US12280305B1 - Golf club head impact location based on 3D magnetic field readings - Google Patents
Golf club head impact location based on 3D magnetic field readings Download PDFInfo
- Publication number
- US12280305B1 US12280305B1 US18/377,449 US202318377449A US12280305B1 US 12280305 B1 US12280305 B1 US 12280305B1 US 202318377449 A US202318377449 A US 202318377449A US 12280305 B1 US12280305 B1 US 12280305B1
- Authority
- US
- United States
- Prior art keywords
- golf ball
- core
- inch
- magnetometer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000004593 Epoxy Substances 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 80
- 239000012792 core layer Substances 0.000 claims description 31
- 238000004891 communication Methods 0.000 claims description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 21
- 229920000554 ionomer Polymers 0.000 description 20
- 239000000306 component Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 14
- 230000009977 dual effect Effects 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 229920003182 Surlyn® Polymers 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 239000005062 Polybutadiene Substances 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 229920002857 polybutadiene Polymers 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229920002396 Polyurea Polymers 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000008358 core component Substances 0.000 description 4
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 4
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 4
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000004594 Masterbatch (MB) Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- XKMZOFXGLBYJLS-UHFFFAOYSA-L zinc;prop-2-enoate Chemical compound [Zn+2].[O-]C(=O)C=C.[O-]C(=O)C=C XKMZOFXGLBYJLS-UHFFFAOYSA-L 0.000 description 2
- 229920003304 DuPont™ Surlyn® 8320 Polymers 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3658—Means associated with the ball for indicating or measuring, e.g. speed, direction
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0022—Coatings, e.g. paint films; Markings
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/0051—Materials other than polybutadienes; Constructional details
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/007—Characteristics of the ball as a whole
- A63B37/0072—Characteristics of the ball as a whole with a specified number of layers
- A63B37/0076—Multi-piece balls, i.e. having two or more intermediate layers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/007—Characteristics of the ball as a whole
- A63B37/0077—Physical properties
- A63B37/0092—Hardness distribution amongst different ball layers
- A63B37/00922—Hardness distribution amongst different ball layers whereby hardness of the cover is lower than hardness of the intermediate layers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B43/00—Balls with special arrangements
- A63B43/004—Balls with special arrangements electrically conductive, e.g. for automatic arbitration
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3623—Training appliances or apparatus for special sports for golf for driving
- A63B69/3632—Clubs or attachments on clubs, e.g. for measuring, aligning
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3623—Training appliances or apparatus for special sports for golf for driving
- A63B69/3655—Balls, ball substitutes, or attachments on balls therefor
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0021—Tracking a path or terminating locations
- A63B2024/0037—Tracking a path or terminating locations on a target surface or at impact on the ground
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
- A63B2209/08—Characteristics of used materials magnetic
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/10—Positions
- A63B2220/16—Angular positions
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
- A63B2220/34—Angular speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
- A63B2220/34—Angular speed
- A63B2220/35—Spin
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/40—Acceleration
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/40—Acceleration
- A63B2220/44—Angular acceleration
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/803—Motion sensors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
- A63B2220/833—Sensors arranged on the exercise apparatus or sports implement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/89—Field sensors, e.g. radar systems
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/50—Wireless data transmission, e.g. by radio transmitters or telemetry
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/50—Wireless data transmission, e.g. by radio transmitters or telemetry
- A63B2225/54—Transponders, e.g. RFID
Definitions
- the present invention relates determining an impact location of a golf ball on a golf club during a golf swing.
- electronics are within a golf ball, they are not capable of any measurement, but rather are used for identification purposes, as in the RFID technology used in driving ranges that track where a golf shot is collected (such as at Top Golf). Furthermore, creating a golf ball with electronics inside poses concerns of ball durability and reproducibility of the feel of a normal golf ball.
- the Present Invention preferably utilizes a 3-axis magnetometer inside a golf ball to detect the impact location on a golf club head that contains ferrous materials.
- the present invention measures the way the magnetic field of the head affects each of the 3-axis of the magnetometer during impact with a golf ball. The difference between the values at rest will determine an offset depending on the location of the golf ball when it is close to the golf club head. All 3 axis of the magnetometer inside the golf ball are measured at rest values (away from club). The magnetic orientation of the ball is then determined. The values are re-measured to determine the magnetic vector at impact. The offset is calculated from the difference between the magnetic orientation and the vector at impact. The offset determines a signature for one of each ball impact locations: Center, Heel, Toe.
- One aspect of the present invention is a method for golf club head impact location based on magnetic field readings.
- the method includes measuring a magnetic vector for a plurality of axis of a magnetometer within a golf ball while the golf ball is at rest.
- the method also includes determining a magnetic orientation of the golf ball.
- the method also includes measuring the magnetic vector for each of a plurality of axis of a magnetometer within the golf ball at impact with a golf club head.
- the method also includes calculating an offset of the impact from a difference between the magnetic orientation of the golf ball and the magnetic vector at impact. The offset determines a signature for one of each of a plurality of golf ball impact locations.
- FIG. 1 is an illustration of a golfer hitting a golf ball with internal circuitry according to the present invention therein.
- FIG. 2 is a block diagram of the internal circuitry.
- FIG. 3 is a cross-sectional view of a golf ball with an internal circuitry therein.
- FIG. 4 is a block diagram of components of a mobile device.
- FIG. 5 is a circuit diagram.
- FIG. 5 A is a circuit diagram.
- FIG. 5 B is a circuit diagram.
- FIG. 5 C is a circuit diagram.
- FIG. 5 D is a circuit diagram.
- FIG. 5 E is a circuit diagram.
- FIG. 5 F is a circuit diagram.
- FIG. 6 is a top plan view of a flexible circuit board.
- FIG. 7 is a bottom plan view of a flexible circuit board.
- FIG. 8 is an illustration of an electronic component.
- FIG. 9 is an illustration of an electronic component within an epoxy sphere for a golf ball.
- FIG. 10 is an illustration of a flexible circuit board wrapped around multiple batteries.
- FIG. 10 A is an illustration of a flexible circuit board wrapped around multiple batteries within an epoxy sphere for a golf ball.
- FIG. 11 is an exploded partial cut-away view of a golf ball.
- FIG. 12 is top perspective view of a golf ball.
- FIG. 13 is a cross-sectional view of a core component of a golf ball.
- FIG. 14 is a cross-sectional view of a core component and a mantle component of a golf ball.
- FIG. 15 is a cross-sectional view of an inner core layer, an outer core layer, an inner mantle layer, an outer mantle layer and a cover layer of a golf ball.
- FIG. 15 A is a cross-sectional view of an inner core layer, an intermediate core layer, an outer core layer, a mantle layer and a cover layer of a golf ball.
- FIG. 16 is a cross-sectional view of an inner core layer under a 100 kilogram load.
- FIG. 17 is a cross-sectional view of a core under a 100 kilogram load.
- FIG. 18 is a cross-sectional view of a core component and a mantle component of a golf ball.
- FIG. 19 is a cross-sectional view of a core component, the mantle component and
- FIG. 20 is an exploded partial cut-away view of a four-piece golf ball.
- FIG. 21 is an exploded partial cut-away view of a three-piece golf ball.
- FIG. 22 is an exploded partial cut-away view of a two-piece golf ball.
- FIG. 23 is a cross-sectional view of a two-piece golf ball.
- FIG. 24 is a cross-sectional view of a three-piece golf ball.
- FIG. 25 is an exploded partial cut-away view of a three-piece golf ball.
- FIG. 26 is a cross-sectional view of a three-piece golf ball with a dual core and a cover.
- FIG. 27 is a cross-sectional view of a three-piece golf ball with a core, mantle and cover.
- FIG. 28 is a cross-sectional view of a four-piece golf ball with a dual core, mantle layer and a cover.
- FIG. 29 is a cross-sectional view of a four-piece golf ball with a core, dual mantle layers and a cover.
- FIG. 30 is an illustration of the three axis of the magnetometer inside the golf ball at rest values.
- FIG. 31 is an illustration of a measurement of the orientation of the golf ball with a center impact.
- FIG. 32 is an illustration of the three axis of the magnetometer inside the golf ball for the center impact of FIG. 31 .
- FIG. 33 is an illustration of a measurement of the orientation of the golf ball with a toe impact.
- FIG. 34 is an illustration of the three axis of the magnetometer inside the golf ball for the toe impact of FIG. 33 .
- FIG. 35 is an illustration of a measurement of the orientation of the golf ball with a heel impact.
- FIG. 36 is an illustration of the three axis of the magnetometer inside the golf ball for the heel impact of FIG. 36 .
- RFID or similar technology that is used for golf ball identification purposes does not provide any information on the club-ball impact itself or the ball's launch and trajectory information (speed, spin, angle, et cetera). It is difficult to manufacture a golf ball with electronics inside that remain functional after one or more actual golf club impacts, and replicating the feel of a normal golf ball is difficult when it contains electronics.
- a main objective is being able to measure key aspects of a golf shot from within the golf ball itself.
- Another objective is being able to extract the measurements using a simple device, such as a smartphone, rather than conducting the measurements using an expensive apparatus.
- the two main advantages to the consumer will be a golf ball that records spin and a golf ball that can be easily found.
- a magnetometer preferably running at 85 Hz, inside a golf ball is able to measure spins of 5000 RPM. Measuring higher spin rates is also possible.
- the entire circuitry is preferably inside a hard plastic molded sphere.
- Data is transferred via BLE radio to a mobile device (in this case a phone).
- the circuitry inside the ball preferably activates at impact using a shock switch for power savings. At rest, after the shot, the ball keeps sending the data and going back to sleep mode every second until the user finds it using the mobile device and acknowledges it in the application.
- a golf ball is found using triangulation of the RSSI from the golf ball to the mobile device. The user will be instructed to move forward and to the side to generate enough space for the triangulation.
- the internal circuitry comprises at least a BLUETOOTH Low Energy radio (5th generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- a KIONIX chip is preferred.
- the 5th generation BLUETOOTH Low Energy radio has a range of at least 700 meters. Triangulation is used to find a golf ball on course.
- the battery is preferably a 2032 coin cell.
- a NF52 Nordic processor is preferably utilized.
- a KIONIX 3-axis accelerometer is preferably utilized.
- a golfer 100 swings a golf club 101 to hit a golf ball 10 with internal circuitry according to the present invention therein.
- a mobile device 120 such as a mobile phone, receives a BLUETOOTH low energy wireless communication transmission from the golf ball 10 .
- FIG. 2 is a block diagram of the internal circuitry within the inner core 12 a of the golf ball 10 .
- the internal circuitry preferably includes a CPU 200 , a BTLE radio 201 , a memory 202 , a battery 203 , a magnetometer 204 and an accelerometer 205 .
- FIG. 3 is a cross-sectional view of a golf ball with an internal circuitry therein.
- the inner core 12 a is preferably composed of an epoxy material.
- FIG. 4 is a block diagram of components of a mobile device 120 .
- the mobile device 120 preferably comprises an accelerometer 301 , an input/output module 302 , a microphone 303 , a speaker 304 , a GPS 305 , a BLUETOOTH transceiver 306 , a WiFi transceiver 307 , a 3G/4G transceiver 308 , a RAM memory 309 , a main processor 310 , an operating system (OS) module 311 , an applications module 312 , a flash memory 313 , a SIM card 314 , a LCD display 315 , a camera 316 , a power management module 317 , a battery 318 , a magnetometer 319 , a gyroscope 320 a LPDDR module 511 , a e-MMC module 512 , a flash module 513 , and a MCP module 514 .
- OS operating system
- FIGS. 5 , 5 A and 5 B illustrate circuit diagrams of the internal circuitry of the golf ball 10 .
- the internal circuitry preferably includes a CPU 200 , an antenna 211 , a first crystal oscillator 212 , a second crystal oscillator (XTAL SMD 2016, 32 MHz) 213 , an inductor (3.3 nH) 214 , a resistor 215 , a first capacitor (12 picoFaradays “pF”) 221 , a second capacitor (12 pF) 222 , a third capacitor (100 nano Faradays “nF”) 223 , a fourth capacitor (100 nF) 224 , a fifth capacitor (4.7 microFaradays “uF”) 225 , a sixth capacitor (100 nF) 226 , a seventh capacitor (12 pF) 227 , an eighth capacitor (12 pF) 228 , a ninth capacitor (100 pF) 229 , a tenth capacitor (100 pF) 230
- FIG. 5 C is a circuit diagram of magnetometer/accelerometer 204 , preferably a medium-G, wide bandwidth tri-axis magnetometer/tri-axis accelerometer.
- FIG. 5 D is a circuit diagram for a gyroscope 206 , preferably a BOSCH SENSORTEC BMG250 gyroscope.
- FIG. 5 E is a circuit diagram of a battery terminal.
- FIG. 5 F is a circuit diagram of programming test points.
- FIG. 6 is a top plan view of a flexible circuit board 125 .
- FIG. 7 is a bottom plan view of a flexible circuit board 125 .
- FIG. 8 is an illustration of a folded flexible circuit board 125 .
- FIG. 9 is an illustration of a folded flexible circuit board 125 within an epoxy sphere core 112 a of a golf ball.
- FIG. 10 is an illustration of a flexible circuit board 125 wrapped around multiple batteries 130 and connected to the batteries 130 by contacts 126 and 127 .
- FIG. 10 A is an illustration of a flexible circuit board 125 wrapped around multiple batteries 130 and connected to the batteries 130 by contacts 126 and 127 , and within an epoxy sphere core 112 a for a golf ball.
- the core layer preferably comprises polybutadiene material and a graphene material in an amount ranging from 0.1 to 5.0 weight percent of the outer core, wherein the outer core has a flexural modulus ranging from 80 MPa to 95 MPa.
- the plurality of stacked circuit boards preferably comprises an integrated circuit, a gyroscope, a magnetometer, and an antenna.
- the electrical component preferably has a width ranging from 5 to 20 mm, a height ranging from 5-20 mm and a length ranging from 5-20 mm.
- the epoxy sphere preferably has a diameter ranging from 0.4 inch to 0.9 inch, and more preferably a diameter ranging from 0.45 inch to 0.6 inch.
- the integrated circuit is preferably flexible and is wrapped around the at least one battery.
- the integrated circuit is attached to the at least on battery at three contact points.
- the electrical component is preferably centered within the epoxy sphere.
- the integrated circuit comprises a BLUETOOTH antenna, a 1 GigaHertz antenna, a microcontroller and a radiofrequency transceiver.
- the integrated circuit preferably comprises a plurality of capacitors and at least one inductor.
- the electrical component is preferably detects a spin of the golf ball and transmits a signal to a mobile device.
- FIGS. 11 , 13 , 14 and 15 illustrate a five piece golf ball 10 comprising an inner core 12 a , an outer core 12 b , an inner mantle 14 a , an outer mantle 14 b , and a cover 16 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio (5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIG. 15 A illustrates a five piece golf ball 10 comprising an inner core 12 a , an intermediate core 12 b , an outer core 12 c , a mantle 14 , and a cover 16 .
- FIGS. 18 and 19 illustrate a six piece golf ball 10 comprising an inner core 12 a , an intermediate core 12 b , an outer core 12 c , an inner mantle 14 a , an outer mantle 14 b , and a cover 16 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIG. 20 illustrates a four piece golf ball comprising a dual core, a boundary layer and a cover, with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIG. 21 illustrates a three piece golf ball comprising a core, a boundary layer and a cover, with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIGS. 22 and 23 illustrate a two piece golf ball 20 with a core 25 and a cover 30 formed of a sprayed polyurea with a thickness ranging from 0.010 inch to 0.040 inch.
- FIGS. 24 and 25 illustrate a three-piece golf ball 5 comprising a core 10 , a mantle layer 14 and a cover 16 with dimples 18 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIG. 26 illustrates a dual core three piece golf ball 35 comprising an inner core 30 , and outer core 32 and a cover 34 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory h.
- FIG. 27 illustrates a three piece golf ball 45 comprising a core 40 , a mantle layer 42 and a cover 44 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIG. 28 illustrates a dual core four piece golf ball 55 comprising an inner core 50 , an outer core 52 , a mantle layer 54 and a cover 56 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- FIG. 29 illustrates a four piece golf ball 65 comprising a core 60 , an inner mantle 62 , an outer mantle 64 and a cover 66 , with an internal circuitry comprising at least a BLUETOOTH Low Energy radio ( 5 generation), a processor, a magnetometer, an accelerometer, and a battery.
- the internal circuit may also have a memory.
- the mantle component is preferably composed of the inner mantle layer and the outer mantle layer.
- the mantle component preferably has a thickness ranging from 0.05 inch to 0.15 inch, and more preferably from 0.06 inch to 0.08 inch.
- the outer mantle layer is preferably composed of a blend of ionomer materials.
- One preferred embodiment comprises SURLYN 9150 material, SURLYN 8940 material, a SURLYN AD1022 material, and a masterbatch.
- the SURLYN 9150 material is preferably present in an amount ranging from 20 to 45 weight percent of the cover, and more preferably 30 to 40 weight percent.
- the SURLYN 8945 is preferably present in an amount ranging from 15 to 35 weight percent of the cover, more preferably 20 to 30 weight percent, and most preferably 26 weight percent.
- the SURLYN 9945 is preferably present in an amount ranging from 30 to 50 weight percent of the cover, more preferably 35 to 45 weight percent, and most preferably 41 weight percent.
- the SURLYN 8940 is preferably present in an amount ranging from 5 to 15 weight percent of the cover, more preferably 7 to 12 weight percent, and most preferably 10 weight percent.
- SURLYN 8320 is a very-low modulus ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with sodium ions.
- SURLYN 8945 also from DuPont, is a high acid ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with sodium ions.
- SURLYN 9945 also from DuPont, is a high acid ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with zinc ions.
- SURLYN 8940 also from DuPont, is an ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with sodium ions.
- the inner mantle layer is preferably composed of a blend of ionomers, preferably comprising a terpolymer and at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, magnesium, or other metal ions.
- the material for the inner mantle layer preferably has a Shore D plaque hardness ranging preferably from 35 to 77, more preferably from 36 to 44, a most preferably approximately 40.
- the thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.050 inch, and is more preferably approximately 0.037 inch.
- the mass of an insert including the dual core and the inner mantle layer preferably ranges from 32 grams to 40 grams, more preferably from 34 to 38 grams, and is most preferably approximately 36 grams.
- the inner mantle layer is alternatively composed of a HPF material available from DuPont.
- the inner mantle layer 14 b is composed of a material such as disclosed in Kennedy, III et al., U.S. Pat. No. 7,361,101 for a Golf Ball And Thermoplastic Material, which is hereby incorporated by reference in its entirety.
- the outer mantle layer is preferably composed of a blend of ionomers, preferably comprising at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, or other metal ions.
- the blend of ionomers also preferably includes a masterbatch.
- the material of the outer mantle layer preferably has a Shore D plaque hardness ranging preferably from 55 to 75, more preferably from 65 to 71, and most preferably approximately 67.
- the thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.040 inch, and is more preferably approximately 0.030 inch.
- the mass of the entire insert including the core, the inner mantle layer and the outer mantle layer preferably ranges from 38 grams to 43 grams, more preferably from 39 to 41 grams, and is most preferably approximately 41 grams.
- the inner mantle layer is preferably composed of a blend of ionomers, preferably comprising at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, or other metal ions.
- the blend of ionomers also preferably includes a masterbatch.
- the material of the inner mantle layer has a Shore D plaque hardness ranging preferably from 55 to 75, more preferably from 65 to 71, and most preferably approximately 67.
- the thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.040 inch, and is more preferably approximately 0.030 inch.
- the outer mantle layer 14 b is composed of a blend of ionomers, preferably comprising a terpolymer and at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, magnesium, or other metal ions.
- the material for the outer mantle layer 14 b preferably has a Shore D plaque hardness ranging preferably from 35 to 77, more preferably from 36 to 44, a most preferably approximately 40.
- the thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.100 inch, and more preferably ranges from 0.070 inch to 0.090 inch.
- the inner mantle layer is composed of a blend of ionomers, preferably comprising a terpolymer and at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, magnesium, or other metal ions.
- the material for the inner mantle layer has a Shore D plaque hardness ranging preferably from 30 to 77, more preferably from 30 to 50, and most preferably approximately 40.
- the material for the outer mantle layer has a Shore D plaque hardness ranging preferably from 40 to 77, more preferably from 50 to 71, and most preferably approximately 67.
- the thickness of the inner mantle layer preferably ranges from 0.030 inch to 0.090 inch, and the thickness of the outer mantle layer ranges from 0.025 inch to 0.070 inch.
- the inner core has a diameter ranging from 0.75 inch to 1.20 inches, more preferably from 0.85 inch to 1.05 inch, and most preferably approximately 0.95 inch.
- the inner core 12 a has a Shore D hardness ranging from 20 to 50, more preferably from 25 to 40, and most preferably approximately 35.
- the inner core is formed from a polybutadiene, zinc diacrylate, zinc oxide, zinc stearate, a peptizer and peroxide.
- the inner core has a mass ranging from 5 grams to 15 grams, 7 grams to 10 grams and most preferably approximately 8 grams.
- the outer core has a diameter ranging from 1.25 inch to 1.55 inches, more preferably from 1.40 inch to 1.5 inch, and most preferably approximately 1.5 inch.
- the inner core has a Shore D surface hardness ranging from 40 to 65, more preferably from 50 to 60, and most preferably approximately 56.
- the inner core is formed from a polybutadiene, zinc diacrylate, zinc oxide, zinc stearate, a peptizer and peroxide.
- the combined inner core and outer core have a mass ranging from 25 grams to 35 grams, 30 grams to 34 grams and most preferably approximately 32 grams.
- the inner core has a deflection of at least 0.230 inch under a load of 220 pounds, and the core has a deflection of at least 0.080 inch under a load of 200 pounds.
- a mass 50 is loaded onto an inner core and a core.
- the mass is 100 kilograms, approximately 220 pounds.
- the inner core preferably has a deflection from 0.230 inch to 0.300 inch.
- the core has a deflection of 0.08 inch to 0.150 inch.
- the load is 200 pounds (approximately 90 kilograms), and the deflection of the core 12 is at least 0.080 inch.
- a compressive deformation from a beginning load of 10 kilograms to an ending load of 130 kilograms for the inner core ranges from 4 millimeters to 7 millimeters and more preferably from 5 millimeters to 6.5 millimeters.
- the dual core deflection differential allows for low spin off the tee to provide greater distance, and high spin on approach shots.
- the golf ball 10 comprises an inner core 12 a , an intermediate core 12 b , an outer core 12 b , a mantle 14 and a cover 16 .
- the golf ball 10 preferably has a diameter of at least 1.68 inches, a mass ranging from 45 grams to 47 grams, a COR of at least 0.79, a deformation under a 100 kilogram loading of at least 0.07 mm.
- the golf ball comprises a core, a mantle layer and a cover layer.
- the core comprises an inner core sphere, an intermediate core layer and an outer core layer.
- the inner core sphere comprises a polybutadiene material and has a diameter ranging from 0.875 inch to 1.4 inches.
- the intermediate core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 40.
- the outer core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 45.
- a thickness of the intermediate core layer is greater than a thickness of the outer core layer.
- the mantle layer is disposed over the core, comprises an ionomer material and has a Shore D hardness greater than 55.
- the cover layer is disposed over the mantle layer comprises a sprayed polyurea with a thickness ranging from 0.010 inch to 0.040 inch.
- the golf ball has a diameter of at least 1.68 inches.
- the mantle layer is harder than the outer core layer, the outer core layer is harder than the intermediate core layer, the intermediate core layer is harder than the inner core sphere, and the cover layer is softer than the mantle layer.
- the golf ball 10 has a multi-layer core and multi-layer mantle.
- the golf ball includes a core, a mantle component and a cover layer.
- the core comprises an inner core sphere, an intermediate core layer and an outer core layer.
- the inner core sphere comprises a polybutadiene material and has a diameter ranging from 0.875 inch to 1.4 inches.
- the intermediate core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 40.
- the outer core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 45.
- a thickness of the intermediate core layer is greater than a thickness of the outer core layer 12 c .
- the inner mantle layer is disposed over the core, comprises an ionomer material and has a Shore D hardness greater than 55.
- the outer mantle layer is disposed over the inner mantle layer, comprises an ionomer material and has a Shore D hardness greater than 60.
- the cover layer is disposed over the mantle component, comprises a sprayed polyurea with a thickness ranging from 0.010 inch to 0.040 inch.
- the golf ball has a diameter of at least 1.68 inches.
- the outer mantle layer is harder than the inner mantle layer, the inner mantle layer is harder than the outer core layer, the outer core layer is harder than the intermediate core layer, the intermediate core layer is harder than the inner core sphere, and the cover layer is softer than the outer mantle layer.
- the golf ball preferably has an aerodynamic pattern such as disclosed in Simonds et al., U.S. Pat. No. 7,419,443 for a Low Volume Cover For A Golf Ball, which is hereby incorporated by reference in its entirety.
- the golf ball has an aerodynamic pattern such as disclosed in Simonds et al., U.S. Pat. No. 7,338,392 for An Aerodynamic Surface Geometry For A Golf Ball, which is hereby incorporated by reference in its entirety.
- “Shore D hardness” of the golf ball layers is measured generally in accordance with ASTM D-2240 type D, except the measurements may be made on the curved surface of a component of the golf ball, rather than on a plaque. If measured on the ball, the measurement will indicate that the measurement was made on the ball. In referring to a hardness of a material of a layer of the golf ball, the measurement will be made on a plaque in accordance with ASTM D-2240. Furthermore, the Shore D hardness of the cover is measured while the cover remains over the mantles and cores. When a hardness measurement is made on the golf ball, the Shore D hardness is preferably measured at a land area of the cover.
- “Shore A hardness” of a cover is measured generally in accordance with ASTM D-2240 type A, except the measurements may be made on the curved surface of a component of the golf ball, rather than on a plaque. If measured on the ball, the measurement will indicate that the measurement was made on the ball. In referring to a hardness of a material of a layer of the golf ball, the measurement will be made on a plaque in accordance with ASTM D-2240. Furthermore, the Shore A hardness of the cover is measured while the cover remains over the mantles and cores. When a hardness measurement is made on the golf ball, Shore A hardness is preferably measured at a land area of the cover
- the resilience or coefficient of restitution (COR) of a golf ball is the constant “e,” which is the ratio of the relative velocity of an elastic sphere after direct impact to that before impact.
- e The resilience or coefficient of restitution (COR) of a golf ball is the constant “e,” which is the ratio of the relative velocity of an elastic sphere after direct impact to that before impact.
- the COR (“e”) can vary from 0 to 1, with 1 being equivalent to a perfectly or completely elastic collision and 0 being equivalent to a perfectly or completely inelastic collision.
- COR COR
- club head speed club head mass
- ball weight ball size and density
- spin rate angle of trajectory and surface configuration
- environmental conditions e.g. temperature, moisture, atmospheric pressure, wind, etc.
- COR density and resilience
- club head speed, club head mass, the angle of trajectory and environmental conditions are not determinants controllable by golf ball producers and the ball size and weight are set by the U.S.G.A., these are not factors of concern among golf ball manufacturers.
- the factors or determinants of interest with respect to improved distance are generally the COR and the surface configuration of the ball.
- the coefficient of restitution is the ratio of the outgoing velocity to the incoming velocity.
- the coefficient of restitution of a golf ball was measured by propelling a ball horizontally at a speed of 125+/ ⁇ 5 feet per second (fps) and corrected to 125 fps against a generally vertical, hard, flat steel plate and measuring the ball's incoming and outgoing velocity electronically.
- Speeds were measured with a pair of ballistic screens, which provide a timing pulse when an object passes through them. The screens were separated by 36 inches and are located 25.25 inches and 61.25 inches from the rebound wall.
- the ball speed was measured by timing the pulses from screen 1 to screen 2 on the way into the rebound wall (as the average speed of the ball over 36 inches), and then the exit speed was timed from screen 2 to screen 1 over the same distance.
- the rebound wall was tilted 2 degrees from a vertical plane to allow the ball to rebound slightly downward in order to miss the edge of the cannon that fired it.
- the rebound wall is solid steel.
- the incoming speed should be 125 ⁇ 5 fps but corrected to 125 fps.
- the correlation between COR and forward or incoming speed has been studied and a correction has been made over the +5 fps range so that the COR is reported as if the ball had an incoming speed of exactly 125.0 fps.
- the measurements for deflection, compression, hardness, and the like are preferably performed on a finished golf ball as opposed to performing the measurement on each layer during manufacturing.
- the hardness/compression of layers involve an inner core with the greatest deflection (lowest hardness), an outer core (combined with the inner core) with a deflection less than the inner core, an inner mantle layer with a hardness less than the hardness of the combined outer core and inner core, an outer mantle layer with the hardness layer of the golf ball, and a cover with a hardness less than the hardness of the outer mantle layer.
- These measurements are preferably made on a finished golf ball that has been torn down for the measurements.
- the inner mantle layer is thicker than the outer mantle layer or the cover layer.
- the dual core and dual mantle golf ball creates an optimized velocity-initial velocity ratio (Vi/IV), and allows for spin manipulation.
- the dual core provides for increased core compression differential resulting in a high spin for short game shots and a low spin for driver shots.
- a discussion of the USGA initial velocity test is disclosed in Yagley et al., U.S. Pat. No. 6,595,872 for a Golf Ball With High Coefficient Of Restitution, which is hereby incorporated by reference in its entirety.
- Another example is Bartels et al., U.S. Pat. No. 6,648,775 for a Golf Ball With High Coefficient Of Restitution, which is hereby incorporated by reference in its entirety.
- the cover 16 is composed of a thermoplastic polyurethane/polyurea material.
- a thermoplastic polyurethane/polyurea material is disclosed in U.S. Pat. No. 7,367,903 for a Golf Ball, which is hereby incorporated by reference in its entirety.
- Another example is Melanson, U.S. Pat. No. 7,641,841, which is hereby incorporated by reference in its entirety.
- Another example is Melanson et al, U.S. Pat. No. 7,842,211, which is hereby incorporated by reference in its entirety.
- Another example is Matroni et al., U.S. Pat. No. 7,867,111, which is hereby incorporated by reference in its entirety.
- Another example is Dewanjee et al., U.S. Pat. No. 7,785,522, which is hereby incorporated by reference in its entirety.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A 3-axis magnetometer inside a golf ball to detect the impact location on golf club heads that contain ferrous materials is disclosed herein. Key aspects of a golf shot are determined from within the golf ball itself. A magnetometer, preferably running at 85 Hz, inside a golf ball is able to measure spins of 5000 RPM. An integrated circuit comprises a gyroscope, a magnetometer, and a BLUETOOTH low energy (BTLE) radio, and at least one battery. A body is composed of an epoxy material, and the body encompasses the integrated circuit.
Description
The Present Application is a continuation application of U.S. patent application Ser. No. 17/063,980, filed on Oct. 6, 2020, which claims priority to U.S. Patent Application No. 62/912,520, filed on Oct. 8, 2019, now expired, and is a continuation-in part application of U.S. patent application Ser. No. 16/814,751, filed on Mar. 10, 2020, now U.S. Pat. No. 10,918,929, issued on Feb. 16, 2021, which is a continuation application of U.S. patent application Ser. No. 16/509,232, filed on Jul. 11, 2019, now U.S. Pat. No. 10,688,366, issued on Jun. 23, 2020, which claims priority to U.S. Provisional Patent Application No. 62/697,584, filed on Jul. 13, 2018, now expired, each of which is hereby incorporated by reference in its entirety.
Not Applicable
The present invention relates determining an impact location of a golf ball on a golf club during a golf swing.
Most patents that have been filed looking at communicating between a ball and a device involve only trying to find the golf ball using RFID type circuitry. Most of the designs will only be successful in getting a user close to the position of the golf ball.
In recent years the available technology and interest in measuring, visualizing, understanding, reviewing, and utilizing data on a golf shot has increased. Golf simulators are more accurate and “true to life” through the use of technologies such as Trackman and GC Quad. Technologies like these are used to aid players on a driving range by providing feedback and information about a given shot. Practice ranges at PGA Tour events are full of professionals checking their performance with coaches and caddies to improve, refine, and understand their performance. Instructors and retailers use advanced golf simulators to fix a swing flaw or recommend the optimum golf club or clubs or ball for an individual. Televised golf events display launch and trajectory data for a given shot, including shot ball speed, launch angle, and spin rate. All of these measurements are, however, external to the golf ball being hit. Furthermore, these technologies are expensive.
To the extent that electronics are within a golf ball, they are not capable of any measurement, but rather are used for identification purposes, as in the RFID technology used in driving ranges that track where a golf shot is collected (such as at Top Golf). Furthermore, creating a golf ball with electronics inside poses concerns of ball durability and reproducibility of the feel of a normal golf ball.
In regards to the spin measurement, most spin measurement devices use Doppler technology to measure the ball as it spins, this method produces inconsistent results that have aliasing issues at times.
The Present Invention preferably utilizes a 3-axis magnetometer inside a golf ball to detect the impact location on a golf club head that contains ferrous materials. The present invention measures the way the magnetic field of the head affects each of the 3-axis of the magnetometer during impact with a golf ball. The difference between the values at rest will determine an offset depending on the location of the golf ball when it is close to the golf club head. All 3 axis of the magnetometer inside the golf ball are measured at rest values (away from club). The magnetic orientation of the ball is then determined. The values are re-measured to determine the magnetic vector at impact. The offset is calculated from the difference between the magnetic orientation and the vector at impact. The offset determines a signature for one of each ball impact locations: Center, Heel, Toe.
One aspect of the present invention is a method for golf club head impact location based on magnetic field readings. The method includes measuring a magnetic vector for a plurality of axis of a magnetometer within a golf ball while the golf ball is at rest. The method also includes determining a magnetic orientation of the golf ball. The method also includes measuring the magnetic vector for each of a plurality of axis of a magnetometer within the golf ball at impact with a golf club head. The method also includes calculating an offset of the impact from a difference between the magnetic orientation of the golf ball and the magnetic vector at impact. The offset determines a signature for one of each of a plurality of golf ball impact locations.
Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
a cover layer of a golf ball.
Typically, key descriptive data regarding a golf shot are captured using a device or apparatus that is external to the golf ball itself. These systems, such as Trackman or GC Quad, for example, are expensive. RFID or similar technology that is used for golf ball identification purposes does not provide any information on the club-ball impact itself or the ball's launch and trajectory information (speed, spin, angle, et cetera). It is difficult to manufacture a golf ball with electronics inside that remain functional after one or more actual golf club impacts, and replicating the feel of a normal golf ball is difficult when it contains electronics.
A main objective is being able to measure key aspects of a golf shot from within the golf ball itself.
Another objective is being able to extract the measurements using a simple device, such as a smartphone, rather than conducting the measurements using an expensive apparatus.
The two main advantages to the consumer will be a golf ball that records spin and a golf ball that can be easily found.
A magnetometer, preferably running at 85 Hz, inside a golf ball is able to measure spins of 5000 RPM. Measuring higher spin rates is also possible.
The entire circuitry is preferably inside a hard plastic molded sphere.
Data is transferred via BLE radio to a mobile device (in this case a phone).
The circuitry inside the ball preferably activates at impact using a shock switch for power savings. At rest, after the shot, the ball keeps sending the data and going back to sleep mode every second until the user finds it using the mobile device and acknowledges it in the application.
A golf ball is found using triangulation of the RSSI from the golf ball to the mobile device. The user will be instructed to move forward and to the side to generate enough space for the triangulation.
Internal circuitry is embedded within the golf ball. The internal circuitry comprises at least a BLUETOOTH Low Energy radio (5th generation), a processor, a magnetometer, an accelerometer, and a battery. The internal circuit may also have a memory. A KIONIX chip is preferred. The 5th generation BLUETOOTH Low Energy radio has a range of at least 700 meters. Triangulation is used to find a golf ball on course. The battery is preferably a 2032 coin cell. A NF52 Nordic processor is preferably utilized. A KIONIX 3-axis accelerometer is preferably utilized.
As shown in FIG. 1 , a golfer 100 swings a golf club 101 to hit a golf ball 10 with internal circuitry according to the present invention therein. A mobile device 120, such as a mobile phone, receives a BLUETOOTH low energy wireless communication transmission from the golf ball 10.
One embodiment is a golf ball 10 comprising an epoxy sphere 112 a, a core layer and a cover layer. The epoxy sphere 112 a comprises a body and at least one electrical component 125. The electrical component preferably comprises a plurality of stacked circuit boards and at least one battery 130 disposed within the plurality of stacked circuit boards. The body is preferably composed of an epoxy material. The body encompasses the electrical component. The core layer is disposed on the epoxy sphere. The cover layer is disposed over the core layer.
The core layer preferably comprises polybutadiene material and a graphene material in an amount ranging from 0.1 to 5.0 weight percent of the outer core, wherein the outer core has a flexural modulus ranging from 80 MPa to 95 MPa.
The plurality of stacked circuit boards preferably comprises an integrated circuit, a gyroscope, a magnetometer, and an antenna.
The electrical component preferably has a width ranging from 5 to 20 mm, a height ranging from 5-20 mm and a length ranging from 5-20 mm.
The epoxy sphere preferably has a diameter ranging from 0.4 inch to 0.9 inch, and more preferably a diameter ranging from 0.45 inch to 0.6 inch.
The integrated circuit is preferably flexible and is wrapped around the at least one battery.
The integrated circuit is attached to the at least on battery at three contact points. The electrical component is preferably centered within the epoxy sphere.
The integrated circuit comprises a BLUETOOTH antenna, a 1 GigaHertz antenna, a microcontroller and a radiofrequency transceiver.
The integrated circuit preferably comprises a plurality of capacitors and at least one inductor.
The electrical component is preferably detects a spin of the golf ball and transmits a signal to a mobile device.
The mantle component is preferably composed of the inner mantle layer and the outer mantle layer. The mantle component preferably has a thickness ranging from 0.05 inch to 0.15 inch, and more preferably from 0.06 inch to 0.08 inch. The outer mantle layer is preferably composed of a blend of ionomer materials. One preferred embodiment comprises SURLYN 9150 material, SURLYN 8940 material, a SURLYN AD1022 material, and a masterbatch. The SURLYN 9150 material is preferably present in an amount ranging from 20 to 45 weight percent of the cover, and more preferably 30 to 40 weight percent. The SURLYN 8945 is preferably present in an amount ranging from 15 to 35 weight percent of the cover, more preferably 20 to 30 weight percent, and most preferably 26 weight percent. The SURLYN 9945 is preferably present in an amount ranging from 30 to 50 weight percent of the cover, more preferably 35 to 45 weight percent, and most preferably 41 weight percent. The SURLYN 8940 is preferably present in an amount ranging from 5 to 15 weight percent of the cover, more preferably 7 to 12 weight percent, and most preferably 10 weight percent.
SURLYN 8320, from DuPont, is a very-low modulus ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with sodium ions. SURLYN 8945, also from DuPont, is a high acid ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with sodium ions. SURLYN 9945, also from DuPont, is a high acid ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with zinc ions. SURLYN 8940, also from DuPont, is an ethylene/methacrylic acid copolymer with partial neutralization of the acid groups with sodium ions.
The inner mantle layer is preferably composed of a blend of ionomers, preferably comprising a terpolymer and at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, magnesium, or other metal ions. The material for the inner mantle layer preferably has a Shore D plaque hardness ranging preferably from 35 to 77, more preferably from 36 to 44, a most preferably approximately 40. The thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.050 inch, and is more preferably approximately 0.037 inch. The mass of an insert including the dual core and the inner mantle layer preferably ranges from 32 grams to 40 grams, more preferably from 34 to 38 grams, and is most preferably approximately 36 grams. The inner mantle layer is alternatively composed of a HPF material available from DuPont. Alternatively, the inner mantle layer 14 b is composed of a material such as disclosed in Kennedy, III et al., U.S. Pat. No. 7,361,101 for a Golf Ball And Thermoplastic Material, which is hereby incorporated by reference in its entirety.
The outer mantle layer is preferably composed of a blend of ionomers, preferably comprising at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, or other metal ions. The blend of ionomers also preferably includes a masterbatch. The material of the outer mantle layer preferably has a Shore D plaque hardness ranging preferably from 55 to 75, more preferably from 65 to 71, and most preferably approximately 67. The thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.040 inch, and is more preferably approximately 0.030 inch. The mass of the entire insert including the core, the inner mantle layer and the outer mantle layer preferably ranges from 38 grams to 43 grams, more preferably from 39 to 41 grams, and is most preferably approximately 41 grams.
In an alternative embodiment, the inner mantle layer is preferably composed of a blend of ionomers, preferably comprising at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, or other metal ions. The blend of ionomers also preferably includes a masterbatch. In this embodiment, the material of the inner mantle layer has a Shore D plaque hardness ranging preferably from 55 to 75, more preferably from 65 to 71, and most preferably approximately 67. The thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.040 inch, and is more preferably approximately 0.030 inch. Also in this embodiment, the outer mantle layer 14 b is composed of a blend of ionomers, preferably comprising a terpolymer and at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, magnesium, or other metal ions. In this embodiment, the material for the outer mantle layer 14 b preferably has a Shore D plaque hardness ranging preferably from 35 to 77, more preferably from 36 to 44, a most preferably approximately 40. The thickness of the outer mantle layer preferably ranges from 0.025 inch to 0.100 inch, and more preferably ranges from 0.070 inch to 0.090 inch.
In yet another embodiment wherein the inner mantle layer is thicker than the outer mantle layer and the outer mantle layer is harder than the inner mantle layer, the inner mantle layer is composed of a blend of ionomers, preferably comprising a terpolymer and at least two high acid (greater than 18 weight percent) ionomers neutralized with sodium, zinc, magnesium, or other metal ions. In this embodiment, the material for the inner mantle layer has a Shore D plaque hardness ranging preferably from 30 to 77, more preferably from 30 to 50, and most preferably approximately 40. In this embodiment, the material for the outer mantle layer has a Shore D plaque hardness ranging preferably from 40 to 77, more preferably from 50 to 71, and most preferably approximately 67. In this embodiment, the thickness of the inner mantle layer preferably ranges from 0.030 inch to 0.090 inch, and the thickness of the outer mantle layer ranges from 0.025 inch to 0.070 inch.
Preferably the inner core has a diameter ranging from 0.75 inch to 1.20 inches, more preferably from 0.85 inch to 1.05 inch, and most preferably approximately 0.95 inch. Preferably the inner core 12 a has a Shore D hardness ranging from 20 to 50, more preferably from 25 to 40, and most preferably approximately 35. Preferably the inner core is formed from a polybutadiene, zinc diacrylate, zinc oxide, zinc stearate, a peptizer and peroxide. Preferably the inner core has a mass ranging from 5 grams to 15 grams, 7 grams to 10 grams and most preferably approximately 8 grams.
Preferably the outer core has a diameter ranging from 1.25 inch to 1.55 inches, more preferably from 1.40 inch to 1.5 inch, and most preferably approximately 1.5 inch. Preferably the inner core has a Shore D surface hardness ranging from 40 to 65, more preferably from 50 to 60, and most preferably approximately 56. Preferably the inner core is formed from a polybutadiene, zinc diacrylate, zinc oxide, zinc stearate, a peptizer and peroxide. Preferably the combined inner core and outer core have a mass ranging from 25 grams to 35 grams, 30 grams to 34 grams and most preferably approximately 32 grams.
Preferably the inner core has a deflection of at least 0.230 inch under a load of 220 pounds, and the core has a deflection of at least 0.080 inch under a load of 200 pounds. As shown in FIGS. 16 and 17 , a mass 50 is loaded onto an inner core and a core. As shown in FIGS. 16 and 17 , the mass is 100 kilograms, approximately 220 pounds. Under a load of 100 kilograms, the inner core preferably has a deflection from 0.230 inch to 0.300 inch. Under a load of 100 kilograms, preferably the core has a deflection of 0.08 inch to 0.150 inch. Alternatively, the load is 200 pounds (approximately 90 kilograms), and the deflection of the core 12 is at least 0.080 inch. Further, a compressive deformation from a beginning load of 10 kilograms to an ending load of 130 kilograms for the inner core ranges from 4 millimeters to 7 millimeters and more preferably from 5 millimeters to 6.5 millimeters. The dual core deflection differential allows for low spin off the tee to provide greater distance, and high spin on approach shots.
In an alternative embodiment of the golf ball shown in FIG. 15A , the golf ball 10 comprises an inner core 12 a, an intermediate core 12 b, an outer core 12 b, a mantle 14 and a cover 16. The golf ball 10 preferably has a diameter of at least 1.68 inches, a mass ranging from 45 grams to 47 grams, a COR of at least 0.79, a deformation under a 100 kilogram loading of at least 0.07 mm.
In one embodiment, the golf ball comprises a core, a mantle layer and a cover layer. The core comprises an inner core sphere, an intermediate core layer and an outer core layer. The inner core sphere comprises a polybutadiene material and has a diameter ranging from 0.875 inch to 1.4 inches. The intermediate core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 40. The outer core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 45. A thickness of the intermediate core layer is greater than a thickness of the outer core layer. The mantle layer is disposed over the core, comprises an ionomer material and has a Shore D hardness greater than 55. The cover layer is disposed over the mantle layer comprises a sprayed polyurea with a thickness ranging from 0.010 inch to 0.040 inch. The golf ball has a diameter of at least 1.68 inches. The mantle layer is harder than the outer core layer, the outer core layer is harder than the intermediate core layer, the intermediate core layer is harder than the inner core sphere, and the cover layer is softer than the mantle layer.
In another embodiment, shown in FIGS. 18 and 19 , the golf ball 10 has a multi-layer core and multi-layer mantle. The golf ball includes a core, a mantle component and a cover layer. The core comprises an inner core sphere, an intermediate core layer and an outer core layer. The inner core sphere comprises a polybutadiene material and has a diameter ranging from 0.875 inch to 1.4 inches. The intermediate core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 40. The outer core layer is composed of a highly neutralized ionomer and has a Shore D hardness less than 45. A thickness of the intermediate core layer is greater than a thickness of the outer core layer 12 c. The inner mantle layer is disposed over the core, comprises an ionomer material and has a Shore D hardness greater than 55. The outer mantle layer is disposed over the inner mantle layer, comprises an ionomer material and has a Shore D hardness greater than 60. The cover layer is disposed over the mantle component, comprises a sprayed polyurea with a thickness ranging from 0.010 inch to 0.040 inch. The golf ball has a diameter of at least 1.68 inches. The outer mantle layer is harder than the inner mantle layer, the inner mantle layer is harder than the outer core layer, the outer core layer is harder than the intermediate core layer, the intermediate core layer is harder than the inner core sphere, and the cover layer is softer than the outer mantle layer.
In a particularly preferred embodiment of the invention, the golf ball preferably has an aerodynamic pattern such as disclosed in Simonds et al., U.S. Pat. No. 7,419,443 for a Low Volume Cover For A Golf Ball, which is hereby incorporated by reference in its entirety. Alternatively, the golf ball has an aerodynamic pattern such as disclosed in Simonds et al., U.S. Pat. No. 7,338,392 for An Aerodynamic Surface Geometry For A Golf Ball, which is hereby incorporated by reference in its entirety.
Various aspects of the present invention golf balls have been described in terms of certain tests or measuring procedures. These are described in greater detail as follows.
As used herein, “Shore D hardness” of the golf ball layers is measured generally in accordance with ASTM D-2240 type D, except the measurements may be made on the curved surface of a component of the golf ball, rather than on a plaque. If measured on the ball, the measurement will indicate that the measurement was made on the ball. In referring to a hardness of a material of a layer of the golf ball, the measurement will be made on a plaque in accordance with ASTM D-2240. Furthermore, the Shore D hardness of the cover is measured while the cover remains over the mantles and cores. When a hardness measurement is made on the golf ball, the Shore D hardness is preferably measured at a land area of the cover.
As used herein, “Shore A hardness” of a cover is measured generally in accordance with ASTM D-2240 type A, except the measurements may be made on the curved surface of a component of the golf ball, rather than on a plaque. If measured on the ball, the measurement will indicate that the measurement was made on the ball. In referring to a hardness of a material of a layer of the golf ball, the measurement will be made on a plaque in accordance with ASTM D-2240. Furthermore, the Shore A hardness of the cover is measured while the cover remains over the mantles and cores. When a hardness measurement is made on the golf ball, Shore A hardness is preferably measured at a land area of the cover
The resilience or coefficient of restitution (COR) of a golf ball is the constant “e,” which is the ratio of the relative velocity of an elastic sphere after direct impact to that before impact. As a result, the COR (“e”) can vary from 0 to 1, with 1 being equivalent to a perfectly or completely elastic collision and 0 being equivalent to a perfectly or completely inelastic collision.
COR, along with additional factors such as club head speed, club head mass, ball weight, ball size and density, spin rate, angle of trajectory and surface configuration as well as environmental conditions (e.g. temperature, moisture, atmospheric pressure, wind, etc.) generally determine the distance a ball will travel when hit. Along this line, the distance a golf ball will travel under controlled environmental conditions is a function of the speed and mass of the club and size, density and resilience (COR) of the ball and other factors. The initial velocity of the club, the mass of the club and the angle of the ball's departure are essentially provided by the golfer upon striking. Since club head speed, club head mass, the angle of trajectory and environmental conditions are not determinants controllable by golf ball producers and the ball size and weight are set by the U.S.G.A., these are not factors of concern among golf ball manufacturers. The factors or determinants of interest with respect to improved distance are generally the COR and the surface configuration of the ball.
The coefficient of restitution is the ratio of the outgoing velocity to the incoming velocity. In the examples of this application, the coefficient of restitution of a golf ball was measured by propelling a ball horizontally at a speed of 125+/−5 feet per second (fps) and corrected to 125 fps against a generally vertical, hard, flat steel plate and measuring the ball's incoming and outgoing velocity electronically. Speeds were measured with a pair of ballistic screens, which provide a timing pulse when an object passes through them. The screens were separated by 36 inches and are located 25.25 inches and 61.25 inches from the rebound wall. The ball speed was measured by timing the pulses from screen 1 to screen 2 on the way into the rebound wall (as the average speed of the ball over 36 inches), and then the exit speed was timed from screen 2 to screen 1 over the same distance. The rebound wall was tilted 2 degrees from a vertical plane to allow the ball to rebound slightly downward in order to miss the edge of the cannon that fired it. The rebound wall is solid steel.
As indicated above, the incoming speed should be 125±5 fps but corrected to 125 fps. The correlation between COR and forward or incoming speed has been studied and a correction has been made over the +5 fps range so that the COR is reported as if the ball had an incoming speed of exactly 125.0 fps.
The measurements for deflection, compression, hardness, and the like are preferably performed on a finished golf ball as opposed to performing the measurement on each layer during manufacturing.
Preferably, in a five layer golf ball comprising an inner core, an outer core, an inner mantle layer, an outer mantle layer and a cover, the hardness/compression of layers involve an inner core with the greatest deflection (lowest hardness), an outer core (combined with the inner core) with a deflection less than the inner core, an inner mantle layer with a hardness less than the hardness of the combined outer core and inner core, an outer mantle layer with the hardness layer of the golf ball, and a cover with a hardness less than the hardness of the outer mantle layer. These measurements are preferably made on a finished golf ball that has been torn down for the measurements.
Preferably the inner mantle layer is thicker than the outer mantle layer or the cover layer. The dual core and dual mantle golf ball creates an optimized velocity-initial velocity ratio (Vi/IV), and allows for spin manipulation. The dual core provides for increased core compression differential resulting in a high spin for short game shots and a low spin for driver shots. A discussion of the USGA initial velocity test is disclosed in Yagley et al., U.S. Pat. No. 6,595,872 for a Golf Ball With High Coefficient Of Restitution, which is hereby incorporated by reference in its entirety. Another example is Bartels et al., U.S. Pat. No. 6,648,775 for a Golf Ball With High Coefficient Of Restitution, which is hereby incorporated by reference in its entirety.
Alternatively, the cover 16 is composed of a thermoplastic polyurethane/polyurea material. One example is disclosed in U.S. Pat. No. 7,367,903 for a Golf Ball, which is hereby incorporated by reference in its entirety. Another example is Melanson, U.S. Pat. No. 7,641,841, which is hereby incorporated by reference in its entirety. Another example is Melanson et al, U.S. Pat. No. 7,842,211, which is hereby incorporated by reference in its entirety. Another example is Matroni et al., U.S. Pat. No. 7,867,111, which is hereby incorporated by reference in its entirety. Another example is Dewanjee et al., U.S. Pat. No. 7,785,522, which is hereby incorporated by reference in its entirety.
Bartels, U.S. Pat. No. 9,278,260, for a Low Compression Three-Piece Golf Ball With An Aerodynamic Drag Rise At High Speeds, is hereby incorporated by reference in its entirety.
Chavan et al, U.S. Pat. No. 9,789,366, for a Graphene Core For A Golf Ball, is hereby incorporated by reference in its entirety.
Chavan et al, U.S. Pat. No. 10,039,959, for a Graphene Core For A Golf Ball, is hereby incorporated by reference in its entirety.
Chavan et al, U.S. Pat. No. 10,058,741, for a Carbon Nanotubes Reinforced Dual Core A Golf Ball, is hereby incorporated by reference in its entirety.
Simonds et al., U.S. Pat. No. 9,707,454 for a Limited Flight Golf Ball With Embedded RFID Chip is hereby incorporated by reference in its entirety.
Simonds et al., U.S. Pat. No. 10,252,117 for a Graphene Core Golf Ball With An Integrated Circuit is hereby incorporated by reference in its entirety.
Balardeta et al., U.S. Pat. No. 8,355,869 for a Golf GPS Device is hereby incorporated by reference in its entirety.
Raposo, U.S. Pat. No. 8,992,346 for a Method And System For Swing Analysis is hereby incorporated by reference in its entirety.
Balardeta et al., U.S. Pat. No. 8,845,459 for a Method And System For Shot Tracking is hereby incorporated by reference in its entirety.
Raposo, U.S. patent application Ser. No. 16/157,998, filed on Oct. 11, 2018, for a Smart Golf Ball, is hereby incorporated by reference in its entirety.
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
Claims (10)
1. A system determining a golf club head impact location based on magnetic field readings, the system comprising:
a golf ball comprising a microcontroller, a wireless transceiver and a magnetometer;
a golf club;
a mobile device in communication with the golf ball;
wherein the microcontroller is configured to measure a magnetic vector for a plurality of axis of a magnetometer within the golf ball while the golf ball is at rest;
wherein the microcontroller is configured to determine a magnetic orientation of the golf ball;
wherein the microcontroller is configured to measure the magnetic vector for each of a plurality of axis of a magnetometer within the golf ball at impact with the golf club head; and
wherein the microcontroller is configured to calculate an offset of the impact from a difference between the magnetic orientation of the golf ball and the magnetic vector at impact;
wherein the transceiver is configured to transmit the offset calculation to the mobile device for display; and
wherein the offset determines a signature for one of each of a plurality of golf ball impact locations.
2. The system according to claim 1 wherein the golf ball comprises:
an epoxy sphere comprising a body and an electronic component, the electronic component comprising the microcontroller, the wireless transceiver and the magnetometer, the body composed of an epoxy material, wherein the body encompasses the electronic component;
a core layer disposed on the epoxy sphere; and
a cover layer disposed over the outer core.
3. The system according to claim 2 wherein the electronic further comprises a gyroscope.
4. The system according to claim 2 wherein the electronic component has a width ranging from 5 to 20 mm, a height ranging from 5-20 mm and a length ranging from 5-20 mm.
5. The system according to claim 2 wherein the epoxy sphere has a diameter ranging from 0.4 inch to 0.9 inch.
6. The system according to claim 2 wherein the epoxy sphere has a diameter ranging from 0.45 inch to 0.6 inch.
7. The system according to claim 2 wherein the electronic component further comprises at least one battery.
8. The system according to claim 2 wherein the electronic component is centered in the core.
9. The system according to claim 1 wherein the wireless transceiver operates on a BLUETOOTH communication protocol.
10. The system according to claim 2 wherein the electronic component detects a spin of the golf ball.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/377,449 US12280305B1 (en) | 2018-07-13 | 2023-10-06 | Golf club head impact location based on 3D magnetic field readings |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862697584P | 2018-07-13 | 2018-07-13 | |
US16/509,232 US10688366B1 (en) | 2018-07-13 | 2019-07-11 | Golf ball with electrical components |
US201962912520P | 2019-10-08 | 2019-10-08 | |
US16/814,751 US10918929B1 (en) | 2018-07-13 | 2020-03-10 | Golf ball with electrical components |
US17/063,980 US11786794B1 (en) | 2018-07-13 | 2020-10-06 | Golf club head impact location based on 3D magnetic field readings |
US18/377,449 US12280305B1 (en) | 2018-07-13 | 2023-10-06 | Golf club head impact location based on 3D magnetic field readings |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/063,980 Continuation US11786794B1 (en) | 2018-07-13 | 2020-10-06 | Golf club head impact location based on 3D magnetic field readings |
Publications (1)
Publication Number | Publication Date |
---|---|
US12280305B1 true US12280305B1 (en) | 2025-04-22 |
Family
ID=88309193
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/063,980 Active US11786794B1 (en) | 2018-07-13 | 2020-10-06 | Golf club head impact location based on 3D magnetic field readings |
US18/377,449 Active 2039-09-17 US12280305B1 (en) | 2018-07-13 | 2023-10-06 | Golf club head impact location based on 3D magnetic field readings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/063,980 Active US11786794B1 (en) | 2018-07-13 | 2020-10-06 | Golf club head impact location based on 3D magnetic field readings |
Country Status (1)
Country | Link |
---|---|
US (2) | US11786794B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12194363B2 (en) * | 2022-01-21 | 2025-01-14 | Kilburn Live, Llc | Smart putter for automatic putter game scoring |
US12036442B1 (en) * | 2024-01-30 | 2024-07-16 | D.O.P.E Golf, Llc | Systems and methods for dynamic prediction of flight ballistics |
Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3351347A (en) * | 1964-04-10 | 1967-11-07 | Charles J Smith | Electroluminescent game ball |
US4473229A (en) * | 1982-04-02 | 1984-09-25 | Kloppenburg Jerry K | Golf ball utilizing graphite materials |
US6042487A (en) * | 1998-05-28 | 2000-03-28 | Chemical Light, Inc. | Illuminated golf ball |
US6252632B1 (en) * | 1997-01-17 | 2001-06-26 | Fox Sports Productions, Inc. | System for enhancing a video presentation |
EP1176171A2 (en) * | 2000-06-29 | 2002-01-30 | Kabushiki Kaisha Toshiba | Dielectric material and method of manufacture thereof |
US6440012B1 (en) * | 1993-06-01 | 2002-08-27 | Spalding Sports Worldwide, Inc. | Golf ball |
US6450898B1 (en) * | 1993-06-01 | 2002-09-17 | Spalding Sports Worldwide, Inc. | Golf ball |
US6525139B2 (en) * | 1996-12-24 | 2003-02-25 | Bridgestone Sport Co., Ltd. | Golf ball |
US20030096664A1 (en) * | 2001-11-16 | 2003-05-22 | Jordan Michael D. | Golf ball with vapor barrier layer |
US6692380B2 (en) * | 2001-03-23 | 2004-02-17 | Acushnet Company | Golf ball with high density center |
US6712487B2 (en) * | 2002-04-24 | 2004-03-30 | Andrew Yang | Light emitting golf ball |
US6780126B2 (en) * | 2003-01-02 | 2004-08-24 | Acushnet Company | Golf ball with large inner core |
US6786838B2 (en) * | 1995-06-07 | 2004-09-07 | Acushnet Company | Golf ball with multi-layered core |
US6806347B2 (en) * | 2002-03-25 | 2004-10-19 | Acushnet Company | Golf balls with thin moisture vapor barrier layer |
US6852043B2 (en) * | 2002-12-12 | 2005-02-08 | Acushnet Company | Golf ball |
US6855073B1 (en) * | 1998-03-18 | 2005-02-15 | Callaway Golf Company | Golf ball which includes fast-chemical-reaction-produced component and method of making same |
US6916254B2 (en) * | 2003-01-02 | 2005-07-12 | Acushnet Company | Golf ball with small inner core |
US20050227792A1 (en) * | 2004-03-18 | 2005-10-13 | Hbl Ltd. | Virtual golf training and gaming system and method |
US20050233815A1 (en) * | 2004-03-18 | 2005-10-20 | Hbl Ltd. | Method of determining a flight trajectory and extracting flight data for a trackable golf ball |
US7014575B2 (en) * | 2001-11-28 | 2006-03-21 | Acushnet Company | Golf ball with multi-layered core |
US20060105857A1 (en) * | 2004-11-17 | 2006-05-18 | Stark David A | Athletic ball telemetry apparatus and method of use thereof |
US7115049B2 (en) * | 1995-06-07 | 2006-10-03 | Acushnet Company | Golf ball with large center core |
US7221323B2 (en) * | 2003-12-12 | 2007-05-22 | Hans Gregory Schantz | Tag-along microsensor device and method |
US20070173349A1 (en) * | 2006-01-26 | 2007-07-26 | Eng Wing S | Light emitting golf ball, kit and system |
US20090029754A1 (en) * | 2007-07-23 | 2009-01-29 | Cybersports, Inc | Tracking and Interactive Simulation of Real Sports Equipment |
US7614959B1 (en) * | 2003-11-18 | 2009-11-10 | Robert Gentile | High impact game ball construction method and device |
US7691009B2 (en) * | 2003-09-26 | 2010-04-06 | Radar Golf, Inc. | Apparatuses and methods relating to findable balls |
CN102341149A (en) * | 2008-12-05 | 2012-02-01 | 耐克国际有限公司 | Athletic performance monitoring systems and methods in a team sports environment |
US8353791B2 (en) * | 2007-08-15 | 2013-01-15 | Catapult Innovations Pty Ltd | Tracking balls in sports |
US8373658B2 (en) * | 2010-05-24 | 2013-02-12 | Cywee Group Limited | Motion sensing system |
US8425350B2 (en) * | 2003-01-17 | 2013-04-23 | Rf Corporation | Apparatuses, methods and systems relating to findable golf balls |
US8446255B2 (en) * | 2010-11-19 | 2013-05-21 | Callaway Golf Company | Circuit for transmitting a RFID signal |
US8540583B2 (en) * | 2011-12-30 | 2013-09-24 | Nike, Inc. | System for tracking a golf ball and displaying an enhanced image of the golf ball |
EP2724632A1 (en) * | 2012-10-25 | 2014-04-30 | Sstatzz Oy | Sports apparatus and method |
US8748536B2 (en) * | 2009-10-05 | 2014-06-10 | Acushnet Company | Multi-piece golf balls having layers made from epoxy systems |
US8747241B2 (en) * | 2010-03-12 | 2014-06-10 | Nike, Inc. | Golf ball with piezoelectric material |
US8764588B2 (en) * | 2011-08-12 | 2014-07-01 | Christopher Gill | Illuminated game-playing apparatuses and games |
US8876008B2 (en) * | 2010-03-05 | 2014-11-04 | Satworld Holdings B.V. | Ball with positioning system |
US8972102B2 (en) * | 2011-05-27 | 2015-03-03 | Kinch Robert Reindl | Golf ball tracking system and methods therefor |
US8974266B2 (en) * | 2012-11-08 | 2015-03-10 | Chu-Yuan Liao | Novelty system utilizing translucent putty and an internal illumination module |
US9217753B2 (en) * | 2013-03-15 | 2015-12-22 | Nike, Inc. | Impact and sound analysis for golf equipment |
CN105229664A (en) * | 2012-10-25 | 2016-01-06 | 耐克创新有限合伙公司 | Athletic performance monitoring in team sport environment and method |
US9265991B2 (en) * | 2012-10-25 | 2016-02-23 | Sstatzz Oy | Method and system for monitoring movement of a sport projectile |
TWI543800B (en) * | 2015-08-20 | 2016-08-01 | 杰強科技有限公司 | Detectable golf ball |
US9498680B2 (en) * | 2010-08-18 | 2016-11-22 | Edge Technology | Split inner core of a multi-core golf ball with RFID |
US9522306B1 (en) * | 2015-09-29 | 2016-12-20 | Michael Ganson | Sports ball that measures speed, spin, curve, movement and other characteristics and method therefor |
US9597567B1 (en) * | 2016-05-02 | 2017-03-21 | Bao Tran | Smart sport device |
US9682305B2 (en) * | 2012-11-06 | 2017-06-20 | Krs Electronics Co., Ltd. | Apparatus for correcting golf address |
US9694247B2 (en) * | 2013-02-15 | 2017-07-04 | Adidas Ag | Ball for a ball sport |
US20180214758A1 (en) * | 2017-01-26 | 2018-08-02 | Alec Michael Mosher | Digital information golf ball system |
US20190036360A1 (en) * | 2016-01-22 | 2019-01-31 | Renatus Zilles | Mobile charging station and system for locating a ball game device |
US10204456B2 (en) * | 2017-03-07 | 2019-02-12 | vGolf, LLC | Mixed reality golf simulation and training system |
US10232225B1 (en) * | 2015-06-01 | 2019-03-19 | Mitchell O Enterprises LLC | Systems and methods for obtaining sports-related data |
US10252117B1 (en) * | 2014-10-24 | 2019-04-09 | Callaway Golf Company | Graphene core golf ball with an integrated circuit |
US10315077B2 (en) * | 2016-06-24 | 2019-06-11 | Bridgestone Sports Co., Ltd. | Golf ball with built-in IC chip |
US10428216B2 (en) * | 2017-08-28 | 2019-10-01 | Acushnet Company | Golf ball incorporating a mixture of a thermoset and/or thermoplastic composition and a plurality of conductive nanoshelled structures |
US10493329B1 (en) * | 2017-09-05 | 2019-12-03 | Edge Technology | Golf ball tracking system and method |
US20190374835A1 (en) * | 2018-06-11 | 2019-12-12 | Minmin Zhang | Ball spin rate measurement system and method |
US10520557B2 (en) * | 2014-04-24 | 2019-12-31 | Arthrokinetic Institute, Llc | Systems, devices, and methods for recording and transmitting data |
US10688366B1 (en) * | 2018-07-13 | 2020-06-23 | Callaway Golf Company | Golf ball with electrical components |
US10751575B2 (en) * | 2016-06-24 | 2020-08-25 | Bridgestone Sports Co., Ltd. | Golf ball with built-in IC chip |
US11872461B1 (en) * | 2018-07-13 | 2024-01-16 | Topgolf Callaway Brands Corp. | Golf ball with wound core with integrated circuit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9113188D0 (en) * | 1991-06-18 | 1991-08-07 | Lindsay Norman M | Apparatus for measuring the travel of a clubhead of a golf club |
JPH09239088A (en) * | 1996-03-05 | 1997-09-16 | Furuuchi Kagaku Kk | Training device for golf |
KR19980037284A (en) * | 1996-11-21 | 1998-08-05 | 정길종 | Magnetic ball or shuttlecock that allows the racket's magnet to pick up the ball, shuttlecock |
US7736242B2 (en) * | 2004-03-23 | 2010-06-15 | Nike, Inc. | System for determining performance characteristics of a golf swing |
US20160271445A1 (en) * | 2012-12-27 | 2016-09-22 | Adam Kolloff | Method for analyzing golf swing performance relative to a target line |
US11884019B2 (en) * | 2017-09-11 | 2024-01-30 | Raytheon Company | Magnetic encoding of physical objects in an additive manufacturing process |
-
2020
- 2020-10-06 US US17/063,980 patent/US11786794B1/en active Active
-
2023
- 2023-10-06 US US18/377,449 patent/US12280305B1/en active Active
Patent Citations (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3351347A (en) * | 1964-04-10 | 1967-11-07 | Charles J Smith | Electroluminescent game ball |
US4473229A (en) * | 1982-04-02 | 1984-09-25 | Kloppenburg Jerry K | Golf ball utilizing graphite materials |
US6440012B1 (en) * | 1993-06-01 | 2002-08-27 | Spalding Sports Worldwide, Inc. | Golf ball |
US6450898B1 (en) * | 1993-06-01 | 2002-09-17 | Spalding Sports Worldwide, Inc. | Golf ball |
US6786838B2 (en) * | 1995-06-07 | 2004-09-07 | Acushnet Company | Golf ball with multi-layered core |
US7115049B2 (en) * | 1995-06-07 | 2006-10-03 | Acushnet Company | Golf ball with large center core |
US6525139B2 (en) * | 1996-12-24 | 2003-02-25 | Bridgestone Sport Co., Ltd. | Golf ball |
US6252632B1 (en) * | 1997-01-17 | 2001-06-26 | Fox Sports Productions, Inc. | System for enhancing a video presentation |
US6855073B1 (en) * | 1998-03-18 | 2005-02-15 | Callaway Golf Company | Golf ball which includes fast-chemical-reaction-produced component and method of making same |
US6042487A (en) * | 1998-05-28 | 2000-03-28 | Chemical Light, Inc. | Illuminated golf ball |
EP1176171A2 (en) * | 2000-06-29 | 2002-01-30 | Kabushiki Kaisha Toshiba | Dielectric material and method of manufacture thereof |
US6692380B2 (en) * | 2001-03-23 | 2004-02-17 | Acushnet Company | Golf ball with high density center |
US20030096664A1 (en) * | 2001-11-16 | 2003-05-22 | Jordan Michael D. | Golf ball with vapor barrier layer |
US7014575B2 (en) * | 2001-11-28 | 2006-03-21 | Acushnet Company | Golf ball with multi-layered core |
US6806347B2 (en) * | 2002-03-25 | 2004-10-19 | Acushnet Company | Golf balls with thin moisture vapor barrier layer |
US6712487B2 (en) * | 2002-04-24 | 2004-03-30 | Andrew Yang | Light emitting golf ball |
US6852043B2 (en) * | 2002-12-12 | 2005-02-08 | Acushnet Company | Golf ball |
US6916254B2 (en) * | 2003-01-02 | 2005-07-12 | Acushnet Company | Golf ball with small inner core |
US6780126B2 (en) * | 2003-01-02 | 2004-08-24 | Acushnet Company | Golf ball with large inner core |
US8425350B2 (en) * | 2003-01-17 | 2013-04-23 | Rf Corporation | Apparatuses, methods and systems relating to findable golf balls |
US7691009B2 (en) * | 2003-09-26 | 2010-04-06 | Radar Golf, Inc. | Apparatuses and methods relating to findable balls |
US7614959B1 (en) * | 2003-11-18 | 2009-11-10 | Robert Gentile | High impact game ball construction method and device |
US7221323B2 (en) * | 2003-12-12 | 2007-05-22 | Hans Gregory Schantz | Tag-along microsensor device and method |
US20050227792A1 (en) * | 2004-03-18 | 2005-10-13 | Hbl Ltd. | Virtual golf training and gaming system and method |
US20050233815A1 (en) * | 2004-03-18 | 2005-10-20 | Hbl Ltd. | Method of determining a flight trajectory and extracting flight data for a trackable golf ball |
US20060105857A1 (en) * | 2004-11-17 | 2006-05-18 | Stark David A | Athletic ball telemetry apparatus and method of use thereof |
US20070173349A1 (en) * | 2006-01-26 | 2007-07-26 | Eng Wing S | Light emitting golf ball, kit and system |
US20090029754A1 (en) * | 2007-07-23 | 2009-01-29 | Cybersports, Inc | Tracking and Interactive Simulation of Real Sports Equipment |
US8353791B2 (en) * | 2007-08-15 | 2013-01-15 | Catapult Innovations Pty Ltd | Tracking balls in sports |
AU2008205421B8 (en) * | 2007-08-15 | 2013-03-07 | Catapult Group International Ltd | Tracking balls in sports |
CN102341149A (en) * | 2008-12-05 | 2012-02-01 | 耐克国际有限公司 | Athletic performance monitoring systems and methods in a team sports environment |
US8748536B2 (en) * | 2009-10-05 | 2014-06-10 | Acushnet Company | Multi-piece golf balls having layers made from epoxy systems |
US8876008B2 (en) * | 2010-03-05 | 2014-11-04 | Satworld Holdings B.V. | Ball with positioning system |
US8747241B2 (en) * | 2010-03-12 | 2014-06-10 | Nike, Inc. | Golf ball with piezoelectric material |
US8373658B2 (en) * | 2010-05-24 | 2013-02-12 | Cywee Group Limited | Motion sensing system |
US9498680B2 (en) * | 2010-08-18 | 2016-11-22 | Edge Technology | Split inner core of a multi-core golf ball with RFID |
US8446255B2 (en) * | 2010-11-19 | 2013-05-21 | Callaway Golf Company | Circuit for transmitting a RFID signal |
US8972102B2 (en) * | 2011-05-27 | 2015-03-03 | Kinch Robert Reindl | Golf ball tracking system and methods therefor |
US8764588B2 (en) * | 2011-08-12 | 2014-07-01 | Christopher Gill | Illuminated game-playing apparatuses and games |
US8540583B2 (en) * | 2011-12-30 | 2013-09-24 | Nike, Inc. | System for tracking a golf ball and displaying an enhanced image of the golf ball |
EP2724632A1 (en) * | 2012-10-25 | 2014-04-30 | Sstatzz Oy | Sports apparatus and method |
US20140120960A1 (en) * | 2012-10-25 | 2014-05-01 | Sstatzz Oy | Sports apparatus and method |
US9079090B2 (en) * | 2012-10-25 | 2015-07-14 | Sstatzz Oy | Sports apparatus and method |
US9265991B2 (en) * | 2012-10-25 | 2016-02-23 | Sstatzz Oy | Method and system for monitoring movement of a sport projectile |
CN105229664A (en) * | 2012-10-25 | 2016-01-06 | 耐克创新有限合伙公司 | Athletic performance monitoring in team sport environment and method |
US9682305B2 (en) * | 2012-11-06 | 2017-06-20 | Krs Electronics Co., Ltd. | Apparatus for correcting golf address |
US8974266B2 (en) * | 2012-11-08 | 2015-03-10 | Chu-Yuan Liao | Novelty system utilizing translucent putty and an internal illumination module |
US9694247B2 (en) * | 2013-02-15 | 2017-07-04 | Adidas Ag | Ball for a ball sport |
US9217753B2 (en) * | 2013-03-15 | 2015-12-22 | Nike, Inc. | Impact and sound analysis for golf equipment |
US10520557B2 (en) * | 2014-04-24 | 2019-12-31 | Arthrokinetic Institute, Llc | Systems, devices, and methods for recording and transmitting data |
US10252117B1 (en) * | 2014-10-24 | 2019-04-09 | Callaway Golf Company | Graphene core golf ball with an integrated circuit |
US10232225B1 (en) * | 2015-06-01 | 2019-03-19 | Mitchell O Enterprises LLC | Systems and methods for obtaining sports-related data |
TWI543800B (en) * | 2015-08-20 | 2016-08-01 | 杰強科技有限公司 | Detectable golf ball |
TW201707754A (en) * | 2015-08-20 | 2017-03-01 | 杰強科技有限公司 | Detectable golf ball |
US9522306B1 (en) * | 2015-09-29 | 2016-12-20 | Michael Ganson | Sports ball that measures speed, spin, curve, movement and other characteristics and method therefor |
US20190036360A1 (en) * | 2016-01-22 | 2019-01-31 | Renatus Zilles | Mobile charging station and system for locating a ball game device |
US9597567B1 (en) * | 2016-05-02 | 2017-03-21 | Bao Tran | Smart sport device |
US10751575B2 (en) * | 2016-06-24 | 2020-08-25 | Bridgestone Sports Co., Ltd. | Golf ball with built-in IC chip |
US10315077B2 (en) * | 2016-06-24 | 2019-06-11 | Bridgestone Sports Co., Ltd. | Golf ball with built-in IC chip |
US20180214758A1 (en) * | 2017-01-26 | 2018-08-02 | Alec Michael Mosher | Digital information golf ball system |
US10204456B2 (en) * | 2017-03-07 | 2019-02-12 | vGolf, LLC | Mixed reality golf simulation and training system |
US10428216B2 (en) * | 2017-08-28 | 2019-10-01 | Acushnet Company | Golf ball incorporating a mixture of a thermoset and/or thermoplastic composition and a plurality of conductive nanoshelled structures |
US10493329B1 (en) * | 2017-09-05 | 2019-12-03 | Edge Technology | Golf ball tracking system and method |
US20190374835A1 (en) * | 2018-06-11 | 2019-12-12 | Minmin Zhang | Ball spin rate measurement system and method |
US10688366B1 (en) * | 2018-07-13 | 2020-06-23 | Callaway Golf Company | Golf ball with electrical components |
US10918929B1 (en) * | 2018-07-13 | 2021-02-16 | Callaway Golf Company | Golf ball with electrical components |
US11344785B1 (en) * | 2018-07-13 | 2022-05-31 | Callaway Golf Company | Golf ball with electrical components |
US11865426B1 (en) * | 2018-07-13 | 2024-01-09 | Topgolf Callaway Brands Corp. | Golf ball with electrical components |
US11872461B1 (en) * | 2018-07-13 | 2024-01-16 | Topgolf Callaway Brands Corp. | Golf ball with wound core with integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
US11786794B1 (en) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11865426B1 (en) | Golf ball with electrical components | |
US11872461B1 (en) | Golf ball with wound core with integrated circuit | |
US12280305B1 (en) | Golf club head impact location based on 3D magnetic field readings | |
US10589162B2 (en) | Sports ball with sensors and transmitter | |
US8444499B2 (en) | Method and system for shot tracking | |
US10232225B1 (en) | Systems and methods for obtaining sports-related data | |
US8210959B2 (en) | Device for shot tracking | |
US20120238381A1 (en) | Method and system for shot tracking | |
US20050233815A1 (en) | Method of determining a flight trajectory and extracting flight data for a trackable golf ball | |
US10716971B1 (en) | Game implements and system for tracking or locating same | |
US20210187362A1 (en) | Golf Ball Tracking System | |
CN205699333U (en) | A kind of balls sport training system, ball and motion tracking intelligent apparatus | |
US20210370152A1 (en) | Position reckoning system utilizing a sports ball | |
CN108348804A (en) | Golf and system and method for positioning golf | |
US8120332B2 (en) | Method and system for shot tracking | |
US20170368425A1 (en) | Position Reckoning System Utilizing a Sports Ball | |
US20230033421A1 (en) | Golf Ball Analytic Measurement Device and Method | |
US20120015754A1 (en) | Method and sysem for shot tracking | |
US11452919B2 (en) | Bluetooth enabled ball analyzer and locator | |
US8430762B2 (en) | Method and system for shot tracking | |
US20190344144A1 (en) | Sports ball having electronics and method of use | |
US10864410B2 (en) | Bluetooth enabled ball analyzer and locator | |
US20230310964A1 (en) | Spin Analysis for a Projectile in Flight | |
US20110143849A1 (en) | Method and system for shot tracking | |
US20110143848A1 (en) | Method and system for shot tracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |