US20010000879A1 - Multi-flow type heat exchanger - Google Patents
Multi-flow type heat exchanger Download PDFInfo
- Publication number
- US20010000879A1 US20010000879A1 US09/748,352 US74835200A US2001000879A1 US 20010000879 A1 US20010000879 A1 US 20010000879A1 US 74835200 A US74835200 A US 74835200A US 2001000879 A1 US2001000879 A1 US 2001000879A1
- Authority
- US
- United States
- Prior art keywords
- heat exchanger
- flat tubes
- parts
- heat
- header pipes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 claims abstract description 35
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 238000005304 joining Methods 0.000 claims description 6
- 238000005192 partition Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 230000034303 cell budding Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 230000004907 flux Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 238000005476 soldering Methods 0.000 description 8
- 238000007493 shaping process Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/001—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
- F28F9/002—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
- F28D1/0316—Assemblies of conduits in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0391—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
- F28D1/0435—Combination of units extending one behind the other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/044—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0084—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0091—Radiators
- F28D2021/0094—Radiators for recooling the engine coolant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F2001/027—Tubular elements of cross-section which is non-circular with dimples
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49391—Tube making or reforming
Definitions
- This invention relates to improvements in and concerning a multi-flow type heat exchanger to be incorporated in an automobile air conditioner.
- the heat exchanger of this multi-flow type is provided with a pair of header pipes 1 , 2 separated by a prescribed length ⁇ from each other and disposed parallelly to each other.
- An inlet tube 3 for introducing a heat-exchanger fluid such as a refrigerant is fitted to the inlet side header pipe 1 and an outlet tube 4 for discharging the heat-exchanger fluid is fitted to the other outlet side header pipe 2 .
- a multiplicity of flat tubes 5 are installed so as to intercommunicate these two header pipes 1 , 2 .
- the heat-exchanger fluid flowing in through the inlet side header pipe 1 advances in the form of a plurality of parallel flows and flows into the outlet side header pipe 2 .
- bulged parts 6 of the shape of a dome are formed as illustrated in FIG. 35 for the purpose of enhancing the heat exchangers' strength to resist pressure.
- the reference numeral “ 7 ” denotes a corrugated fin for transfer of heat
- the reference numerals “ 8 and 9 ” denote blank covers
- the reference numeral “ 10 ” denotes a reinforcing plate.
- an inner fin 11 whose cross section taken perpendicularly to the axis thereof is corrugated with a prescribed pitch p as illustrated in FIG. 36, is inserted and fixed in place.
- the inner fin 11 serves the purpose of partitioning the flow path r of the flat tube 5 and giving rise to a plurality of independent small flow paths 12 therein.
- the heat-exchanger fluid which flows in the inlet side header pipe 1 advances collectively in the form of a plurality of parallel flows in the direction of the outlet side header pipe 2 and, at the same time, advances in the form of parallel flows severally inside the small flow paths 12 .
- the heat exchanger H of the multi-flow type for the sake of enhancing the capacity thereof for exchange of heat, has the small flow paths 12 each so adapted that the equivalent diameter (the diameter of a flow path having a circular cross-sectional area equaling the cross-sectional area of the small flow path) thereof has a predescribed value.
- the heat transfer area is adjusted to a prescribed value so as to heighten the whole heat exchange efficiency of the heat exchanger.
- serpenine tubes flat tubes of an elliptical section extrusion molded so as to form a plurality of flow paths inside).
- the heat exchanger of the multi-flow type described above as compared with the heat exchanger of the type using the serpentine tubes, has the merit high pressure-resisting capacity, small size, and light weight ascribable to the formation of bulged parts 9 on the header pipes 1 . 2 in addition to enjoying the advantages of small thickness of tube, low resistance to the fluid in motion, and high capacity for exchange of heat.
- the heat exchanger of the multi-flow type is problematic in terms of performance and in terms of manufacture.
- the inner fin 11 is soldered in place within a furnace in such a manner as to define the flow paths 5 inside the flat tube 5 as illustrated in FIG. 36.
- the small flow paths 12 consequently formed herein extent straightly from the leading ends to the trailing ends thereof.
- the heat-exchanger fluid flows just straightly inside the flat tube 5 and has no possibility of being stirred while in motion therein. It is not inconceivable that the portion of the heat-exchanger fluid which flows along the central part of the cross section of the small flow paths 12 just advances through the interior of the flat tube 5 .
- the heat-exchanger fluid does not wholly contribute to the action of exchange of heat.
- Japanese Patent Application Disclosure SHO 61(1986)-295,494 and Japanese Utility Model Application Disclosure SHO 62(1987)-39,182 disclose a corrugated inner fin so configured that the waves thereof are staggered by a prescribed pitch.
- This inner fin is capable of imparting a zigzagging flow to the heat-exchanger fluid and incapable of manifesting the heat exchange ability fully satisfactorily.
- the heat exchanger of the multi-flow type is further problematic in terms of manufacture.
- the inner fin 11 is soldered within the furnace in conjunction with all of the other component members of the heat exchanger including the flat tube 5 .
- the step of applying flux to the ridge parts 11 a of the inner fin 11 is required to precede the step of entering the component members of the heat exchanger in the furnace.
- the inner fin 11 is corrugated as illustrated in FIG. 37, the flux adhering to the ridge parts 11 a trickles down the sloped surfaces and collects in the groove parts 11 b .
- the flux adheres in an insufficient amount to the surface of the ridge parts 11 a which require the flux to be deposited most thickly and the work of soldering consequently becomes extremely difficult.
- the heat exchanger H of the multi-flow type is fixed in place by causing brackets 13 attached fast as by soldering to the header pipes 1 , 2 to be bolted to the car body or to other heat exchanger such as, for example, the radiator in the engine cooling cycle.
- the brackets 13 are generally made of aluminum. After the mounting positions for the brackets which are variable with vehicles are corrected by the use of jigs, for example, the brackets are soldiered integrally within the heating furnace at the same time that the flat tubes 5 and the corrugated fins 7 are soldered or they are first soldered and then fixed in place as by the TIG welding.
- Japanese Utility Model Application Disclosure SHO 61(1986)-110,017 discloses a structure for fixing the heat exchanger in place without being welded. Since the heat exchanger in this disclosure has no use for the header pipes, the number of component parts is unduly large and the assembly of such component parts consumes much time and labor.
- This invention conceived in the urge to eliminate the disadvantages of the prior art described above, aims to provide a heat exchanger of the multi-flow type which allowed to give through stirring to the heat-excharger fluid without entailing any appreciable increase in the resistance offered by the fluid paths and enabled to excel in heat exchange performance and in facility of manufacture and assemblage by providing flat tubes therein with baffle members adapted to impart a zigzagging flow to the heat-exchanger fluid and, at the same time, giving to the flow paths defined by the baffle members and the inner walls of the falt tubes a cross-sectional area having an equivalent diameter in the range of 0.4 to 1.5 mm.
- FIG. 1 is a partially cutaway perspective view illustrating an embodiment of this invention.
- FIG. 2 is a cross section illustrating a flat tube in the embodiment in the process of shaping.
- FIG. 3 is a cross section of the flat tube of the embodiment.
- FIG. 4 is a perspective view of an inner fin.
- FIG. 5 and FIG. 6 are graphs showing the results of tests performed on the embodiment.
- FIG. 7 is a front view illustrating a modification of the heat exchanger mentioned above.
- FIG. 8 is an exploded perspective view illustrating the essential part of a mounting structure for the heat exchanger.
- FIG. 9 is a cross section taken through FIG. 8 along the line IX-IX.
- FIG. 10 is a cross section taken through FIG. 8 along the line X-X.
- FIG. 11 is an exploded perspective view illustrating the essential part of another mounting structure for the heat exchanger mentioned above.
- FIG. 12 is a cross section taken through FIG. 11 along the line XII-XII.
- FIG. 13 is an exploded perspective view illustrating yet another mounting structure for the heat exchanger mentioned above.
- FIG. 14 is a cross section illustrating a flat tube for use in another embodiment of this invention in the process of shaping.
- FIG. 15 is a cross section illustrating the same flat tube in the process of bending.
- FIG. 16 (A) is a perspective view of the flat tube and FIGS. 16 (B) and (C) are cross section taken through FIG. 16 (A) respectively along the line B-B and the line C-C.
- FIG. 17 is a perspective view illustrating another embodiment of the flat tube.
- FIG. 18 and FIG. 19 are a perspective view and a cross section illustrating yet another typical flat tube.
- FIGS. 20 to 25 are graphs showing the results of tests performed on the heat exchanger of this invention.
- FIGS. 26 and 27 and FIGS. 28 and 29 are pairs each of a perspective view and a cross section illustrating yet other flat tubes.
- FIG. 30 is an exploded perspective view illustrating the state of connection between the flat tube mentioned above and header pipes.
- FIG. 31 and FIG. 32 are perspective views illustrating other typical terminal parts of the flat tube mentioned above.
- FIG. 33 is an exploded perspective view of the flat tube appearing in FIG. 32.
- FIG. 34 is a perspective view of the conventional heat exchanger.
- FIG. 35 is a cross section of FIG. 36 is a cross section of the flat tube of the conventional heat exchanger mentioned above.
- FIG. 37 is a perspective view of an inner fin of the conventional heat exchanger mentioned above.
- FIG. 1 is a partially cutaway perspective view illustrating an embodiment of this invention
- FIG. 2 is a cross section illustrating a flat tube of the embodiment in a state prior to shaping
- FIG. 3 is a cross section illustrating the flat tube of the embodiment in a state after shaping
- FIG. 4 is a perspective view of the essential part of an inner fin.
- the component parts which have equivalents in FIGS. 34 to 37 are denoted by the same reference numerals.
- an inlet side header pipe 1 of a parallelly cross section fitted with an inlet tube 3 for admitting a heat-exchanger fluid in motion and an outlet side header pipe 2 of a parallelly cross section fitted with an outlet tube 4 for discharging the heat-exchanger fluid are separated by a prescribed length from each other and disposed annular to each other.
- a multiplicity of flat tubes 5 are disposed so as to intercommunicate the header pipes.
- the arrangement of these component parts is similar to that illustrated in FIG. 34.
- These header pipes 1 , 2 are made of aluminum and have a wall thickness of 1.5 mm.
- the flat tube 5 is produced by shaping a flat sheet material in a form having a flat U cross section perpendicular to the axis, deforming terminal flanges 21 of the sheet material in the direction of the arrow, and sitting in an inner fin 20 in the U-shaped sheet, then sticking the two flanges 21 , 21 , and between said inner fin 20 and the inside wall of said U-shaped sheet, and then welding tham.
- said weld stage can do it lump together as a whole, after assembling the beaer pipes 1 , 2 , the carrugated fin 7 , and said U-shaped sheet with the inner fin 20 .
- This coustructing method is similar another embodiment.
- This inner fin 20 is shaped in a form whose cross section perpendicular to the axis is corrugated at a prescribed pitch p as illustrated in FIGS. 3 and 4, so as to divide the flow path r inside the flat tube 5 into a plurality of small independent flow paths 12 .
- the diameter of the fluid in motion inside these small flow paths 12 is so set that the equivalent diameter determined in connection with the pressure drop in the flowing air, the resistance to the flow of the heat-exchanger fluid, and the efficiency of exchange of heat will fall in a prescribed range of about 0.4 to 1.5 mm, preferably in the neighborhood of 0.7 mm.
- the corrugated parts h of the prescribed pitch p mentioned above are formed in the inner fin 20 of the present embodiment, the corrugated parts h are raised between slits placed parallelly at prescribed intervals s as staggered in the direction perpendicular to the direction of the flow of the heat-exchanger fluid (the direction of the arrow shown in FIG. 4) so that the edge surfaces E of the corrugated parts h 2 in the second stage are positioned at the centers of the corrugated parts h 1 in the first stage, the edge surfaces E of the corrugated parts h 3 in the third stage at the centers of the corrugated parts h 2 in the second stage, and so on.
- the prescribed intervals s mentioned above may be equal to or different from one another.
- the ridges of these corrugated parts may be in the general shape of a rectangle as illustrated in FIG. 3 or in the natural shape of a wave as illustrated in FIG. 37.
- edge surfaces E manifest the edge effect (the heat exchange effect produced at the sharp edge portions resembling the edges of knifes is prominent as compared with the effect produced at any other portion; hence the designation “edge effect”) and the edge surfaces E are present in a large number throughout the entire length of the flat tube 5 , the exchange of heat between the heat-exchanger fluid and the air proceeds very efficiently and the ability of the heat exchanger as a whole to effect exchange of heat is heightened notably.
- edge surfaces E are so distributed that the edge surfaces of the corrugated parts h 2 in the second stage are positioned at the centers of the corrugated parts h 1 in the first stage, the portions of the heat-exchanger fluid which have flowed down the small flow paths 12 formed by the corrugated parts h 1 of the first stage collide against and stirred by the edge surfaces E of the corrugated parts h 2 of the second stage. Owing to the effect of this agitation, the exchange of heat is carried out very efficiently and the ability of the heat exchanger as a whole to effect exchange of heat is enhanced to a notable extent.
- edge surfaces E of the corrugated parts h 2 of the second stage are positioned at the centers of the corrugated parts h 1 of the first stage. It is not an indispensable requisite, however, that the edge surfaces E of the corrugated parts h 2 of the second stage should be positioned at the centers of the corrugated parts h 1 of the first stage.
- the edge surfaces E of the corrugated parts h 2 of the second stage may be positioned between the adjacent corrugated part h 1 of the first stage.
- the corrugated parts mentioned above are staggered in the direction perpendicular to the direction of the flow of the heat-exchanger fluid.
- the perpendicular direction is not critical for the staggering.
- the staggering may be made in an oblique direction.
- This invention may be embodied in a heat exchanger which is configured as illustrated in FIG. 7.
- a header pipe 1 is divided into an upper header pipe 1 a and a lower header pipe 1 b by a partition plate 22 disposed at the center of the header pipe 1 in the vertical direction thereof, so that the heat-exchanger fluid flowing in through an inlet tube 3 advances through the upper header pipe 1 a , a flat tube 5 , a header pipe 2 , a flat tube 5 , and the lower header pipe 1 b and flows out of an outlet tube 4 .
- This heat exchanger has one partition plate 22 disposed inside the header pipe 1 to effect one U-turn flow.
- it may have a plurality of partition plates 22 disposed inside the two header pipes 1 , 2 (indicated by a broken line in FIG. 7) so as to effect a plurality of U-turn flows.
- the use of the rigidity of the header pipes 1 , 2 enables this attachment to be effected with high accuracy with great ease.
- cylindrical blind elastic members 32 a of rubber material formed to conform to the outer contours of the lower ends (one-side; ends) 1 a , 2 a of the header pipes 1 , 2 are slipped over the lower ends 1 a , 2 a of the header pipes 1 , 2 and the elastic members 32 a now capping the lower ends 1 a , 2 a of the header pipes 1 , 2 are inserted into engagement with engaging parts 30 formed to conform to the outer contours of the elastic members 32 a .
- the upper ends (the other-side ends) 1 b , 2 b of the header pipes 1 , 2 are fixed in place by allowing the retaining brackets 31 each provided with a retaining part 31 a possessing an inner peripheral shape roughly conforming to the outer contours of the header pipes 1 , 2 and bent in a semicircular cross section and a mounting part 31 b having perforated therein an oblong hole 33 for insertion of a bolt 35 to nip elastic members 32 b possessing an inner peripheral shape conforming to the outer contours of the header pipes 1 , 2 , and inserting the bolts 35 through the oblong holes 33 into helical engagement with thread holes 34 formed in the radiator core panel B 2 .
- the ealstic members 32 a , 32 b mentioned above are not always required to be made of a rubber material but may be made of a foamed material of polyurethane resin, for example.
- the engaging parts 30 of the front cross member B 1 are desired to be perforated with a drain hole 36 .
- the elastic members 32 a , 32 b may be omitted and the header pipes 1 a , 2 a may be directly joined to the front cross member B 1 and the header pipes 1 b , 2 b may be directly connected to the retaining brackets 31 .
- the cylindrical blind elastic members 32 a of rubber material possessing an inner shape conforming to the outer contours of the header pipes 1 , 2 are inserted into the one ends 1 a , 2 a of the header pipes.
- the ends 1 a , 2 a capped with the elastic members 32 a are inserted into engagement with the engaging parts 30 formed in the front cross member B 1 and possessing an inner shape conforming to the outer contours of the elastic members 32 a .
- the retaining brackets 31 each provided with the retaining part 31 a possessing an inner peripheral shape substantially conforming to the outer contours of the header pipes 1 , 2 and bent in the shape of a semicircular cross section and the mounting part 31 b having perforated therein the oblong hole 33 for insertion of the bolt 35 are pressed against the other-side ends 1 b , 2 b of the header pipes in such a manner as to nip the elastic members 32 b possessing an inner peripheral shape conforming to the outer contours of the header pipes 1 , 2 . Thereafter, the bolts 35 are inserted through the oblong holes 33 of the mounting parts 31 b of the retaining brackets 31 and into the threaded holes 34 , to complete the attachment.
- the one-side ends 1 a , 2 a of the header pipes of the heat exchanger are inserted into engagement with a given object through the medium of the elastic members 32 a and, at the same time, the other-side ends 1 b , 2 b of the header pipes are attached to a given object with the retaining brackets 31 (accessorial parts) through the medium of the elastic members 31 b .
- the work of attachment to the object can be carried out very easily.
- this arrangement is capable of absorbing possible errors of manufacture.
- FIG. 11 is an exploded perspective view illustrating the essential part of a modified mounting structure for the heat exchanger and FIG. 12 is a cross section taken through FIG. 11 along the line XII-XII.
- This mounting structure for the heat exchanger typifies a case in which the object for attachment of the heat exchanger is a car body and the lower ends 1 a , 2 a of the header pipes 1 , 2 are fastened to the front cross member B 1 and the upper ends 1 b , 2 b of the header pipes 1 , 2 to an upper rail B 3 .
- roughly cylindrical elastic members 32 b possessing inner shapes conforming to the outer contours of the header pipes 1 , 2 are inserted.
- these elastic members 32 b are inserted into the retaining brackets 31 each comprising a roughly cylindrical retaining part 31 a possessing an inner shape conforming to the outer contours of the elastic members 31 b and a mounting part 31 having an oblong hole 33 perforated therein.
- the heat exchanger provided with this mounting structure is attached to the car body, for example, the lower ends 1 a , 2 a of the header pipes are inserted into the elastic members 32 a and simultaneously inserted into engagement with the engaging parts 30 of the front cross member B 1 .
- the elastic members 32 b are inserted into the upper ends 1 b , 2 b of the header pipes and further the retaining brackets 31 are inserted therein and the bolts 35 are inserted into the oblong holes 33 perforated in the retaining brackets 31 . Subsequently, the bolts 35 are screwed to the tapped holes 34 formed in the upper rail B 3 , to complete the attachment of the heat exchanger to the car body.
- FIG. 13 is an exploded perspective view illustrating yet another modification of the mounting structure for the heat exchanger.
- the mounting structure is adapted so that the heat exchanger (condenser for an automobile air conditioner) H is attached to a radiator 40 and the radiator 40 is attached to the car body.
- the engaging parts 30 for insertion of the lower ends 1 a , 2 a of the header pipes 1 , 2 of the heat exchanger H are formed beneath a radiator 40 , an object meant as a base for mounting, and the retaining brackets 31 are inserted into the upper ends 1 b , 2 b of the header pipes 1 , 2 so as to permit penetration of the bolts 42 for connecting the radiator 40 to fan shrouds 41 .
- the attachment of the heat exchanger H, the radiator 40 , and the fan shroud 41 to the car body is attained by first inserting the lower ends of the header pipes 1 , 2 of the heat exchanger H into the engaging parts 30 of the radiator 40 , then inserting the brackets 31 into the upper ends 1 b , 2 b of the header pipes 1 , 2 , tying the retaining brackets 31 , the radiator 40 , and the fan shroud 41 together with bolts thereby fastening the heat exchanger H to the raditor 40 , and subsequently attaching the assembled components H, 40 , and 41 to the car body as with bolts 43 .
- the reference numeral 44 denotes a projection formed beneath the radiator and the reference numeral 45 devotes a bracket attached to the car body and adapted to receive the aforementioned projection.
- FIG. 14 illustrated yet another embodiment of this invention, in which the baffle member G mentioned above is not formed separately of the flat tube like the inner fin 20 but is formed of the flat tube itself.
- This flat tube 5 is obtained by forming a plurality of dimples 50 a , 50 b in a flat plate with roll R 1 and R 2 as illustrated in FIG. 14, then folding the halved flat tubes 5 a , 5 b roward each other as illustrated in FIG. 15 into a state indicated by the broken line, and joining the outer edges and the opposed dimples as by soldering.
- the halved flat tubes 5 a , 5 b are formed by the rolling operation using the two rolls R 1 , R 2 possessing cross sections indicated by a dashed line in FIG. 14. These two forming rolls R 1 , R 2 are formed in shapes corresponding to the shapes of the halved flat tubes 5 a , 5 b and they have formed therein protuberances 50 and recesses 51 corresponding to the dimples 50 a , 50 b . When a flat aluminum plate is passed between the two forming rolls R 1 , R 2 , therefore, the halved flat tubes 5 a , 5 b can be easily produced.
- the two halved flat tubes 5 a , 5 b are symmetrically identical with each other, it suffices to prepare one set of forming rolls R 1 , R 2 for the production of halved flat tubes. This fact contributes to economizing the equipment cost.
- the dimples 50 a , 50 b thrust out as opposed to each other at the positions corresponding to those of the two halved flat tubes 5 a , 5 b as indicated by the broken line in FIG. 15, with the apexes 51 a , 51 b thereof coming into tight contact with each other.
- This flat tube 5 has, in the two halved flat tubes 5 a , 5 b , formed dimples 50 a , 50 b spaced with a fixed pitch Pd as illustrated in FIG. 16 (B).
- a plurality of small flow paths 12 a are defined by the dimples 50 a , 50 b and flow paths 12 b (FIG. 16 C refers) are formed in the portions containing none of the dimples 50 a , 50 b , describing a cross section perpendicular to the axis, and having a thickness equal to the inner thickness t of the tube and a width denoted by W.
- the dimples 50 a , 50 b may have a circular shape as illustrated in FIG. 16 (A) or an elliptical shape as illustrated in FIG. 17.
- the flat tube 5 may be produced by the use of an electric welded tube of the kind illustrated in FIG. 17.
- the two halved flat tubes 5 a , 5 b mentioned above may be formed separately of each other as illustrated in FIG. 18 and FIG. 19. Those illustrated in FIG. 18 and FIG. 19 have folded flanges 52 a , 52 b formed along the edges of the two halved flat tubes 5 a , 5 b in such a manner that the flanges 52 a , 52 b abut each other when the two halved flat tubes 5 a , 5 b are joined to each other. In this arrangement, the area available for the application of solder is increased and the strength of union by the soldering is enhanced and the work of soldering is improved.
- the inside thickness t of the flat tube 5 and the pitch Pd between the adjacent dimples 50 a , 50 b are desired to be determined at suitable values in accordance with various conditions of the heat exchanger of this invention such as capacity for exchange of heat and resistance to pressure. It has been established by experiments that the thickness, t, the pitch, Pd, and the width, A, of joint at the apex of dimple are desirably in the following ranges.
- FIG. 20 is a graph showing the heat exchange capacity of a heat exchanger formed of a flat tube 5 having a width, W, of 17 mm, an inner tube thickness, t, of 1.1 mm, and a tube wall thickness of 0.4 mm as the function of the dimple pitch, Pd, of the heat exchanger.
- FIG. 21 is a graph showing the change of pressure resistance of the flat tube 5 as the function of the dimple pitch Pd as determined of the same flat tube as described above.
- FIG. 22 is a graph showing the change of the resistance of the flow paths inside the flat tube 5 having a width, W, of 17 mm, an inner tube thickness, t, of 1.1 mm, and a tube wall thickness of 0.4 mm as the function of the dimple pitch Pd in the heat exchanger using the flat tube 5 .
- FIG. 23 is a graph showing the change of the heat exchange capacity of the heat exchanger using the flat tube 5 having a width, W, of 17 mm, a tube wall thickness of 0.4 mm, and a dimple pitch, Pd, of 3 mm as the function of the tube wall thickness, t.
- the resistance to the flow of the fluid subjected to heat exchange increased and the load required for supply of the fluid increased when the inside thickness, t, of the flat tube decreased excessively. It may well be concluded from these results that the inside thickness, t, of the flat tube is suitable in the range of 0.5 to 1.7 mm.
- the width, A, of joint between the leading ends of the dimples 50 a , 50 b is desired to be as large as permissible. As concerns the ratio of adhesion of the corrugated fin 7 to the flat tube 5 , however, the width, A, is desired to be small.
- the experiments conducted to determine the effects of the width, A, of joint between the leading ends of the dimples 50 a , 50 b demonstrated that the width was optimal in the range of 1 to 2 mm as shown in FIG. 24 and FIG. 25. These data on the width, A, are applicable to the soldered tube shown in FIG. 16 A and to the electric welded tube shown in FIG. 17.
- the manufacture of the heat exchanger of the multi-flow type of the present embodiment configured as described above is started by shaping the halved flat tubes 5 a , 5 b by the rolling technique mentioned previously and, at the same time, forming the plurality of dimples 50 a , 50 b . Then, the flux is applied on the inner and outer sides of the halved flat tubes 5 a , 5 b before these halved flat tubes are joined.
- the joint by welding can do it after assembling the beader pipes 1 , 2 , the corrugated fin 7 and soon.
- the two halved flat tubes 5 a , 5 b are joined to each other, placed in the heating furnace, and silvered therein.
- the works involved are very easy to perform.
- the flux is uniformly applied inside the halved flat tubes 5 a , 5 b , the possibility of the flux clogging the small flow paths to be formed between the dimples 50 a , 50 b is nil.
- the dimples 50 a , 50 b described above may be formed in richly varied shaped. For example, by forming a plurality of substantially parallel beads 53 a in one halved flat tube 52 , forming a plurality of beads 53 b intersecting the aforementioned beads 53 a in the other halved flat tube 5 b , and then joining these two halved flat tubes 5 a , 5 b as illustrated in FIGS. 26 to 29 similarly to the embodiment described above, flow paths may be partitioned inside the flat tube 5 by virtue of the intersection of the beads 53 a , 53 b as illustrated in FIGS. 27 and 29.
- the difference between the embodiment illustrated in FIGS. 26 and 27 and the embodiment illustrated in FIGS. 28 and 29 resides in the joining structure for the opposed edges of these two halved flat tubes 5 a , 5 b.
- the terminal parts are desired to be formed as illustrated in FIG. 30.
- the flat tube 5 has, in the terminal parts thereof, formed abutting parts 61 a adapted to make close contact with the header pipes 1 , 2 , so that the flat tubes 5 and the header pipes 1 , 2 will be held in intimate contact with each other while they are being soldered in the furnace.
- the abutting parts 61 a each consist of flanges formed one each in the terminal parts of the halved flat tubes 5 a , 5 b . They are formed by the pressing technique after the halved flat tubes 5 a , 5 b have been formed by rolling in the shape having a U cross section perpendicular to the axis.
- this embodiment Since this embodiment has no use for the inner fin 20 , it obviates the necessity for the step of inserting the inner fin 20 into the flat tube 5 and the step of crushing the flat tube 5 after the insertion of the inner fin 20 therein. It further permits prevention of the flat tube from the clogging ascribable to the improvement in the work of application of the flux. This embodiment also facilitates the work of assembling the heat exchanger and heightens the productivity in the manufacture of heat exchangers.
- the flat tube 5 may be configured as illustrated in FIG. 31. This flat tube 5 is provided at each of the terminal parts thereof with inserting parts 62 a , 62 b conforming in shape to the engaging holes 60 and abutting parts 61 a , 61 b conforming to the peripheral edges of the engaging holes. This flat tube 5 is obtained, similarly to that of FIG.
- the terminal surfaces of the flange parts 52 a , 52 b come into fast contact with the engaging holes 60 and, at the same time, the inserting parts 62 a , 62 b of the flat tubes 5 a , 5 b having the flange parts thereof 52 a , 52 b partially out off are inserted into the engaging holes 60 .
- the terminal parts of one, 5 b , of the halved flat tubes formed by rolling similarly to those of FIG. 31 are folded back in the direction away from the flange parts 52 a , 52 b by the pressing technique and the terminal parts of the other halved flat tube 5 a are folded back in a size enough to wrap in the outer surface of the terminal part of the aforementioned halved flat tube 5 b .
- the folded parts constitute themselves the inserting parts 62 a , 62 b for insertion into the engaging holes 60 and the terminal surfaces of the folded flange parts constitute themselves the abutting parts 61 a , 61 b for contact with the peripheral edges of the engaging holes 60 .
- this invention contemplates imparting a zigzagged flow to the heat-exchanger fluid in motion inside the flat tube by means of baffle members and further defining the cross-sectional area of the flow paths to an equivalent diameter in the range of 0.4 to 1.5 mm and consequently ensures thorough stirring of the refrigerant without entailing any appreciable addition to the resistance of the flow paths to the fluid in motion.
- the heat exchanger therefore, is enabled to enjoy a notable improvement in the heat exchange efficiency.
- baffle members are formed as integral parts of the flat tube itself allows a decrease in the number of component parts and consequent facilitation of the manufacture of the heat exchanger and proves to be advantageous from the economic point of view.
- this invention contemplates causing one-side ends of the header pipes of the heat exchanger to be inserted into engagement with an object intended as a base for attachment through the medium of elastic members and, at the same time, the other-side ends of the header pipes to be attached to the object with retaining brackets as accessorial parts through the medium of elastic members, the work of attaching the heat exchanger to the object can be carried out very easily and the possible errors of manufacture can be absorbed.
- the apexes of the dimples in the two halved flat tubes are joined in a width in the range of 1 to 2 mm. These dimples are spaced with a prescribed pitch in the range of 2 to 4 mm.
- the inside thickness of the flat tube is selected in the range of 0.5 to 1.7 mm. Owing to the incorporation of these dimples, the flat tube has no use for the inner fin.
- the flat tube of this configuration obviates the necessity for the step of inserting the inner fin into the flat tube and the step of crushing the flat tube after the insertion of the inner fin. It also precludes the possible clogging of the flat tube due to the improvement in the work of application of the flux.
- the heat exchanger enjoys high heat exchange capacity and is easy to manufacture.
- One flat tube is obtained by joining two halved flat tubes.
- the terminal parts of the halved flat tubes there are formed abutting parts conforming to the peripheral edges of the engaging holes in the header pipes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger of the multi-flow type is provided with baffle members which are adapted to impart a zigzagging flow to the heat-exchange fluid in motion inside a flat tube and define, in conjunction with the inner wall of the flat tube, a flow path of a cross-sectional area having an equivalent diameter in the range of 0.4 to 1.5 mm. This heat exchanger excels in heat exchange ability and in facility of manufacture and assemblage.
Description
- 1. 1. Field of the Invention
- 2. This invention relates to improvements in and concerning a multi-flow type heat exchanger to be incorporated in an automobile air conditioner.
- 3. 2. Description of the Prior Art
- 4. Among the heat exchanger recently proposed for use as in condensers of automobile air conditioners are included those of the multi-flow type which are configured as illustrated in FIG. 34 (as disclosed in U.S. Pat. No. 4,615,385 and Japanese Patent Application Disclosure SHO 62(1987)-175,588, for example).
- 5. The heat exchanger of this multi-flow type is provided with a pair of
header pipes inlet tube 3 for introducing a heat-exchanger fluid such as a refrigerant is fitted to the inletside header pipe 1 and anoutlet tube 4 for discharging the heat-exchanger fluid is fitted to the other outletside header pipe 2. Between the twoheader pipes flat tubes 5 are installed so as to intercommunicate these twoheader pipes side header pipe 1 advances in the form of a plurality of parallel flows and flows into the outletside header pipe 2. On the opposed side surfaces of the twoheader pipes parts 6 of the shape of a dome are formed as illustrated in FIG. 35 for the purpose of enhancing the heat exchangers' strength to resist pressure. - 6. In FIGS. 34 and 35, the reference numeral “7” denotes a corrugated fin for transfer of heat, the reference numerals “8 and 9” denote blank covers, and the reference numeral “10” denotes a reinforcing plate.
- 7. In the
flat tube 5, aninner fin 11 whose cross section taken perpendicularly to the axis thereof is corrugated with a prescribed pitch p as illustrated in FIG. 36, is inserted and fixed in place. Theinner fin 11 serves the purpose of partitioning the flow path r of theflat tube 5 and giving rise to a plurality of independentsmall flow paths 12 therein. - 8. In this heat exchanger H of the multi-flow type, therefore, the heat-exchanger fluid which flows in the inlet
side header pipe 1 advances collectively in the form of a plurality of parallel flows in the direction of the outletside header pipe 2 and, at the same time, advances in the form of parallel flows severally inside thesmall flow paths 12. - 9. The heat exchanger H of the multi-flow type, for the sake of enhancing the capacity thereof for exchange of heat, has the
small flow paths 12 each so adapted that the equivalent diameter (the diameter of a flow path having a circular cross-sectional area equaling the cross-sectional area of the small flow path) thereof has a predescribed value. Specifically, in consideration of the pressure drop occurring in the flowing air, the resistance offered to the flow of the heat-exchanger fluid and the heat-exchange efficiency, the heat transfer area is adjusted to a prescribed value so as to heighten the whole heat exchange efficiency of the heat exchanger. There are heat exchangers which use the so-called serpenine tubes (flat tubes of an elliptical section extrusion molded so as to form a plurality of flow paths inside). The heat exchanger of the multi-flow type described above, as compared with the heat exchanger of the type using the serpentine tubes, has the merit high pressure-resisting capacity, small size, and light weight ascribable to the formation of bulgedparts 9 on theheader pipes 1. 2 in addition to enjoying the advantages of small thickness of tube, low resistance to the fluid in motion, and high capacity for exchange of heat. - 10. The heat exchanger of the multi-flow type, however, is problematic in terms of performance and in terms of manufacture.
- 11. First as concerns the performance, the
inner fin 11 is soldered in place within a furnace in such a manner as to define theflow paths 5 inside theflat tube 5 as illustrated in FIG. 36. Thesmall flow paths 12 consequently formed herein extent straightly from the leading ends to the trailing ends thereof. The heat-exchanger fluid flows just straightly inside theflat tube 5 and has no possibility of being stirred while in motion therein. It is not inconceivable that the portion of the heat-exchanger fluid which flows along the central part of the cross section of thesmall flow paths 12 just advances through the interior of theflat tube 5. The heat-exchanger fluid does not wholly contribute to the action of exchange of heat. - 12. The portions of the heat-exchanger fluid flowing inside the
small flow paths 12 defined by theinner fin 11, while in motion between theheader pipes - 13. In connection with this point, Japanese Patent Application Disclosure SHO 61(1986)-295,494 and Japanese Utility Model Application Disclosure SHO 62(1987)-39,182 disclose a corrugated inner fin so configured that the waves thereof are staggered by a prescribed pitch. This inner fin is capable of imparting a zigzagging flow to the heat-exchanger fluid and incapable of manifesting the heat exchange ability fully satisfactorily.
- 14. The heat exchanger of the multi-flow type is further problematic in terms of manufacture.
- 15. The
inner fin 11 is soldered within the furnace in conjunction with all of the other component members of the heat exchanger including theflat tube 5. In this case, the step of applying flux to the ridge parts 11 a of theinner fin 11 is required to precede the step of entering the component members of the heat exchanger in the furnace. In this step, however, since theinner fin 11 is corrugated as illustrated in FIG. 37, the flux adhering to the ridge parts 11 a trickles down the sloped surfaces and collects in thegroove parts 11 b. As the result, the flux adheres in an insufficient amount to the surface of the ridge parts 11 a which require the flux to be deposited most thickly and the work of soldering consequently becomes extremely difficult. - 16. Further, the heat exchanger H of the multi-flow type, as disclosed in U.S. Pat. No. 4,651,816, is fixed in place by causing
brackets 13 attached fast as by soldering to theheader pipes brackets 13 are generally made of aluminum. After the mounting positions for the brackets which are variable with vehicles are corrected by the use of jigs, for example, the brackets are soldiered integrally within the heating furnace at the same time that theflat tubes 5 and thecorrugated fins 7 are soldered or they are first soldered and then fixed in place as by the TIG welding. - 17. Incidentally, when the fixation is effected by the work of soldering as described above, it is generally difficult to solder the brackets while maintaining the accuracy of the mounting positions. The TIG welding proves to be disadvantageous in terms of productivity and cost because the number of steps of process is large.
- 18. Japanese Utility Model Application Disclosure SHO 61(1986)-110,017 discloses a structure for fixing the heat exchanger in place without being welded. Since the heat exchanger in this disclosure has no use for the header pipes, the number of component parts is unduly large and the assembly of such component parts consumes much time and labor.
- 19. This invention, conceived in the urge to eliminate the disadvantages of the prior art described above, aims to provide a heat exchanger of the multi-flow type which allowed to give through stirring to the heat-excharger fluid without entailing any appreciable increase in the resistance offered by the fluid paths and enabled to excel in heat exchange performance and in facility of manufacture and assemblage by providing flat tubes therein with baffle members adapted to impart a zigzagging flow to the heat-exchanger fluid and, at the same time, giving to the flow paths defined by the baffle members and the inner walls of the falt tubes a cross-sectional area having an equivalent diameter in the range of 0.4 to 1.5 mm.
- 20.FIG. 1 is a partially cutaway perspective view illustrating an embodiment of this invention.
- 21.FIG. 2 is a cross section illustrating a flat tube in the embodiment in the process of shaping.
- 22.FIG. 3 is a cross section of the flat tube of the embodiment.
- 23.FIG. 4 is a perspective view of an inner fin.
- 24.FIG. 5 and FIG. 6 are graphs showing the results of tests performed on the embodiment.
- 25.FIG. 7 is a front view illustrating a modification of the heat exchanger mentioned above.
- 26.FIG. 8 is an exploded perspective view illustrating the essential part of a mounting structure for the heat exchanger.
- 27.FIG. 9 is a cross section taken through FIG. 8 along the line IX-IX.
- 28.FIG. 10 is a cross section taken through FIG. 8 along the line X-X.
- 29.FIG. 11 is an exploded perspective view illustrating the essential part of another mounting structure for the heat exchanger mentioned above.
- 30.FIG. 12 is a cross section taken through FIG. 11 along the line XII-XII.
- 31.FIG. 13 is an exploded perspective view illustrating yet another mounting structure for the heat exchanger mentioned above.
- 32.FIG. 14 is a cross section illustrating a flat tube for use in another embodiment of this invention in the process of shaping.
- 33.FIG. 15 is a cross section illustrating the same flat tube in the process of bending.
- 34.FIG. 16 (A) is a perspective view of the flat tube and FIGS. 16 (B) and (C) are cross section taken through FIG. 16 (A) respectively along the line B-B and the line C-C.
- 35.FIG. 17 is a perspective view illustrating another embodiment of the flat tube.
- 36.FIG. 18 and FIG. 19 are a perspective view and a cross section illustrating yet another typical flat tube.
- 37. FIGS. 20 to 25 are graphs showing the results of tests performed on the heat exchanger of this invention.
- 38.FIGS. 26 and 27 and FIGS. 28 and 29 are pairs each of a perspective view and a cross section illustrating yet other flat tubes.
- 39.FIG. 30 is an exploded perspective view illustrating the state of connection between the flat tube mentioned above and header pipes.
- 40.FIG. 31 and FIG. 32 are perspective views illustrating other typical terminal parts of the flat tube mentioned above.
- 41.FIG. 33 is an exploded perspective view of the flat tube appearing in FIG. 32.
- 42.FIG. 34 is a perspective view of the conventional heat exchanger.
- 43.FIG. 35 is a cross section of FIG. 36 is a cross section of the flat tube of the conventional heat exchanger mentioned above.
- 44.FIG. 37 is a perspective view of an inner fin of the conventional heat exchanger mentioned above.
- 45. Now, one embodiment of this invention will be described with reference to the accompanying drawings.
- 46.FIG. 1 is a partially cutaway perspective view illustrating an embodiment of this invention, FIG. 2 is a cross section illustrating a flat tube of the embodiment in a state prior to shaping, FIG. 3 is a cross section illustrating the flat tube of the embodiment in a state after shaping, and FIG. 4 is a perspective view of the essential part of an inner fin. In these diagrams, the component parts which have equivalents in FIGS. 34 to 37 are denoted by the same reference numerals.
- 47. In the heat exchanger H of the multi-flow type, an inlet
side header pipe 1 of a parallelly cross section fitted with aninlet tube 3 for admitting a heat-exchanger fluid in motion and an outletside header pipe 2 of a parallelly cross section fitted with anoutlet tube 4 for discharging the heat-exchanger fluid are separated by a prescribed length from each other and disposed annular to each other. Between theseheader pipes flat tubes 5 are disposed so as to intercommunicate the header pipes. The arrangement of these component parts is similar to that illustrated in FIG. 34. Theseheader pipes - 48. First, the
flat tube 5 will be explained. - 49. The
flat tube 5, as illustrated in FIG. 2, is produced by shaping a flat sheet material in a form having a flat U cross section perpendicular to the axis, deformingterminal flanges 21 of the sheet material in the direction of the arrow, and sitting in aninner fin 20 in the U-shaped sheet, then sticking the twoflanges inner fin 20 and the inside wall of said U-shaped sheet, and then welding tham. - 50. However, said weld stage can do it lump together as a whole, after assembling the
beaer pipes carrugated fin 7, and said U-shaped sheet with theinner fin 20. This coustructing method is similar another embodiment. - 51. Now, the
inner fin 20 disposed inside each of theflat tubes 5 and intended as a baffle member G whose function consists in baffling the flow of the refrigerant will be described. - 52. This
inner fin 20 is shaped in a form whose cross section perpendicular to the axis is corrugated at a prescribed pitch p as illustrated in FIGS. 3 and 4, so as to divide the flow path r inside theflat tube 5 into a plurality of smallindependent flow paths 12. The diameter of the fluid in motion inside thesesmall flow paths 12 is so set that the equivalent diameter determined in connection with the pressure drop in the flowing air, the resistance to the flow of the heat-exchanger fluid, and the efficiency of exchange of heat will fall in a prescribed range of about 0.4 to 1.5 mm, preferably in the neighborhood of 0.7 mm. - 53. Particularly when the corrugated parts h of the prescribed pitch p mentioned above are formed in the
inner fin 20 of the present embodiment, the corrugated parts h are raised between slits placed parallelly at prescribed intervals s as staggered in the direction perpendicular to the direction of the flow of the heat-exchanger fluid (the direction of the arrow shown in FIG. 4) so that the edge surfaces E of the corrugated parts h2 in the second stage are positioned at the centers of the corrugated parts h1 in the first stage, the edge surfaces E of the corrugated parts h3 in the third stage at the centers of the corrugated parts h2 in the second stage, and so on. - 54. In this case, the prescribed intervals s mentioned above may be equal to or different from one another. The ridges of these corrugated parts may be in the general shape of a rectangle as illustrated in FIG. 3 or in the natural shape of a wave as illustrated in FIG. 37.
- 55. In the arrangement described above, since the edge surfaces E manifest the edge effect (the heat exchange effect produced at the sharp edge portions resembling the edges of knifes is prominent as compared with the effect produced at any other portion; hence the designation “edge effect”) and the edge surfaces E are present in a large number throughout the entire length of the
flat tube 5, the exchange of heat between the heat-exchanger fluid and the air proceeds very efficiently and the ability of the heat exchanger as a whole to effect exchange of heat is heightened notably. Further, since these edge surfaces E are so distributed that the edge surfaces of the corrugated parts h2 in the second stage are positioned at the centers of the corrugated parts h1 in the first stage, the portions of the heat-exchanger fluid which have flowed down thesmall flow paths 12 formed by the corrugated parts h1 of the first stage collide against and stirred by the edge surfaces E of the corrugated parts h2 of the second stage. Owing to the effect of this agitation, the exchange of heat is carried out very efficiently and the ability of the heat exchanger as a whole to effect exchange of heat is enhanced to a notable extent. - 56. When the heat exchanger of the present embodiment was tested for performance of radiation under the condition using a wind velocity of 5 m/s, the results were as shown in FIG. 5.
- 57. Comparison of the test results obtained of the conventional heat exchanger using a corrugated inner fin (indicated by the dotted line in the diagram) and those obtained of the heat exchanger of the present invention (indicated by the full line in the diagram) reveals that the difference in capacity for radiation was about 1500 Kcal/h where the equivalent diameter was 0.75 mm and about 1,200 Kcal/h where the equivalent diameter was 1.2 mm, clearly implying that in either of the cases, the performance of the zigzagged
inner fin 20 of the present invention was about 15% higher than the corrugated inner fin of the conventional heat exchanger. When the heat exchanger of this invention was tested for the resistance offered by the flow paths to the heat-exchanger fluid used as the refrigerant, the results which were as shown in FIG. 6 indicate that the most desirable equivalent diameter was approximately in the range of 0.4 to 1.5 mm. - 58. The embodiment described above is so configured that the edge surfaces E of the corrugated parts h2 of the second stage are positioned at the centers of the corrugated parts h1 of the first stage. It is not an indispensable requisite, however, that the edge surfaces E of the corrugated parts h2 of the second stage should be positioned at the centers of the corrugated parts h1 of the first stage. Optionally, the edge surfaces E of the corrugated parts h2 of the second stage may be positioned between the adjacent corrugated part h1 of the first stage.
- 59. The corrugated parts mentioned above are staggered in the direction perpendicular to the direction of the flow of the heat-exchanger fluid. The perpendicular direction is not critical for the staggering. Optionally, the staggering may be made in an oblique direction.
- 60. This invention may be embodied in a heat exchanger which is configured as illustrated in FIG. 7. In this heat exchanger, a
header pipe 1 is divided into an upper header pipe 1 a and a lower header pipe 1 b by apartition plate 22 disposed at the center of theheader pipe 1 in the vertical direction thereof, so that the heat-exchanger fluid flowing in through aninlet tube 3 advances through the upper header pipe 1 a, aflat tube 5, aheader pipe 2, aflat tube 5, and the lower header pipe 1 b and flows out of anoutlet tube 4. This heat exchanger has onepartition plate 22 disposed inside theheader pipe 1 to effect one U-turn flow. Of course, it may have a plurality ofpartition plates 22 disposed inside the twoheader pipes 1, 2 (indicated by a broken line in FIG. 7) so as to effect a plurality of U-turn flows. - 61. In the manufacture of the heat exchanger of this multi-flow type, a multiplicity of
flat tubes 5 are parallelly disposed between theheader pipes corrugated fins 7 are interposed between adjacentflat tubes 5,inner fins 20 are disposed inside theflat tubes 5, and the resultant assembly is placed in a furnace and the component parts thereof are soldered collectively. In the manufacture, even when the liquid flux applied to the projected parts 11 a of theinner fin 20 inserted in theflat tube 5 flows down the sloped surfaces of the projected parts 11 a, it is allowed to flow through the holes o (FIG. 4) formed where the corrugated parts h are raised along slits in theinner fin 20 and eventually reach and adhere to the outer periphery of theinner fin 20 on the opposite side, with the result that the flux remaining on the projected parts' side and the flux reaching the opposite side will be distributed so as to coat the whole inner fin almost uniformly. Thus, the union between theinner fin 20 and theflat tube 5 is effected throughout their entire volumes with notably increased strength. - 62. In the attachment of the heat exchanger configured as described above to the car body or some other similar object, the use of the rigidity of the
header pipes - 63. When the lower end of the heat exchanger is attached to the front cross member B1 of the car body and the upper end thereof to the radiator core panel B2 of the car body as illustrated in FIG. 8, cylindrical blind
elastic members 32 a of rubber material formed to conform to the outer contours of the lower ends (one-side; ends) 1 a, 2 a of theheader pipes header pipes elastic members 32 a now capping the lower ends 1 a, 2 a of theheader pipes parts 30 formed to conform to the outer contours of theelastic members 32 a. The upper ends (the other-side ends) 1 b, 2 b of theheader pipes brackets 31 each provided with a retainingpart 31 a possessing an inner peripheral shape roughly conforming to the outer contours of theheader pipes part 31 b having perforated therein anoblong hole 33 for insertion of abolt 35 to nipelastic members 32 b possessing an inner peripheral shape conforming to the outer contours of theheader pipes bolts 35 through theoblong holes 33 into helical engagement withthread holes 34 formed in the radiator core panel B2. - 64. The
ealstic members parts 30 of the front cross member B1 are desired to be perforated with adrain hole 36. Optionally, theelastic members header pipes 1 a, 2 a may be directly joined to the front cross member B1 and theheader pipes 1 b, 2 b may be directly connected to the retainingbrackets 31. In consideration of possible errors involved in the manufacture ofheader pipes holes 34 in the radiator core panel B2, however, the interposition of theelastic members - 65. In the attachment of the heat exchanger to a given object by the use of the mounting structure of the present embodiment configured, as illustrated in FIG. 8, the cylindrical blind
elastic members 32 a of rubber material possessing an inner shape conforming to the outer contours of theheader pipes elastic members 32 a are inserted into engagement with the engagingparts 30 formed in the front cross member B1 and possessing an inner shape conforming to the outer contours of theelastic members 32 a. Then, the retainingbrackets 31 each provided with the retainingpart 31 a possessing an inner peripheral shape substantially conforming to the outer contours of theheader pipes part 31 b having perforated therein theoblong hole 33 for insertion of thebolt 35 are pressed against the other-side ends 1 b, 2 b of the header pipes in such a manner as to nip theelastic members 32 b possessing an inner peripheral shape conforming to the outer contours of theheader pipes bolts 35 are inserted through theoblong holes 33 of the mountingparts 31 b of the retainingbrackets 31 and into the threadedholes 34, to complete the attachment. - 66. As described above, the one-side ends 1 a, 2 a of the header pipes of the heat exchanger are inserted into engagement with a given object through the medium of the
elastic members 32 a and, at the same time, the other-side ends 1 b, 2 b of the header pipes are attached to a given object with the retaining brackets 31 (accessorial parts) through the medium of theelastic members 31 b. Owing to this arrangement, the work of attachment to the object can be carried out very easily. Moreover, this arrangement is capable of absorbing possible errors of manufacture. - 67.FIG. 11 is an exploded perspective view illustrating the essential part of a modified mounting structure for the heat exchanger and FIG. 12 is a cross section taken through FIG. 11 along the line XII-XII.
- 68. This mounting structure for the heat exchanger typifies a case in which the object for attachment of the heat exchanger is a car body and the lower ends 1 a, 2 a of the
header pipes header pipes header pipes elastic members 32 b possessing inner shapes conforming to the outer contours of theheader pipes elastic members 32 b are inserted into the retainingbrackets 31 each comprising a roughly cylindrical retainingpart 31 a possessing an inner shape conforming to the outer contours of theelastic members 31 b and a mountingpart 31 having anoblong hole 33 perforated therein. When the heat exchanger provided with this mounting structure is attached to the car body, for example, the lower ends 1 a, 2 a of the header pipes are inserted into theelastic members 32 a and simultaneously inserted into engagement with the engagingparts 30 of the front cross member B1. Then, theelastic members 32 b are inserted into the upper ends 1 b, 2 b of the header pipes and further the retainingbrackets 31 are inserted therein and thebolts 35 are inserted into the oblong holes 33 perforated in the retainingbrackets 31. Subsequently, thebolts 35 are screwed to the tappedholes 34 formed in the upper rail B3, to complete the attachment of the heat exchanger to the car body. - 69.FIG. 13 is an exploded perspective view illustrating yet another modification of the mounting structure for the heat exchanger. In this case, the mounting structure is adapted so that the heat exchanger (condenser for an automobile air conditioner) H is attached to a
radiator 40 and theradiator 40 is attached to the car body. The engagingparts 30 for insertion of the lower ends 1 a, 2 a of theheader pipes radiator 40, an object meant as a base for mounting, and the retainingbrackets 31 are inserted into the upper ends 1 b, 2 b of theheader pipes bolts 42 for connecting theradiator 40 to fan shrouds 41. The attachment of the heat exchanger H, theradiator 40, and the fan shroud 41 to the car body is attained by first inserting the lower ends of theheader pipes parts 30 of theradiator 40, then inserting thebrackets 31 into the upper ends 1 b, 2 b of theheader pipes brackets 31, theradiator 40, and the fan shroud 41 together with bolts thereby fastening the heat exchanger H to theraditor 40, and subsequently attaching the assembled components H, 40, and 41 to the car body as withbolts 43. In the diagram, the reference numeral 44 denotes a projection formed beneath the radiator and the reference numeral 45 devotes a bracket attached to the car body and adapted to receive the aforementioned projection. - 70. In the arrangement described above, since the heat exchanger H, the
radiator 40, and the fan shroud 41 are integrally joined to the car body, the work of assembling the car body can be carried out with improved efficiency. - 71.FIG. 14 illustrated yet another embodiment of this invention, in which the baffle member G mentioned above is not formed separately of the flat tube like the
inner fin 20 but is formed of the flat tube itself. - 72. This
flat tube 5 is obtained by forming a plurality ofdimples flat tubes - 73. The halved
flat tubes flat tubes protuberances 50 and recesses 51 corresponding to thedimples flat tubes flat tubes dimples flat tubes apexes contiguous apexes flat tube 5 has, in the two halvedflat tubes dimples - 74. In this
flat tube 5, a plurality ofsmall flow paths 12 a (FIG. 16B refers) are defined by thedimples flow paths 12 b (FIG. 16 C refers) are formed in the portions containing none of thedimples dimples dimples flat tube 5 may be produced by the use of an electric welded tube of the kind illustrated in FIG. 17. - 75. The two halved
flat tubes flanges flat tubes flanges flat tubes - 76. The inside thickness t of the
flat tube 5 and the pitch Pd between theadjacent dimples - 77. t=0.5 to 1.7 mm
- 78. Pd=2 to 4 mm
- 79. A=1 to 2 mm.
- 80. The preferred ranges of these magnitudes will be described in detail below with reference to the graphs of FIGS. 20 to 25 showing pertinent test results.
- 81.FIG. 20 is a graph showing the heat exchange capacity of a heat exchanger formed of a
flat tube 5 having a width, W, of 17 mm, an inner tube thickness, t, of 1.1 mm, and a tube wall thickness of 0.4 mm as the function of the dimple pitch, Pd, of the heat exchanger. - 82.FIG. 21 is a graph showing the change of pressure resistance of the
flat tube 5 as the function of the dimple pitch Pd as determined of the same flat tube as described above. - 83.FIG. 22 is a graph showing the change of the resistance of the flow paths inside the
flat tube 5 having a width, W, of 17 mm, an inner tube thickness, t, of 1.1 mm, and a tube wall thickness of 0.4 mm as the function of the dimple pitch Pd in the heat exchanger using theflat tube 5. - 84.FIG. 23 is a graph showing the change of the heat exchange capacity of the heat exchanger using the
flat tube 5 having a width, W, of 17 mm, a tube wall thickness of 0.4 mm, and a dimple pitch, Pd, of 3 mm as the function of the tube wall thickness, t. - 85. It is noted from FIGS. 20 to 22 that the ability and pressure resistance of the heat exchanger were improved by setting the dimple pitch, Pd, at a small value. When the dimple pitch, Pd, was set at an unduly small value, however, there arose the possibility that the size of the plurality of flow paths defined by the
dimples flat tube 5 decreased. Again in this case similarly to the case of the dimple pitch, Pd, the resistance to the flow of the fluid subjected to heat exchange increased and the load required for supply of the fluid increased when the inside thickness, t, of the flat tube decreased excessively. It may well be concluded from these results that the inside thickness, t, of the flat tube is suitable in the range of 0.5 to 1.7 mm. - 86. In order for the heat exchanger to resist the breaking pressure, the width, A, of joint between the leading ends of the
dimples corrugated fin 7 to theflat tube 5, however, the width, A, is desired to be small. The experiments conducted to determine the effects of the width, A, of joint between the leading ends of thedimples - 87. The manufacture of the heat exchanger of the multi-flow type of the present embodiment configured as described above is started by shaping the halved
flat tubes dimples flat tubes - 88. However the joint by welding can do it after assembling the
beader pipes corrugated fin 7 and soon. Subsequently, the two halvedflat tubes flat tubes flat tubes dimples flat tubes 5 obtained as described above are inserted into thecorrugated fin 7 between them, and the ends of saidflat tubes 5 are insurted in the engaging holes (not shown) bored in theheader pipes corrugated fins 7 are interposed between theflat tubes 5 and thecorrugated fins 7 are integrally joined by soldering. - 89. The
dimples parallel beads 53 a in one halved flat tube 52, forming a plurality ofbeads 53 b intersecting theaforementioned beads 53 a in the other halvedflat tube 5 b, and then joining these two halvedflat tubes flat tube 5 by virtue of the intersection of thebeads flat tubes - 90. In order to ensure safe union between the
header pipes flat tubes - 91. The
flat tube 5 has, in the terminal parts thereof, formed abuttingparts 61 a adapted to make close contact with theheader pipes flat tubes 5 and theheader pipes parts 61 a each consist of flanges formed one each in the terminal parts of the halvedflat tubes flat tubes header pipes holes 60 bored in theheader pipes flat tube 5 when the two halvedflat tubes holes 60 mentioned above. - 92. Since this embodiment has no use for the
inner fin 20, it obviates the necessity for the step of inserting theinner fin 20 into theflat tube 5 and the step of crushing theflat tube 5 after the insertion of theinner fin 20 therein. It further permits prevention of the flat tube from the clogging ascribable to the improvement in the work of application of the flux. This embodiment also facilitates the work of assembling the heat exchanger and heightens the productivity in the manufacture of heat exchangers. - 93. The
flat tube 5 may be configured as illustrated in FIG. 31. Thisflat tube 5 is provided at each of the terminal parts thereof with insertingparts holes 60 and abuttingparts flat tube 5 is obtained, similarly to that of FIG. 30, folding a flat plate in a shape having a U cross section perpendicular to axis while the flat plate is being rolled to produce two halvedflat tubes flange parts dimples flat tubes flange parts flat tubes flat tubes flange parts holes 60 and, at the same time, the insertingparts flat tubes - 94. When the inserting
parts parts flat tube 5 as described above, therefore, the sizes of the engagingholes 60 allowed for insertion are fixed owing to the positioning of the abuttingparts header pipes - 95. In the
flat tube 5 illustrated in FIGS. 32 and 33, the terminal parts of one, 5 b, of the halved flat tubes formed by rolling similarly to those of FIG. 31 are folded back in the direction away from theflange parts flat tube 5 a are folded back in a size enough to wrap in the outer surface of the terminal part of the aforementioned halvedflat tube 5 b. Here, the folded parts constitute themselves the insertingparts holes 60 and the terminal surfaces of the folded flange parts constitute themselves the abuttingparts flat tubes flat tubes 5 are attached to theheader pipes parts flat tube 5 are inserted into theheader pipes parts - 96. Also in this arrangement, the sizes of the engaging holes allowed for insertion are fixed in consequence of the positioning of the abutting parts. As the result, the work of assemblage is facilitated to a great extent.
- 97. The embodiments described above are desired to be used mainly for condensers in automobile air conditioners. This invention is not limited to this particular use but may be used for evaporators or for automobile radiators.
- 98. As described above, this invention contemplates imparting a zigzagged flow to the heat-exchanger fluid in motion inside the flat tube by means of baffle members and further defining the cross-sectional area of the flow paths to an equivalent diameter in the range of 0.4 to 1.5 mm and consequently ensures thorough stirring of the refrigerant without entailing any appreciable addition to the resistance of the flow paths to the fluid in motion. The heat exchanger, therefore, is enabled to enjoy a notable improvement in the heat exchange efficiency.
- 99. As regards the formation of the baffle members, the fact is that the baffle members are formed as integral parts of the flat tube itself allows a decrease in the number of component parts and consequent facilitation of the manufacture of the heat exchanger and proves to be advantageous from the economic point of view.
- 100. Further, since this invention contemplates causing one-side ends of the header pipes of the heat exchanger to be inserted into engagement with an object intended as a base for attachment through the medium of elastic members and, at the same time, the other-side ends of the header pipes to be attached to the object with retaining brackets as accessorial parts through the medium of elastic members, the work of attaching the heat exchanger to the object can be carried out very easily and the possible errors of manufacture can be absorbed.
- 101. The apexes of the dimples in the two halved flat tubes are joined in a width in the range of 1 to 2 mm. These dimples are spaced with a prescribed pitch in the range of 2 to 4 mm. The inside thickness of the flat tube is selected in the range of 0.5 to 1.7 mm. Owing to the incorporation of these dimples, the flat tube has no use for the inner fin. Thus, the flat tube of this configuration obviates the necessity for the step of inserting the inner fin into the flat tube and the step of crushing the flat tube after the insertion of the inner fin. It also precludes the possible clogging of the flat tube due to the improvement in the work of application of the flux. The heat exchanger enjoys high heat exchange capacity and is easy to manufacture.
- 102. One flat tube is obtained by joining two halved flat tubes. In the terminal parts of the halved flat tubes, there are formed abutting parts conforming to the peripheral edges of the engaging holes in the header pipes. Thus, the work of positioning the flat tubes is easy to carry out and the work of assemblage is performed with enhanced efficiency.
Claims (9)
1. A heat exchanger of the multi-flow type comprising a pair of header pipes (1, 2 having a annular cross section fit for flow of heat-exchanger fluid and disposed parallelly as separated by a prescribed length (λ), a multiplicity of flat tubes (5) disposed between said header pipes (1, 2) in such a manner as to intercommunicate them, and baffle members (G) adapted to impart a zigzagging stirring motion to said heat-exchanger fluid in motion, which heat exchanger is characterized by the fact that the flow paths defined by said baffle members (G) and the inside walls of said flat tubes possess a cross-sectional area having an equivalent diameter in the range of 0.4 to 1.5 mm.
2. A heat exchanger according to , wherein said baffle members (G) comprise inner fins and said inner fins (20) are corrugated so as to divide the flow paths inside said flat tubes into a plurality of small flow paths and give rise to corrugated parts (h) raised between slits placed parallelly at prescribed intervals (s) in the direction perpendicular to the direction of the flow of said heat-exchanger fluid so that the edge surfaces (E) of the corrugated parts of the preceding stage are positioned between the corrugated parts of the subsequent stage.
claim 1
3. A mounting structure for the heat exchanger according to , wherein one-side ends (1 a, 2 a) of said header pipes (1, 2) are fastened to engaging parts (30) formed in an object (B1) serving as a base for attachment and the other-side ends (1 b 2 b) of said header pipes (1, 2) are attached to said object through the medium of retaining brackets (31) adapted to retain in place said other-side ends (1 b, 2 b).
claim 1
4. A heat exchanger according to , wherein elastic members (32 b) are interposed between the one-side ends (1 a, 2 a) of said header pipes (1, 2) and said engaging parts of said object (B1) and between said retaining brackets (31) and the other-side ends (1 b, 2 b) of said header pipes (1, 2).
claim 1
5. A heat exchanger of the multi-flow type comprising a pair of header pipes (1, 2) having a annular cross section fit for flow of heat-exchanger fluid and disposed parallelly as separated by a prescribed length (λ), a multiplicity of flat tubes (5) disposed between said header pipes (1, 2) in such a manner as to intercommunicate them, and baffle members (G) adapted to impart a zigzagging stirring motion to said heat-exchanger fluid in motion, which heat exchanger is characterized by the fact that said flat tubes (5) are formed by joining two halved flat tubes (5 a, 5 b), said halved flat tubes (5 a,5 b) are each provided therein with a plurality of dimples (50 a, 50 b) projected symmetrically toward each other so as to partition partially the flow path inside said flat tube (5), the apexes (51 a, 51 b) of said dimples (50 a, 50 b) are joined to each other in a width in the range of 1 to 2 mm, said dimples are spaced with a fixed pitch (Pd) in the range of 2 to 4 mm, and the inside thickness (t) of said tubes is in the range of 0.5 to 1.7 mm.
6. A heat exchanger according to , wherein said flat tubes (5) are formed by folding one plate material.
claim 5
7. A heat exchanger according to , wherein said flat tubes (5) are formed by joining two halved flat tubes (5 a, 5 b).
claim 5
8. A heat exchanger according to , wherein said flat tubes (5) have formed in the terminal parts of said halved flat tubes (5 a, 5 b) such abutting parts (61 a, 61 b) as adapted to conform to the peripheral edges of said engaging holes in said header pipes.
claim 7
9. A heat exchanger according to , wherein said halved flat tubes (5 a, 5 b) have formed in the terminal parts thereof such inserting parts (62 a, 62 b) as possessed of an outer shape conforming to the shape of said engaging holes (60) and such budding parts (61 a, 61 b) as adapted to abut the peripheral edges of said engaging holes (6).
claim 7
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/748,352 US20010000879A1 (en) | 1988-08-12 | 2000-12-27 | Multi-flow type heat exchanger |
US10/165,307 US20020153131A1 (en) | 1988-08-12 | 2002-06-10 | Multi-flow type heat exchanger |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-106782UM | 1988-08-12 | ||
JP1988106782U JPH0228980U (en) | 1988-08-12 | 1988-08-12 | |
JP1988106784U JPH0228981U (en) | 1988-08-12 | 1988-08-12 | |
JP1988106783U JPH0749253Y2 (en) | 1988-08-12 | 1988-08-12 | Multi-flow type heat exchanger mounting structure |
JP1988106785U JPH073181Y2 (en) | 1988-08-12 | 1988-08-12 | Multi-flow type heat exchanger |
US39272489A | 1989-08-11 | 1989-08-11 | |
US70360791A | 1991-05-21 | 1991-05-21 | |
US97704192A | 1992-11-16 | 1992-11-16 | |
US09/748,352 US20010000879A1 (en) | 1988-08-12 | 2000-12-27 | Multi-flow type heat exchanger |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US97704192A Continuation | 1988-08-12 | 1992-11-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/165,307 Continuation US20020153131A1 (en) | 1988-08-12 | 2002-06-10 | Multi-flow type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010000879A1 true US20010000879A1 (en) | 2001-05-10 |
Family
ID=27469466
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/448,874 Expired - Fee Related US5560425A (en) | 1988-08-12 | 1995-05-24 | Multi-flow type heat exchanger |
US09/748,352 Abandoned US20010000879A1 (en) | 1988-08-12 | 2000-12-27 | Multi-flow type heat exchanger |
US10/165,307 Abandoned US20020153131A1 (en) | 1988-08-12 | 2002-06-10 | Multi-flow type heat exchanger |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/448,874 Expired - Fee Related US5560425A (en) | 1988-08-12 | 1995-05-24 | Multi-flow type heat exchanger |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/165,307 Abandoned US20020153131A1 (en) | 1988-08-12 | 2002-06-10 | Multi-flow type heat exchanger |
Country Status (4)
Country | Link |
---|---|
US (3) | US5560425A (en) |
KR (2) | KR940010978B1 (en) |
AU (1) | AU623669B2 (en) |
GB (2) | GB2223091B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6594897B2 (en) * | 2000-07-25 | 2003-07-22 | Mando Climate Control Corporation | Method for manufacturing coolant tube of heat exchanger |
US20060108100A1 (en) * | 2002-04-11 | 2006-05-25 | Lytron, Inc. | Contact cooling device |
US20080011464A1 (en) * | 2006-07-11 | 2008-01-17 | Denso Corporation | Exhaust gas heat exchanger |
US20080105414A1 (en) * | 2004-11-23 | 2008-05-08 | Behr Gmbh & Co. Kg | Low-Temperature Coolant Cooler |
DE102008038498A1 (en) * | 2008-08-20 | 2010-02-25 | Behr Gmbh & Co. Kg | Heat exchanger for a motor vehicle |
US20100270012A1 (en) * | 2006-09-25 | 2010-10-28 | Korea Delphi Automotive Systems Corporation | Automotive heat exchanger to the unification of header and tank and fabricating method thereof |
US20110114299A1 (en) * | 2009-11-17 | 2011-05-19 | Norbert Aplienz | Flat tube with turbulence insert for a heat exchanger, heat exchanger having such flat tubes, as well as method and device for production of such a flat tube |
US20140014301A1 (en) * | 2004-06-23 | 2014-01-16 | Mikhail Mogilevsky | Heat exchanger for use in cooling liquids |
EP2676094B1 (en) * | 2011-02-18 | 2019-12-04 | Nissens A/S | Method of producing a heat exchanger and a heat exchanger |
US20200018266A1 (en) * | 2018-07-11 | 2020-01-16 | Hyundai Motor Company | Exhaust gas recirculation cooler |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3043025B2 (en) * | 1990-02-01 | 2000-05-22 | 昭和アルミニウム株式会社 | Heat exchanger |
US5186250A (en) * | 1990-05-11 | 1993-02-16 | Showa Aluminum Kabushiki Kaisha | Tube for heat exchangers and a method for manufacturing the tube |
FR2690234B1 (en) * | 1992-04-16 | 1994-06-03 | Valeo Thermique Moteur Sa | DEVICE FOR FIXING A HEAT EXCHANGER WITH A TUBULAR COLLECTOR BOX. |
GB9208509D0 (en) * | 1992-04-16 | 1992-06-03 | Labgas Res Lab Ltd | Heat exchanger |
JP3146442B2 (en) * | 1992-11-27 | 2001-03-19 | 株式会社ゼクセルヴァレオクライメートコントロール | Tube for heat exchanger and method for producing the same |
JP3364665B2 (en) * | 1993-03-26 | 2003-01-08 | 昭和電工株式会社 | Refrigerant flow pipe for heat exchanger |
US5931226A (en) * | 1993-03-26 | 1999-08-03 | Showa Aluminum Corporation | Refrigerant tubes for heat exchangers |
US5784776A (en) * | 1993-06-16 | 1998-07-28 | Showa Aluminum Corporation | Process for producing flat heat exchange tubes |
AU7481694A (en) * | 1993-08-04 | 1995-03-14 | Insilco Corporation, Thermal Components Division | Radiator tube and method and apparatus for forming same |
EP0650024B1 (en) * | 1993-10-22 | 1998-09-09 | Zexel Corporation | Tube element for laminated heat exchanger |
US5441105A (en) * | 1993-11-18 | 1995-08-15 | Wynn's Climate Systems, Inc. | Folded parallel flow condenser tube |
JPH07227631A (en) * | 1993-12-21 | 1995-08-29 | Zexel Corp | Guide tube for heat exchanging in laminated layer type heat exchanger and its manufacture |
KR100217515B1 (en) * | 1994-09-30 | 1999-09-01 | 오타 유다카 | Laminated heat exchanger tube and manufactuing method therefor |
US5730213A (en) * | 1995-11-13 | 1998-03-24 | Alliedsignal, Inc. | Cooling tube for heat exchanger |
US6371201B1 (en) * | 1996-04-03 | 2002-04-16 | Ford Global Technologies, Inc. | Heat exchanger and method of assembly for automotive vehicles |
KR100261006B1 (en) * | 1996-07-03 | 2000-07-01 | 오타 유다카 | Flat tube for radiator |
JPH10274489A (en) * | 1997-03-28 | 1998-10-13 | Sanden Corp | Tube for heat exchanger and its manufacture |
US5881457A (en) * | 1997-05-29 | 1999-03-16 | Ford Motor Company | Method of making refrigerant tubes for heat exchangers |
US5890288A (en) * | 1997-08-21 | 1999-04-06 | Ford Motor Company | Method for making a heat exchanger tube |
US5934365A (en) * | 1997-08-21 | 1999-08-10 | Ford Motor Company | Heat exchanger |
US6273183B1 (en) * | 1997-08-29 | 2001-08-14 | Long Manufacturing Ltd. | Heat exchanger turbulizers with interrupted convolutions |
JP3299148B2 (en) * | 1997-09-16 | 2002-07-08 | 株式会社ゼクセルヴァレオクライメートコントロール | Tube for heat exchanger and method for producing the same |
DE19755037A1 (en) * | 1997-12-11 | 1999-06-17 | Behr Gmbh & Co | Heat transfer assembly |
FR2777644B1 (en) * | 1998-04-21 | 2000-09-08 | Valeo Thermique Moteur Sa | MOTOR VEHICLE HEAT EXCHANGER COMPRISING A PARALLEL TUBE BEAM OF PREFORMED THERMOPLASTIC MATERIAL, AND MANUFACTURING METHOD THEREOF |
DE19819248C1 (en) * | 1998-04-29 | 1999-04-29 | Valeo Klimatech Gmbh & Co Kg | Flat tube for vehicle heat exchanger |
JP3913897B2 (en) * | 1998-05-06 | 2007-05-09 | カルソニックカンセイ株式会社 | Manufacturing equipment for refrigerant tubes for capacitors |
DE19824026A1 (en) * | 1998-05-29 | 1999-12-02 | Behr Gmbh & Co | cooler |
IT1303149B1 (en) * | 1998-07-10 | 2000-10-30 | Magneti Marelli Climat Srl | THERMAL EXCHANGE MODULE FOR VEHICLES |
TW415867B (en) * | 1998-07-29 | 2000-12-21 | Calsonic Corp | Method for applying flux for use in brazing aluminum material, flux coating apparatus, and method for manufacturing a heat exchanger |
TW487797B (en) * | 1998-07-31 | 2002-05-21 | Sanden Corp | Heat exchanger |
JP4175443B2 (en) * | 1999-05-31 | 2008-11-05 | 三菱重工業株式会社 | Heat exchanger |
US6213158B1 (en) | 1999-07-01 | 2001-04-10 | Visteon Global Technologies, Inc. | Flat turbulator for a tube and method of making same |
US6209629B1 (en) | 1999-07-09 | 2001-04-03 | Visteon Global Technologies, Inc. | Beaded plate for a heat exchanger and method of making same |
US6241012B1 (en) | 1999-12-10 | 2001-06-05 | Visteon Global Technologies, Inc. | Folded tube for a heat exchanger and method of making same |
US6289980B1 (en) | 1999-12-16 | 2001-09-18 | Norsk Hydro, A.S. | Baffle for heat exchanger manifold |
US6364006B1 (en) | 1999-12-23 | 2002-04-02 | Visteon Global Technologies, Inc. | Beaded plate for a heat exchanger and method of making same |
JP2001201286A (en) * | 2000-01-21 | 2001-07-27 | Mitsubishi Heavy Ind Ltd | Heat exchange tube |
US6729388B2 (en) * | 2000-01-28 | 2004-05-04 | Behr Gmbh & Co. | Charge air cooler, especially for motor vehicles |
WO2002012816A1 (en) * | 2000-08-04 | 2002-02-14 | Showa Denko K.K. | Heat exchanger |
KR20010025179A (en) * | 2000-09-04 | 2001-04-06 | 김영우 | How to remove heavy metals in earthworms and feces, soils fed by organic waste |
EP1195570B1 (en) | 2000-10-06 | 2003-08-20 | Visteon Global Technologies, Inc. | Method of making a tube for a heat exchanger |
US6510891B2 (en) * | 2001-04-27 | 2003-01-28 | Delphi Technologies, Inc. | Clip-retainer for heat exchanger |
EP1461579A1 (en) * | 2001-12-27 | 2004-09-29 | Dana Canada Corporation | Heat exchanger with internal slotted manifold |
DE10212249A1 (en) * | 2002-03-20 | 2003-10-02 | Behr Gmbh & Co | Heat exchanger and cooling system |
DE10235038A1 (en) * | 2002-07-31 | 2004-02-12 | Behr Gmbh & Co. | Flat-tube heat exchanger |
JP3966134B2 (en) * | 2002-09-17 | 2007-08-29 | 株式会社デンソー | Heat exchanger |
EP1577628A4 (en) * | 2002-12-12 | 2006-06-07 | Zexel Valeo Climate Contr Corp | Tank for heat exchanger |
CN1826503A (en) * | 2003-07-15 | 2006-08-30 | 奥托库姆普铜产品公司 | Pressure containing heat transfer tube and method of making thereof |
DE10340566A1 (en) * | 2003-09-01 | 2005-03-31 | Behr Gmbh & Co. Kg | Mounting arrangement of the device for exchanging heat |
DE112005000422T5 (en) * | 2004-03-09 | 2007-01-18 | Showa Denko K.K. | A flat tube forming plate-shaped body, a flat tube, a heat exchanger and a method for producing a heat exchanger |
DE102004041308A1 (en) * | 2004-08-25 | 2006-03-02 | Behr Gmbh & Co. Kg | cooler |
JP2006207948A (en) * | 2005-01-28 | 2006-08-10 | Calsonic Kansei Corp | Air-cooled oil cooler |
US7686070B2 (en) * | 2005-04-29 | 2010-03-30 | Dana Canada Corporation | Heat exchangers with turbulizers having convolutions of varied height |
US20070000652A1 (en) * | 2005-06-30 | 2007-01-04 | Ayres Steven M | Heat exchanger with dimpled tube surfaces |
US20070044939A1 (en) * | 2005-08-30 | 2007-03-01 | Caterpillar Inc. | Tube design for an air-to-air aftercooler |
EP2293003A2 (en) * | 2006-01-19 | 2011-03-09 | Modine Manufacturing Company | Flat tube for heat exchanger and method of manufacturing same |
US20080041559A1 (en) * | 2006-08-16 | 2008-02-21 | Halla Climate Control Corp. | Heat exchanger for vehicle |
KR101250771B1 (en) * | 2006-09-21 | 2013-04-04 | 한라공조주식회사 | A Heat Exchanger |
US20080078536A1 (en) * | 2006-09-29 | 2008-04-03 | International Truck Intellectual Property Company, Llc | Corrosion resistant bi-metal charge air cooler |
ITVR20060154A1 (en) * | 2006-10-06 | 2008-04-07 | Gianfranco Natali | PROCEDURE FOR THE CONSTRUCTION OF HEAT EXCHANGER TUBES AND HEAT EXCHANGER TUBES |
DE102008064090A1 (en) * | 2008-12-19 | 2010-08-12 | Mahle International Gmbh | exhaust gas cooler |
JP5517745B2 (en) * | 2010-05-24 | 2014-06-11 | サンデン株式会社 | Heat exchanger tubes and heat exchangers |
JP5609339B2 (en) * | 2010-07-09 | 2014-10-22 | 株式会社デンソー | Oil cooler |
WO2013085771A1 (en) * | 2011-12-08 | 2013-06-13 | Carrier Corporation | Method and apparatus of forming heat exchanger tubes |
DE102011090068B4 (en) * | 2011-12-29 | 2025-03-20 | Robert Bosch Gmbh | Radiator frame with a fastening element for a cooling module, as well as cooling module or cooling device for an internal combustion engine |
FR2986472B1 (en) * | 2012-02-03 | 2014-08-29 | Valeo Systemes Thermiques | COOLING RADIATOR FOR A VEHICLE, IN PARTICULAR A MOTOR VEHICLE |
EP2639541B1 (en) * | 2012-03-14 | 2017-04-26 | Alfa Laval Corporate AB | Flow-plate for heat transfer |
CN103575140A (en) * | 2012-07-19 | 2014-02-12 | 格伦格斯有限公司 | Compact type aluminum heat exchanger with welding pipe for power electronic equipment and battery cooling |
DE102012108731B4 (en) | 2012-09-17 | 2022-10-06 | Audi Ag | Air conditioning for a motor vehicle |
JP6013208B2 (en) * | 2013-01-23 | 2016-10-25 | 住友精密工業株式会社 | Catalytic reactor |
CN105074375B (en) * | 2013-02-27 | 2018-05-15 | 株式会社电装 | Cascade type heat exchanger |
SE1450473A1 (en) * | 2014-04-22 | 2015-10-23 | Titanx Engine Cooling Holding Ab | Heat exchanger comprising a core of pipes |
KR101706263B1 (en) * | 2015-04-16 | 2017-02-15 | 서울시립대학교 산학협력단 | Wavy fin, heat exchanger having the same, apparatus for manufacturing the same, method for manufacturing the same and computer recordable medium storing the method |
US10094624B2 (en) * | 2016-01-08 | 2018-10-09 | Hanon Systems | Fin for heat exchanger |
US20180372413A1 (en) * | 2017-06-22 | 2018-12-27 | Rheem Manufacturing Company | Heat Exchanger Tubes And Tube Assembly Configurations |
US10274267B1 (en) * | 2018-03-23 | 2019-04-30 | Denso International America, Inc. | Heat-shrink bracket |
CN110887396B (en) * | 2018-09-10 | 2021-03-05 | 浙江盾安热工科技有限公司 | Heat exchanger flat tube and heat exchanger with same |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1191681A (en) * | 1914-03-26 | 1916-07-18 | Electrolytic Products Co | Hollow structure for radiators, condensers, and the like. |
US2221934A (en) * | 1938-03-29 | 1940-11-19 | Starline | Pipe connection |
GB528297A (en) * | 1938-07-12 | 1940-10-25 | Dewandre Co Ltd C | Improvements in or relating to heat exchange elements |
US2286398A (en) * | 1939-05-17 | 1942-06-16 | Fred M Young | Heat exchanger |
US2360123A (en) * | 1942-09-18 | 1944-10-10 | Gen Motors Corp | Oil cooler |
NL68593C (en) * | 1943-07-14 | |||
FR1521595A (en) * | 1967-03-09 | 1968-04-19 | Chausson Usines Sa | interfering element for heat exchanger and cooling radiator by applying |
DE1928146A1 (en) * | 1968-06-06 | 1969-12-11 | Delaney Gallay Ltd | Heat exchanger |
US3757855A (en) * | 1971-10-15 | 1973-09-11 | Union Carbide Corp | Primary surface heat exchanger |
US3757856A (en) * | 1971-10-15 | 1973-09-11 | Union Carbide Corp | Primary surface heat exchanger and manufacture thereof |
US3894581A (en) * | 1973-04-16 | 1975-07-15 | Garrett Corp | Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby |
JPS5638874B2 (en) * | 1974-05-10 | 1981-09-09 | ||
US4065191A (en) * | 1976-05-13 | 1977-12-27 | Skf Industries, Inc. | Roller skew control for tapered roller bearings |
DE2648407A1 (en) * | 1976-10-26 | 1978-04-27 | Volkswagenwerk Ag | Vehicle radiator mounting - has plastics pegs integral with radiator and located in rubber bushes on vehicle structure |
GB2090651B (en) * | 1980-12-17 | 1984-03-21 | Pentagon Radiator Stafford Ltd | Improvements relating to heat exchangers |
JPS61295494A (en) * | 1985-06-21 | 1986-12-26 | Showa Alum Corp | Laminated heat exchanger |
US4600053A (en) * | 1984-11-23 | 1986-07-15 | Ford Motor Company | Heat exchanger structure |
FR2575279B1 (en) * | 1984-12-21 | 1989-07-07 | Barriquand | PLATE HEAT EXCHANGER |
US4660630A (en) * | 1985-06-12 | 1987-04-28 | Wolverine Tube, Inc. | Heat transfer tube having internal ridges, and method of making same |
JPS625098A (en) * | 1985-07-01 | 1987-01-12 | Nippon Denso Co Ltd | Inner fin of heat exchanger |
JPS6239182A (en) * | 1985-08-09 | 1987-02-20 | Sanwa Daiyamondo Kogyo Kk | Inner peripheral cutting edge for cutting hard material |
JPH033831Y2 (en) * | 1985-08-22 | 1991-01-31 | ||
JPS6252785A (en) * | 1985-08-30 | 1987-03-07 | Nec Corp | Optical recording and reproducing device |
US4998580A (en) * | 1985-10-02 | 1991-03-12 | Modine Manufacturing Company | Condenser with small hydraulic diameter flow path |
US4730669A (en) * | 1986-02-03 | 1988-03-15 | Long Manufacturing Ltd. | Heat exchanger core construction utilizing a diamond-shaped tube-to-header joint configuration |
JPS62180277A (en) * | 1986-02-05 | 1987-08-07 | Pioneer Electronic Corp | Acoustic and video system |
JPS6334489A (en) * | 1986-07-28 | 1988-02-15 | Nippon Denso Co Ltd | Heat exchanger |
JPS6397082A (en) * | 1986-10-13 | 1988-04-27 | Matsushita Electric Ind Co Ltd | Video tape recorder |
JPS63109890A (en) * | 1986-10-25 | 1988-05-14 | 株式会社 ヤタガイ | Method for patterning skin of doll |
GB2197449B (en) * | 1986-11-06 | 1990-05-02 | Pentagon Radiator | Heat exchange tube |
JPS63142586A (en) * | 1986-12-04 | 1988-06-14 | Fujitsu Ltd | magnetic bubble memory element |
JPS63142585A (en) * | 1986-12-04 | 1988-06-14 | Fujitsu Ltd | Ion implantation transfer path forming method |
US4800954A (en) * | 1986-12-18 | 1989-01-31 | Diesel Kiki Co., Ltd. | Laminated heat exchanger |
JPH0733828B2 (en) * | 1986-12-29 | 1995-04-12 | 株式会社日立製作所 | Scroll type vacuum pump |
US5056704A (en) * | 1988-02-22 | 1991-10-15 | Tube Forming, Inc. | Tube fitting having a saddle bead with conforming pilot |
US4936381A (en) * | 1988-12-27 | 1990-06-26 | Modine Manufacturing Company | Baffle for tubular header |
-
1989
- 1989-08-10 KR KR1019890011404A patent/KR940010978B1/en not_active IP Right Cessation
- 1989-08-11 AU AU39561/89A patent/AU623669B2/en not_active Ceased
- 1989-08-14 GB GB8918475A patent/GB2223091B/en not_active Expired - Fee Related
-
1992
- 1992-05-05 GB GB9209675A patent/GB2256471B/en not_active Expired - Fee Related
-
1994
- 1994-10-13 KR KR1019940026275A patent/KR950000741B1/en not_active IP Right Cessation
-
1995
- 1995-05-24 US US08/448,874 patent/US5560425A/en not_active Expired - Fee Related
-
2000
- 2000-12-27 US US09/748,352 patent/US20010000879A1/en not_active Abandoned
-
2002
- 2002-06-10 US US10/165,307 patent/US20020153131A1/en not_active Abandoned
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6594897B2 (en) * | 2000-07-25 | 2003-07-22 | Mando Climate Control Corporation | Method for manufacturing coolant tube of heat exchanger |
US8047044B2 (en) * | 2002-04-11 | 2011-11-01 | Lytron, Inc. | Method of manufacturing a contact cooling device |
US20060108100A1 (en) * | 2002-04-11 | 2006-05-25 | Lytron, Inc. | Contact cooling device |
US20090133463A1 (en) * | 2002-04-11 | 2009-05-28 | Lytron, Inc. | Method of manufacturing a contact cooling device |
US8087452B2 (en) | 2002-04-11 | 2012-01-03 | Lytron, Inc. | Contact cooling device |
US9267741B2 (en) * | 2004-06-23 | 2016-02-23 | Icegen Patent Corp. | Heat exchanger for use in cooling liquids |
US20140014301A1 (en) * | 2004-06-23 | 2014-01-16 | Mikhail Mogilevsky | Heat exchanger for use in cooling liquids |
US20080105414A1 (en) * | 2004-11-23 | 2008-05-08 | Behr Gmbh & Co. Kg | Low-Temperature Coolant Cooler |
US20080011464A1 (en) * | 2006-07-11 | 2008-01-17 | Denso Corporation | Exhaust gas heat exchanger |
US20100270012A1 (en) * | 2006-09-25 | 2010-10-28 | Korea Delphi Automotive Systems Corporation | Automotive heat exchanger to the unification of header and tank and fabricating method thereof |
DE102008038498A1 (en) * | 2008-08-20 | 2010-02-25 | Behr Gmbh & Co. Kg | Heat exchanger for a motor vehicle |
US20110114299A1 (en) * | 2009-11-17 | 2011-05-19 | Norbert Aplienz | Flat tube with turbulence insert for a heat exchanger, heat exchanger having such flat tubes, as well as method and device for production of such a flat tube |
EP2676094B1 (en) * | 2011-02-18 | 2019-12-04 | Nissens A/S | Method of producing a heat exchanger and a heat exchanger |
US20200018266A1 (en) * | 2018-07-11 | 2020-01-16 | Hyundai Motor Company | Exhaust gas recirculation cooler |
US10683832B2 (en) * | 2018-07-11 | 2020-06-16 | Hyundai Motor Company | Exhaust gas recirculation cooler |
Also Published As
Publication number | Publication date |
---|---|
KR900003608A (en) | 1990-03-26 |
KR940010978B1 (en) | 1994-11-21 |
GB2256471A (en) | 1992-12-09 |
US20020153131A1 (en) | 2002-10-24 |
GB8918475D0 (en) | 1989-09-20 |
GB2223091B (en) | 1993-04-28 |
GB9209675D0 (en) | 1992-06-17 |
AU3956189A (en) | 1990-02-15 |
KR950002561A (en) | 1995-01-04 |
GB2223091A (en) | 1990-03-28 |
KR950000741B1 (en) | 1995-01-28 |
US5560425A (en) | 1996-10-01 |
AU623669B2 (en) | 1992-05-21 |
GB2256471B (en) | 1993-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5560425A (en) | Multi-flow type heat exchanger | |
US5236042A (en) | Heat exchanger and method of making the same | |
US6272881B1 (en) | Refrigerant evaporator and manufacturing method for the same | |
US5450896A (en) | Two-piece header | |
US5307870A (en) | Heat exchanger | |
US5137082A (en) | Plate-type refrigerant evaporator | |
US5101890A (en) | Heat exchanger | |
KR100265657B1 (en) | Evaporator or evaporator / condenser and manufacturing method thereof | |
US5172759A (en) | Plate-type refrigerant evaporator | |
US5092398A (en) | Automotive parallel flow type heat exchanger | |
EP0866298A2 (en) | Heat exchanger having several heat exchanging portions | |
JP2000154993A (en) | Heat exchanger | |
JPH0571876B2 (en) | ||
JP2001050686A (en) | Evaporator | |
JP2528121B2 (en) | Heat exchanger | |
JPH06317363A (en) | Heat exchanger | |
JP2001027484A (en) | Serpentine heat-exchanger | |
JP3674120B2 (en) | Heat exchanger | |
JPH07260393A (en) | Header for heat exchanger and tank structure | |
JPH054599B2 (en) | ||
JPH0613957B2 (en) | Heat exchanger | |
JPH10157447A (en) | Heat exchanger | |
EP0097612A2 (en) | Heat exchanger | |
JP2004069258A (en) | Flat tube, and method of manufacturing heat exchanger using flat tube | |
JPH0221198A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |