US20010001970A1 - Lead- and barium-free propellant charges - Google Patents
Lead- and barium-free propellant charges Download PDFInfo
- Publication number
- US20010001970A1 US20010001970A1 US09/739,235 US73923500A US2001001970A1 US 20010001970 A1 US20010001970 A1 US 20010001970A1 US 73923500 A US73923500 A US 73923500A US 2001001970 A1 US2001001970 A1 US 2001001970A1
- Authority
- US
- United States
- Prior art keywords
- propellant charges
- charges according
- metal
- total mixture
- substances
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003380 propellant Substances 0.000 title claims abstract description 41
- 239000000126 substance Substances 0.000 claims abstract description 29
- 239000002360 explosive Substances 0.000 claims abstract description 21
- -1 alkaline earth metal salts Chemical class 0.000 claims abstract description 9
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims abstract description 6
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 6
- 239000011591 potassium Substances 0.000 claims abstract description 6
- 150000004972 metal peroxides Chemical class 0.000 claims abstract description 5
- KPTSBKIDIWXFLF-UHFFFAOYSA-N 1,1,2-triaminoguanidine Chemical compound NN=C(N)N(N)N KPTSBKIDIWXFLF-UHFFFAOYSA-N 0.000 claims abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 4
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 claims abstract description 4
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 239000011575 calcium Substances 0.000 claims abstract description 4
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 4
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 4
- 150000002823 nitrates Chemical class 0.000 claims abstract description 4
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 4
- 239000011734 sodium Substances 0.000 claims abstract description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 3
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 25
- 230000037452 priming Effects 0.000 claims description 13
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical group [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 claims description 9
- 229940105296 zinc peroxide Drugs 0.000 claims description 9
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 5
- 150000004655 tetrazenes Chemical class 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 229910021346 calcium silicide Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 claims description 3
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 claims description 3
- 235000012141 vanillin Nutrition 0.000 claims description 3
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 claims description 2
- RBZGEUJLKTVORU-UHFFFAOYSA-N 12014-84-5 Chemical compound [Ce]#[Si] RBZGEUJLKTVORU-UHFFFAOYSA-N 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000028 HMX Substances 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- RRTQFNGJENAXJJ-UHFFFAOYSA-N cerium magnesium Chemical compound [Mg].[Ce] RRTQFNGJENAXJJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 229910052987 metal hydride Inorganic materials 0.000 claims description 2
- 150000004681 metal hydrides Chemical class 0.000 claims description 2
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 2
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 238000012512 characterization method Methods 0.000 claims 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract 1
- IUKSYUOJRHDWRR-UHFFFAOYSA-N 2-diazonio-4,6-dinitrophenolate Chemical compound [O-]C1=C([N+]#N)C=C([N+]([O-])=O)C=C1[N+]([O-])=O IUKSYUOJRHDWRR-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- QJTIRVUEVSKJTK-UHFFFAOYSA-N 5-nitro-1,2-dihydro-1,2,4-triazol-3-one Chemical class [O-][N+](=O)C1=NC(=O)NN1 QJTIRVUEVSKJTK-UHFFFAOYSA-N 0.000 description 2
- NKZVAYHPKMUNNH-UHFFFAOYSA-N 6-diazo-3,4-dinitrocyclohexa-2,4-diene-1,2-diol Chemical compound OC1C(O)=C([N+]([O-])=O)C([N+]([O-])=O)=CC1=[N+]=[N-] NKZVAYHPKMUNNH-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 108010037896 heparin-binding hemagglutinin Proteins 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000009527 percussion Methods 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- OKWLCUWJPPORKE-UHFFFAOYSA-N 1,2,3,4,5-pentanitro-6-(2-nitrophenyl)sulfanylbenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1SC1=C([N+]([O-])=O)C([N+]([O-])=O)=C([N+]([O-])=O)C([N+]([O-])=O)=C1[N+]([O-])=O OKWLCUWJPPORKE-UHFFFAOYSA-N 0.000 description 1
- DAGSRNAIARXJOQ-UHFFFAOYSA-N 1,2,3,4-tetranitro-9h-carbazole Chemical compound C1=CC=C2C3=C([N+]([O-])=O)C([N+]([O-])=O)=C([N+](=O)[O-])C([N+]([O-])=O)=C3NC2=C1 DAGSRNAIARXJOQ-UHFFFAOYSA-N 0.000 description 1
- YSIBQULRFXITSW-OWOJBTEDSA-N 1,3,5-trinitro-2-[(e)-2-(2,4,6-trinitrophenyl)ethenyl]benzene Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1\C=C\C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O YSIBQULRFXITSW-OWOJBTEDSA-N 0.000 description 1
- JYVCTRIETNESMX-UHFFFAOYSA-N 1-(1,4,5,5,6,6-hexanitrocyclohex-2-en-1-yl)-3-phenylurea Chemical compound [N+](=O)([O-])C1C(C(C(C=C1)(NC(NC1=CC=CC=C1)=O)[N+](=O)[O-])([N+](=O)[O-])[N+](=O)[O-])([N+](=O)[O-])[N+](=O)[O-] JYVCTRIETNESMX-UHFFFAOYSA-N 0.000 description 1
- RZXLXHYIURPHNF-UHFFFAOYSA-N 2h-tetrazole;2h-triazole Chemical class C1=CNN=N1.C1=NN=NN1 RZXLXHYIURPHNF-UHFFFAOYSA-N 0.000 description 1
- MKWKGRNINWTHMC-UHFFFAOYSA-N 4,5,6-trinitrobenzene-1,2,3-triamine Chemical compound NC1=C(N)C([N+]([O-])=O)=C([N+]([O-])=O)C([N+]([O-])=O)=C1N MKWKGRNINWTHMC-UHFFFAOYSA-N 0.000 description 1
- ZVLHRIAZZXQKAV-UHFFFAOYSA-N 4,5-dinitro-1-oxido-2,1,3-benzoxadiazol-1-ium Chemical class [O-][N+](=O)C1=C([N+](=O)[O-])C=CC2=[N+]([O-])ON=C21 ZVLHRIAZZXQKAV-UHFFFAOYSA-N 0.000 description 1
- APZDZRGYXAYWKL-UHFFFAOYSA-N 5-nitro-2-(2,4,6-trinitrophenyl)tetrazole Chemical compound N1=C([N+](=O)[O-])N=NN1C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O APZDZRGYXAYWKL-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- CBEIYMNCQTUCKK-UHFFFAOYSA-N [N+](=O)(O)[O-].[PH2](=O)O Chemical compound [N+](=O)(O)[O-].[PH2](=O)O CBEIYMNCQTUCKK-UHFFFAOYSA-N 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical compound CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- CBCIHIVRDWLAME-UHFFFAOYSA-N hexanitrodiphenylamine Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O CBCIHIVRDWLAME-UHFFFAOYSA-N 0.000 description 1
- JUINSXZKUKVTMD-UHFFFAOYSA-N hydrogen azide Chemical compound N=[N+]=[N-] JUINSXZKUKVTMD-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- NKDXVHGJEHYZHY-UHFFFAOYSA-N n,n'-bis(2,4,6-trinitrophenyl)oxamide Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NC(=O)C(=O)NC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NKDXVHGJEHYZHY-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 229920001004 polyvinyl nitrate Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229950002929 trinitrophenol Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06C—DETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
- C06C7/00—Non-electric detonators; Blasting caps; Primers
Definitions
- the subject of the invention is lead- and barium-free propellant charges with priming explosives mixed with oxygen-supplying substances.
- EP-0 129 081 B1 describes lead- and barium-free propellant charges composed of priming explosives mixed with zinc peroxide as the oxidant, said charges containing strontium salts of mono- and/or dinitrodihydroxydiazobenzene in amounts between 5 and 70 wt. % mixed with passivators as well as, in addition, tetrazine in amounts up to 30 wt. % and zinc peroxide in amounts between 10 and 70 wt. %, relative to the total mixture in each case, as priming explosives.
- Known propellant charges contain as priming explosives, compounds especially of lead that are derived from trinitropolyphenols, such as trinitrophenol, trinitrolresorcin, or hydrazoic acid.
- propellant charges are also known that contain the double salts of lead, for example hypophosphite nitrate. When these propellant charges burn, increased concentrations of lead and its compounds occur in the ambient air that reach the admissible limiting concentrations after only a small number of rounds. Solutions have already been proposed that consist of priming explosives that are free of heavy metals. Diazodinitrophenol has proven especially successful in this regard.
- the subject of the present invention therefore consists in improved lead- and barium-free propellant charges with priming explosives mixed with substances that supply oxygen.
- a first embodiment to solve the above problem therefore consists in lead- and barium-free propellant charges with priming explosives mixed with oxygen-supplying substances, characterized in that the priming explosives are selected from alkali metal and/or alkaline earth metal salts of dinitrobenzofuroxanes and the oxygen-supplying substances are chosen from metal peroxides, nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, and dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and/or multivalent metal oxides.
- the priming explosives are selected from alkali metal and/or alkaline earth metal salts of dinitrobenzofuroxanes and the oxygen-supplying substances are chosen from metal peroxides, nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, and dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and/or multivalent metal oxides.
- the propellant charges according to the invention exhibit improved stability over the prior art when stored in a moist or warm location.
- the priming explosive according to the present invention in addition to the known salts of mono- and/or dinitrodihydroxydiazobenzene, diazodinitrophenol, triazol- and tetrazol compounds, the salts of nitrotriazolone and the salts of dinitrobenzofuroxan, especially the potassium salt, can be used in addition.
- organic compounds with functional azide groups cyanuric acid, triazidotrinitrobenzene, styphnyldiazide, or 2-picryl-5-nitrotetrazol can be mentioned.
- the priming explosives are preferably used in an amount of 5 to 70 wt. %, especially 30 to 60 wt. %. based on the total mixture.
- oxygen-supplying substances in addition to the metal peroxide, zinc peroxide, known of itself from the prior art, other oxygen-supplying substances may be used.
- additional substances in this regard the following can be used for example in the propellant charge: stannic oxide, cerium dioxide, tungsten trioxide and/or nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and especially potassium nitrate or basic cerium nitrate.
- the quantities of oxygen-supplying substances in the propellant charges according to the invention can be between 5 and 70 wt. % for example, based on the total mixture.
- An amount of 8 to 60 wt. % of the oxygen-supplying substance is especially preferable according to the invention.
- the substances can be used both in a finely pulverulent state and in a coarsely pulverulent state. Finely pulverulent substances with an average grain size of about 10 ⁇ m are preferably used when the propellant charges are used as compressed charges, while coarsely pulverulent substances with a grain size of about 30 ⁇ m are especially suitable for less powerfully compressed charges, for example in rim fire charges.
- the propellant charges can also contain sensitizers, reducing agents, friction agents, secondary explosives, and/or inert substances.
- sensitizers preferably tetrazene
- amounts from 0 to 30 wt. % based on the total mixture can be present.
- Reducing agents that contribute to conversion are suitable in the propellant charges according to the invention for improving the ignition capacity and also partly produce an increase in mechanical sensitivity.
- Suitable substances are preferably chosen from carbon and/or metal powders, especially boron, aluminum, cerium, titanium, zirconium, magnesium, and silicon, from metal alloys especially cerium-magnesium, cerium-silicon, titanium-aluminum, aluminum-magnesium, and calcium silicide and from metal sulfides especially antimony sulfide and molybdenum sulfide, as well as from metal hydrides, titanium hydride for example, especially in an amount of 0 to 20 wt. %, based on the total mixture.
- Some reducing agents can simultaneously also serve as a friction medium, for example antimony sulfides or calcium silicides. While the amount of reducing agent in the propellant charge can be 0 to 20 wt. %, friction agents that do not participate in the conversion process during combustion can be present in amounts of up to 45 wt. % based on the total mixture in the propellant charges according to the invention. Such friction agents are known of themselves; glass powder is an example.
- Secondary explosives such as nitrocellulose or pentaerythrite tetranitrate for example are especially suitable as other components that contribute to the reaction.
- Other examples that could be mentioned are octogen and hexogen, as well as amino compounds of nitrated aromatics, trinitrobenzene for example, such as mono-, di-, or triaminotrinitrobenzene or aminohexanitrodiphenyl, as well as the acylation products of these compounds, such as hexanitrooxanilide, or hexanitrodiphenyl urea for example.
- these secondary explosives include for example hexanitrostilbene, hexanitrodiphenyloxide, hexanitrodiphenylsulfide, hexanitrodiphenylsulfone, and hexanitrodiphenylamine as well as tetranitrocarbazol, tetranitroacridone, or polyvinyl nitrate, as well as nitrotriazolone and its compounds.
- the amounts of these substances in the propellant charge can be 0 to 30 wt. % of the total mixture.
- Substances known of themselves are suitable for use as inert substances in the propellant charges according to the invention, said substances often being added to adjust the properties of these charges to individual applications.
- binders, adhesives, dyes, passivators, and/or substances for characterizing odor could be mentioned in this connection and which preferably can be contained in amounts of 0 to 20 wt. % based on the total mixture.
- Calcium carbonate, titanium dioxide, and/or white boron nitride can be mentioned as examples.
- the charge mixture or the binder as well as the covering of the charge can have means for characterizing odor added to them which are suitable for resisting thermal stress during firing.
- vanillin exhibits these properties.
- the manufacture of the propellant charges according to the invention is performed using methods known of themselves by screening the mixture when dry or by kneading the mixture after it has been moistened with water.
- the mass moistened with water can then be metered by smearing it on perforated plates or by extrusion molding.
- This example describes a propellant charge for an anvil percussion cap with a 20 mg load.
- a mixture of 45 parts by weight of potassium dinitrobenzofuroxanate, 5 parts by weight tetrazene, 30 parts by weight zinc peroxide, 15 parts by weight stannous dioxide, and 5 parts by weight of titanium was homogenized with 22 parts by weight of water and metered by smearing on perforated plates. After being placed in percussion caps, the mixtures were dried and pressed.
- the flammable mixture according to the invention when stored in moisture and heat at a temperature of 71° C. and an atmospheric humidity of 90% for 7 days, exhibited better stability than a conventional diazol-containing propellant charge. No expulsion of the primer cap from the cartridges was observed during the sensitivity test.
- a mixture moistened with water and composed of 40 parts by weight of diazodinitrophenol, 15 parts by weight of tetrazene, 8 parts by weight of zinc peroxide, 35 parts by weight of glass powder (120 to 170 ⁇ m), and 2 parts by weight of Adhesin® (adhesive) were tossed into 0.221fB rim fire cartridges, 18 mg each.
- the propellant charge required a varnish layer of 3 to 4 mg Vinnapas®A50 as wadding for reliable complete ignition, said layer containing 0.2 mg vanillin to characterize the odor.
- Example 2 Similarly to Example 1, a propellant charge for 0.221fB rim fire cartridges, 16 mg each, was produced. A mixture of 47 parts by weight of potassium dinitrobenzofuroxanate, 10 parts by weight of tetrazene, 8 parts by weight of zinc peroxide, 34 parts by weight of glass powder (90 to 200 ⁇ m), and 1 part by weight of Adhesin® (adhesive) was processed similarly to Example 1.
- Adhesin® Adhesive
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Air Bags (AREA)
Abstract
The subject of the present invention is lead- and barium-free propellant charges with primary explosives mixed with oxygen-supplying substances, characterized in that the primary explosives are selected from alkali metal and/or alkaline earth metal salts of dinitrobenzofuroxanes and the oxygen-supplying substances are chosen from metal peroxides, nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and/or multivalent metal oxides.
The propellant charges according to the invention exhibit increased stability with respect to known propellant charges that are free of harmful substances.
Description
- The subject of the invention is lead- and barium-free propellant charges with priming explosives mixed with oxygen-supplying substances.
- The use of zinc peroxide as the sole or additional oxidant in mixtures containing explosives or pyrotechnic mixtures is known from EP-0 031 045 B1.
- EP-0 129 081 B1 describes lead- and barium-free propellant charges composed of priming explosives mixed with zinc peroxide as the oxidant, said charges containing strontium salts of mono- and/or dinitrodihydroxydiazobenzene in amounts between 5 and 70 wt. % mixed with passivators as well as, in addition, tetrazine in amounts up to 30 wt. % and zinc peroxide in amounts between 10 and 70 wt. %, relative to the total mixture in each case, as priming explosives.
- Known propellant charges contain as priming explosives, compounds especially of lead that are derived from trinitropolyphenols, such as trinitrophenol, trinitrolresorcin, or hydrazoic acid. In addition, propellant charges are also known that contain the double salts of lead, for example hypophosphite nitrate. When these propellant charges burn, increased concentrations of lead and its compounds occur in the ambient air that reach the admissible limiting concentrations after only a small number of rounds. Solutions have already been proposed that consist of priming explosives that are free of heavy metals. Diazodinitrophenol has proven especially successful in this regard. However, propellant charges containing diazodinitrophenol, with zinc peroxide for example as the substance that supplies oxygen, exhibit very strong gas pressure surges caused by the violently reacting diazodinitrophenol. This can result in problems with weapon function or with internal and external ballistics. In addition, diazodinitrophenol exhibits elevated thermal reactivity.
- The subject of the present invention therefore consists in improved lead- and barium-free propellant charges with priming explosives mixed with substances that supply oxygen.
- A first embodiment to solve the above problem therefore consists in lead- and barium-free propellant charges with priming explosives mixed with oxygen-supplying substances, characterized in that the priming explosives are selected from alkali metal and/or alkaline earth metal salts of dinitrobenzofuroxanes and the oxygen-supplying substances are chosen from metal peroxides, nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, and dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and/or multivalent metal oxides.
- The propellant charges according to the invention exhibit improved stability over the prior art when stored in a moist or warm location.
- As the priming explosive according to the present invention, in addition to the known salts of mono- and/or dinitrodihydroxydiazobenzene, diazodinitrophenol, triazol- and tetrazol compounds, the salts of nitrotriazolone and the salts of dinitrobenzofuroxan, especially the potassium salt, can be used in addition. As organic compounds with functional azide groups, cyanuric acid, triazidotrinitrobenzene, styphnyldiazide, or 2-picryl-5-nitrotetrazol can be mentioned.
- According to the invention, the priming explosives are preferably used in an amount of 5 to 70 wt. %, especially 30 to 60 wt. %. based on the total mixture.
- As the oxygen-supplying substances, in addition to the metal peroxide, zinc peroxide, known of itself from the prior art, other oxygen-supplying substances may be used. As the additional substances in this regard, the following can be used for example in the propellant charge: stannic oxide, cerium dioxide, tungsten trioxide and/or nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and especially potassium nitrate or basic cerium nitrate. The quantities of oxygen-supplying substances in the propellant charges according to the invention can be between 5 and 70 wt. % for example, based on the total mixture. An amount of 8 to 60 wt. % of the oxygen-supplying substance is especially preferable according to the invention. The substances can be used both in a finely pulverulent state and in a coarsely pulverulent state. Finely pulverulent substances with an average grain size of about 10 μm are preferably used when the propellant charges are used as compressed charges, while coarsely pulverulent substances with a grain size of about 30 μm are especially suitable for less powerfully compressed charges, for example in rim fire charges.
- According to the invention, the propellant charges can also contain sensitizers, reducing agents, friction agents, secondary explosives, and/or inert substances.
- When sensitizers, preferably tetrazene, are used, amounts from 0 to 30 wt. % based on the total mixture can be present.
- Reducing agents that contribute to conversion are suitable in the propellant charges according to the invention for improving the ignition capacity and also partly produce an increase in mechanical sensitivity. Suitable substances are preferably chosen from carbon and/or metal powders, especially boron, aluminum, cerium, titanium, zirconium, magnesium, and silicon, from metal alloys especially cerium-magnesium, cerium-silicon, titanium-aluminum, aluminum-magnesium, and calcium silicide and from metal sulfides especially antimony sulfide and molybdenum sulfide, as well as from metal hydrides, titanium hydride for example, especially in an amount of 0 to 20 wt. %, based on the total mixture. Some reducing agents can simultaneously also serve as a friction medium, for example antimony sulfides or calcium silicides. While the amount of reducing agent in the propellant charge can be 0 to 20 wt. %, friction agents that do not participate in the conversion process during combustion can be present in amounts of up to 45 wt. % based on the total mixture in the propellant charges according to the invention. Such friction agents are known of themselves; glass powder is an example.
- Secondary explosives such as nitrocellulose or pentaerythrite tetranitrate for example are especially suitable as other components that contribute to the reaction. Other examples that could be mentioned are octogen and hexogen, as well as amino compounds of nitrated aromatics, trinitrobenzene for example, such as mono-, di-, or triaminotrinitrobenzene or aminohexanitrodiphenyl, as well as the acylation products of these compounds, such as hexanitrooxanilide, or hexanitrodiphenyl urea for example. In addition, these secondary explosives include for example hexanitrostilbene, hexanitrodiphenyloxide, hexanitrodiphenylsulfide, hexanitrodiphenylsulfone, and hexanitrodiphenylamine as well as tetranitrocarbazol, tetranitroacridone, or polyvinyl nitrate, as well as nitrotriazolone and its compounds. The amounts of these substances in the propellant charge can be 0 to 30 wt. % of the total mixture.
- Substances known of themselves are suitable for use as inert substances in the propellant charges according to the invention, said substances often being added to adjust the properties of these charges to individual applications. In particular, binders, adhesives, dyes, passivators, and/or substances for characterizing odor could be mentioned in this connection and which preferably can be contained in amounts of 0 to 20 wt. % based on the total mixture. Calcium carbonate, titanium dioxide, and/or white boron nitride can be mentioned as examples.
- To improve and characterize the odor of the smoke produced by the propellant charge, the charge mixture or the binder as well as the covering of the charge can have means for characterizing odor added to them which are suitable for resisting thermal stress during firing. In particular, it has been found that vanillin exhibits these properties.
- The manufacture of the propellant charges according to the invention is performed using methods known of themselves by screening the mixture when dry or by kneading the mixture after it has been moistened with water. The mass moistened with water can then be metered by smearing it on perforated plates or by extrusion molding.
- This example describes a propellant charge for an anvil percussion cap with a 20 mg load.
- A mixture of 45 parts by weight of potassium dinitrobenzofuroxanate, 5 parts by weight tetrazene, 30 parts by weight zinc peroxide, 15 parts by weight stannous dioxide, and 5 parts by weight of titanium was homogenized with 22 parts by weight of water and metered by smearing on perforated plates. After being placed in percussion caps, the mixtures were dried and pressed.
- The flammable mixture according to the invention, when stored in moisture and heat at a temperature of 71° C. and an atmospheric humidity of 90% for 7 days, exhibited better stability than a conventional diazol-containing propellant charge. No expulsion of the primer cap from the cartridges was observed during the sensitivity test.
- A mixture moistened with water and composed of 40 parts by weight of diazodinitrophenol, 15 parts by weight of tetrazene, 8 parts by weight of zinc peroxide, 35 parts by weight of glass powder (120 to 170 μm), and 2 parts by weight of Adhesin® (adhesive) were tossed into 0.221fB rim fire cartridges, 18 mg each.
- The propellant charge required a varnish layer of 3 to 4 mg Vinnapas®A50 as wadding for reliable complete ignition, said layer containing 0.2 mg vanillin to characterize the odor.
- Similarly to Example 1, a propellant charge for 0.221fB rim fire cartridges, 16 mg each, was produced. A mixture of 47 parts by weight of potassium dinitrobenzofuroxanate, 10 parts by weight of tetrazene, 8 parts by weight of zinc peroxide, 34 parts by weight of glass powder (90 to 200 μm), and 1 part by weight of Adhesin® (adhesive) was processed similarly to Example 1.
- The propellant charge burned through without covering varnish as wadding and achieved internal and external ballistics comparable to those of commercial ammunition.
Claims (12)
1. Lead- and barium-free propellant charges with priming explosives mixed with oxygen-supplying substances, characterized in that the priming explosives are chosen from alkali metal and/or alkaline earth metal salts of dinitrobenzofuroxanes and the oxygen-supplying substances are chosen from metal peroxides, nitrates of ammonium, guanidine, aminoguanidine, triaminoguanidine, dicyanodiamidine, and the elements sodium, potassium, magnesium, calcium, cerium, and/or multivalent metal oxides.
2. Propellant charges according to with an amount of priming explosive equal to 5 to 70 wt. %, especially 30 to 60 wt. % based on the total mixture.
claim 1
3. Propellant charges according to with an amount of oxygen-supplying substance of 5 to 70 wt. %, especially 8 to 60 wt. % based on the total mixture.
claim 1
4. Propellant charges according to , characterized in that the metal peroxide is zinc peroxide.
claim 1
5. Propellant charges according to , characterized in that the metal oxides are chosen from cerium dioxide, tungsten trioxide, and/or stannous dioxide.
claim 1
6. Propellant charges according to , also containing sensitizers, reducing agents, friction media, secondary explosives, and/or inert substances.
claim 1
7. Propellant charges according to , containing tetrazene as the sensitizer, especially in an amount of 0 to 30 wt. % based on the total mixture.
claim 6
8. Propellant charges according to , with the reducing agents being selected from carbon, metal powders, especially of boron, aluminium, cerium, titanium, zirconium, magnesium, and/or silicon, from metal alloys, especially cerium-magnesium, cerium-silicon, titanium-aluminum, aluminum-magnesium, and calcium silicide, and from metal sulfides, especially antinomy sulfide and/or molybdenum sulfide as well as from metal hydrides, titanium hydride for example, especially in an amount of 0 to 20 wt. % based on the total mixture.
claim 6
9. Propellant charges according to containing glass powder as a friction agent, especially in an amount of 0 to 45 wt. % based on the total mixture.
claim 6
10. Propellant charges according to with the secondary explosives being chosen from hexogen, octogen, and amino compounds of nitrated aromatics, especially in amounts of 0 to 30 wt. % based on the total mixture.
claim 6
11. Propellant charges according to with the inert substances being chosen from binders, adhesives, dyes, passivators, and/or substances to characterize odor, especially in an amount of 0 to 20 wt. %, based on the total mixture.
claim 6
12. Propellant charges according to with the medium for odor characterization being vanillin.
claim 11
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/739,235 US20010001970A1 (en) | 1995-10-28 | 2000-12-19 | Lead- and barium-free propellant charges |
US10/164,583 US20020179209A1 (en) | 1995-10-28 | 2002-06-10 | Lead-and barium-free propellant charges |
US10/752,536 US6997998B2 (en) | 1995-10-28 | 2004-01-08 | Lead-and barium-free propellant charges |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19540278.2 | 1995-10-28 | ||
DE19540278A DE19540278A1 (en) | 1995-10-28 | 1995-10-28 | Lead- and barium-free igniters |
US87521497A | 1997-12-17 | 1997-12-17 | |
US25147499A | 1999-02-17 | 1999-02-17 | |
US09/739,235 US20010001970A1 (en) | 1995-10-28 | 2000-12-19 | Lead- and barium-free propellant charges |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US25147499A Continuation | 1995-10-28 | 1999-02-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/164,583 Continuation US20020179209A1 (en) | 1995-10-28 | 2002-06-10 | Lead-and barium-free propellant charges |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010001970A1 true US20010001970A1 (en) | 2001-05-31 |
Family
ID=27215606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/739,235 Abandoned US20010001970A1 (en) | 1995-10-28 | 2000-12-19 | Lead- and barium-free propellant charges |
Country Status (1)
Country | Link |
---|---|
US (1) | US20010001970A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040154713A1 (en) * | 2003-01-23 | 2004-08-12 | Olin Corporation | Lead-free nontoxic priming mix |
US6964287B1 (en) * | 1999-09-17 | 2005-11-15 | Sellier & Bellot, A.S. | Non-toxic and non-corrosive ignition mixture |
WO2010052269A1 (en) * | 2008-11-07 | 2010-05-14 | Ruag Ammotec Gmbh | Ignition sets with improved ignition performance |
US20110041968A1 (en) * | 2006-05-23 | 2011-02-24 | Ulrich Bley | Ignition charge |
US20150259262A1 (en) * | 2014-02-26 | 2015-09-17 | Orbital Atk, Inc. | Compositions usable as flare compositions, countermeasure devices containing the flare compositions, and related methods |
WO2016075159A1 (en) * | 2014-11-10 | 2016-05-19 | Ruag Ammotec Gmbh | Thermal pre-ignition agent |
US20160221889A1 (en) * | 2013-09-12 | 2016-08-04 | Thales Australia Limited | Burn rate modifier |
-
2000
- 2000-12-19 US US09/739,235 patent/US20010001970A1/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6964287B1 (en) * | 1999-09-17 | 2005-11-15 | Sellier & Bellot, A.S. | Non-toxic and non-corrosive ignition mixture |
US20040154713A1 (en) * | 2003-01-23 | 2004-08-12 | Olin Corporation | Lead-free nontoxic priming mix |
US20110041968A1 (en) * | 2006-05-23 | 2011-02-24 | Ulrich Bley | Ignition charge |
US8409378B2 (en) * | 2006-05-23 | 2013-04-02 | Ruag Ammotec Gmbh | Ignition charge |
WO2010052269A1 (en) * | 2008-11-07 | 2010-05-14 | Ruag Ammotec Gmbh | Ignition sets with improved ignition performance |
US10118871B2 (en) | 2008-11-07 | 2018-11-06 | Ruag Ammotec Gmbh | Ignition sets with improved ignition performance |
US20160221889A1 (en) * | 2013-09-12 | 2016-08-04 | Thales Australia Limited | Burn rate modifier |
US20150259262A1 (en) * | 2014-02-26 | 2015-09-17 | Orbital Atk, Inc. | Compositions usable as flare compositions, countermeasure devices containing the flare compositions, and related methods |
US11920910B2 (en) * | 2014-02-26 | 2024-03-05 | Northrop Grumman Systems Corporation | Compositions usable as flare compositions, countermeasure devices containing the flare compositions, and related methods |
WO2016075159A1 (en) * | 2014-11-10 | 2016-05-19 | Ruag Ammotec Gmbh | Thermal pre-ignition agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6997998B2 (en) | Lead-and barium-free propellant charges | |
CA2556595C (en) | Priming mixtures for small arms | |
US5417160A (en) | Lead-free priming mixture for percussion primer | |
US20110162547A1 (en) | Ignition mixtures | |
US4608102A (en) | Primer composition | |
US4363679A (en) | Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures | |
AU782638B2 (en) | Non-toxic primer mix | |
HU212649B (en) | Nontoxic priming mix and priming mix | |
JPH11512697A (en) | Non-toxic rimfire primer | |
US20010001970A1 (en) | Lead- and barium-free propellant charges | |
US10118871B2 (en) | Ignition sets with improved ignition performance | |
USH285H (en) | Oxygen rich igniter compositions | |
CA2253196C (en) | Firing mixtures | |
CA2135462A1 (en) | Low toxicity primer composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |