN110712117B (en) * | 2018-07-12 | 2021-08-10 | 鼎朋企业股份有限公司 | Grinder applied to non-horizontal grinding surface |
US20210263418A1 (en) * | 2018-07-27 | 2021-08-26 | Asml Netherlands B.V. | Tool for modifying a support surface |
CN112654655A (en) | 2018-09-04 | 2021-04-13 | 应用材料公司 | Advanced polishing pad formulations |
TWI850338B (en) * | 2019-02-28 | 2024-08-01 | 美商應用材料股份有限公司 | Polishing pads, chemical mechanical polishing systems, and methods of controlling stiffness of the backing layer of the polishing pad |
JP7317440B2 (en) * | 2019-04-15 | 2023-07-31 | 株式会社ディスコ | dressing tool |
WO2020242172A1 (en) * | 2019-05-29 | 2020-12-03 | 한국생산기술연구원 | Chemical mechanical polishing pad having pattern structure |
US11813712B2 (en) | 2019-12-20 | 2023-11-14 | Applied Materials, Inc. | Polishing pads having selectively arranged porosity |
US11806829B2 (en) | 2020-06-19 | 2023-11-07 | Applied Materials, Inc. | Advanced polishing pads and related polishing pad manufacturing methods |
US11705354B2 (en) | 2020-07-10 | 2023-07-18 | Applied Materials, Inc. | Substrate handling systems |
US11724355B2 (en) | 2020-09-30 | 2023-08-15 | Applied Materials, Inc. | Substrate polish edge uniformity control with secondary fluid dispense |
US11904429B2 (en) | 2020-10-13 | 2024-02-20 | Applied Materials, Inc. | Substrate polishing apparatus with contact extension or adjustable stop |
US11623321B2 (en) | 2020-10-14 | 2023-04-11 | Applied Materials, Inc. | Polishing head retaining ring tilting moment control |
US12198944B2 (en) | 2020-11-11 | 2025-01-14 | Applied Materials, Inc. | Substrate handling in a modular polishing system with single substrate cleaning chambers |
US11878389B2 (en) | 2021-02-10 | 2024-01-23 | Applied Materials, Inc. | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
TWI812936B (en) * | 2021-04-01 | 2023-08-21 | 智勝科技股份有限公司 | Polishing pad and polishing method |
US12224186B2 (en) | 2023-04-03 | 2025-02-11 | Applied Materials, Inc. | Apparatus and method of brush cleaning using periodic chemical treatments |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2819568A (en) | 1957-04-18 | 1958-01-14 | John N Kasick | Grinding wheel |
US5257478A (en) | 1990-03-22 | 1993-11-02 | Rodel, Inc. | Apparatus for interlayer planarization of semiconductor material |
US5076024A (en) | 1990-08-24 | 1991-12-31 | Intelmatec Corporation | Disk polisher assembly |
US5212910A (en) * | 1991-07-09 | 1993-05-25 | Intel Corporation | Composite polishing pad for semiconductor process |
JP2985490B2 (en) | 1992-02-28 | 1999-11-29 | 信越半導体株式会社 | Heat removal method of polishing machine |
JPH0697132A (en) | 1992-07-10 | 1994-04-08 | Lsi Logic Corp | Mechanochemical polishing apparatus of semiconductor wafer, mounting method of semiconductor-wafer polishing pad to platen of above apparatus and polishing composite pad of above apparatus |
US5310455A (en) | 1992-07-10 | 1994-05-10 | Lsi Logic Corporation | Techniques for assembling polishing pads for chemi-mechanical polishing of silicon wafers |
MY114512A (en) | 1992-08-19 | 2002-11-30 | Rodel Inc | Polymeric substrate with polymeric microelements |
US5486129A (en) | 1993-08-25 | 1996-01-23 | Micron Technology, Inc. | System and method for real-time control of semiconductor a wafer polishing, and a polishing head |
US5658183A (en) | 1993-08-25 | 1997-08-19 | Micron Technology, Inc. | System for real-time control of semiconductor wafer polishing including optical monitoring |
KR100390293B1 (en) | 1993-09-21 | 2003-09-02 | 가부시끼가이샤 도시바 | Polishing device |
US5489233A (en) | 1994-04-08 | 1996-02-06 | Rodel, Inc. | Polishing pads and methods for their use |
JPH07328915A (en) | 1994-06-03 | 1995-12-19 | Ebara Corp | Polishing device |
JPH08108372A (en) * | 1994-10-07 | 1996-04-30 | Mitsubishi Electric Corp | Polishing cloth |
JPH08132342A (en) * | 1994-11-08 | 1996-05-28 | Hitachi Ltd | Manufacturing equipment for semiconductor integrated circuit devices |
JPH08150557A (en) * | 1994-11-28 | 1996-06-11 | Hitachi Ltd | Polishing pad |
JP3960635B2 (en) | 1995-01-25 | 2007-08-15 | 株式会社荏原製作所 | Polishing device |
JPH08300252A (en) * | 1995-04-28 | 1996-11-19 | Sony Corp | Abrasive cloth and grinding machine |
JP3329644B2 (en) * | 1995-07-21 | 2002-09-30 | 株式会社東芝 | Polishing pad, polishing apparatus and polishing method |
US5605760A (en) | 1995-08-21 | 1997-02-25 | Rodel, Inc. | Polishing pads |
JP3042593B2 (en) * | 1995-10-25 | 2000-05-15 | 日本電気株式会社 | Polishing pad |
US5738574A (en) | 1995-10-27 | 1998-04-14 | Applied Materials, Inc. | Continuous processing system for chemical mechanical polishing |
JP3611404B2 (en) * | 1996-06-21 | 2005-01-19 | 株式会社荏原製作所 | Polishing device |
JP2865061B2 (en) * | 1996-06-27 | 1999-03-08 | 日本電気株式会社 | Polishing pad, polishing apparatus, and semiconductor device manufacturing method |
US5795218A (en) * | 1996-09-30 | 1998-08-18 | Micron Technology, Inc. | Polishing pad with elongated microcolumns |
US5873769A (en) | 1997-05-30 | 1999-02-23 | Industrial Technology Research Institute | Temperature compensated chemical mechanical polishing to achieve uniform removal rates |
JPH10329005A (en) * | 1997-06-03 | 1998-12-15 | Toshiba Corp | Abrasive cloth and polishing device |
JPH1148131A (en) * | 1997-07-30 | 1999-02-23 | Canon Inc | Polishing tool to flatten substrate and polishing method |
US5888121A (en) | 1997-09-23 | 1999-03-30 | Lsi Logic Corporation | Controlling groove dimensions for enhanced slurry flow |
US6033293A (en) * | 1997-10-08 | 2000-03-07 | Lucent Technologies Inc. | Apparatus for performing chemical-mechanical polishing |
US6093085A (en) * | 1998-09-08 | 2000-07-25 | Advanced Micro Devices, Inc. | Apparatuses and methods for polishing semiconductor wafers |
US6244941B1 (en) * | 1999-03-30 | 2001-06-12 | Speedfam - Ipec Corporation | Method and apparatus for pad removal and replacement |
US6217426B1 (en) * | 1999-04-06 | 2001-04-17 | Applied Materials, Inc. | CMP polishing pad |
-
1999
- 1999-04-06 US US09/287,575 patent/US6217426B1/en not_active Expired - Fee Related
-
2000
- 2000-03-08 TW TW089104211A patent/TW467803B/en not_active IP Right Cessation
- 2000-04-06 JP JP2000105319A patent/JP2001018165A/en active Pending
-
2001
- 2001-01-12 US US09/759,556 patent/US6592438B2/en not_active Expired - Lifetime
- 2001-01-12 US US09/759,858 patent/US6575825B2/en not_active Expired - Lifetime
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082288A1 (en) * | 1999-05-03 | 2004-04-29 | Applied Materials, Inc. | Fixed abrasive articles |
US7014538B2 (en) | 1999-05-03 | 2006-03-21 | Applied Materials, Inc. | Article for polishing semiconductor substrates |
US20080026681A1 (en) * | 2000-02-17 | 2008-01-31 | Butterfield Paul D | Conductive polishing article for electrochemical mechanical polishing |
US7374644B2 (en) | 2000-02-17 | 2008-05-20 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7077721B2 (en) | 2000-02-17 | 2006-07-18 | Applied Materials, Inc. | Pad assembly for electrochemical mechanical processing |
US7137868B2 (en) | 2000-02-17 | 2006-11-21 | Applied Materials, Inc. | Pad assembly for electrochemical mechanical processing |
US7029365B2 (en) | 2000-02-17 | 2006-04-18 | Applied Materials Inc. | Pad assembly for electrochemical mechanical processing |
US7207878B2 (en) | 2000-02-17 | 2007-04-24 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7422516B2 (en) | 2000-02-17 | 2008-09-09 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7670468B2 (en) | 2000-02-17 | 2010-03-02 | Applied Materials, Inc. | Contact assembly and method for electrochemical mechanical processing |
US20040266327A1 (en) * | 2000-02-17 | 2004-12-30 | Liang-Yuh Chen | Conductive polishing article for electrochemical mechanical polishing |
US7125477B2 (en) | 2000-02-17 | 2006-10-24 | Applied Materials, Inc. | Contacts for electrochemical processing |
US6991528B2 (en) | 2000-02-17 | 2006-01-31 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7285036B2 (en) | 2000-02-17 | 2007-10-23 | Applied Materials, Inc. | Pad assembly for electrochemical mechanical polishing |
US6988942B2 (en) | 2000-02-17 | 2006-01-24 | Applied Materials Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7344431B2 (en) | 2000-02-17 | 2008-03-18 | Applied Materials, Inc. | Pad assembly for electrochemical mechanical processing |
US7678245B2 (en) | 2000-02-17 | 2010-03-16 | Applied Materials, Inc. | Method and apparatus for electrochemical mechanical processing |
US6884153B2 (en) | 2000-02-17 | 2005-04-26 | Applied Materials, Inc. | Apparatus for electrochemical processing |
US7569134B2 (en) | 2000-02-17 | 2009-08-04 | Applied Materials, Inc. | Contacts for electrochemical processing |
US6962524B2 (en) | 2000-02-17 | 2005-11-08 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7278911B2 (en) | 2000-02-17 | 2007-10-09 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7303662B2 (en) | 2000-02-17 | 2007-12-04 | Applied Materials, Inc. | Contacts for electrochemical processing |
US7303462B2 (en) | 2000-02-17 | 2007-12-04 | Applied Materials, Inc. | Edge bead removal by an electro polishing process |
US20040266085A1 (en) * | 2000-12-18 | 2004-12-30 | Applied Materials, Inc. | Integrated multi-step gap fill and all feature planarization for conductive materials |
US7323095B2 (en) | 2000-12-18 | 2008-01-29 | Applied Materials, Inc. | Integrated multi-step gap fill and all feature planarization for conductive materials |
US7059948B2 (en) | 2000-12-22 | 2006-06-13 | Applied Materials | Articles for polishing semiconductor substrates |
US7344432B2 (en) | 2001-04-24 | 2008-03-18 | Applied Materials, Inc. | Conductive pad with ion exchange membrane for electrochemical mechanical polishing |
US7311592B2 (en) | 2001-04-24 | 2007-12-25 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US7137879B2 (en) | 2001-04-24 | 2006-11-21 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US6837983B2 (en) | 2002-01-22 | 2005-01-04 | Applied Materials, Inc. | Endpoint detection for electro chemical mechanical polishing and electropolishing processes |
US20030136684A1 (en) * | 2002-01-22 | 2003-07-24 | Applied Materials, Inc. | Endpoint detection for electro chemical mechanical polishing and electropolishing processes |
US6979248B2 (en) | 2002-05-07 | 2005-12-27 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
EP1361023A2 (en) * | 2002-05-07 | 2003-11-12 | Applied Materials, Inc. | Polishing articles for electrochemical mechanical polishing of substrates |
US20030209448A1 (en) * | 2002-05-07 | 2003-11-13 | Yongqi Hu | Conductive polishing article for electrochemical mechanical polishing |
EP1361023A3 (en) * | 2002-05-07 | 2004-04-07 | Applied Materials, Inc. | Polishing articles for electrochemical mechanical polishing of substrates |
US20040072445A1 (en) * | 2002-07-11 | 2004-04-15 | Applied Materials, Inc. | Effective method to improve surface finish in electrochemically assisted CMP |
US7112270B2 (en) | 2002-09-16 | 2006-09-26 | Applied Materials, Inc. | Algorithm for real-time process control of electro-polishing |
US7070475B2 (en) | 2002-09-16 | 2006-07-04 | Applied Materials | Process control in electrochemically assisted planarization |
US20040053560A1 (en) * | 2002-09-16 | 2004-03-18 | Lizhong Sun | Control of removal profile in electrochemically assisted CMP |
US7628905B2 (en) | 2002-09-16 | 2009-12-08 | Applied Materials, Inc. | Algorithm for real-time process control of electro-polishing |
US20060228992A1 (en) * | 2002-09-16 | 2006-10-12 | Manens Antoine P | Process control in electrochemically assisted planarization |
US6991526B2 (en) | 2002-09-16 | 2006-01-31 | Applied Materials, Inc. | Control of removal profile in electrochemically assisted CMP |
US20060237330A1 (en) * | 2002-09-16 | 2006-10-26 | Applied Materials, Inc. | Algorithm for real-time process control of electro-polishing |
US20050178743A1 (en) * | 2002-09-16 | 2005-08-18 | Applied Materials, Inc. | Process control in electrochemically assisted planarization |
US20060163074A1 (en) * | 2002-09-16 | 2006-07-27 | Applied Materials, Inc. | Algorithm for real-time process control of electro-polishing |
US20080051009A1 (en) * | 2002-09-16 | 2008-02-28 | Yan Wang | Endpoint for electroprocessing |
US20050061674A1 (en) * | 2002-09-16 | 2005-03-24 | Yan Wang | Endpoint compensation in electroprocessing |
US7294038B2 (en) | 2002-09-16 | 2007-11-13 | Applied Materials, Inc. | Process control in electrochemically assisted planarization |
US7790015B2 (en) | 2002-09-16 | 2010-09-07 | Applied Materials, Inc. | Endpoint for electroprocessing |
US20040173461A1 (en) * | 2003-03-04 | 2004-09-09 | Applied Materials, Inc. | Method and apparatus for local polishing control |
US20040182721A1 (en) * | 2003-03-18 | 2004-09-23 | Applied Materials, Inc. | Process control in electro-chemical mechanical polishing |
US20080017521A1 (en) * | 2003-03-18 | 2008-01-24 | Manens Antoine P | Process control in electro-chemical mechanical polishing |
US6783437B1 (en) | 2003-05-08 | 2004-08-31 | Texas Instruments Incorporated | Edge-sealed pad for CMP process |
US6913527B2 (en) | 2003-05-08 | 2005-07-05 | Texas Instruments Incorporated | Edge-sealed pad for CMP process |
US20050003738A1 (en) * | 2003-05-08 | 2005-01-06 | Yanghua He | Edge-sealed pad for CMP process |
US20050022931A1 (en) * | 2003-07-28 | 2005-02-03 | Chung-Ki Min | Chemical mechanical polishing apparatus |
US20050032462A1 (en) * | 2003-08-07 | 2005-02-10 | 3M Innovative Properties Company | In situ activation of a three-dimensional fixed abrasive article |
US7160178B2 (en) | 2003-08-07 | 2007-01-09 | 3M Innovative Properties Company | In situ activation of a three-dimensional fixed abrasive article |
US20050098446A1 (en) * | 2003-10-03 | 2005-05-12 | Applied Materials, Inc. | Multi-layer polishing pad |
US8066552B2 (en) | 2003-10-03 | 2011-11-29 | Applied Materials, Inc. | Multi-layer polishing pad for low-pressure polishing |
US7654885B2 (en) | 2003-10-03 | 2010-02-02 | Applied Materials, Inc. | Multi-layer polishing pad |
US20050221723A1 (en) * | 2003-10-03 | 2005-10-06 | Applied Materials, Inc. | Multi-layer polishing pad for low-pressure polishing |
US20050121141A1 (en) * | 2003-11-13 | 2005-06-09 | Manens Antoine P. | Real time process control for a polishing process |
US7186164B2 (en) | 2003-12-03 | 2007-03-06 | Applied Materials, Inc. | Processing pad assembly with zone control |
US20050124262A1 (en) * | 2003-12-03 | 2005-06-09 | Applied Materials, Inc. | Processing pad assembly with zone control |
US7390744B2 (en) | 2004-01-29 | 2008-06-24 | Applied Materials, Inc. | Method and composition for polishing a substrate |
US20060021974A1 (en) * | 2004-01-29 | 2006-02-02 | Applied Materials, Inc. | Method and composition for polishing a substrate |
US20050173259A1 (en) * | 2004-02-06 | 2005-08-11 | Applied Materials, Inc. | Endpoint system for electro-chemical mechanical polishing |
US7329174B2 (en) * | 2004-05-20 | 2008-02-12 | Jsr Corporation | Method of manufacturing chemical mechanical polishing pad |
US7084064B2 (en) | 2004-09-14 | 2006-08-01 | Applied Materials, Inc. | Full sequence metal and barrier layer electrochemical mechanical processing |
US7446041B2 (en) | 2004-09-14 | 2008-11-04 | Applied Materials, Inc. | Full sequence metal and barrier layer electrochemical mechanical processing |
US7520968B2 (en) | 2004-10-05 | 2009-04-21 | Applied Materials, Inc. | Conductive pad design modification for better wafer-pad contact |
USD592029S1 (en) | 2004-10-26 | 2009-05-12 | Jsr Corporation | Polishing pad |
USD559066S1 (en) * | 2004-10-26 | 2008-01-08 | Jsr Corporation | Polishing pad |
USD600989S1 (en) | 2004-10-26 | 2009-09-29 | Jsr Corporation | Polishing pad |
USD592030S1 (en) | 2004-10-26 | 2009-05-12 | Jsr Corporation | Polishing pad |
USD584591S1 (en) | 2004-10-26 | 2009-01-13 | Jsr Corporation | Polishing pad |
US20080047841A1 (en) * | 2005-01-26 | 2008-02-28 | Manens Antoine P | Electroprocessing profile control |
US7709382B2 (en) | 2005-01-26 | 2010-05-04 | Applied Materials, Inc. | Electroprocessing profile control |
US7655565B2 (en) | 2005-01-26 | 2010-02-02 | Applied Materials, Inc. | Electroprocessing profile control |
US20060166500A1 (en) * | 2005-01-26 | 2006-07-27 | Applied Materials, Inc. | Electroprocessing profile control |
US20080045012A1 (en) * | 2005-01-26 | 2008-02-21 | Manens Antoine P | Electroprocessing profile control |
US7427340B2 (en) | 2005-04-08 | 2008-09-23 | Applied Materials, Inc. | Conductive pad |
WO2007030347A3 (en) * | 2005-09-06 | 2007-12-06 | Freescale Semiconductor Inc | Grooved platen with channels or pathway to ambient air |
WO2007030347A2 (en) * | 2005-09-06 | 2007-03-15 | Freescale Semiconductor | Grooved platen with channels or pathway to ambient air |
US7534162B2 (en) | 2005-09-06 | 2009-05-19 | Freescale Semiconductor, Inc. | Grooved platen with channels or pathway to ambient air |
EP1764189A1 (en) * | 2005-09-16 | 2007-03-21 | JSR Corporation | Method of manufacturing chemical mechanical polishing pad |
US20080035474A1 (en) * | 2006-07-07 | 2008-02-14 | You Wang | Apparatus for electroprocessing a substrate with edge profile control |
US7422982B2 (en) | 2006-07-07 | 2008-09-09 | Applied Materials, Inc. | Method and apparatus for electroprocessing a substrate with edge profile control |
US8012000B2 (en) | 2007-04-02 | 2011-09-06 | Applied Materials, Inc. | Extended pad life for ECMP and barrier removal |
US20080242202A1 (en) * | 2007-04-02 | 2008-10-02 | Yuchun Wang | Extended pad life for ecmp and barrier removal |
US20100099340A1 (en) * | 2008-10-16 | 2010-04-22 | Applied Materials, Inc. | Textured platen |
US8597084B2 (en) * | 2008-10-16 | 2013-12-03 | Applied Materials, Inc. | Textured platen |
US10105812B2 (en) | 2014-07-17 | 2018-10-23 | Applied Materials, Inc. | Polishing pad configuration and polishing pad support |
US11072049B2 (en) | 2014-07-17 | 2021-07-27 | Applied Materials, Inc. | Polishing pad having arc-shaped configuration |
WO2017165216A1 (en) * | 2016-03-24 | 2017-09-28 | Applied Materials, Inc. | Textured small pad for chemical mechanical polishing |
CN108883515A (en) * | 2016-03-24 | 2018-11-23 | 应用材料公司 | The pulvinulus of veining for chemically mechanical polishing |
US10589399B2 (en) | 2016-03-24 | 2020-03-17 | Applied Materials, Inc. | Textured small pad for chemical mechanical polishing |
Also Published As
Publication number | Publication date |
---|---|
JP2001018165A (en) | 2001-01-23 |
US6592438B2 (en) | 2003-07-15 |
US6217426B1 (en) | 2001-04-17 |
TW467803B (en) | 2001-12-11 |
US20010008830A1 (en) | 2001-07-19 |
US6575825B2 (en) | 2003-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6220942B1 (en) | CMP platen with patterned surface | |
US6592438B2 (en) | CMP platen with patterned surface | |
US6241585B1 (en) | Apparatus and method for chemical mechanical polishing | |
US6241596B1 (en) | Method and apparatus for chemical mechanical polishing using a patterned pad | |
US7303467B2 (en) | Chemical mechanical polishing apparatus with rotating belt | |
JP3823086B2 (en) | Polishing pad and polishing method | |
US5897426A (en) | Chemical mechanical polishing with multiple polishing pads | |
US8133096B2 (en) | Multi-phase polishing pad | |
US6036587A (en) | Carrier head with layer of conformable material for a chemical mechanical polishing system | |
US6406361B1 (en) | Carrier head for chemical mechanical polishing | |
US20020068516A1 (en) | Apparatus and method for controlled delivery of slurry to a region of a polishing device | |
US6241583B1 (en) | Chemical mechanical polishing with a plurality of polishing sheets | |
JP4803863B2 (en) | Method for conditioning fixed abrasive members and method for chemical mechanical polishing | |
US20040053566A1 (en) | CMP platen with patterned surface | |
US5931724A (en) | Mechanical fastener to hold a polishing pad on a platen in a chemical mechanical polishing system | |
US6942549B2 (en) | Two-sided chemical mechanical polishing pad for semiconductor processing | |
EP1077790A1 (en) | A carrier head with a retaining ring for a chemical mechanical polishing system | |
US6855043B1 (en) | Carrier head with a modified flexible membrane | |
EP1025955B1 (en) | Chemical mechanical polishing with a moving polishing sheet | |
US20040072518A1 (en) | Platen with patterned surface for chemical mechanical polishing | |
US6540595B1 (en) | Chemical-Mechanical polishing apparatus and method utilizing an advanceable polishing sheet | |
US6887136B2 (en) | Apparatus and methods for multi-step chemical mechanical polishing | |
EP0806267A1 (en) | Cross-hatched polishing pad for polishing substrates in a chemical mechanical polishing system | |
JPH11226861A (en) | Abrasive cloth and surface polishing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOLLES, ROBERT D.;MEAR, STEVEN T.;PRABHU, GOPALAKRISHNA B.;AND OTHERS;REEL/FRAME:011472/0415 Effective date: 19990402 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |