US12089934B2 - Vibrating tourniquet and methods of collecting blood using same - Google Patents
Vibrating tourniquet and methods of collecting blood using same Download PDFInfo
- Publication number
- US12089934B2 US12089934B2 US17/080,269 US202017080269A US12089934B2 US 12089934 B2 US12089934 B2 US 12089934B2 US 202017080269 A US202017080269 A US 202017080269A US 12089934 B2 US12089934 B2 US 12089934B2
- Authority
- US
- United States
- Prior art keywords
- plate assembly
- vibrating plate
- anatomical feature
- vibrating
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 65
- 239000008280 blood Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000017531 blood circulation Effects 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims description 24
- 230000000717 retained effect Effects 0.000 claims description 6
- 230000024883 vasodilation Effects 0.000 abstract description 2
- ZKGSEEWIVLAUNH-UHFFFAOYSA-N 1,2,3-trichloro-4-(3-chlorophenyl)benzene Chemical group ClC1=CC=CC(C=2C(=C(Cl)C(Cl)=CC=2)Cl)=C1 ZKGSEEWIVLAUNH-UHFFFAOYSA-N 0.000 description 15
- WBTMFEPLVQOWFI-UHFFFAOYSA-N 1,3-dichloro-5-(2,5-dichlorophenyl)benzene Chemical compound ClC1=CC=C(Cl)C(C=2C=C(Cl)C=C(Cl)C=2)=C1 WBTMFEPLVQOWFI-UHFFFAOYSA-N 0.000 description 14
- 238000010009 beating Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 10
- 210000002683 foot Anatomy 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000036770 blood supply Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 1
- 206010034568 Peripheral coldness Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000008822 capillary blood flow Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/132—Tourniquets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/150022—Source of blood for capillary blood or interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150053—Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
- A61B5/150061—Means for enhancing collection
- A61B5/150068—Means for enhancing collection by tissue compression, e.g. with specially designed surface of device contacting the skin area to be pierced
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150053—Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
- A61B5/150061—Means for enhancing collection
- A61B5/150083—Means for enhancing collection by vibration, e.g. ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150748—Having means for aiding positioning of the piercing device at a location where the body is to be pierced
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150946—Means for varying, regulating, indicating or limiting the speed or time of blood collection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15101—Details
- A61B5/15103—Piercing procedure
- A61B5/15107—Piercing being assisted by a triggering mechanism
- A61B5/15109—Fully automatically triggered, i.e. the triggering does not require a deliberate action by the user, e.g. by contact with the patient's skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15101—Details
- A61B5/15115—Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
- A61B5/15117—Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/153—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
- A61B5/1535—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes comprising means for indicating vein or arterial entry
Definitions
- Devices and methods for collecting blood from a mammalian digit and, more particularly, a vibrating tourniquet for collecting capillary blood from the digit, as well as methods for doing the same are described.
- a tourniquet may be placed tightly around some portion of an extremity, typically between the subject's heart and the location from which the blood sample is collected or drawn.
- a tourniquet e.g., an elastic band
- the tourniquet restricts the flow of blood to the sampling or drawing location and also makes the veins inside the subject's elbow more pronounced and easier to find and to puncture with a needle.
- a similar device does not exist for capillary blood collection, for example from the subject's finger.
- finger tourniquets have been used to stop blood flow entirely but not to restrict the flow of blood to the end of the digit where a blood sample is usually collected.
- Very small volumes of blood e.g., about 150 ⁇ l
- a tourniquet e.g., using a capillary pipette
- larger volumes of blood are generally not sampled from a subject's fingertip.
- Taking a blood sample from a subject's finger using capillary blood collection techniques can also be challenging due to dozens of variables that might reduce capillary blood flow. For example, dehydration, fatigue, lack of exercise, cold weather, and cold hands may reduce blood flow to the collection site. Circulatory disorders, resulting from, for example, obesity, diabetes mellitus, arthritis, disability, heart conditions, and arterial issues, may also cause reduced blood flow to peripheral regions, such as the subject's hands or feet.
- a device and method for collecting capillary blood from a mammalian digit that increase the volume of blood proximate or in the vicinity of the point of blood collection and that, furthermore, encourage blood to flow in the capillaries during the drawing process.
- some embodiments of the present invention include a device for collecting blood from a mammalian digit.
- the device may include a rigid cradle portion structured and arranged to retain the digit, a first biasing device releasably attachable to the cradle portion and structured and arranged to constrict blood flow in the digit, a housing portion releasably connectable to the cradle portion, and a plurality of vibrating motors located beneath the cradle portion within the housing portion, such that vibrations translated to the digit enhance blood flow.
- the cradle portion may be a vibrating plate that includes a plurality of ribs
- the first biasing device may be any one of an elastic device, an elastic band, a rubber device, a rubber band, and/or a hook and pile combination.
- the device also may include one or more of the following: a power source(s) (e.g., a battery), a second biasing device (e.g., a spring) located in the housing portion and structured and arranged to bias the vibrating motors against the cradle portion, and/or a processing device adapted to combine vibrations waves from each of the vibrating motors to produce the resulting low frequency wave.
- a power source(s) e.g., a battery
- a second biasing device e.g., a spring located in the housing portion and structured and arranged to bias the vibrating motors against the cradle portion
- a processing device adapted to combine vibrations waves from each of the vibrating motors to produce the resulting low frequency wave.
- each of the vibrating motors may include a shaft and a weight that is located off center from the shaft, so that the off center weight produces vibration that, in some variations, may be combined to provide a resulting wave characterized as having a low frequency.
- some embodiments of the present invention involve a method of collecting capillary blood from a mammalian digit.
- the method may include providing a tourniquet device to constrict blood flow in the digit, wherein the tourniquet device may include a rigid cradle portion structured and arranged to retain the digit, a first biasing device (e.g., elastic device, an elastic band, a rubber device, and a rubber band) releasably attachable to the cradle portion, a housing portion releasably connectable to the cradle portion, and a plurality of vibrating motors located beneath the cradle portion within the housing portion.
- a first biasing device e.g., elastic device, an elastic band, a rubber device, and a rubber band
- the method may further include: positioning the first biasing device over the digit retained in the cradle portion; releasably attaching the first biasing device to the cradle portion to constrict blood flow in the digit; and producing vibrations by the vibrating motors, such that the vibrations translate to the digit retained in the cradle portion, thereby increasing blood flow into capillaries in the digit for collection.
- the method may also include controlling the vibrating motors to produce vibrations having a low frequency and/or a high amplitude.
- vibration waves having a high frequency and a high amplitude may be produced by each vibrating motor and, furthermore, these high frequency vibrations may be combined to create a resultant low frequency output.
- the present invention relates to a device for collecting blood from an anatomical feature of a mammalian subject.
- the device includes a rigid vibrating plate assembly structured and arranged to push against the anatomical feature from which blood is collected; a housing portion releasably connectable to the vibrating plate assembly; a first biasing device (e.g., elastic device, an elastic band, a rubber device, a rubber band, and a hook and pile combination) attached to the housing portion and releasably attachable to the vibrating plate assembly, wherein the first biasing device is structured and arranged to constrict blood flow in the anatomical feature; and vibrating motors located beneath the vibrating plate assembly, wherein vibrations generated by the vibrating motors enhance blood flow in and to the anatomical feature.
- a first biasing device e.g., elastic device, an elastic band, a rubber device, a rubber band, and a hook and pile combination
- the first biasing device may include and/or the vibrating plate assembly may include a number of ribs for providing traction and/or several quick connect projections for releasably attaching the vibrating plate assembly to the housing portion.
- the quick connect projections are configured to mate with corresponding openings formed in the housing portion.
- the device may also include one or more of the following: a power source(s) (e.g., a battery), a post portion fixedly attached to the vibrating plate assembly, and a second biasing device (e.g., a spring) disposed about the post portion and structured and arranged to bias the vibrating motors against the vibrating plate assembly, a leaf spring mechanism (e.g., an S-shaped mechanism) that is structured and arranged to provide an auto-start condition when the leaf spring mechanism is compressed, and/or a printed circuit board that is releasably attachable to the vibrating plate assembly.
- the second biasing device may be structured and arranged to push the vibrating plate assembly against the anatomical feature.
- the printed circuit board may include an opening through which a post portion extends and the leaf spring mechanism is fixedly attached to a bottom surface of the printed circuit board.
- the present invention relates to a method of collecting capillary blood from an anatomical feature of a mammalian subject.
- the method includes: providing a tourniquet device to constrict blood flow in the anatomical feature, wherein the tourniquet device may include a rigid vibrating plate assembly structured and arranged to push against the anatomical feature from which blood is collected, a housing portion releasably connectable to the vibrating plate assembly, a first biasing device attached to the housing portion and releasably attachable to the vibrating plate assembly, wherein the first biasing device is structured and arranged to constrict blood flow in the anatomical feature, and several vibrating motors located beneath the vibrating plate assembly, wherein vibrations generated by the vibrating motors enhance blood flow in and to the anatomical feature; positioning the first biasing device over the anatomical feature retained in the vibrating plate assembly; releasably attaching the first biasing device to the vibrating plate assembly to constrict blood flow in the anatomical feature
- FIG. 1 shows a top perspective view of a device for collecting blood, in accordance with some embodiments of the present invention
- FIG. 2 shows a top perspective view of the device of FIG. 1 with the biasing element attached to each of the attachment posts, in accordance with some embodiments of the present invention
- FIG. 3 shows a front view of the device of FIG. 1 , in accordance with some embodiments of the present invention
- FIG. 4 shows a front view of the device of FIG. 2 , in accordance with some embodiments of the present invention
- FIG. 5 shows a cross sectional view of the device of FIG. 1 , in accordance with some embodiments of the present invention
- FIG. 6 shows an exploded view of a coin-type vibrating motor, in accordance with some embodiments of the present invention.
- FIG. 7 shows a flow chart of a method of drawing blood, in accordance with some embodiments of the present invention.
- FIG. 8 shows a middle finger inserted in the device of FIG. 1 , in accordance with some embodiments of the present invention
- FIG. 9 shows constructive and destructive interference of a vibratory wave, in accordance with some embodiments of the present invention.
- FIGS. 10 A and 10 B show, respectively, top perspective views of a cutaway view of a second device for collecting blood, in accordance with some embodiments of the present invention
- FIG. 10 C shows a top perspective view of the second device of FIGS. 10 A and 10 B , in accordance with some embodiments of the present invention
- FIGS. 11 A and 11 B show side views of the second device of FIGS. 10 A and 10 B with the first biasing device attached to a lower portion, in accordance with some embodiments of the present invention.
- FIG. 12 shows a side cutaway view of the second device of FIGS. 10 A through 10 C in a compressed (ON) condition, in accordance with some embodiments of the present invention.
- the device 100 includes an upper (cradle) portion 10 , a biasing element 15 , and a lower (housing) portion 20 that are each structured and arranged to accommodate a human finger for the purpose of collecting capillary blood.
- the cradle portion 10 may include an arcuate-shaped substrate 12 made of plastic, metal, or a combination thereof and having a proximal end 14 and a distal end 16 .
- the arcuate-shaped substrate 12 is adapted and dimensioned to accommodate all or some portion of a human digit.
- a vibrating plate 11 includes a plurality of ribs.
- the ribbed, vibrating plate 11 may provide an interface between the human skin and the vibratory motors.
- the ribbed, vibrating plate 11 is translatable, so that the ribbed, vibrating plate 11 is able to conduct vibrations from vibratory motors to the subject's digit.
- the vibrating plate 11 is ribbed to create greater friction against the skin of the digit.
- the individual ribs of the ribbed, vibrating plate 11 may be oriented normal, perpendicular, or substantially perpendicular to the longitudinal axis of the cradle portion 10 .
- the ribs of the vibrating plate 11 support and contact portions of the digit, ensuring that the portions of the digit are in and remain in communication with the ribbed, vibrating plate 11 .
- the vibrating plate 11 of the present invention is described as being ribbed, those of ordinary skill in the art can appreciate that other patterns and/or textures could be used as an alternative.
- an extended rib portion 13 may be provided through the ribbed, vibrating plate 11 .
- the extended rib portion 13 may be located within the invert of the arcuate-shaped substrate 12 and, more particularly, the extended rib portion 13 may be located within an opening in the vibrating plate 11 provided therefor.
- the middle phalanx and/or the proximal phalanx of a finger may cover and contact the extended rib portion 13 . Also, as shown in FIGS.
- the ribs in the extended rib portion 13 project above the ribs in the vibrating plate 11 .
- This feature ensures that, when a digit is placed in the cradle portion 12 , the digit contacts the extended rib portion 13 , which will automatically turn on the device 100 . More specifically, once the digit contacts the extended rib portion 13 , the force applied by the digit on the extended rib portion 13 will force the extended rib portion 13 down, through the opening in the vibrating plate 11 .
- the extended rib portion 13 depresses an ON/OFF button that may be located on a printed circuit board located beneath the vibrating plate 11 .
- projections 18 extend at both ends 14 , 16 of and from both sides of the arcuate-shaped substrate 12 , so as to produce open sections 17 on both sides of the arcuate-shaped substrate 12 .
- the open sections 17 provide a space for looping the biasing element 15 (e.g., an elastic device, an elastic band, a rubber device, a rubber band, a hook and pile combination, and the like) over the digit, ensuring that the biasing element 15 remains in intimate contact with the digit, so that the biasing element 15 constricts the flow of blood to the fingertip.
- the biasing element 15 e.g., an elastic device, an elastic band, a rubber device, a rubber band, a hook and pile combination, and the like
- the housing portion 20 may include an upper portion 22 and a lower portion 24 .
- the lower portion 24 may be releasably connectable to the upper portion 22 using one or more connecting devices 26 that may be disposed on opposing sides of the housing portion 20 .
- a set (e.g., a pair) of attachment posts 28 may also be fixedly attached on opposing sides of the upper portion 22 of the housing portion 20 .
- the biasing element 15 may be looped around each of the attachment posts 28 on both sides of the housing portion 20 to place the biasing element 15 in tension.
- a bar may be fixedly attached between the attachment posts 28 on each side of the upper portion 22 of the housing portion 20 , such that there is a space formed between the bar and the upper portion 22 of the housing portion 20 .
- One end of the hook and pile combination may be securely attached around the bar on one side of the upper portion.
- the free-running end of the hook and pile combination may be inserted in the space between the bar and the upper portion 21 of the housing portion 20 ; pulled tightly back onto itself to apply pressure to the digit in the cradle portion 12 ; and the hook portion and pile portion may be brought into contact with one another to maintain the pressure on the digit.
- the housing portion 20 may include a number of plenum spaces 51 , 52 , 53 .
- one or more of the plenum spaces 51 , 52 may be dimensioned and configured to accommodate a power source 54 (e.g., one or more DC battery), while other plenum space 53 may be dimensioned and configured to accommodate a printed circuit board (PCB) 55 , as well as a plurality of (e.g., two) vibrating motors 56 a , 56 b .
- PCB printed circuit board
- the vibrating motors 56 a , 56 b are fixedly attached to the PCB 55 and the PCB 55 is fixedly attached to the ribbed, vibrating plate 11 , so that, in operation, the vibrating motors 56 a , 56 b cause the PCB 55 , the vibrating plate 1 , and the digit to vibrate.
- the spring 58 provides some damping such that a majority of the vibrations are carried to the vibrating plate 11 and the finger and very little of the vibrations is directed towards other parts of the device 100 .
- the PCB 55 may include a processing device (e.g., a microprocessor unit) that is capable of executing a software program, algorithm, driver program and the like stored in memory.
- the software program, algorithm, driver program and the like may be adapted to control the frequency and/or amplitude of the vibrations produced by each motor 56 a , 56 b , thereby defining the final beating frequency output.
- the PCB 55 may also include other hardware and/or software for driving the motors 56 a , 56 b , voltage regulators, and other circuit protection components on the PCB 55 .
- the extended rib portion 13 and ribbed, vibrating plate 11 may be configured to translate freely up and down within the arcuate-shaped substrate 12 of the cradle portion 10 .
- the extended rib portion 13 is structured and arranged to displace (e.g., in a downward direction) with respect to the vibrating plate 11 , further depressing the ON/OFF button 57 sufficiently to turn on the PCB 55 and/or cause the PCB 55 to execute a start-up program.
- force from the digit may cause the ribbed, vibrating plate 11 to displace (e.g., in a downward direction) with respect to the arcuate-shaped substrate 12 of the cradle portion 10 .
- Such displacement of the ribbed, vibrating plate 11 will also force the PCB 55 down against the spring 58 .
- the spring constant in the spring 58 will tend to resist this compressive force, causing the spring 58 to push the PCB 55 , the vibrating motors 56 a , 56 b , and the ribbed, vibrating plate 11 against the skin of the digit.
- This spring-loaded mechanism ensures that the resistive force with which the ribbed, vibratory plate 11 is pressed against the digit is governed by the force of the spring 58 and not by how tightly the device 100 has been tightened around the finger using the biasing element 15 . This prevents overtightening of the ribbed, vibratory plate 11 against the skin of the digit, which could lead to total cut-off of blood supplied to the finger.
- the PCB 55 may include one or more software programs, algorithms, driver programs, and the like to cause the plurality of vibrating motors 56 a , 56 b to generate vibrations in a desired manner and fashion. More particularly, it may be desirable for the vibrating motors 56 a , 56 b to generate vibrations in a beating phenomenon or at a beating frequency.
- An exemplary, coin-type vibrating motor 56 a , 56 b suitable for use with the device 100 is shown in FIG. 6 .
- the vibrating motors 56 a , 56 b may include an upper casing 61 and a lower casing 62 , the lower casing including a shaft 63 .
- a substrate 64 that includes a printed circuit board may be configured to include an opening adapted to fit over the shaft 63 .
- Power for running the motors 56 a , 56 b may be provided to components on the substrate via an electrical bus on the PCB 55 or, in the alternative, power may be provided directly from the power source 54 , e.g., via electrical leads 65 from the power source 54 to the motors 56 a , 56 b .
- a pair of brushes 66 may be located on the substrate 64 .
- a magnet 67 may be adapted to surround the brushes 66 .
- An imbalanced weight 68 having a plurality of coil assemblies 69 may be placed over the shaft 63 and atop the magnet 67 .
- the brushes 66 provide power selectively or alternately to the coil assemblies 69 , thereby alternating the direction of a magnetic field induced by current flowing through the coil assemblies 69 .
- the induced magnetic field interacts with the magnetic flux from the magnet 67 .
- the alternating direction of the induced magnetic field and the interaction between the induced magnetic field and the magnetic flux cause the imbalanced weight 68 to rotate about the shaft 63 . Due to an off-center mass in the imbalanced weight 68 , the rotating imbalanced weight 68 produces wobble and vibrations.
- the device 100 ′ includes an upper portion 10 ′, a first biasing element 15 ′, and a lower portion 20 ′ that are each structured and arranged to accommodate some portion of a human being (e.g., a digit, a finger, a toe, an appendage, a foot, a hand, and the like) for the purpose of collecting capillary blood.
- the upper portion 10 ′ may include a vibrating plate assembly 70 that, in some applications, may be made of plastic, metal, or a combination thereof.
- the vibrating plate assembly 70 provides an arcuate-shaped structure that is adapted and dimensioned to accommodate all or some portion of a human digit, appendage, foot, hand, and the like.
- the vibrating plate assembly 70 may include a plurality of ribs 71 that may be structured and arranged to provide greater traction against the skin of the digit, appendage, foot, or other portion of the human body inserted into the device 100 ′.
- the ribs 71 of the vibrating plate assembly 70 support and contact portions of the digit, appendage, foot, or other portion of the human body inserted into the device 100 ′, ensuring that the digit, appendage, foot, or other portion of the human body inserted into the device 100 ′ are in and remain in physical contact with the vibrating plate assembly 70 .
- the individual ribs 71 of the vibrating plate assembly 70 may be oriented normal, perpendicular, or substantially perpendicular to the longitudinal axis of the upper portion 10 ′.
- the vibrating plate assembly 70 of the present invention is shown and described as being ribbed, those of ordinary skill in the art can appreciate that other patterns and/or textures could be used as an alternative for providing traction between the portion of the human body inserted into the device 100 ′ and the vibrating plate assembly 70 of the device 100 ′.
- the vibrating plate assembly 70 is configured to provide an interface between the human skin and the vibratory motors 56 a ′, 56 b ′.
- the vibrating plate assembly 70 is translatable, so that, when compressed, the vibrating plate assembly 70 provides a self-starting or auto-start feature, while also ensuring that the vibrating plate assembly 70 is able to conduct vibrations generated or produced by a plurality of vibratory motors 56 a ′, 56 b ′ to the portion of the subject's or patient's body contained within the device 100 ′.
- the upper portion 10 ′ of the device 100 ′ may include a plenum space 51 ′ that is dimensioned, structured, and arranged to accommodate (e.g., house) a printed circuit board (PCB) 72 and a plurality of (e.g., two) vibrating motors 56 a ′, 56 b ′.
- the PCB 72 may be removably supportable by a number of (e.g., four) snap fits that are formed in the structure of the vibrating plate assembly 70 for that purpose.
- the PCB 72 may include a processing device (e.g., a microprocessor unit) that is capable of executing a software program, algorithm, driver program, and the like stored in memory.
- the software program, algorithm, driver program, and the like may be adapted to control the frequency and/or amplitude of the vibrations produced by each motor 56 a ′, 56 b ′, thereby defining the final beating frequency output.
- the PCB 72 may also include other hardware and/or software for driving the motors 56 a ′, 56 b ′, voltage regulators, and other circuit protection components on the PCB 72 .
- the vibrating motors 56 a ′, 56 b ′ may be operatively positioned on a first side of the PCB 72 , such that vibrating motors 56 a ′, 56 b ′ will physically contact the vibrating plate assembly 70 (when the vibrating plate assembly 70 is in a compressed (ON) state or condition).
- a corresponding plurality of energy-producing or energy-storing devices e.g., batteries
- a leaf spring mechanism 74 may be operatively positioned, such that each of the energy-producing or energy-storing devices (e.g., batteries) 54 a ′, 54 b ′ may be in electrical communication with a respective vibrating motor 56 a ′, 56 b ′, when the device 100 ′ is in a compressed (ON) state or condition.
- the leaf spring mechanism 74 provides an S-shaped configuration, such that a first, proximal end of the leaf spring mechanism 74 is fixedly attached to a first electrical connection (e.g., an anode) disposed on the opposing (e.g., reverse) face of the PCB 72 and a second, distal end of the leaf spring mechanism 74 is unattached, hanging, and/or unsupported in free space.
- a first electrical connection e.g., an anode
- the leaf spring mechanism 74 is hanging in free space or, alternatively, in contact with a non-electrically conductive portion 76 of the lower portion 20 ′ of the device 100 ′, the device 100 ′ is in an at-rest or OFF state or condition, as the leaf spring mechanism 74 provides an open circuit.
- the leaf spring mechanism 74 may include a curved portion 75 that is structured and arranged, so that, when the device 100 ′ is in an at-rest (OFF) state or condition, the curved portion 75 is unattached, hanging, and/or unsupported in free space; but that, when the device 100 ′ is in a compressed (ON) state or condition—for example, when a (e.g. downward) force is applied to the vibrating plate assembly 70 —the curved portion 75 is configured to contact a second electrical connection (e.g., a cathode 77 ) also located on the opposing (e.g., reverse) face of the PCB 72 .
- a second electrical connection e.g., a cathode 77
- the leaf spring mechanism 74 is manufactured from an electrically-conductive material (e.g., a conductive metal), so that when the curved portion 75 of the leaf spring mechanism 74 contacts the cathode 77 , a closed circuit is created between the anode and the cathode 77 , so that power from the energy-producing or energy-saving devices (e.g., batteries) 54 a ′, 54 b ′ may be provided or delivered to respective vibrating motors 56 a ′, 56 b ′.
- the closed circuit when in a compressed state or condition, provides an auto-start capability to turn ON the device 100 ′ without having to turn on the device 100 ′ manually.
- the upper portion 10 ′ may also include: a plurality of quick connects 73 for releasably attaching the upper portion 10 ′ to the lower portion 20 ′ as well as a central post portion 78 .
- the quick connects 73 may be projections that are formed at both ends of the vibrating plate assembly 70 , extending therefrom, for releasably connecting the upper portion 10 ′ to the lower portion 20 ′.
- each of the quick connects (i.e., projections) 73 may be adapted to fit into a corresponding opening 79 provided in the lower portion 20 ′, so as to releasably connect the upper portion 10 ′ to the lower portion 20 ′.
- the post portion 78 may be formed in the upper portion 10 ′ of the device 100 ′ (e.g., between the vibrating motors 56 a ′, 56 b ′) so as to be fixedly attached (e.g., at a proximal end of the post portion 78 ) to the vibrating plate assembly 70 .
- the post portion 78 may extend through an opening in the PCB 72 formed for that purpose.
- a (e.g., second) biasing member e.g., a spring 58 ′
- a biasing member e.g., a spring 58 ′
- the PCB 72 compresses the spring 58 ′, further compressing the leaf spring mechanism 74 between the PCB 72 and the non-electrically conductive portion 76 of the lower portion 20 ′ of the device 100 ′.
- the second biasing device 58 ′ may be structured and arranged to push (i.e., bias) the vibrating plate assembly 70 against the anatomical feature, so that the first 15 ′ and second biasing devices 28 ′ constrict blood flood to the capillaries in the anatomical feature contained in the device 100 ′.
- the lower portion 20 ′ may include a housing portion 24 ′—manufactured, for example, from plastic, metal, and the like—that may include the non-electrically conductive portion 76 and that defines the limits and dimensions of a plenum space 53 ′ provided inside of the housing portion 24 ′.
- the plenum space 53 ′ may be dimensioned and configured to accommodate translation of the upper portion 10 ′ when it is forced downwards, including the spring 58 ′, the post portion 78 , the PCB 72 , the vibrating motors 56 a ′, 56 b ′, and the energy-producing or energy-saving devices (e.g., batteries) 54 a ′, 54 b′.
- a biasing element 15 ′ e.g., an elastic device, an elastic band, a rubber device, a rubber band, a hook and pile combination, and the like
- the biasing element 15 ′ and lower portion 20 ′ are further adapted to constrict the flow of blood to the digit or other portion of the human body.
- the biasing element 15 ′ may be looped around attachment portions 28 ′ formed on both sides of the housing portion 20 ′ for the purpose of placing the biasing element 15 ′ in tension.
- an attachment portion 28 ′ may be formed on one side of the housing portion 20 ′, while the other loop of the biasing element 15 ′ may be restrained by a restraining device 29 on the other side of the housing portion 20 ′.
- a method of drawing capillary blood from the fingertip of a mammalian subject may include promoting blood to pool proximate to or in the vicinity of the drawing site and, moreover, encouraging the pooled blood to flow into the capillaries from which the blood sample will be taken or drawn. Promoting blood to pool proximate to or in the vicinity of the drawing site can include, for example, constricting blood flow in the digit, while encouraging the pooled blood to flow into the capillaries may involve lowering the arterial resistivity index.
- the previously described device provides each of these desirable qualities.
- a tourniquet device similar to the one previously described may be provided (STEP 1 ) and the digit, from whence the capillary blood sample will be drawn, maybe placed in the tourniquet device (STEP 2 ).
- FIG. 8 shows a tourniquet device 100 disposed on the middle finger 81 of a subject's left hand 80 .
- the proximal 82 and middle phalanxes 84 of the subject's middle finger 81 may be placed in the cradle portion 10 of the device 100 (STEP 2 ), such that the proximal interphalangeal joint 83 is resting on some portion of the extended rib portion 13 .
- the distal phalanx 86 and distal interphalangeal joint 85 may be substantially out of the cradle portion 10 of the device 100 .
- the biasing element 15 may then be stretched over each of the attachments posts 28 , so that the tension in the biasing element 15 restricts (i.e., constricts or partially blocks) blood flow in the middle finger 81 (STEP 3 ).
- the rigid ribbed, vibrating plate 11 on which the finger 81 is placed and the more elastic biasing element 15 across the top of the finger 81 constrict or partially block the flow of blood out of the finger 81 without completely cutting off blood supply to the finger 81 . Due to the higher arterial blood pressure relative to the lower venous blood pressure and the constriction afforded by the biasing element 15 , the rate at which blood enters the finger 81 exceeds the rate at which blood exits the finger 81 , causing blood to pool in the finger 81 proximate or in the vicinity of, for example, the distal phalanx 86 .
- Capillaries are extremely tiny blood vessels.
- low frequency vibrations have been used to promote dilation in capillaries, resulting in more red blood cells entering the capillaries.
- vibrations that have low frequency and high amplitude typically increase the deformability of the cell walls of red blood cells, making it easier for blood cells to squeeze into a tiny capillary. Accordingly, subjecting the pooling blood to low frequency and/or high amplitude vibrations promotes greater blood flow (STEP 5 ) into the dilated capillaries.
- vibrations that have a low frequency and/or a high amplitude lower the arterial resistivity index, i.e., the resistive force that a microvascular bed applies to the blood which is flowing through it, making it easier for blood to flow to areas of the body where there is less blood supply.
- Low frequency vibrations also cause vasodilation, i.e., a widening of the blood vessels.
- beating phenomenon also known as beating frequency or simply beats
- the phenomena by which two high frequencies (e.g. vibratory) waves enforce each other or cancel out each other are referred to, respectively, as constructive interference and destructive interference, which is shown in FIG. 9 .
- the upper displacement versus time relationship (labeled (a)) in FIG. 9 shows two high frequency (e.g., vibratory) waves 92 , 94 being overlapped on each other.
- Typical waves 92 , 94 generated by small vibratory motors may be characterized as having slightly different (high) frequencies but having the same or substantially the same relatively high amplitudes.
- the resultant wave may be characterized as a high amplitude, low frequency wave.
- the processing device may be adapted to combined two waves 92 , 94 , such that, in the resultant wave, at certain instances 93 , the combined waves 92 , 94 cancel each other out, while at other instances 95 , the combined waves 92 , 94 enforce each other.
- the net effect of this constructive and destructive interference results in a high amplitude, low frequency wave.
- the beating phenomenon enables a transfer of energy into the system where low-frequency vibrations can be induced by coupling vibrations from multiple (e.g., two) high-frequency sources.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Pain & Pain Management (AREA)
- Reproductive Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Percussion Or Vibration Massage (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/080,269 US12089934B2 (en) | 2019-03-20 | 2020-10-26 | Vibrating tourniquet and methods of collecting blood using same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/359,186 US10610142B1 (en) | 2019-03-20 | 2019-03-20 | Vibrating tourniquet and methods of collecting blood using same |
US16/775,889 US10888258B2 (en) | 2019-03-20 | 2020-01-29 | Vibrating tourniquet and methods of collecting blood using same |
US17/080,269 US12089934B2 (en) | 2019-03-20 | 2020-10-26 | Vibrating tourniquet and methods of collecting blood using same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/775,889 Continuation US10888258B2 (en) | 2019-03-20 | 2020-01-29 | Vibrating tourniquet and methods of collecting blood using same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210038139A1 US20210038139A1 (en) | 2021-02-11 |
US12089934B2 true US12089934B2 (en) | 2024-09-17 |
Family
ID=71266765
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/775,889 Active US10888258B2 (en) | 2019-03-20 | 2020-01-29 | Vibrating tourniquet and methods of collecting blood using same |
US17/080,269 Active 2041-04-30 US12089934B2 (en) | 2019-03-20 | 2020-10-26 | Vibrating tourniquet and methods of collecting blood using same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/775,889 Active US10888258B2 (en) | 2019-03-20 | 2020-01-29 | Vibrating tourniquet and methods of collecting blood using same |
Country Status (8)
Country | Link |
---|---|
US (2) | US10888258B2 (en) |
EP (1) | EP3801262B1 (en) |
JP (1) | JP7278472B2 (en) |
KR (1) | KR102670431B1 (en) |
AU (1) | AU2020244279A1 (en) |
ES (1) | ES2924303T3 (en) |
IL (1) | IL286521B2 (en) |
WO (1) | WO2020188357A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10888258B2 (en) * | 2019-03-20 | 2021-01-12 | Paulus Holdings Limited | Vibrating tourniquet and methods of collecting blood using same |
CN112704496B (en) * | 2021-01-18 | 2024-09-20 | 玛瑜科创服务(南京)有限公司 | A blood collection auxiliary device for blood internal medicine |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4887594A (en) * | 1988-06-09 | 1989-12-19 | Louis Siegel | Vibratory medicator |
US6203509B1 (en) | 1998-04-15 | 2001-03-20 | Finger Fitting Products, Inc. | Fingertip massager |
US20030181835A1 (en) | 2002-03-25 | 2003-09-25 | Klein Eric A. | Miniature finger ring vibrator |
US20030220663A1 (en) | 2002-05-22 | 2003-11-27 | Fletcher Henry H. | Lancet device |
US20040020241A1 (en) | 2002-08-05 | 2004-02-05 | Boiadjian Armen Joe | Vibrating finger ring |
US20040046678A1 (en) * | 2002-09-10 | 2004-03-11 | Grady James A. | LED warning beacon |
US20060247493A1 (en) * | 2005-04-27 | 2006-11-02 | Chih-Hung Chen | Vibrating Sex Auxiliary Ring Capable of Preventing Power From Accidentally Being Turned On |
US20070083131A1 (en) | 2005-09-30 | 2007-04-12 | Rosedale Medical, Inc. | Catalysts for body fluid sample extraction |
US20070088385A1 (en) | 2005-10-14 | 2007-04-19 | Perry Eric S | Vibrating tourniquet |
US20090012355A1 (en) * | 2007-07-05 | 2009-01-08 | Chien-Feng Lin | Condom Ring with Multiple Vibration Modes |
WO2009081405A2 (en) | 2007-12-25 | 2009-07-02 | Rapidx Ltd. | Devices and methods for reduced-pain blood sampling |
US20090177224A1 (en) | 2008-01-07 | 2009-07-09 | In3 Ventures, Inc. | Methods and apparatus for blood sampling |
US20090306468A1 (en) | 2006-07-06 | 2009-12-10 | Lrc Products Limited | Sexual stimulation device |
US20100004518A1 (en) * | 2008-07-03 | 2010-01-07 | Masimo Laboratories, Inc. | Heat sink for noninvasive medical sensor |
US20100179457A1 (en) | 2008-07-08 | 2010-07-15 | Blaine Laboratories, Inc. | Vibrating anesthesia device |
US20110118568A1 (en) | 2007-08-31 | 2011-05-19 | Terumo Kabushiki Kaisha | Assistance device |
US20110166498A1 (en) | 2008-06-16 | 2011-07-07 | Shantha Totada R | Methods for reducing pain using a transdermal local anesthetic patch with injection port in combination with an electromotive force |
US20120184884A1 (en) | 2009-10-08 | 2012-07-19 | Church & Dwight Co., Inc. | Vibrating band |
US20120203141A1 (en) | 2011-02-07 | 2012-08-09 | Shantha Totada R | Method and apparatus for reducing/suppressing pain in digits |
US20130109914A1 (en) | 2011-10-26 | 2013-05-02 | Jimmyjane, Inc. | Vibratory assembly for articulating members |
US20150257970A1 (en) | 2011-02-17 | 2015-09-17 | Martin Mücke | Device and method for reducing pain |
US9333144B2 (en) | 2006-10-04 | 2016-05-10 | Mmj Labs, Llc | Devices and methods for increased blood flow and pain control |
US9463026B2 (en) | 2012-11-21 | 2016-10-11 | Medical Ingenuities, LLC | Radial compression hemostasis band with Doppler confirming vascular patency |
WO2016178952A1 (en) | 2015-05-01 | 2016-11-10 | Bing Innovations, Llc | Reducing pain of skin piercing using vibration |
US20180369064A1 (en) * | 2006-10-04 | 2018-12-27 | Mmj Labs, Llc | Devices and methods for increased blood flow, healing, and pain control |
WO2019010008A1 (en) | 2017-07-06 | 2019-01-10 | Becton, Dickinson And Company | Biological fluid collection device |
US20190091598A1 (en) | 2017-09-28 | 2019-03-28 | Leonnardo Ferreira Milanesi | Finger ring for performing a magic act |
US20190099117A1 (en) * | 2017-10-02 | 2019-04-04 | Reliant Immune Diagnostics, Inc | Finger cuff having vibration mechanism for use in performing a finger prick |
US20200297260A1 (en) | 2019-03-20 | 2020-09-24 | Paulus Holdings Limited | Vibrating tourniquet and methods of collecting blood using same |
-
2020
- 2020-01-29 US US16/775,889 patent/US10888258B2/en active Active
- 2020-03-13 KR KR1020217033359A patent/KR102670431B1/en active Active
- 2020-03-13 JP JP2022504741A patent/JP7278472B2/en active Active
- 2020-03-13 AU AU2020244279A patent/AU2020244279A1/en not_active Abandoned
- 2020-03-13 EP EP20735237.8A patent/EP3801262B1/en active Active
- 2020-03-13 WO PCT/IB2020/000199 patent/WO2020188357A1/en unknown
- 2020-03-13 IL IL286521A patent/IL286521B2/en unknown
- 2020-03-13 ES ES20735237T patent/ES2924303T3/en active Active
- 2020-10-26 US US17/080,269 patent/US12089934B2/en active Active
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4887594A (en) * | 1988-06-09 | 1989-12-19 | Louis Siegel | Vibratory medicator |
US6203509B1 (en) | 1998-04-15 | 2001-03-20 | Finger Fitting Products, Inc. | Fingertip massager |
US20030181835A1 (en) | 2002-03-25 | 2003-09-25 | Klein Eric A. | Miniature finger ring vibrator |
US20030220663A1 (en) | 2002-05-22 | 2003-11-27 | Fletcher Henry H. | Lancet device |
US20040020241A1 (en) | 2002-08-05 | 2004-02-05 | Boiadjian Armen Joe | Vibrating finger ring |
US20040046678A1 (en) * | 2002-09-10 | 2004-03-11 | Grady James A. | LED warning beacon |
US20060247493A1 (en) * | 2005-04-27 | 2006-11-02 | Chih-Hung Chen | Vibrating Sex Auxiliary Ring Capable of Preventing Power From Accidentally Being Turned On |
US20070083131A1 (en) | 2005-09-30 | 2007-04-12 | Rosedale Medical, Inc. | Catalysts for body fluid sample extraction |
US20070088385A1 (en) | 2005-10-14 | 2007-04-19 | Perry Eric S | Vibrating tourniquet |
US20090306468A1 (en) | 2006-07-06 | 2009-12-10 | Lrc Products Limited | Sexual stimulation device |
US9333144B2 (en) | 2006-10-04 | 2016-05-10 | Mmj Labs, Llc | Devices and methods for increased blood flow and pain control |
US20180369064A1 (en) * | 2006-10-04 | 2018-12-27 | Mmj Labs, Llc | Devices and methods for increased blood flow, healing, and pain control |
US20090012355A1 (en) * | 2007-07-05 | 2009-01-08 | Chien-Feng Lin | Condom Ring with Multiple Vibration Modes |
US20110118568A1 (en) | 2007-08-31 | 2011-05-19 | Terumo Kabushiki Kaisha | Assistance device |
WO2009081405A2 (en) | 2007-12-25 | 2009-07-02 | Rapidx Ltd. | Devices and methods for reduced-pain blood sampling |
US20090177224A1 (en) | 2008-01-07 | 2009-07-09 | In3 Ventures, Inc. | Methods and apparatus for blood sampling |
US20110166498A1 (en) | 2008-06-16 | 2011-07-07 | Shantha Totada R | Methods for reducing pain using a transdermal local anesthetic patch with injection port in combination with an electromotive force |
US8206336B2 (en) | 2008-06-16 | 2012-06-26 | Shantha Totada R | Methods for reducing pain using a transdermal local anesthetic patch with injection port in combination with an electromotive force |
US20100004518A1 (en) * | 2008-07-03 | 2010-01-07 | Masimo Laboratories, Inc. | Heat sink for noninvasive medical sensor |
US20100179457A1 (en) | 2008-07-08 | 2010-07-15 | Blaine Laboratories, Inc. | Vibrating anesthesia device |
US20120184884A1 (en) | 2009-10-08 | 2012-07-19 | Church & Dwight Co., Inc. | Vibrating band |
US20120203141A1 (en) | 2011-02-07 | 2012-08-09 | Shantha Totada R | Method and apparatus for reducing/suppressing pain in digits |
US20150257970A1 (en) | 2011-02-17 | 2015-09-17 | Martin Mücke | Device and method for reducing pain |
US20130109914A1 (en) | 2011-10-26 | 2013-05-02 | Jimmyjane, Inc. | Vibratory assembly for articulating members |
US9463026B2 (en) | 2012-11-21 | 2016-10-11 | Medical Ingenuities, LLC | Radial compression hemostasis band with Doppler confirming vascular patency |
WO2016178952A1 (en) | 2015-05-01 | 2016-11-10 | Bing Innovations, Llc | Reducing pain of skin piercing using vibration |
WO2019010008A1 (en) | 2017-07-06 | 2019-01-10 | Becton, Dickinson And Company | Biological fluid collection device |
US20190091598A1 (en) | 2017-09-28 | 2019-03-28 | Leonnardo Ferreira Milanesi | Finger ring for performing a magic act |
US20190099117A1 (en) * | 2017-10-02 | 2019-04-04 | Reliant Immune Diagnostics, Inc | Finger cuff having vibration mechanism for use in performing a finger prick |
US20200297260A1 (en) | 2019-03-20 | 2020-09-24 | Paulus Holdings Limited | Vibrating tourniquet and methods of collecting blood using same |
US10888258B2 (en) * | 2019-03-20 | 2021-01-12 | Paulus Holdings Limited | Vibrating tourniquet and methods of collecting blood using same |
Non-Patent Citations (5)
Title |
---|
Baxter, et al., "An Integration of Vibration and Cold Relieves Venipuncture Pain in a Pediatric Emergency Department," <https://www.ncbi.nlm.nih.gov/pubmed/22134226> Pediatric Emergency Care, vol. 27, No. 12, Dec. 2011, pp. 1151-1156. |
Inal, et al., "Relief of Pain During Blood Specimen Collection in Pediatric Patients" The American Journal of Maternal/Child Nursing, Abstract, (2012), vol. 37, No. 5, 2 pages. |
International Search Report and Written Opinion in PCT/IB2019/000271, dated Dec. 19, 2019 12 pages. |
International Search Report and Written Opinion in PCT/IB2020/000199, dated Sep. 10, 2020 13 pages. |
Preliminary Rejection for Korean Patent Application No. 10-2021-7033359 dated Oct. 15, 2021. |
Also Published As
Publication number | Publication date |
---|---|
IL286521A (en) | 2021-12-01 |
US10888258B2 (en) | 2021-01-12 |
EP3801262B1 (en) | 2022-07-06 |
EP3801262A1 (en) | 2021-04-14 |
JP7278472B2 (en) | 2023-05-19 |
US20200297260A1 (en) | 2020-09-24 |
JP2022526872A (en) | 2022-05-26 |
KR20220009938A (en) | 2022-01-25 |
IL286521B1 (en) | 2024-10-01 |
WO2020188357A1 (en) | 2020-09-24 |
KR102670431B1 (en) | 2024-05-28 |
US20210038139A1 (en) | 2021-02-11 |
AU2020244279A1 (en) | 2021-10-14 |
ES2924303T3 (en) | 2022-10-05 |
IL286521B2 (en) | 2025-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12089934B2 (en) | Vibrating tourniquet and methods of collecting blood using same | |
RU2648854C2 (en) | Switching arrangements for ultrasonic surgical instruments | |
US10610142B1 (en) | Vibrating tourniquet and methods of collecting blood using same | |
US20070088385A1 (en) | Vibrating tourniquet | |
WO2020188309A1 (en) | Vibrating tourniquet and methods of collecting blood using same | |
CN212854370U (en) | Ultrasonic and medium-low frequency composite treatment equipment | |
CN106267553A (en) | A kind of miniature diabetes curing instrument | |
WO2023181055A1 (en) | A pain abating device | |
CN102500067B (en) | Ultrasonic moxibustion instrument | |
CN114177525A (en) | Neuromuscular electrical stimulator and system thereof | |
KR200247169Y1 (en) | Health belt | |
CN206508229U (en) | A kind of miniature diabetes curing instrument | |
CN205108298U (en) | Strong magnetism vibrations physiotherapy equipment | |
CN222172639U (en) | A hand-worn auxiliary massager | |
CN222775189U (en) | A foot switch and high-frequency surgical equipment | |
CN215308138U (en) | Music vibration intelligence massage equipment | |
CN2560032Y (en) | electrotherapy mouse | |
CN215385800U (en) | Health-care type heating vibration stone needle physiotherapy device | |
CN2628082Y (en) | Portable ultrasound health care instrument | |
CN218280084U (en) | Bedside acupuncture point massage instrument | |
CN109771900A (en) | Forearm training device | |
CN221654476U (en) | Needle poking and scattering instrument | |
CN212383158U (en) | A device for assisting patients to practice ankle joint exercise by themselves after surgery | |
CN205379450U (en) | Waterproof multifrequency vibrations massage stick | |
CN210433469U (en) | Full-automatic floating needle system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, AS AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:LETSGETCHECKED, INC.;VERITAS GENETICS, INC.;PAULUS HOLDINGS LIMITED;REEL/FRAME:059672/0114 Effective date: 20220421 |
|
AS | Assignment |
Owner name: PAULUS HOLDINGS LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIJU, TAUFEEQ ELAHI;RYAN, RONAN;REEL/FRAME:061952/0846 Effective date: 20200309 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: PAULUS HOLDINGS LIMITED, IRELAND Free format text: TERMINATION AND RELEASE OF INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:SILICON VALLEY BANK UK LIMITED (N/K/A HSBC INNOVATION BANK LIMITED);REEL/FRAME:064190/0721 Effective date: 20230630 Owner name: VERITAS GENETICS INC., MASSACHUSETTS Free format text: TERMINATION AND RELEASE OF INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:SILICON VALLEY BANK UK LIMITED (N/K/A HSBC INNOVATION BANK LIMITED);REEL/FRAME:064190/0721 Effective date: 20230630 Owner name: LETSGETCHECKED, INC., NEW YORK Free format text: TERMINATION AND RELEASE OF INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:SILICON VALLEY BANK UK LIMITED (N/K/A HSBC INNOVATION BANK LIMITED);REEL/FRAME:064190/0721 Effective date: 20230630 |
|
AS | Assignment |
Owner name: ANKURA TRUST COMPANY, LLC, AS COLLATERAL TRUSTEE, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNORS:LETSGETCHECKED, INC.;BIOIQ, INC.;PAULUS HOLDINGS LIMITED;AND OTHERS;REEL/FRAME:064134/0781 Effective date: 20230630 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |