+

TWI882378B - Contract assisted review method and device - Google Patents

Contract assisted review method and device Download PDF

Info

Publication number
TWI882378B
TWI882378B TW112125540A TW112125540A TWI882378B TW I882378 B TWI882378 B TW I882378B TW 112125540 A TW112125540 A TW 112125540A TW 112125540 A TW112125540 A TW 112125540A TW I882378 B TWI882378 B TW I882378B
Authority
TW
Taiwan
Prior art keywords
contract
penalty
analyzed
paragraph
category
Prior art date
Application number
TW112125540A
Other languages
Chinese (zh)
Other versions
TW202503666A (en
Inventor
謝旺叡
Original Assignee
大聯大控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大聯大控股股份有限公司 filed Critical 大聯大控股股份有限公司
Priority to TW112125540A priority Critical patent/TWI882378B/en
Publication of TW202503666A publication Critical patent/TW202503666A/en
Application granted granted Critical
Publication of TWI882378B publication Critical patent/TWI882378B/en

Links

Images

Landscapes

  • Machine Translation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一種契約輔助審閱方法,適用於將一契約文檔之多個段落標記為多個契約架構類別中之至少一者,藉由一電腦裝置實施,包含:(A) 根據一待分類契約文檔,利用一自然語言文檔解析演算法,獲得多個待分類契約段落;(B) 對於每一待分類契約段落,利用一第一句子轉向量模型,獲得一第一句義向量;(C) 對於每一第一句義向量,根據該第一句義向量,獲得一待分析架構類別向量;(D) 對於每一待分析架構類別向量的每一元素,判定該元素之數值是否大於預設閾值;(E) 當判定出該元素之數值大於預設閾值時,將該元素所對應的該契約架構類別作為一目標契約架構類別。A contract-assisted review method is applicable to marking multiple paragraphs of a contract document as at least one of multiple contract structure categories, and is implemented by a computer device, comprising: (A) obtaining multiple contract paragraphs to be classified based on a contract document to be classified using a natural language document parsing algorithm; (B) obtaining a first sentence meaning vector for each contract paragraph to be classified using a first sentence conversion vector model; (C) obtaining a structure category vector to be analyzed based on each first sentence meaning vector; (D) determining whether the value of each element of each structure category vector to be analyzed is greater than a preset threshold; (E) when it is determined that the value of the element is greater than the preset threshold, using the contract structure category corresponding to the element as a target contract structure category.

Description

契約輔助審閱方法及其裝置Contract assisted review method and device

本發明是有關於一種自然語言文檔的標記分類方法及其裝置,特別是指一種應用於契約文檔的標記分類方法及其裝置。The present invention relates to a natural language document marking and classification method and device, and in particular to a natural language document marking and classification method and device applied to contract documents.

現代社會為確保雙方交易合作的權益,避免可能出現法律上的糾紛,契約即變得不可或缺。In modern society, contracts have become indispensable to ensure the rights and interests of both parties in transaction cooperation and to avoid possible legal disputes.

以往為了進行契約的標示分類,以確認契約內容及釐清契約條文該注意的事項,必須投入大量人力研究眾多契約內容,找出各條文的關鍵文字或描述,並歸納其描述寫法,而後撰寫相關的自然語言規則判定欲分析的契約條文是否符合特定條件,進而協助審約人員審核契約。然而,撰寫的規則會因契約條文多樣性(相同文意但換句話說、條文文字錯漏),導致影響條文歸納的準確性。In the past, in order to classify contracts, confirm the content of contracts and clarify the matters that should be paid attention to in contract clauses, a lot of manpower must be invested in studying the contents of many contracts, finding the key words or descriptions of each clause, and summarizing their description writing methods, and then writing relevant natural language rules to determine whether the contract clause to be analyzed meets specific conditions, thereby assisting reviewers in reviewing contracts. However, the rules written will affect the accuracy of the clause summary due to the diversity of contract clauses (same meaning but different words, clause wording errors and omissions).

有鑑於此,實有必要尋求一解決方案,以克服先前過度人力成本及契約標示的準確性之問題。In view of this, it is necessary to find a solution to overcome the previous problems of excessive labor costs and inaccuracy of contract markings.

因此,本發明的目的,即在提供一種協助審約人員審核契約的契約輔助審閱方法。Therefore, the purpose of the present invention is to provide a contract assisted review method for assisting reviewers in reviewing contracts.

於是,本發明契約輔助審閱方法,適用於將一自然語言的契約文檔之多個段落標記為多個契約架構類別中之至少一者,藉由一電腦裝置來實施,該電腦裝置儲存有一用於將一欲轉換句子轉換為一欲分類句義向量的第一句子轉向量模型,該契約輔助審閱方法包含一步驟(A)、一步驟(B)、一步驟(C)、一步驟(D),及一步驟(E)。Therefore, the contract-assisted review method of the present invention is applicable to marking multiple paragraphs of a natural language contract document as at least one of multiple contract structure categories, and is implemented by a computer device that stores a first sentence conversion vector model for converting a sentence to be converted into a sentence meaning vector to be classified. The contract-assisted review method includes step (A), step (B), step (C), step (D), and step (E).

步驟(A)是根據所接收之一相關於自然語言的待分類契約文檔,利用一自然語言文檔解析演算法,獲得多個對應該待分類契約文檔的待分類契約段落。Step (A) is to use a natural language document parsing algorithm based on a received contract document to be classified related to a natural language to obtain a plurality of contract paragraphs to be classified corresponding to the contract document to be classified.

步驟(B)是對於每一待分類契約段落,根據該待分類契約段落,利用該第一句子轉向量模型,獲得一對應該待分類契約段落的第一句義向量。Step (B) is to obtain a first sentence vector corresponding to each contract paragraph to be classified by using the first sentence conversion vector model according to the contract paragraph to be classified.

步驟(C)是對於每一第一句義向量,根據該第一句義向量,獲得一對應該第一句義向量的待分析架構類別向量,該待分析架構類別向量的每一元素分別對應該等契約架構類別中之一者。Step (C) is to obtain, for each first sentence meaning vector, a structure category vector to be analyzed corresponding to the first sentence meaning vector according to the first sentence meaning vector, wherein each element of the structure category vector to be analyzed corresponds to one of the contract structure categories.

步驟(D)是對於每一待分析架構類別向量的每一元素,判定該元素之數值是否大於一預設閾值。Step (D) is to determine, for each element of each to-be-analyzed framework category vector, whether the value of the element is greater than a preset threshold.

步驟(E)是對於每一待分析架構類別向量的每一元素,當判定出該元素之數值大於該預設閾值時,將該待分析架構類別向量所對應之該待分類契約段落作為一已分類契約段落,且將該元素所對應的該契約架構類別作為該已分類契約段落的一目標契約架構類別。Step (E) is that for each element of each architecture category vector to be analyzed, when it is determined that the value of the element is greater than the preset threshold, the contract paragraph to be classified corresponding to the architecture category vector to be analyzed is treated as a classified contract paragraph, and the contract architecture category corresponding to the element is used as a target contract architecture category of the classified contract paragraph.

本發明的另一目的,即在提供一種協助審約人員審核契約的契約輔助審閱裝置。Another object of the present invention is to provide a contract auxiliary review device for assisting reviewers in reviewing contracts.

於是,本發明契約輔助審閱裝置包含一儲存模組、一輸入模組,及一電連接該儲存模組與該輸入模組的處理模組。Therefore, the contract assisted review device of the present invention includes a storage module, an input module, and a processing module electrically connected to the storage module and the input module.

該儲存模組儲存有一用於將一欲轉換句子轉換為一欲分類句義向量的第一句子轉向量模型。The storage module stores a first sentence-to-vector model for converting a sentence to be converted into a sentence meaning vector to be classified.

該輸入模組用於接收一相關於自然語言的待分類契約文檔。The input module is used for receiving a contract document to be classified in natural language.

其中,該處理模組根據該待分類契約文檔,利用一自然語言文檔解析演算法,獲得多個對應該待分類契約文檔的待分類契約段落,對於每一待分類契約段落,該處理模組根據該待分類契約段落,利用該第一句子轉向量模型,獲得一對應該待分類契約段落的第一句義向量,對於每一第一句義向量,該處理模組根據該第一句義向量,獲得一對應該第一句義向量的待分析架構類別向量,該待分析架構類別向量的每一元素分別對應該等契約架構類別中之一者,對於每一待分析架構類別向量的每一元素,該處理模組判定該元素之數值是否大於一預設閾值,對於每一待分析架構類別向量的每一元素,當該處理模組判定出該元素之數值大於該預設閾值時,該處理模組將該待分析架構類別向量所對應之該待分類契約段落作為一已分類契約段落,且將該元素所對應的該契約架構類別作為該已分類契約段落的一目標契約架構類別。The processing module uses a natural language document parsing algorithm to obtain a plurality of contract paragraphs to be classified corresponding to the contract document to be classified according to the contract document to be classified. For each contract paragraph to be classified, the processing module uses the first sentence conversion vector model to obtain a first sentence meaning vector corresponding to the contract paragraph to be classified according to the contract paragraph to be classified. For each first sentence meaning vector, the processing module obtains a corresponding structure category vector to be analyzed according to the first sentence meaning vector. An element corresponds to one of the contract structure categories respectively. For each element of each structure category vector to be analyzed, the processing module determines whether the value of the element is greater than a preset threshold. For each element of each structure category vector to be analyzed, when the processing module determines that the value of the element is greater than the preset threshold, the processing module regards the contract segment to be classified corresponding to the structure category vector to be analyzed as a classified contract segment, and regards the contract structure category corresponding to the element as a target contract structure category of the classified contract segment.

本發明的功效在於:藉由該電腦裝置將每一待分類契約段落,利用該第一句子轉向量模型轉換為該第一句義向量,接著獲得每一第一句義向量所對應的該待分析架構類別向量,最後分析每一待分析架構類別向量的元素數值,將對應的該待分類契約段落標記出該目標契約架構類別,藉此將該待分類契約文檔所有的待分類契約段落進行標記,而審約人員審核於審核該待分類契約文檔時,便可參考上述該待分類契約段落的標記結果增加審約效率及準確性。The effect of the present invention is that: each contract paragraph to be classified is converted into the first sentence meaning vector by the computer device using the first sentence conversion vector model, and then the corresponding structure category vector to be analyzed is obtained, and finally the element value of each structure category vector to be analyzed is analyzed, and the corresponding contract paragraph to be classified is marked with the target contract structure category, thereby marking all the contract paragraphs to be classified in the contract document to be classified, and when reviewing the contract document to be classified, the reviewer can refer to the marking results of the contract paragraphs to be classified to increase the review efficiency and accuracy.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that similar components are represented by the same reference numerals in the following description.

參閱圖1,本發明契約輔助審閱方法之一實施例,適用於將一自然語言的契約文檔之多個段落標記為多個契約架構類別中之至少一者,並藉由一電腦裝置1來實施,該電腦裝置1包含一儲存模組11、一輸入模組12、一顯示模組13,及一電連接該儲存模組11與該輸入模組12與該顯示模組13的處理模組14。Referring to FIG. 1 , an embodiment of the contract assisted review method of the present invention is applicable to marking multiple paragraphs of a natural language contract document as at least one of multiple contract structure categories, and is implemented by a computer device 1, which includes a storage module 11, an input module 12, a display module 13, and a processing module 14 electrically connecting the storage module 11, the input module 12, and the display module 13.

該儲存模組11儲存有一用於將一欲轉換句子轉換為一欲分類句義向量的第一句子轉向量模型、一第二句子轉向量模型、一句子轉字向量模型、一用於將該欲分類句義向量轉換為一維度與該等契約架構類別數量相同的欲分析架構類別向量的特徵擷取分類模型、一契約關鍵提示對應表、一用於根據一預設句子與指示出相關性結果的一預設相關性結果語句與該等段落中之一者來獲得三者間相關程度的相關性預測模型、一契約違約金提示對應表,及一用於根據關於違約金敘述的另一預設句子與該等段落中之一者來獲得該等段落中之該者中之每一個字屬於與該另一預設句子相關之敘述的第一個字所對應的一起點概率值和屬於與該另一預設句子相關之敘述的最後一個字所對應的一終點概率值的段落擷取模型。The storage module 11 stores a first sentence conversion vector model for converting a sentence to be converted into a sentence vector to be classified, a second sentence conversion vector model, a sentence conversion word vector model, a feature extraction classification model for converting the sentence vector to be classified into a vector of a structure category to be analyzed with a dimension equal to the number of the contract structure categories, a contract key prompt corresponding table, a default relevance result sentence for indicating the relevance result according to a default sentence, and a default relevance result sentence for converting the sentence vector to be classified into a feature extraction classification model for converting the sentence vector to be classified into a vector of a structure category to be analyzed with a dimension equal to the number of the contract structure categories, and a default relevance result sentence for indicating the relevance result according to a default sentence. A correlation prediction model for obtaining the degree of correlation among the three paragraphs based on another preset sentence about the description of the penalty for breach of contract, a corresponding table of contract penalty reminders, and a paragraph extraction model for obtaining, based on another preset sentence about the description of the penalty for breach of contract and one of the paragraphs, a starting probability value corresponding to the first word of the description related to the other preset sentence and an ending probability value corresponding to the last word of the description related to the other preset sentence for each word in the paragraph.

其中,該契約關鍵提示對應表包含多個相關性契約架構類別、每一相關性契約架構類別所對應的至少一相關性測試句,及每一相關性契約架構類別所對應之多個對應多種相關性結果的相關性結果語句。每一相關性契約架構類別為該等契約架構類別中之一者。The contract key prompt corresponding table includes a plurality of relevant contract structure categories, at least one relevant test sentence corresponding to each relevant contract structure category, and a plurality of relevant result sentences corresponding to each relevant contract structure category. Each relevant contract structure category is one of the contract structure categories.

其中,該契約違約金提示對應表包含多個違約金契約架構類別,及每一違約金契約架構類別所對應的至少一違約金測試句。每一違約金契約架構類別為該等契約架構類別中之一者。The contract penalty reminder corresponding table includes a plurality of penalty contract structure categories and at least one penalty test sentence corresponding to each penalty contract structure category. Each penalty contract structure category is one of the contract structure categories.

該儲存模組11還儲存有多筆契約架構訓練資料集、多筆契約相關性訓練資料集,及多筆契約違約金訓練資料集。The storage module 11 also stores a plurality of contract structure training data sets, a plurality of contract correlation training data sets, and a plurality of contract default penalty training data sets.

其中,每一契約架構訓練資料集包含一訓練契約段落,及該訓練契約段落所對應的至少一契約架構類別答案。該少一契約架構類別答案為該等契約架構類別中之一者且係由人工標記方式產生。Each contract structure training data set includes a training contract paragraph and at least one contract structure category answer corresponding to the training contract paragraph. The at least one contract structure category answer is one of the contract structure categories and is generated by manual marking.

其中,每一契約相關性訓練資料包含一訓練相關性契約段落、該訓練相關性契約段落所對應的該架構類別,及該訓練相關性契約段落所對應的一契約相關性答案。其中,該訓練相關性契約段落所對應的該架構類別為該等相關性契約架構類別中之一者。其中,該契約相關性答案為該訓練相關性契約段落所對應的該架構類別所對應的所有相關性結果中之一者且由人工標記方式產生。Each contract-related training data includes a training-related contract paragraph, the framework category corresponding to the training-related contract paragraph, and a contract-related answer corresponding to the training-related contract paragraph. The framework category corresponding to the training-related contract paragraph is one of the related contract framework categories. The contract-related answer is one of all related results corresponding to the framework category corresponding to the training-related contract paragraph and is generated by manual marking.

其中,每一契約違約金訓練資料集包含一訓練違約金契約段落、該訓練違約金契約段落所對應的該架構類別,及該訓練違約金契約段落所對應之一包含一起點位置及一終點位置的契約違約金答案。其中,該訓練違約金契約段落所對應的該架構類別為該等違約金契約架構類別中之一者。其中,該契約違約金答案的該起點位置用於指示所對應之該訓練契約段落中一個字的位置,而該契約違約金答案的該終點位置用於指示所對應之該訓練契約段落中另一個字的位置,故由該起點位置與該終點位置可定義出一段選自於所對應之該訓練契約段落的一段內容。其中,該契約違約金答案係由人工標註方式產生。Each contract default penalty training data set includes a training default penalty contract paragraph, the framework category corresponding to the training default penalty contract paragraph, and a contract default penalty answer corresponding to the training default penalty contract paragraph, which includes a starting position and an ending position. The framework category corresponding to the training default penalty contract paragraph is one of the default penalty contract framework categories. The starting position of the contract breach penalty answer is used to indicate the position of a word in the corresponding training contract paragraph, and the ending position of the contract breach penalty answer is used to indicate the position of another word in the corresponding training contract paragraph, so a section of content selected from the corresponding training contract paragraph can be defined by the starting position and the ending position. The contract breach penalty answer is generated by manual annotation.

值得特別說明的是,在本實施例中,該契約文檔包含一保密契約文檔,但不以此為限。而該等契約架構類別包含一契約主體類別、一契約目的類別、一機密資訊類別、一保密義務類別、一保密義務之排除類別、一保密期間及效力類別、一權利歸屬與擔保類別、一機密資訊之返回類別、一違約責任損害違約金類別、一違約責任違約金類別、一準據法及管轄法院類別,及一其他類別,但不以上述為限。It is worth noting that in this embodiment, the contract document includes a confidentiality contract document, but is not limited thereto. The contract structure categories include a contract subject category, a contract purpose category, a confidential information category, a confidentiality obligation category, a confidentiality obligation exclusion category, a confidentiality period and effectiveness category, a rights ownership and guarantee category, a confidential information return category, a breach of contract liability damages category, a breach of contract liability liquidated damages category, a governing law and jurisdictional court category, and other categories, but are not limited to the above.

該電腦裝置1可為一個人電腦、一平板電腦或一筆記型電腦,但不以此為限。The computer device 1 may be a personal computer, a tablet computer or a notebook computer, but is not limited thereto.

以下將配合本發明契約輔助審閱方法之該實施例,來說明該電腦裝置1中各元件的運作細節,該契約輔助審閱方法之該實施例包含一架構訓練程序、一相關性訓練程序、一違約金訓練程序、一架構分類程序、一相關性判定程序,及一違約金段落擷取程序。The following will be used in conjunction with the embodiment of the contract assisted review method of the present invention to explain the operating details of each component in the computer device 1. The embodiment of the contract assisted review method includes a framework training program, a relevance training program, a penalty training program, a framework classification program, a relevance determination program, and a penalty paragraph capture program.

參閱圖2,該架構訓練程序係根據所有契約架構訓練資料集進行訓練,並包含步驟41~44。Referring to FIG. 2 , the framework training process is trained based on all contract framework training data sets and includes steps 41 to 44.

在步驟41中,對於每一契約架構訓練資料集,該處理模組14根據該契約架構訓練資料集的該訓練契約段落,利用待訓練完成的該第一句子轉向量模型,獲得一對應該訓練契約段落的訓練第一句義向量。In step 41, for each contract framework training data set, the processing module 14 obtains a training first sentence meaning vector corresponding to the training contract paragraph based on the training contract paragraph of the contract framework training data set and using the first sentence conversion vector model to be trained.

值得特別說明的是,在本實施例中,該第一句子轉向量模型係為一基於變換器的雙向編碼器表示技術(BERT,Bidirectional Encoder Representations from Transformers)的編碼器,但不以此為限。而本實施例係將該第一句子轉向量模型所輸出的[CLS]向量作為該訓練第一句義向量,但不以此為限。It is worth noting that in this embodiment, the first sentence-to-vector model is a transformer-based bidirectional encoder representation technology (BERT, Bidirectional Encoder Representations from Transformers) encoder, but not limited to this. And this embodiment uses the [CLS] vector output by the first sentence-to-vector model as the training first sentence meaning vector, but not limited to this.

在步驟42中,對於每一契約架構訓練資料集,該處理模組14根據該契約架構訓練資料集所對應的該訓練第一句義向量,利用待訓練完成的該特徵擷取分類模型,獲得一對應該訓練第一句義向量的待處理訓練架構類別向量。In step 42, for each contract framework training data set, the processing module 14 obtains a training framework category vector to be processed corresponding to the training first sentence meaning vector according to the training first sentence meaning vector corresponding to the contract framework training data set and using the feature extraction classification model to be trained.

值得特別說明的是,在本實施例中,該特徵擷取分類模型係為一神經網路(NN,Neural Network)或一卷積神經網路模型(CNN,Convolutional Neural Network),但不以此為限。It is worth mentioning that in this embodiment, the feature extraction classification model is a neural network (NN) or a convolutional neural network model (CNN), but is not limited thereto.

在步驟43中,對於每一契約架構訓練資料集,該處理模組14根據該契約架構訓練資料集所對應的該待處理訓練架構類別向量,利用一乙狀函數(S型函數),將該待處理訓練架構類別向量中的每一元素進行映射轉換,以獲得一對應該待處理訓練架構類別向量的待分析訓練架構類別向量。In step 43, for each contract framework training data set, the processing module 14 uses a sigmoid function (S-type function) to map and transform each element in the training framework class vector to be processed corresponding to the contract framework training data set, so as to obtain a training framework class vector to be analyzed corresponding to the training framework class vector to be processed.

在步驟44中,對於每一契約架構訓練資料集,該處理模組14根據該契約架構訓練資料集所對應的該待分析訓練架構類別向量與該契約架構訓練資料集所對應的該至少一契約架構類別答案進行比對,並調整待訓練完成的該第一句子轉向量模型(進行微調Fine Tune)與待訓練完成的該特徵擷取分類模型之參數,進而獲得訓練完成的該第一句子轉向量模型及該特徵擷取分類模型。In step 44, for each contract framework training data set, the processing module 14 compares the training framework category vector to be analyzed corresponding to the contract framework training data set with the at least one contract framework category answer corresponding to the contract framework training data set, and adjusts the parameters of the first sentence conversion vector model to be trained (fine tuning) and the feature extraction classification model to be trained, thereby obtaining the trained first sentence conversion vector model and the feature extraction classification model.

參閱圖3,該相關性訓練程序係根據所有契約相關性訓練資料集進行訓練,並對於每一契約相關性訓練資料集進行處理,且包含步驟51~55。Referring to FIG. 3 , the relevance training procedure is trained based on all contract relevance training data sets, and processes each contract relevance training data set, and includes steps 51 to 55.

在步驟51中,該處理模組14根據該契約相關性訓練資料集的該訓練相關性契約段落所對應的該架構類別及該契約關鍵提示對應表,獲得該契約相關性訓練資料集的該訓練相關性契約段落所對應的所有相關性測試句與所有相關性結果語句。In step 51, the processing module 14 obtains all relevance test sentences and all relevance result sentences corresponding to the training relevance contract paragraph of the contract relevance training data set according to the architecture category corresponding to the training relevance contract paragraph of the contract relevance training data set and the contract key prompt corresponding table.

在步驟52中,對於該契約相關性訓練資料集的該訓練相關性契約段落所對應的每一相關性測試句,該處理模組14根據該契約相關性訓練資料集的該訓練相關性契約段落所對應的所有相關性結果語句、該相關性測試句及該契約相關性訓練資料集的該訓練相關性契約段落,利用待訓練完成的該第二句子轉向量模型,獲得關於該契約相關性訓練資料集的該訓練相關性契約段落所對應的每一相關性結果語句關於該待檢測相關性測試句及該待分析相關性契約段落的多個訓練第二句義向量。In step 52, for each relevance test sentence corresponding to the training relevance contract paragraph of the contract relevance training data set, the processing module 14 uses the second sentence conversion vector model to be trained to obtain multiple training second sentence meaning vectors about the relevance test sentence to be tested and the relevance contract paragraph to be analyzed for each relevance result sentence corresponding to the training relevance contract paragraph of the contract relevance training data set based on all relevance result sentences corresponding to the training relevance contract paragraph of the contract relevance training data set, the relevance test sentence and the training relevance contract paragraph of the contract relevance training data set.

值得特別說明的是,在本實施例中,該第二句子轉向量模型係為一基於變換器的雙向編碼器表示技術(BERT,Bidirectional Encoder Representations from Transformers)的編碼器,但不以此為限。而本實施例係將該第二句子轉向量模型所輸出的[CLS]向量作為該訓練第二句義向量,但不以此為限。It is worth noting that in this embodiment, the second sentence-to-vector model is a transformer-based bidirectional encoder representation technology (BERT, Bidirectional Encoder Representations from Transformers) encoder, but not limited to this. And this embodiment uses the [CLS] vector output by the second sentence-to-vector model as the training second sentence meaning vector, but not limited to this.

在步驟53中,對於該契約相關性訓練資料集的該訓練相關性契約段落所對應的每一相關性測試句,該處理模組14根據該相關性測試句所對應的每一訓練第二句義向量,利用待訓練完成的一第一線性轉換矩陣,獲得一對應該訓練第二句義向量的待處理訓練相關性向量。In step 53, for each relevance test sentence corresponding to the training relevance contract paragraph of the contract relevance training data set, the processing module 14 obtains a to-be-processed training relevance vector corresponding to the training second sentence meaning vector based on each training second sentence meaning vector corresponding to the relevance test sentence using a first linear transformation matrix to be trained.

在步驟54中,對於該契約相關性訓練資料集的該訓練相關性契約段落所對應的每一相關性測試句,該處理模組14根據該相關性測試句所對應的每一待處理訓練相關性向量,利用一歸一化指數函式(Softmax函式)進行映射轉換,以獲得一待分析訓練相關性向量。In step 54, for each relevance test sentence corresponding to the training relevance contract paragraph of the contract relevance training data set, the processing module 14 uses a normalized exponential function (Softmax function) to perform mapping transformation according to each training relevance vector to be processed corresponding to the relevance test sentence to obtain a training relevance vector to be analyzed.

在步驟55中,對於該契約相關性訓練資料集的該訓練相關性契約段落所對應的每一相關性測試句,該處理模組14根據該相關性測試句所對應的每一待分析訓練相關性向量與該契約相關性訓練資料集的該契約相關性答案進行比對,並調整待訓練完成的該第二句子轉向量模型(進行微調Fine Tune)與待訓練完成的該第一線性轉換矩陣之參數,進而獲得訓練完成的該相關性預測模型。In step 55, for each relevance test sentence corresponding to the training relevance contract paragraph of the contract relevance training data set, the processing module 14 compares each training relevance vector to be analyzed corresponding to the relevance test sentence with the contract relevance answer of the contract relevance training data set, and adjusts the parameters of the second sentence transformation vector model to be trained (fine tuning) and the first linear transformation matrix to be trained, thereby obtaining the trained relevance prediction model.

參閱圖4,該違約金訓練程序係根據所有契約違約金訓練資料集進行訓練,並對於每一契約違約金訓練資料集進行處理,且包含步驟61~67。Referring to FIG. 4 , the default penalty training procedure is trained based on all contract default penalty training data sets, and processes each contract default penalty training data set, and includes steps 61 to 67.

在步驟61中,該處理模組14根據該契約違約金提示對應表,獲得該契約違約金訓練資料集的該訓練違約金契約段落所對應的至少一違約金測試句。In step 61, the processing module 14 obtains at least one breach penalty test sentence corresponding to the training breach penalty contract paragraph of the contract breach penalty training data set according to the contract breach penalty prompt corresponding table.

在步驟62中,對於該契約違約金訓練資料集的該訓練違約金契約段落所對應的每一違約金測試句,該處理模組14根據該違約金測試句及該契約違約金訓練資料集的該訓練違約金契約段落,利用待訓練完成的該句子轉字向量模型,獲得關於該訓練違約金契約段落之每一個字的多個待處理訓練字義向量。In step 62, for each breach of contract fee test sentence corresponding to the training breach of contract fee paragraph of the contract breach of contract training data set, the processing module 14 obtains a plurality of to-be-processed training word meaning vectors for each word of the training breach of contract paragraph based on the breach of contract fee test sentence and the training breach of contract paragraph of the contract breach of contract training data set, using the sentence-to-word vector model to be trained.

值得特別說明的是,在本實施例中,該句子轉字向量模型係為一基於變換器的雙向編碼器表示技術(BERT,Bidirectional Encoder Representations from Transformers)的編碼器,但不以此為限。而本實施例係將該訓練違約金契約段落之每一個字經由該句子轉字向量模型轉換輸出的字向量作為該等待處理訓練字義向量,但不以此為限。It is worth noting that in this embodiment, the sentence-to-word vector model is a transformer-based bidirectional encoder representation technology (BERT, Bidirectional Encoder Representations from Transformers) encoder, but not limited to this. In this embodiment, each word in the training default contract paragraph is converted by the sentence-to-word vector model to output the word vector as the waiting-for-processing training word meaning vector, but not limited to this.

在步驟63中,對於該契約違約金訓練資料集的該訓練違約金契約段落所對應的每一違約金測試句,該處理模組14根據該違約金測試句關於該訓練違約金契約段落之每一個字的該等待處理訓練字義向量,利用待訓練完成的一第二線性轉換矩陣,獲得多個分別對應該等待處理訓練字義向量的待處理訓練起點概率值。In step 63, for each breach of contract test sentence corresponding to the training breach of contract paragraph of the breach of contract training data set, the processing module 14 obtains a plurality of to-be-processed training starting point probability values respectively corresponding to the to-be-processed training word meaning vectors according to the to-be-processed training word meaning vectors of each word in the training breach of contract paragraph of the breach of contract test sentence using a second linear transformation matrix to be trained.

在步驟64中,對於該契約違約金訓練資料集的該訓練違約金契約段落所對應的每一違約金測試句,該處理模組14根據該違約金測試句所對應的所有待處理訓練起點概率值,利用該歸一化指數函式進行映射轉換,以獲得該違約金測試句關於該訓練違約金契約段落之每一個字的多個訓練起點概率值。In step 64, for each penalty test sentence corresponding to the training penalty contract paragraph of the contract penalty training data set, the processing module 14 uses the normalized exponential function to perform mapping transformation according to all the to-be-processed training starting point probability values corresponding to the penalty test sentence to obtain multiple training starting point probability values of each word of the penalty test sentence with respect to the training penalty contract paragraph.

在步驟65中,對於該契約違約金訓練資料集的該訓練違約金契約段落所對應的每一違約金測試句,該處理模組14根據該違約金測試句關於該訓練違約金契約段落之每一個字的該等待處理訓練字義向量,利用待訓練完成的一第三線性轉換矩陣,獲得多個分別對應該等待處理訓練字義向量的待處理訓練終點概率值。In step 65, for each breach of contract test sentence corresponding to the training breach of contract paragraph of the contract breach of contract training data set, the processing module 14 obtains a plurality of pending training endpoint probability values respectively corresponding to the pending training word meaning vectors according to the pending training word meaning vectors of each word in the training breach of contract paragraph in the breach of contract test sentence, using a third linear transformation matrix to be completed for training.

在步驟66中,對於該契約違約金訓練資料集的該訓練違約金契約段落所對應的每一違約金測試句,該處理模組14根據該違約金測試句所對應的所有待處理訓練終點概率值,利用該歸一化指數函式進行映射轉換,以獲得該違約金測試句關於該訓練違約金契約段落之每一個字的多個訓練終點概率值。In step 66, for each penalty test sentence corresponding to the training penalty contract paragraph of the contract penalty training data set, the processing module 14 uses the normalized exponential function to perform mapping transformation according to all the pending training endpoint probability values corresponding to the penalty test sentence to obtain multiple training endpoint probability values of each word of the penalty test sentence with respect to the training penalty contract paragraph.

在步驟67中,對於該契約違約金訓練資料集的該訓練違約金契約段落所對應的每一違約金測試句,將該違約金測試句所對應的所有訓練起點概率值與所有訓練終點概率值與該契約違約金訓練資料集的該契約違約金答案進行比對,並調整待訓練完成的該句子轉字向量模型(進行微調Fine Tune)、待訓練完成的該第二線性轉換矩陣及待訓練完成的該第三線性轉換矩陣之參數,進而獲得訓練完成的該段落擷取模型。其中,具有最大之該訓練起點概率值的字之位置和具有最大之該訓練終點概率值的字之位置即為該契約違約金答案。In step 67, for each breach of contract test sentence corresponding to the training breach of contract paragraph of the breach of contract training data set, all training starting point probability values and all training ending point probability values corresponding to the breach of contract test sentence are compared with the breach of contract answer of the breach of contract training data set, and the sentence-to-word vector model to be trained is adjusted (fine tuning is performed), the second linear transformation matrix to be trained, and the parameters of the third linear transformation matrix to be trained are adjusted to obtain the trained paragraph capture model. Among them, the position of the word with the largest probability value of the training starting point and the position of the word with the largest probability value of the training ending point are the answers to the contract penalty.

參閱圖5,該架構分類程序包含步驟71~75。Referring to FIG. 5 , the framework classification process includes steps 71 to 75.

在步驟71中,該處理模組14根據該輸入模組12所接收之一相關於自然語言的待分類契約文檔,利用一自然語言文檔解析演算法,獲得多個對應該待分類契約文檔的待分類契約段落。In step 71, the processing module 14 uses a natural language document parsing algorithm according to a contract document to be classified related to a natural language received by the input module 12 to obtain a plurality of contract paragraphs to be classified corresponding to the contract document to be classified.

值得特別說明的是,在本實施例中,該自然語言文檔解析演算法係為Docx Parser軟體,但不以此為限。It is worth mentioning that in this embodiment, the natural language document parsing algorithm is Docx Parser software, but not limited to this.

在步驟72中,對於每一待分類契約段落,該處理模組14根據該待分類契約段落,利用該第一句子轉向量模型,獲得一對應該待分類契約段落的第一句義向量。在本實施例中,該處理模組14係將該第一句子轉向量模型所輸出的[CLS]向量作為該第一句義向量,但不以此為限。In step 72, for each contract paragraph to be classified, the processing module 14 uses the first sentence conversion vector model according to the contract paragraph to be classified to obtain a first sentence meaning vector corresponding to the contract paragraph to be classified. In this embodiment, the processing module 14 uses the [CLS] vector output by the first sentence conversion vector model as the first sentence meaning vector, but is not limited thereto.

在步驟73中,對於每一第一句義向量,該處理模組14根據該第一句義向量,利用該特徵擷取分類模型,獲得一對應該第一句義向量的待分析架構類別向量。其中,該待分析架構類別向量的每一元素分別對應該等契約架構類別中之一者。In step 73, for each first sentence meaning vector, the processing module 14 uses the feature extraction classification model according to the first sentence meaning vector to obtain a to-be-analyzed structure category vector corresponding to the first sentence meaning vector, wherein each element of the to-be-analyzed structure category vector corresponds to one of the contract structure categories.

參閱圖6,步驟73還包含子步驟731、732。Referring to FIG. 6 , step 73 further includes sub-steps 731 and 732 .

在子步驟731中,對於每一第一句義向量,該處理模組14根據該第一句義向量,利用該特徵擷取分類模型,獲得一對應該第一句義向量的待處理架構類別向量。In sub-step 731, for each first sentence meaning vector, the processing module 14 uses the feature extraction classification model according to the first sentence meaning vector to obtain a to-be-processed framework category vector corresponding to the first sentence meaning vector.

在子步驟732中,對於每一待處理架構類別向量,該處理模組14根據該待處理架構類別向量,利用該乙狀函數,將該待處理架構類別向量中的每一元素進行映射轉換,以獲得一對應該待處理架構類別向量的待分析架構類別向量。In sub-step 732, for each architecture class vector to be processed, the processing module 14 uses the sigmoid function to map and transform each element in the architecture class vector to be processed according to the architecture class vector to be processed, so as to obtain an architecture class vector to be analyzed corresponding to the architecture class vector to be processed.

在步驟74中,對於每一待分析架構類別向量的每一元素,該處理模組14判定該元素之數值是否大於一預設閾值。當該處理模組14判定出該元素之數值大於該預設閾值時,進行流程步驟75;當該處理模組14判定出該元素之數值不大於該預設閾值時,不執行任何程序。In step 74, for each element of each to-be-analyzed framework class vector, the processing module 14 determines whether the value of the element is greater than a preset threshold. When the processing module 14 determines that the value of the element is greater than the preset threshold, the process proceeds to step 75; when the processing module 14 determines that the value of the element is not greater than the preset threshold, no program is executed.

在步驟75中,對於每一待分析架構類別向量的每一元素,該處理模組14將該待分析架構類別向量所對應之該待分類契約段落作為一已分類契約段落,且將該元素所對應的該契約架構類別作為該已分類契約段落的一目標契約架構類別,並將該已分類契約段落及該目標契約架構類別顯示於該顯示模組13。In step 75, for each element of each architecture category vector to be analyzed, the processing module 14 treats the contract paragraph to be classified corresponding to the architecture category vector to be analyzed as a classified contract paragraph, and treats the contract architecture category corresponding to the element as a target contract architecture category of the classified contract paragraph, and displays the classified contract paragraph and the target contract architecture category in the display module 13.

參閱圖7、8及表一,該相關性判定程序係執行於該契約架構類別分類程序之後,並對於每一已分類契約段落進行處理,該相關性判定程序包含步驟81~84。Referring to Figures 7, 8 and Table 1, the relevance determination process is executed after the contract structure classification process, and processes each classified contract paragraph. The relevance determination process includes steps 81-84.

在步驟81中,該處理模組14判定該已分類契約段落所對應的該至少一目標契約架構類別中,是否存在與該契約關鍵提示對應表的該等相關性契約架構類別之任一者相同的至少一待分析相關性契約架構類別。當該處理模組14判定出存在該至少一待分析相關性契約架構類別時,進行流程步驟82;當該處理模組14判定出不存在任一待分析相關性契約架構類別時,結束該相關性判定程序。In step 81, the processing module 14 determines whether there is at least one relevant contract structure category to be analyzed that is the same as any of the relevant contract structure categories in the contract key prompt corresponding table in the at least one target contract structure category corresponding to the classified contract paragraph. When the processing module 14 determines that there is at least one relevant contract structure category to be analyzed, the process step 82 is performed; when the processing module 14 determines that there is no relevant contract structure category to be analyzed, the relevance determination procedure is terminated.

在步驟82中,對於每一待分析相關性契約架構類別,該處理模組14根據該契約關鍵提示對應表,將與該待分析相關性契約架構類別相同之該相關性契約架構類別所對應的該至少一相關性測試句作為至少一待檢測相關性測試句,並將與該待分析相關性契約架構類別相同之該相關性契約架構類別所對應的所有相關性結果語句作為多個待檢測相關性結果語句,並將該已分類契約段落作為一待分析相關性契約段落。In step 82, for each relevant contract structure category to be analyzed, the processing module 14, based on the contract key prompt corresponding table, takes the at least one relevant test sentence corresponding to the relevant contract structure category that is the same as the relevant contract structure category to be analyzed as at least one relevant test sentence to be tested, and takes all relevant result statements corresponding to the relevant contract structure category that is the same as the relevant contract structure category to be analyzed as multiple relevant result statements to be tested, and takes the classified contract paragraph as a relevant contract paragraph to be analyzed.

在步驟83中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組14根據該待分析相關性契約架構類別所對應的所有待檢測相關性結果語句、該待分析相關性契約架構類別所對應的所有待檢測相關性測試句及該待分析相關性契約段落,利用該相關性預測模型,獲得多個待判定相關性預測結果。其中,每一待判定相關性預測結果包含該待分析相關性契約架構類別所對應的每一待檢測相關性結果語句、該待分析相關性契約架構類別所對應的每一待檢測相關性測試句及該待分析相關性契約段落三者間關於該待分析相關性契約架構類別所對應的該等相關性結果的多個待判定相關概率值。In step 83, for each relevance contract structure category to be analyzed in the relevance contract paragraph to be analyzed, the processing module 14 uses the relevance prediction model to obtain multiple relevance prediction results to be determined based on all relevance result sentences to be detected corresponding to the relevance contract structure category to be analyzed, all relevance test sentences to be detected corresponding to the relevance contract structure category to be analyzed, and the relevance contract paragraph to be analyzed. Among them, each relevance prediction result to be determined includes multiple relevance probability values to be determined between each relevance result sentence to be detected corresponding to the relevance contract structure category to be analyzed, each relevance test sentence to be detected corresponding to the relevance contract structure category to be analyzed, and the relevance contract paragraph to be analyzed regarding the relevance results corresponding to the relevance contract structure category to be analyzed.

參閱圖8,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組進行一相關性概率值獲取程序來獲得該至少一待判定相關性預測結果並作為步驟83,步驟83還包含子步驟831~833。Referring to FIG. 8 , for each relevant contract structure category to be analyzed in the relevant contract paragraph to be analyzed, the processing module performs a relevance probability value acquisition procedure to obtain the at least one relevance prediction result to be determined as step 83, and step 83 also includes sub-steps 831~833.

在子步驟831中,對於該待分析相關性契約架構類別的每一待檢測相關性測試句,該處理模組14根據該待分析相關性契約架構類別的所有待檢測相關性結果語句、該待檢測相關性測試句及該待分析相關性契約段落,利用該第二句子轉向量模型,獲得多個關於所有待檢測相關性結果語句與該待檢測相關性測試句及該待分析相關性契約段落的第二句義向量。在本實施例中,該處理模組14係將該第二句子轉向量模型所輸出的[CLS]向量作為該第二句義向量,但不以此為限。In sub-step 831, for each relevance test sentence to be detected of the relevance contract framework category to be analyzed, the processing module 14 uses the second sentence conversion vector model to obtain multiple second sentence meaning vectors about all relevance result sentences to be detected, the relevance test sentences to be detected, and the relevance contract paragraph to be analyzed based on all relevance result sentences to be detected of the relevance contract framework category to be analyzed, the relevance test sentences to be detected, and the relevance contract paragraph to be analyzed. In this embodiment, the processing module 14 uses the [CLS] vector output by the second sentence conversion vector model as the second sentence meaning vector, but is not limited to this.

在子步驟832中,對於該待分析相關性契約架構類別的每一第二句義向量,該處理模組14根據該第二句義向量,利用該第一線性轉換矩陣,獲得一對應該第二句義向量的待處理相關性向量。In sub-step 832, for each second sentence meaning vector of the relevance contract structure category to be analyzed, the processing module 14 uses the first linear transformation matrix according to the second sentence meaning vector to obtain a relevance vector to be processed corresponding to the second sentence meaning vector.

在子步驟833中,對於該待分析相關性契約架構類別的每一待處理相關性向量,該處理模組14根據該待處理相關性向量的所有元素,利用該歸一化指數函式進行映射轉換,以獲得一作為該待判定相關性預測結果的待分析相關性向量。其中,該待分析相關性向量的所有元素係為該等待判定相關概率值。In sub-step 833, for each correlation vector to be processed of the correlation contract structure category to be analyzed, the processing module 14 uses the normalized index function to perform mapping transformation according to all elements of the correlation vector to be processed to obtain a correlation vector to be analyzed as the prediction result of the correlation to be determined. Among them, all elements of the correlation vector to be analyzed are the correlation probability values to be determined.

在步驟84中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組14根據該待分析相關性契約架構類別所對應的所有待判定相關性預測結果,獲得一指示出該待分析相關性契約段落屬於該待分析相關性契約架構類別所對應所有相關性結果之其中一者的目標相關性標記結果,並將該目標相關性標記結果顯示於該顯示模組13。In step 84, for each relevant contract structure category to be analyzed of the relevant contract paragraph to be analyzed, the processing module 14 obtains a target relevance marking result indicating that the relevant contract paragraph to be analyzed belongs to one of all the relevance results corresponding to the relevant contract structure category to be analyzed based on all the to-be-determined relevance prediction results corresponding to the relevant contract structure category to be analyzed, and displays the target relevance marking result on the display module 13.

特別地,在步驟84中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組14係根據該待分析相關性契約架構類別所對應所有待判定相關概率值中,將具有最大之該待判定相關概率值所對應的該相關性結果作為該目標相關性標記結果,但不以此為限。In particular, in step 84, for each relevant contract structure category to be analyzed in the relevant contract paragraph to be analyzed, the processing module 14 uses the correlation result corresponding to the largest relevant probability value to be determined among all relevant probability values to be determined corresponding to the relevant contract structure category to be analyzed as the target relevance marking result, but is not limited to this.

參閱表一,具體來說,在步驟81、82中,當該處理模組14判定該待分析相關性契約段落屬於「保密期間及效力類別」時可知,該待分析相關性契約段落所對應的該至少一待檢測相關性測試句即為「保密期限是多久」及「接受資料後需要保密的期限是」且該待分析相關性契約段落所對應的所有待檢測相關性結果語句即為「一年以內(含)」、「超過一年」及「未規定」,並將該已分類契約段落作為該待分析相關性契約段落。在步驟83中,該處理模組14根據「保密期限是多久」、「一年以內(含)」及該待分析相關性契約段落,獲得一第一待分析相關性向量;根據「保密期限是多久」、「超過一年」及該待分析相關性契約段落,獲得一第二待分析相關性向量;根據「保密期限是多久」、「未規定」及該待分析相關性契約段落,獲得一第三待分析相關性向量;根據「接受資料後需要保密的期限是」、「一年以內(含)」及該待分析相關性契約段落,獲得一第四待分析相關性向量;根據「接受資料後需要保密的期限是」、「超過一年」及該待分析相關性契約段落,獲得一第五待分析相關性向量;根據「接受資料後需要保密的期限是」、「未規定」及該待分析相關性契約段落,獲得一第六待分析相關性向量。在步驟84中,若判定出前述六個待分析相關性向量中所有元素具之最大待判定相關概率值對應的相關性結果語句是「一年以內(含)」,則將「一年以內(含)」作為該目標相關性標記結果,並將該目標相關性標記結果顯示於該顯示模組13。特別地,該至少一相關性測試句與該等相關性結果語句不限於表一範例,可依設計者自由增加或修改。 相關性契約架構類別 相關性測試句 相關性結果語句 機密資訊類別 1.機密資訊揭露時要標示什麼 2.機密資訊揭露時要聲明什麼 3.披露的時候要做什麼呢 1.無標註機密資料範圍 2.有標註機密資料範圍 保密義務類別 1.誰要對對方的秘密保密 2.雙方的責任是什麼 3.谁要对对方的秘密保密 1.單方 2.雙方 保密期間及效力類別 1.保密期限是多久 2.接受資料後需要保密的期限是 1.一年以內(含) 2.超過一年 3.未規定 違約責任損害違約金類別 1.違反合約的損害賠償約定為何 2.損害賠償的範圍 1.賠償直接損失 2.賠償超過直接損失 3.未約定 違約責任違約金類別 1.違約金的約定為何 2.違約金或懲罰性違約金為何 3.違約金或懲罰性違約金描述為何 1.有違約金 2.無違約金 準據法及管轄法院類別 1.準據法為何 2.管轄法院為何 1.台灣 2.中國 3.仲裁:台灣 4.仲裁:中國 5.無法判斷 表一 Refer to Table 1. Specifically, in steps 81 and 82, when the processing module 14 determines that the relevant contract paragraph to be analyzed belongs to the "confidentiality period and effectiveness category", it can be known that the at least one relevance test sentence to be tested corresponding to the relevant contract paragraph to be analyzed is "How long is the confidentiality period" and "The period of confidentiality required after receiving the data is" and all the relevance result sentences to be tested corresponding to the relevant contract paragraph to be analyzed are "within one year (inclusive)", "more than one year" and "not specified", and the classified contract paragraph is used as the relevant contract paragraph to be analyzed. In step 83, the processing module 14 obtains a first relevance vector to be analyzed according to "how long is the confidentiality period", "within one year (inclusive)" and the relevant contract paragraph to be analyzed; obtains a second relevance vector to be analyzed according to "how long is the confidentiality period", "more than one year" and the relevant contract paragraph to be analyzed; obtains a third relevance vector to be analyzed according to "how long is the confidentiality period", "unspecified" and the relevant contract paragraph to be analyzed; "The period of confidentiality required after receiving the data is", "within one year (inclusive)" and the relevant contract paragraph to be analyzed, a fourth relevance vector to be analyzed is obtained; based on "The period of confidentiality required after receiving the data is", "more than one year" and the relevant contract paragraph to be analyzed, a fifth relevance vector to be analyzed is obtained; based on "The period of confidentiality required after receiving the data is", "unspecified" and the relevant contract paragraph to be analyzed, a sixth relevance vector to be analyzed is obtained. In step 84, if it is determined that the relevance result statement corresponding to the maximum relevance probability value to be determined for all elements in the above six relevance vectors to be analyzed is "within one year (inclusive)", then "within one year (inclusive)" is used as the target relevance marking result, and the target relevance marking result is displayed on the display module 13. In particular, the at least one correlation test sentence and the correlation result sentences are not limited to the examples in Table 1, and can be freely added or modified by the designer. Related Contract Structure Class Relevance Test Sentences Relevance Result Statement Confidential Information Category 1. What should be marked when confidential information is disclosed? 2. What should be stated when confidential information is disclosed? 3. What should be done when disclosing? 1. Scope of non-classified confidential data 2. Scope of classified confidential data Types of confidentiality obligations 1. Who has to keep the other party's secrets confidential? 2. What are the responsibilities of both parties? 3. Who has to keep the other party's secrets confidential? 1. Unilateral 2. Bilateral Confidentiality period and effectiveness category 1. How long is the confidentiality period? 2. How long is the confidentiality period after receiving the information? 1. Within one year (inclusive) 2. More than one year 3. Not specified Breach of contract damages and penalty categories 1. What is the stipulation for damages for breach of contract? 2. Scope of damages 1. Compensation for direct losses 2. Compensation for losses exceeding direct losses 3. Not agreed upon Breach of contract penalty category 1. What is the agreement on liquidated damages? 2. What is liquidated damages or punitive liquidated damages? 3. What is the description of liquidated damages or punitive liquidated damages? 1. With penalty 2. Without penalty Governing Law and Type of Jurisdiction 1. What is the applicable law? 2. What is the jurisdiction of the court? 1. Taiwan 2. China 3. Arbitration: Taiwan 4. Arbitration: China 5. Unable to determine Table 1

參閱圖9~11及表二,該違約金段落擷取程序係執行於該契約架構類別分類程序之後,並對於每一已分類契約段落進行處理,並包含步驟91~97。Referring to Figures 9-11 and Table 2, the penalty paragraph extraction process is executed after the contract structure classification process, and processes each classified contract paragraph, and includes steps 91-97.

在步驟91中,該處理模組14判定該已分類契約段落所對應的該至少一目標契約架構類別中,是否存在與該契約違約金提示對應表的該等違約金契約架構類別之任一者相同的至少一待分析違約金契約架構類別。當該處理模組14判定出存在該至少一待分析違約金契約架構類別時,進行流程步驟92;當該處理模組14判定出不存在任一待分析違約金契約架構類別時,結束該違約金段落擷取程序。In step 91, the processing module 14 determines whether there is at least one target contract structure category corresponding to the classified contract paragraph that is the same as any of the default penalty contract structure categories in the contract default penalty prompt corresponding table. When the processing module 14 determines that there is at least one default penalty contract structure category to be analyzed, the process step 92 is performed; when the processing module 14 determines that there is no default penalty contract structure category to be analyzed, the default penalty paragraph capture procedure is terminated.

在步驟92中,對於每一待分析違約金契約架構類別,該處理模組14根據該契約違約金提示對應表,將與該待分析違約金契約架構類別相同之該違約金契約架構類別所對應的該至少一違約金測試句作為至少一待檢測違約金測試句,並將該已分類契約段落作為一待分析違約金契約段落。In step 92, for each penalty contract structure category to be analyzed, the processing module 14 uses the at least one penalty test sentence corresponding to the penalty contract structure category that is the same as the penalty contract structure category to be analyzed as at least one penalty test sentence to be tested, and uses the classified contract paragraph as a penalty contract paragraph to be analyzed according to the contract penalty prompt corresponding table.

在步驟93中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組14根據該待分析違約金契約架構類別的每一待檢測違約金測試句及該待分析違約金契約段落,利用該段落擷取模型,獲得至少一待判定違約金擷取結果。其中,每一待判定違約金擷取結果包含該待分析違約金契約段落之每一個字屬於關於所對應之待檢測違約金測試句之敘述之第一個字所對應的一違約金起點概率值與屬於關於所對應之待檢測違約金測試句之敘述之最後一個字所對應的一違約金終點概率值。In step 93, for each of the to-be-analyzed breach of contract structure categories of the to-be-analyzed breach of contract paragraph, the processing module 14 uses the paragraph capture model to obtain at least one to-be-determined breach of contract capture result according to each to-be-detected breach of contract test sentence of the to-be-analyzed breach of contract structure category and the to-be-analyzed breach of contract paragraph. Each to-be-determined breach of contract capture result includes a breach of contract starting point probability value corresponding to the first word of the description of the corresponding to-be-detected breach of contract test sentence and a breach of contract ending point probability value corresponding to the last word of the description of the corresponding to-be-detected breach of contract test sentence.

參閱圖10,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組進行一起終點概率值獲取程序來獲得該至少一待判定違約金擷取結果並作為步驟93,步驟93還包含子步驟931~936。Referring to FIG. 10 , for each default penalty contract structure category to be analyzed in the default penalty contract section to be analyzed, the processing module performs an endpoint probability value acquisition procedure to obtain at least one default penalty capture result to be determined as step 93, and step 93 also includes sub-steps 931 to 936.

在子步驟931,對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組14根據該待檢測違約金測試句及該待分析違約金契約段落,利用該句子轉字向量模型,獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個待處理字義向量。在本實施例中,該處理模組14係將該待分析違約金契約段落之每一個字經由該句子轉字向量模型轉換輸出的字向量作為該等待處理字義向量,但不以此為限。In sub-step 931, for each test sentence of the breach of contract to be analyzed of the category of the breach of contract structure to be analyzed, the processing module 14 uses the sentence-to-word vector model to obtain multiple word vectors to be processed for each word of the test sentence of the breach of contract to be analyzed with respect to the paragraph of the breach of contract to be analyzed. In this embodiment, the processing module 14 uses the word vector output by the sentence-to-word vector model for each word of the paragraph of the breach of contract to be analyzed as the word vector to be processed, but is not limited thereto.

在子步驟932,對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組14根據該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的所有待處理字義向量,利用該第二線性轉換矩陣,獲得多個分別對應該等待處理字義向量的待處理違約金起點概率值。In sub-step 932, for each penalty test sentence to be detected in the penalty contract structure category to be analyzed, the processing module 14 uses the second linear transformation matrix to obtain multiple penalty starting point probability values to be processed that correspond to the word meaning vectors to be processed according to all the word meaning vectors to be processed of each word in the penalty test sentence to be detected in the penalty contract paragraph to be analyzed.

在子步驟933,對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組14根據該待檢測違約金測試句所對應的所有待處理違約金起點概率值,利用該歸一化指數函式進行映射轉換,以獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個違約金起點概率值。In sub-step 933, for each penalty test sentence to be detected in the penalty contract structure category to be analyzed, the processing module 14 uses the normalized index function to perform mapping transformation according to all penalty starting point probability values to be processed corresponding to the penalty test sentence to be detected, so as to obtain multiple penalty starting point probability values of each word in the penalty test sentence to be detected with respect to the penalty contract paragraph to be analyzed.

在子步驟934,對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組14根據該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的所有待處理字義向量,利用該第三線性轉換矩陣,獲得多個分別對應該等待處理字義向量的待處理違約金終點概率值。In sub-step 934, for each penalty test sentence to be tested in the penalty contract structure category to be analyzed, the processing module 14 uses the third linear transformation matrix to obtain multiple penalty endpoint probability values to be processed that respectively correspond to the word meaning vectors to be processed based on all the word meaning vectors to be processed of each word in the penalty contract paragraph to be analyzed in the penalty test sentence to be detected.

在子步驟935,對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組14根據該待檢測違約金測試句所對應的所有待處理違約金終點概率值,利用該歸一化指數函式進行映射轉換,以獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個違約金終點概率值。In sub-step 935, for each penalty test sentence to be tested in the penalty contract structure category to be analyzed, the processing module 14 uses the normalized exponential function to perform mapping transformation according to all penalty endpoint probability values to be processed corresponding to the penalty test sentence to be detected, so as to obtain multiple penalty endpoint probability values of each word in the penalty test sentence to be detected with respect to the penalty contract paragraph to be analyzed.

在子步驟936,對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組14將該待檢測違約金測試句所對應的所有違約金起點概率值與所有違約金終點概率值作為該待判定違約金擷取結果。In sub-step 936, for each penalty test sentence to be detected in the penalty contract structure category to be analyzed, the processing module 14 uses all penalty starting point probability values and all penalty ending point probability values corresponding to the penalty test sentence to be detected as the penalty capture result to be determined.

在步驟94中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組14根據該待分析違約金契約架構類別所有待判定違約金擷取結果,獲得一關於該待分析違約金契約架構類別,且指示出該待分析違約金契約段落中由一目標違約金起點字與一目標違約金終點字所定義出之一違約金段落的目標違約金擷取結果,並將該目標違約金擷取結果顯示於該顯示模組13。In step 94, for each penalty contract structure category to be analyzed in the penalty contract paragraph to be analyzed, the processing module 14 obtains a target penalty capture result for the penalty contract structure category to be analyzed based on all pending penalty capture results for the penalty contract structure category to be analyzed, and indicates a target penalty capture result for a penalty paragraph defined by a target penalty starting point word and a target penalty ending point word in the penalty contract paragraph to be analyzed, and displays the target penalty capture result on the display module 13.

參閱圖11,步驟94還包含子步驟941~943。Referring to FIG. 11 , step 94 further includes sub-steps 941 to 943.

在子步驟941中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組14根據該待分析違約金契約架構類別所對應的所有違約金起點概率值,自該待分析違約金契約段落的所有字中,獲得一具有最大之該違約金起點概率值的字並作為該目標違約金起點字。In sub-step 941, for each penalty contract structure category to be analyzed in the penalty contract paragraph to be analyzed, the processing module 14 obtains a word with the largest penalty starting probability value from all the words in the penalty contract paragraph to be analyzed according to all the penalty starting probability values corresponding to the penalty contract structure category to be analyzed, and uses it as the target penalty starting word.

在子步驟942中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組14根據該待分析違約金契約架構類別所對應的所有違約金終點概率值,自該待分析違約金契約段落的所有字中,獲得一具有最大之該違約金終點概率值的字並作為該目標違約金終點字。In sub-step 942, for each penalty contract structure category to be analyzed in the penalty contract paragraph to be analyzed, the processing module 14 obtains a word with the largest penalty endpoint probability value from all the words in the penalty contract paragraph to be analyzed according to all the penalty endpoint probability values corresponding to the penalty contract structure category to be analyzed, and uses it as the target penalty endpoint word.

在子步驟943中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組14根據該待分析違約金契約架構類別所對應的該目標違約金起點字與該目標違約金終點字,定義出該違約金段落並作為該目標違約金擷取結果。In sub-step 943, for each liquidated damages contract structure category to be analyzed of the liquidated damages contract paragraph to be analyzed, the processing module 14 defines the liquidated damages paragraph as the target liquidated damages capture result according to the target liquidated damages starting point word and the target liquidated damages ending point word corresponding to the liquidated damages contract structure category to be analyzed.

參閱表二,具體來說,在步驟91、92中,當該處理模組14判定該待分析違約金契約段落屬於「違約責任損害違約金類別」時可知,該待分析違約金契約段落所對應的該至少一待檢測違約金測試句即為「違約金的約定為何」及「違約金或懲罰性違約金為何」;在步驟93中,該處理模組14根據「違約金的約定為何」及該待分析違約金契約段落,獲得該待分析違約金契約段落之每一個字關於「違約金的約定為何」的一第一違約金起點概率值與一第一違約金終點概率值;該處理模組14再根據「違約金或懲罰性違約金為何」及該待分析相關性契約段落,獲得該待分析違約金契約段落之每一個字關於「違約金或懲罰性違約金為何」的一第二違約金起點概率值與一第二違約金終點概率值;而在步驟94中,根據所有第一違約金起點概率值與所有第二違約金起點概率值,將具有最大之違約金起點概率值的字作為該目標違約金起點字,且根據所有第一違約金終點概率值與所有第二違約金終點概率值,將具有最大之違約金終點概率值的字作為該目標違約金終點字,獲得關於「違約責任損害違約金類別」且包含該違約金段落(例如:違約金為20萬美金)的該目標違約金擷取結果,並將該目標違約金擷取結果顯示於該顯示模組13。特別地,該等違約金測試句不限於表二範例,可依設計者自由增加或修改。 違約金契約架構類別 違約金測試句 違約責任損害違約金類別 1.違約金的約定為何 2.違約金或懲罰性違約金為何 違約責任違約金類別 表二 Referring to Table 2, specifically, in steps 91 and 92, when the processing module 14 determines that the liquidated damages contract paragraph to be analyzed belongs to the "liquidation damages category", it can be known that the at least one liquidated damages test sentence to be tested corresponding to the liquidated damages contract paragraph to be analyzed is "what is the liquidated damages agreement" and "what is the liquidated damages or punitive liquidated damages"; in step 93, the liquidated damages contract paragraph to be analyzed is the "liquidation damages" and "what is the liquidated damages or punitive liquidated damages"; The processing module 14 obtains a first penalty starting point probability value and a first penalty ending point probability value for each word of the penalty contract paragraph to be analyzed with respect to "what is the penalty agreement" according to "what is the penalty agreement" and the penalty contract paragraph to be analyzed; the processing module 14 then obtains the penalty or punitive penalty according to "what is the penalty agreement" and the relevant contract paragraph to be analyzed. Analyze each word in the penalty contract paragraph for a second penalty starting probability value and a second penalty ending probability value regarding "what is the penalty or punitive penalty"; and in step 94, based on all the first penalty starting probability values and all the second penalty starting probability values, use the word with the largest penalty starting probability value as the target penalty starting word, and based on all the first penalty starting probability values and all the second penalty starting probability values The first default penalty endpoint probability value and all the second default penalty endpoint probability values are used, and the word with the largest default penalty endpoint probability value is used as the target default penalty endpoint word, and the target default penalty extraction result about the "default liability damages default penalty category" and including the default penalty paragraph (for example: the default penalty is 200,000 US dollars) is obtained, and the target default penalty extraction result is displayed on the display module 13. In particular, the default penalty test sentences are not limited to the examples in Table 2, and can be freely added or modified according to the designer. Types of penalty contract structures Liquidated Damage Test Sentence Breach of contract damages and penalty categories 1. What is the agreement on liquidated damages? 2. What is liquidated damages or punitive liquidated damages? Breach of contract penalty category Table 2

在步驟95中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組14根據該待分析違約金契約架構類別所對應之該目標違約金擷取結果的該違約金段落,利用習知的一自然語言技術,獲得該違約金段落中的一違約金數值。In step 95, for each penalty contract structure category to be analyzed in the penalty contract paragraph to be analyzed, the processing module 14 obtains a penalty value in the penalty paragraph according to the penalty paragraph of the target penalty capture result corresponding to the penalty contract structure category to be analyzed, using a known natural language technology.

在步驟96中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別所對應的該違約金數值,該處理模組14判定該違約金數值是否大於一警示金額。當該處理模組14當判定出大於該警示金額時,進行流程步驟97;當該處理模組14當判定出不大於該警示金額時,結束該違約金段落擷取程序。In step 96, for the penalty value corresponding to each penalty contract structure category to be analyzed in the penalty contract segment to be analyzed, the processing module 14 determines whether the penalty value is greater than a warning amount. When the processing module 14 determines that it is greater than the warning amount, the process proceeds to step 97; when the processing module 14 determines that it is not greater than the warning amount, the penalty segment capture procedure is terminated.

在步驟97中,該處理模組14產生一產生一指示出該待分析違約金契約架構類別所對應之該違約金段落需警示的警示訊號並顯示於該顯示模組13。In step 97 , the processing module 14 generates a warning signal indicating that the default penalty section corresponding to the default penalty contract structure type to be analyzed needs to be warned and displays it on the display module 13 .

綜上所述,本發明契約輔助審閱方法,藉由該處理模組14執行該架構分類程序,將該待分類契約文檔所有的待分類契約段落進行標記為所屬的該目標契約架構類別,供審約人員審核該待分類契約文檔可清楚地了解每一待分類契約段落的標的;而藉由該處理模組14執行該相關性訓練程序,還將該待分類契約文檔的部分該待分類契約段落額外加註重點提示說明,以輔助審約人員了解此待分類契約段落所描述的核心內容;最後,藉由該處理模組14執行該違約金段落擷取程序,除擷取該待分類契約文檔中所有記載關於違約金的內容供審約人員判斷其風險外,還針對其違約金過高的該違約金段落產生該警示訊號,以幫助審約人員審降低審約的風險、增加審約效率及準確性,故確實能達成本發明的目的。In summary, the contract assisted review method of the present invention, through the processing module 14 executing the framework classification procedure, marks all the contract paragraphs to be classified in the contract document to be classified as the target contract framework category to which they belong, so that the review personnel who review the contract document to be classified can clearly understand the subject of each contract paragraph to be classified; and through the processing module 14 executing the relevance training procedure, some of the contract paragraphs to be classified in the contract document to be classified are additionally marked with key points. The prompt explanation is provided to assist the reviewer to understand the core content described in the contract paragraph to be classified; finally, the processing module 14 executes the penalty paragraph extraction procedure, in addition to extracting all the contents related to the penalty in the contract document to be classified for the reviewer to judge its risk, it also generates the warning signal for the penalty paragraph with too high penalty, so as to help the reviewer reduce the risk of the review, increase the efficiency and accuracy of the review, so that the purpose of the present invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only an embodiment of the present invention and should not be used to limit the scope of implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present patent.

1:電腦裝置 11:儲存模組 12:輸入模組 13:顯示模組 14:處理模組 41~44:步驟 51~55:步驟 61~67:步驟 71~75:步驟 731~732:子步驟 81~84:步驟 831~833:子步驟 91~97:步驟 931~936:子步驟 941~943:子步驟1: Computer device 11: Storage module 12: Input module 13: Display module 14: Processing module 41~44: Steps 51~55: Steps 61~67: Steps 71~75: Steps 731~732: Sub-steps 81~84: Steps 831~833: Sub-steps 91~97: Steps 931~936: Sub-steps 941~943: Sub-steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明一用於執行本發明契約輔助審閱方法之一實施例的電腦裝置; 圖2是一流程圖,說明本發明契約輔助審閱方法之該實施例的一架構訓練程序; 圖3是一流程圖,說明該實施例的一相關性訓練程序; 圖4是一流程圖,說明該實施例的一違約金訓練程序; 圖5是一流程圖,說明該實施例的一架構分類程序; 圖6是一流程圖,說明該實施例的該架構分類程序之如何獲得一待分析架構類別向量; 圖7是一流程圖,說明該實施例的一相關性判定程序; 圖8是一流程圖,說明該實施例的該相關性判定程序如何獲得多個待判定相關性預測結果; 圖9是一流程圖,說明該實施例的一違約金段落擷取程序; 圖10是一流程圖,說明該實施例的該違約金段落擷取程序如何獲得至少一待判定違約金擷取結果;及 圖11是一流程圖,說明該實施例的該違約金段落擷取程序如何獲得一目標違約金擷取結果。 Other features and functions of the present invention will be clearly presented in the implementation method with reference to the drawings, in which: FIG. 1 is a block diagram illustrating a computer device for executing an embodiment of the contract assisted review method of the present invention; FIG. 2 is a flow chart illustrating a framework training procedure of the embodiment of the contract assisted review method of the present invention; FIG. 3 is a flow chart illustrating a relevance training procedure of the embodiment; FIG. 4 is a flow chart illustrating a default fee training procedure of the embodiment; FIG. 5 is a flow chart illustrating a framework classification procedure of the embodiment; FIG. 6 is a flow chart illustrating how the framework classification procedure of the embodiment obtains a framework category vector to be analyzed; FIG. 7 is a flow chart illustrating a relevance determination procedure of the embodiment; FIG. 8 is a flow chart illustrating how the relevance determination procedure of the embodiment obtains a plurality of relevance prediction results to be determined; FIG. 9 is a flow chart illustrating a penalty paragraph extraction procedure of the embodiment; FIG. 10 is a flow chart illustrating how the penalty paragraph extraction procedure of the embodiment obtains at least one penalty extraction result to be determined; and FIG. 11 is a flow chart illustrating how the penalty paragraph extraction procedure of the embodiment obtains a target penalty extraction result.

71~75······· 步驟71~75······· Steps

Claims (18)

一種契約輔助審閱方法,適用於將一自然語言的契約文檔之多個段落標記為多個契約架構類別中之至少一者,藉由一電腦裝置來實施,該電腦裝置儲存有一基於變換器的雙向編碼器表示技術且用於將一欲轉換句子轉換為一欲分類句義向量的第一句子轉向量模型、一契約關鍵提示對應表,及一基於變換器的雙向編碼器表示技術且用於根據一預設句子與指示出相關性結果的一預設相關性結果語句與該等段落中之一者來獲得三者間相關程度的相關性預測模型,該契約關鍵提示對應表包含多個相關性契約架構類別、每一相關性契約架構類別所對應的至少一相關性測試句,及每一相關性契約架構類別所對應之多個對應多種相關性結果的相關性結果語句,每一相關性契約架構類別為該等契約架構類別中之一者,該契約輔助審閱方法包含以下步驟: (A) 根據所接收之一相關於自然語言的待分類契約文檔,利用一自然語言文檔解析演算法,獲得多個對應該待分類契約文檔的待分類契約段落; (B) 對於每一待分類契約段落,根據該待分類契約段落,利用該第一句子轉向量模型,獲得一對應該待分類契約段落的第一句義向量; (C) 對於每一第一句義向量,根據該第一句義向量,獲得一對應該第一句義向量的待分析架構類別向量,該待分析架構類別向量的每一元素分別對應該等契約架構類別中之一者; (D) 對於每一待分析架構類別向量的每一元素,判定該元素之數值是否大於一預設閾值; (E) 對於每一待分析架構類別向量的每一元素,當判定出該元素之數值大於該預設閾值時,將該待分析架構類別向量所對應之該待分類契約段落作為一已分類契約段落,且將該元素所對應的該契約架構類別作為該已分類契約段落的一目標契約架構類別; (F) 對於每一已分類契約段落,該電腦裝置對該已分類契約段落進行一相關性判定程序,該相關性判定程序包括子步驟(F-1)、(F-2)、(F-3)及(F-4): (F-1) 判定該已分類契約段落所對應的該至少一目標契約架構類別中,是否存在與該契約關鍵提示對應表的該等相關性契約架構類別之任一者相同的至少一待分析相關性契約架構類別; (F-2) 當判定出存在該至少一待分析相關性契約架構類別時,對於每一待分析相關性契約架構類別,根據該契約關鍵提示對應表,將與該待分析相關性契約架構類別相同之該相關性契約架構類別所對應的該至少一相關性測試句作為至少一待檢測相關性測試句,並將與該待分析相關性契約架構類別相同之該相關性契約架構類別所對應的所有相關性結果語句作為多個待檢測相關性結果語句,並將該已分類契約段落作為一待分析相關性契約段落; (F-3) 對於該待分析相關性契約段落的每一待分析相關性契約架構類別,根據該待分析相關性契約架構類別所對應的所有待檢測相關性結果語句、該待分析相關性契約架構類別所對應的所有待檢測相關性測試句及該待分析相關性契約段落,利用該相關性預測模型,獲得多個待判定相關性預測結果,每一待判定相關性預測結果包含該待分析相關性契約架構類別所對應的每一待檢測相關性結果語句、該待分析相關性契約架構類別所對應的每一待檢測相關性測試句及該待分析相關性契約段落三者間關於該待分析相關性契約架構類別所對應的該等相關性結果的多個待判定相關概率值;及 (F-4) 對於該待分析相關性契約段落的每一待分析相關性契約架構類別,根據該待分析相關性契約架構類別所對應的所有待判定相關性預測結果,獲得一指示出該待分析相關性契約段落屬於該待分析相關性契約架構類別所對應所有相關性結果之其中一者的目標相關性標記結果。 A contract assisted review method is used to mark multiple paragraphs of a natural language contract document as at least one of multiple contract structure categories, and is implemented by a computer device, the computer device storing a first sentence conversion vector model based on a transformer-based bidirectional encoder representation technology for converting a sentence to be converted into a sentence vector to be classified, a contract key prompt corresponding table, and a transformer-based bidirectional encoder representation technology for indicating a correlation result according to a preset sentence. A correlation prediction model of the correlation degree between the three is obtained by presetting a correlation result statement and one of the paragraphs. The contract key prompt correspondence table includes multiple correlation contract structure categories, at least one correlation test sentence corresponding to each correlation contract structure category, and multiple correlation result statements corresponding to multiple correlation results corresponding to each correlation contract structure category. Each correlation contract structure category is one of the contract structure categories. The contract assisted review method includes the following steps: (A) Based on a received contract document to be classified related to a natural language, a natural language document parsing algorithm is used to obtain a plurality of contract paragraphs to be classified corresponding to the contract document to be classified; (B) For each contract paragraph to be classified, based on the contract paragraph to be classified, a first sentence vector corresponding to the contract paragraph to be classified is obtained using the first sentence conversion vector model; (C) For each first sentence vector, based on the first sentence vector, a structure category vector to be analyzed corresponding to the first sentence vector is obtained, each element of the structure category vector to be analyzed corresponds to one of the contract structure categories; (D) For each element of each structure category vector to be analyzed, whether the value of the element is greater than a preset threshold is determined; (E) For each element of each to-be-analyzed framework category vector, when it is determined that the value of the element is greater than the preset threshold, the to-be-classified contract paragraph corresponding to the to-be-analyzed framework category vector is treated as a classified contract paragraph, and the contract framework category corresponding to the element is treated as a target contract framework category of the classified contract paragraph; (F) For each classified contract paragraph, the computer device performs a relevance determination procedure on the classified contract paragraph, and the relevance determination procedure includes sub-steps (F-1), (F-2), (F-3) and (F-4): (F-1) Determine whether there is at least one to-be-analyzed relevant contract framework category that is the same as any of the relevant contract framework categories in the contract key prompt corresponding table in the at least one target contract framework category corresponding to the classified contract paragraph; (F-2) When it is determined that there is at least one relevant contract structure category to be analyzed, for each relevant contract structure category to be analyzed, according to the contract key prompt corresponding table, the at least one relevant test sentence corresponding to the relevant contract structure category that is the same as the relevant contract structure category to be analyzed is used as at least one relevant test sentence to be tested, and all relevant result sentences corresponding to the relevant contract structure category that is the same as the relevant contract structure category to be analyzed are used as multiple relevant result sentences to be tested, and the classified contract paragraph is used as a relevant contract paragraph to be analyzed; (F-3) For each relevant contract structure category to be analyzed of the relevant contract paragraph to be analyzed, based on all relevant result statements to be tested corresponding to the relevant contract structure category to be analyzed, all relevant test sentences to be tested corresponding to the relevant contract structure category to be analyzed, and the relevant contract paragraph to be analyzed, the relevant prediction model is used to obtain multiple relevant prediction results to be determined, each relevant prediction result to be determined includes multiple relevant probability values to be determined between each relevant result statement to be tested corresponding to the relevant contract structure category to be analyzed, each relevant test sentence to be tested corresponding to the relevant contract structure category to be analyzed, and the relevant contract paragraph to be analyzed, regarding the relevant results corresponding to the relevant contract structure category to be analyzed; and (F-4) For each relevant contract structure category to be analyzed of the relevant contract paragraph to be analyzed, according to all the to-be-determined relevant prediction results corresponding to the relevant contract structure category to be analyzed, a target relevance marking result indicating that the relevant contract paragraph to be analyzed belongs to one of all the relevant results corresponding to the relevant contract structure category to be analyzed is obtained. 如請求項1所述的契約輔助審閱方法,其中,該電腦裝置還儲存有一用於將該欲分類句義向量轉換為一維度與該等契約架構類別數量相同的欲分析架構類別向量的特徵擷取分類模型,步驟(C)還包含以下步驟: (C-1) 對於每一第一句義向量,根據該第一句義向量,利用該特徵擷取分類模型,獲得一對應該第一句義向量的待處理架構類別向量;及 (C-2) 對於每一待處理架構類別向量,根據該待處理架構類別向量,利用一乙狀函數,將該待處理架構類別向量中的每一元素進行映射轉換,以獲得一對應該待處理架構類別向量的待分析架構類別向量。 The contract assisted review method as described in claim 1, wherein the computer device further stores a feature extraction classification model for converting the sentence meaning vector to be classified into a structure category vector to be analyzed having the same dimension as the number of the contract structure categories, and step (C) further includes the following steps: (C-1) for each first sentence meaning vector, based on the first sentence meaning vector, using the feature extraction classification model to obtain a structure category vector to be processed corresponding to the first sentence meaning vector; and (C-2) for each structure category vector to be processed, based on the structure category vector to be processed, using a sigmoid function to map and transform each element in the structure category vector to be processed, so as to obtain a structure category vector to be analyzed corresponding to the structure category vector to be processed. 如請求項1所述的契約輔助審閱方法,其中,在子步驟(F-3)中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該電腦裝置還執行以下步驟: (F-3-1) 對於該待分析相關性契約架構類別的每一待檢測相關性測試句,根據該待分析相關性契約架構類別的所有待檢測相關性結果語句、該待檢測相關性測試句及該待分析相關性契約段落,利用一第二句子轉向量模型,獲得多個關於所有待檢測相關性結果語句與該待檢測相關性測試句及該待分析相關性契約段落的第二句義向量; (F-3-2) 對於該待分析相關性契約架構類別的每一第二句義向量,根據該第二句義向量,利用一第一線性轉換矩陣,獲得一對應該第二句義向量的待處理相關性向量;及 (F-3-3) 對於該待分析相關性契約架構類別的每一待處理相關性向量,根據該待處理相關性向量的所有元素,利用一歸一化指數函式進行映射轉換,以獲得一作為該待判定相關性預測結果的待分析相關性向量,該待分析相關性向量的所有元素係為該等待判定相關概率值。 The contract assisted review method as described in claim 1, wherein, in sub-step (F-3), for each relevant contract structure category to be analyzed of the relevant contract paragraph to be analyzed, the computer device further performs the following steps: (F-3-1) For each relevant test sentence to be detected of the relevant contract structure category to be analyzed, based on all relevant result sentences to be detected of the relevant contract structure category to be analyzed, the relevant test sentence to be detected and the relevant contract paragraph to be analyzed, a second sentence conversion vector model is used to obtain multiple second sentence meaning vectors of all relevant result sentences to be detected, the relevant test sentence to be detected and the relevant contract paragraph to be analyzed; (F-3-2) For each second semantic vector of the relevance contract structure category to be analyzed, a first linear transformation matrix is used according to the second semantic vector to obtain a relevance vector to be processed corresponding to the second semantic vector; and (F-3-3) For each relevance vector to be processed of the relevance contract structure category to be analyzed, a normalized exponential function is used to perform mapping transformation according to all elements of the relevance vector to be processed to obtain a relevance vector to be analyzed as the prediction result of the relevance to be determined, and all elements of the relevance vector to be analyzed are the relevance probability values to be determined. 如請求項1所述的契約輔助審閱方法,其中,在步驟(F-4)中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該電腦裝置係根據該待分析相關性契約架構類別所對應所有待判定相關概率值中,將具有最大之該待判定相關概率值所對應的該相關性結果作為該目標相關性標記結果。A contract assisted review method as described in claim 1, wherein in step (F-4), for each relevant contract structure category to be analyzed in the relevant contract paragraph to be analyzed, the computer device uses the relevance result corresponding to the largest relevant probability value to be determined among all relevant probability values to be determined corresponding to the relevant contract structure category to be analyzed as the target relevance marking result. 如請求項1所述的契約輔助審閱方法,其中,該電腦裝置還儲存有一契約違約金提示對應表,及一段落擷取模型,該段落擷取模型用於根據關於違約金敘述的另一預設句子與該等段落中之一者來獲得該等段落中之該者中之每一個字屬於與該另一預設句子相關之敘述的第一個字所對應的一起點概率值和屬於與該另一預設句子相關之敘述的最後一個字所對應的一終點概率值,該契約違約金提示對應表包含多個違約金契約架構類別,及每一違約金契約架構類別所對應的至少一違約金測試句,每一違約金契約架構類別為該等契約架構類別中之一者,在步驟(E)之後,該契約輔助審閱方法還包含一步驟(G),對於每一已分類契約段落,該電腦裝置對該已分類契約段落進行一違約金段落擷取程序,其中,該違約金段落擷取程序包括以下子步驟: (G-1) 判定該已分類契約段落所對應的該至少一目標契約架構類別中,是否存在與該契約違約金提示對應表的該等違約金契約架構類別之任一者相同的至少一待分析違約金契約架構類別; (G-2) 當判定出存在該至少一待分析違約金契約架構類別時,對於每一待分析違約金契約架構類別,根據該契約違約金提示對應表,將與該待分析違約金契約架構類別相同之該違約金契約架構類別所對應的該至少一違約金測試句作為至少一待檢測違約金測試句,並將該已分類契約段落作為一待分析違約金契約段落; (G-3) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,根據該待分析違約金契約架構類別的每一待檢測違約金測試句及該待分析違約金契約段落,利用該段落擷取模型,獲得至少一待判定違約金擷取結果,每一待判定違約金擷取結果包含該待分析違約金契約段落之每一個字屬於關於所對應之待檢測違約金測試句之敘述之第一個字所對應的一違約金起點概率值與屬於關於所對應之待檢測違約金測試句之敘述之最後一個字所對應的一違約金終點概率值;及 (G-4) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,根據該待分析違約金契約架構類別所有待判定違約金擷取結果,獲得一關於該待分析違約金契約架構類別,且指示出該待分析違約金契約段落中由一目標違約金起點字與一目標違約金終點字所定義出之一違約金段落的目標違約金擷取結果。 The contract assisted review method as described in claim 1, wherein the computer device further stores a contract breach penalty prompt correspondence table and a paragraph extraction model, the paragraph extraction model is used to obtain a starting probability value corresponding to the first word of the description related to the other default sentence and an ending probability value corresponding to the last word of the description related to the other default sentence for each word in the one of the paragraphs according to another default sentence about the breach penalty description and one of the paragraphs, The contract penalty reminder corresponding table includes multiple penalty contract structure categories, and at least one penalty test sentence corresponding to each penalty contract structure category, and each penalty contract structure category is one of the contract structure categories. After step (E), the contract auxiliary review method further includes a step (G), for each classified contract paragraph, the computer device performs a penalty paragraph extraction process on the classified contract paragraph, wherein the penalty paragraph extraction process includes the following sub-steps: (G-1) Determine whether there is at least one target contract structure category to be analyzed that is identical to any of the contract structure categories in the contract default penalty prompt corresponding table in the at least one target contract structure category corresponding to the classified contract paragraph; (G-2) When it is determined that there is at least one contract structure category to be analyzed, for each contract structure category to be analyzed, according to the contract default penalty prompt corresponding table, the at least one default penalty test sentence corresponding to the contract structure category identical to the contract structure category to be analyzed is used as at least one default penalty test sentence to be tested, and the classified contract paragraph is used as a default penalty contract paragraph to be analyzed; (G-3) For each breach of contract structure category to be analyzed of the breach of contract paragraph to be analyzed, based on each breach of contract test sentence to be tested of the breach of contract structure category to be analyzed and the breach of contract paragraph to be analyzed, the paragraph extraction model is used to obtain at least one breach of contract extraction result to be determined, each breach of contract extraction result to be determined includes a breach of contract starting point probability value corresponding to the first word of the description of the corresponding breach of contract test sentence to be tested and a breach of contract ending point probability value corresponding to the last word of the description of the corresponding breach of contract test sentence to be tested for each word of the breach of contract paragraph to be analyzed; and (G-4) For each of the to-be-analyzed penalty contract structure categories of the to-be-analyzed penalty contract paragraph, according to all the to-be-determined penalty capture results of the to-be-analyzed penalty contract structure category, a target penalty capture result of a penalty paragraph defined by a target penalty starting point word and a target penalty ending point word in the to-be-analyzed penalty contract paragraph is obtained for the to-be-analyzed penalty contract structure category, and indicated. 如請求項5所述的契約輔助審閱方法,其中,在步驟(G-3)中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該電腦裝置還執行以下步驟: (G-3-1) 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,根據該待檢測違約金測試句及該待分析違約金契約段落,利用一句子轉字向量模型,獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個待處理字義向量; (G-3-2) 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,根據該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的所有待處理字義向量,利用一第二線性轉換矩陣,獲得多個分別對應該等待處理字義向量的待處理違約金起點概率值; (G-3-3) 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,根據該待檢測違約金測試句所對應的所有待處理違約金起點概率值,利用一歸一化指數函式進行映射轉換,以獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個違約金起點概率值; (G-3-4) 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,根據該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的所有待處理字義向量,利用一第三線性轉換矩陣,獲得多個分別對應該等待處理字義向量的待處理違約金終點概率值; (G-3-5) 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,根據該待檢測違約金測試句所對應的所有待處理違約金終點概率值,利用該歸一化指數函式進行映射轉換,以獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個違約金終點概率值;及 (G-3-6) 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,將該待檢測違約金測試句所對應的所有違約金起點概率值與所有違約金終點概率值作為該待判定違約金擷取結果。 The contract assisted review method as described in claim 5, wherein, in step (G-3), for each breach of contract structure category to be analyzed in the breach of contract paragraph to be analyzed, the computer device further performs the following steps: (G-3-1) For each breach of contract test sentence to be tested in the breach of contract structure category to be analyzed, based on the breach of contract test sentence to be tested and the breach of contract paragraph to be analyzed, a sentence-to-word vector model is used to obtain multiple to-be-processed word meaning vectors for each word in the breach of contract paragraph to be analyzed in the breach of contract test sentence to be tested; (G-3-2) For each penalty test sentence to be tested in the penalty contract structure category to be analyzed, a second linear transformation matrix is used to obtain multiple penalty starting point probability values to be processed corresponding to the word meaning vectors to be processed according to all the penalty starting point probability values to be processed corresponding to the penalty test sentence to be analyzed, so as to obtain multiple penalty starting point probability values of the penalty test sentence to be tested for each word in the penalty contract paragraph to be analyzed; (G-3-3) For each penalty test sentence to be tested in the penalty contract structure category to be analyzed, a normalized index function is used to perform mapping transformation according to all the penalty starting point probability values to be processed corresponding to the penalty test sentence to be tested, so as to obtain multiple penalty starting point probability values of the penalty test sentence to be tested for each word in the penalty contract paragraph to be analyzed; (G-3-4) For each pending penalty test sentence of the pending penalty contract structure category, based on all pending word meaning vectors of each word in the pending penalty contract paragraph of the pending penalty test sentence, a third linear transformation matrix is used to obtain a plurality of pending penalty endpoint probability values corresponding to the pending word meaning vectors; (G-3-5) For each penalty test sentence to be tested of the penalty contract structure category to be analyzed, the normalized index function is used to perform mapping transformation according to all pending penalty endpoint probability values corresponding to the penalty test sentence to be tested, so as to obtain multiple penalty endpoint probability values of each word of the penalty contract paragraph to be analyzed for the penalty test sentence to be tested; and (G-3-6) For each penalty test sentence to be tested of the penalty contract structure category to be analyzed, all penalty starting probability values and all penalty endpoint probability values corresponding to the penalty test sentence to be tested are used as the penalty extraction result to be determined. 如請求項5所述的契約輔助審閱方法,其中,步驟(G-4)還包含以下步驟: (G-4-1) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,根據該待分析違約金契約架構類別所對應的所有違約金起點概率值,自該待分析違約金契約段落的所有字中,獲得一具有最大之該違約金起點概率值的字並作為該目標違約金起點字; (G-4-2) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,根據該待分析違約金契約架構類別所對應的所有違約金終點概率值,自該待分析違約金契約段落的所有字中,獲得一具有最大之該違約金終點概率值的字並作為該目標違約金終點字;及 (G-4-3) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,根據該待分析違約金契約架構類別所對應的該目標違約金起點字與該目標違約金終點字,定義出該違約金段落並作為該目標違約金擷取結果。 The contract assisted review method as described in claim 5, wherein step (G-4) further comprises the following steps: (G-4-1) For each breach of contract structure category to be analyzed in the breach of contract paragraph to be analyzed, according to all breach of contract starting point probability values corresponding to the breach of contract structure category to be analyzed, a word with the largest breach of contract starting point probability value is obtained from all words in the breach of contract paragraph to be analyzed and used as the target breach of contract starting point word; (G-4-2) For each of the penalty contract structure categories to be analyzed in the penalty contract paragraph to be analyzed, according to all the penalty end point probability values corresponding to the penalty contract structure category to be analyzed, a word with the largest penalty end point probability value is obtained from all the words in the penalty contract paragraph to be analyzed and used as the target penalty end point word; and (G-4-3) For each of the penalty contract structure categories to be analyzed in the penalty contract paragraph to be analyzed, according to the target penalty starting point word and the target penalty end point word corresponding to the penalty contract structure category to be analyzed, the penalty paragraph is defined and used as the target penalty capture result. 如請求項5所述的契約輔助審閱方法,其中,該違約金段落擷取程序中的步驟(G-4)後,還包含以下子步驟: (G-5) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,根據該待分析違約金契約架構類別所對應之該目標違約金擷取結果的該違約金段落,利用一自然語言技術,獲得該違約金段落中的一違約金數值; (G-6) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別所對應的該違約金數值,判定該違約金數值是否大於一警示金額;及 (G-7) 對於該待分析違約金契約段落的每一待分析違約金契約架構類別所對應的該違約金數值,當判定出大於該警示金額時,產生一指示出該待分析違約金契約架構類別所對應之該違約金段落需警示的警示訊號並顯示於一螢幕。 The contract assisted review method as described in claim 5, wherein after step (G-4) in the penalty paragraph extraction procedure, the following sub-steps are further included: (G-5) For each penalty contract structure category to be analyzed in the penalty contract paragraph to be analyzed, according to the penalty paragraph of the target penalty extraction result corresponding to the penalty contract structure category to be analyzed, using a natural language technology, a penalty value in the penalty paragraph is obtained; (G-6) For the penalty value corresponding to each penalty contract structure category to be analyzed in the penalty contract paragraph to be analyzed, determine whether the penalty value is greater than a warning amount; and (G-7) For the penalty value corresponding to each penalty contract structure type to be analyzed in the penalty contract segment to be analyzed, when it is determined to be greater than the warning amount, a warning signal indicating that the penalty segment corresponding to the penalty contract structure type to be analyzed needs to be warned is generated and displayed on a screen. 如請求項1所述的契約輔助審閱方法,其中,在步驟(A)中,該待分類契約文檔包含一保密契約文檔,該等契約架構類別包含一契約主體類別、一契約目的類別、一機密資訊類別、一保密義務類別、一保密義務之排除類別、一保密期間及效力類別、一權利歸屬與擔保類別、一機密資訊之返回類別、一違約責任損害違約金類別、一違約責任違約金類別、一準據法及管轄法院類別,及一其他類別。A contract assisted review method as described in claim 1, wherein, in step (A), the contract document to be classified includes a confidential contract document, and the contract structure categories include a contract subject category, a contract purpose category, a confidential information category, a confidentiality obligation category, a confidentiality obligation exclusion category, a confidentiality period and effectiveness category, a rights ownership and guarantee category, a confidential information return category, a breach of contract liability damages category, a breach of contract liability penalty category, a governing law and jurisdiction category, and an other category. 一種契約輔助審閱裝置,適用於將一自然語言的契約文檔之多個段落標記為多個契約架構類別中之至少一者,包含: 一儲存模組,儲存有一基於變換器的雙向編碼器表示技術且用於將一欲轉換句子轉換為一欲分類句義向量的第一句子轉向量模型、一契約關鍵提示對應表,及一基於變換器的雙向編碼器表示技術且用於根據一預設句子與指示出相關性結果的一預設相關性結果語句與該等段落中之一者來獲得三者間相關程度的相關性預測模型,該契約關鍵提示對應表包含多個相關性契約架構類別、每一相關性契約架構類別所對應的至少一相關性測試句,及每一相關性契約架構類別所對應之多個對應多種相關性結果的相關性結果語句,每一相關性契約架構類別為該等契約架構類別中之一者; 一輸入模組,用於接收一相關於自然語言的待分類契約文檔; 一處理模組,電連接該儲存模組與該輸入模組;及 其中,該處理模組根據該待分類契約文檔,利用一自然語言文檔解析演算法,獲得多個對應該待分類契約文檔的待分類契約段落, 對於每一待分類契約段落,該處理模組根據該待分類契約段落,利用該第一句子轉向量模型,獲得一對應該待分類契約段落的第一句義向量, 對於每一第一句義向量,該處理模組根據該第一句義向量,獲得一對應該第一句義向量的待分析架構類別向量,該待分析架構類別向量的每一元素分別對應該等契約架構類別中之一者, 對於每一待分析架構類別向量的每一元素,該處理模組判定該元素之數值是否大於一預設閾值, 對於每一待分析架構類別向量的每一元素,當該處理模組判定出該元素之數值大於該預設閾值時,該處理模組將該待分析架構類別向量所對應之該待分類契約段落作為一已分類契約段落,且將該元素所對應的該契約架構類別作為該已分類契約段落的一目標契約架構類別, 對於每一已分類契約段落,該處理模組對該已分類契約段落進行一相關性判定程序,其中,該相關性判定程序包括該處理模組判定該已分類契約段落所對應的該至少一目標契約架構類別中,是否存在與該契約關鍵提示對應表的該等相關性契約架構類別之任一者相同的至少一待分析相關性契約架構類別,當該處理模組判定出存在該至少一待分析相關性契約架構類別時,對於每一待分析相關性契約架構類別,該處理模組根據該契約關鍵提示對應表,將與該待分析相關性契約架構類別相同之該相關性契約架構類別所對應的該至少一相關性測試句作為至少一待檢測相關性測試句,並將與該待分析相關性契約架構類別相同之該相關性契約架構類別所對應的所有相關性結果語句作為多個待檢測相關性結果語句,並將該已分類契約段落作為一待分析相關性契約段落,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組根據該待分析相關性契約架構類別所對應的所有待檢測相關性結果語句、該待分析相關性契約架構類別所對應的所有待檢測相關性測試句及該待分析相關性契約段落,利用該相關性預測模型,獲得多個待判定相關性預測結果,每一待判定相關性預測結果包含該待分析相關性契約架構類別所對應的每一待檢測相關性結果語句、該待分析相關性契約架構類別所對應的每一待檢測相關性測試句及該待分析相關性契約段落三者間關於該待分析相關性契約架構類別所對應的該等相關性結果的多個待判定相關概率值,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組根據該待分析相關性契約架構類別所對應的所有待判定相關性預測結果,獲得一指示出該待分析相關性契約段落屬於該待分析相關性契約架構類別所對應所有相關性結果之其中一者的目標相關性標記結果。 A contract review-assisted device is used to mark multiple paragraphs of a natural language contract document as at least one of multiple contract structure categories, including: A storage module stores a first sentence conversion vector model based on a transformer-based bidirectional encoder representation technology and used to convert a sentence to be converted into a sentence semantic vector to be classified, a contract key prompt corresponding table, and a transformer-based bidirectional encoder representation technology and used to obtain a correlation prediction model based on a preset sentence and a preset correlation result sentence indicating a correlation result and one of the paragraphs to obtain the correlation degree between the three. The contract key prompt corresponding table includes multiple correlation contract structure categories, at least one correlation test sentence corresponding to each correlation contract structure category, and multiple correlation result sentences corresponding to each correlation contract structure category corresponding to multiple correlation results, and each correlation contract structure category is one of the contract structure categories; An input module for receiving a contract document to be classified related to a natural language; A processing module electrically connected to the storage module and the input module; and wherein the processing module uses a natural language document parsing algorithm based on the contract document to be classified to obtain a plurality of contract paragraphs to be classified corresponding to the contract document to be classified, for each contract paragraph to be classified, the processing module uses the first sentence conversion vector model based on the contract paragraph to be classified to obtain a first sentence meaning vector corresponding to the contract paragraph to be classified, for each first sentence meaning vector, the processing module obtains a structure category vector to be analyzed corresponding to the first sentence meaning vector based on the first sentence meaning vector, and each element of the structure category vector to be analyzed corresponds to one of the contract structure categories, For each element of each architecture category vector to be analyzed, the processing module determines whether the value of the element is greater than a preset threshold. For each element of each architecture category vector to be analyzed, when the processing module determines that the value of the element is greater than the preset threshold, the processing module regards the contract paragraph to be classified corresponding to the architecture category vector to be analyzed as a classified contract paragraph, and regards the contract architecture category corresponding to the element as a target contract architecture category of the classified contract paragraph. For each classified contract paragraph, the processing module performs a relevance determination procedure on the classified contract paragraph, wherein the relevance determination procedure includes the processing module determining whether there is at least one target contract structure category to be analyzed that is the same as any of the relevant contract structure categories in the contract key prompt corresponding table in the at least one target contract structure category corresponding to the classified contract paragraph. When the processing module determines that there is at least one relevant contract structure category to be analyzed, for each relevant contract structure category to be analyzed, The processing module uses the at least one relevance test sentence corresponding to the relevance contract structure category that is the same as the relevance contract structure category to be analyzed as at least one relevance test sentence to be tested according to the contract key prompt corresponding table, and uses all relevance result sentences corresponding to the relevance contract structure category that is the same as the relevance contract structure category to be analyzed as multiple relevance result sentences to be tested, and uses the classified contract paragraph as a relevance contract paragraph to be analyzed, and for each relevance contract sentence to be analyzed of the relevance contract paragraph to be analyzed, The processing module obtains a plurality of correlation prediction results to be determined by using the correlation prediction model according to all correlation result sentences to be detected corresponding to the correlation contract structure category to be analyzed, all correlation test sentences to be detected corresponding to the correlation contract structure category to be analyzed, and the correlation contract paragraph to be analyzed. Each correlation prediction result to be determined includes each correlation result sentence to be detected corresponding to the correlation contract structure category to be analyzed, each correlation test sentence to be detected corresponding to the correlation contract structure category to be analyzed, and each correlation prediction result to be determined. The test sentence and the relevant contract paragraph to be analyzed have multiple to-be-determined correlation probability values for the correlation results corresponding to the relevant contract structure category to be analyzed. For each to-be-analyzed relevant contract structure category of the relevant contract paragraph to be analyzed, the processing module obtains a target correlation marking result indicating that the relevant contract paragraph to be analyzed belongs to one of all the correlation results corresponding to the relevant contract structure category to be analyzed based on all the to-be-determined correlation prediction results corresponding to the relevant contract structure category to be analyzed. 如請求項10所述的契約輔助審閱裝置,其中,該儲存模組還儲存有一用於將該欲分類句義向量轉換為一維度與該等契約架構類別數量相同的欲分析架構類別向量的特徵擷取分類模型, 對於每一第一句義向量,該處理模組根據該第一句義向量,利用該特徵擷取分類模型,獲得一對應該第一句義向量的待處理架構類別向量, 對於每一待處理架構類別向量,該處理模組根據該待處理架構類別向量,利用一乙狀函數,將該待處理架構類別向量中的每一元素進行映射轉換,以獲得一對應該待處理架構類別向量的待分析架構類別向量。 The contract assisted review device as described in claim 10, wherein the storage module further stores a feature extraction classification model for converting the sentence meaning vector to be classified into a structure category vector to be analyzed with the same dimension as the number of the contract structure categories. For each first sentence meaning vector, the processing module uses the feature extraction classification model according to the first sentence meaning vector to obtain a structure category vector to be processed corresponding to the first sentence meaning vector. For each structure category vector to be processed, the processing module uses a sigmoid function according to the structure category vector to be processed to map and transform each element in the structure category vector to be processed to obtain a structure category vector to be analyzed corresponding to the structure category vector to be processed. 如請求項10所述的契約輔助審閱裝置,其中,在該處理模組獲得該至少一待判定相關性預測結果中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組進行一相關性概率值獲取程序,以獲得該至少一待判定相關性預測結果,該相關性概率值獲取程序包括, 對於該待分析相關性契約架構類別的每一待檢測相關性測試句,該處理模組根據該待分析相關性契約架構類別的所有待檢測相關性結果語句、該待檢測相關性測試句及該待分析相關性契約段落,利用一第二句子轉向量模型,獲得多個關於所有待檢測相關性結果語句與該待檢測相關性測試句及該待分析相關性契約段落的第二句義向量, 對於該待分析相關性契約架構類別的每一第二句義向量,該處理模組根據該第二句義向量,利用一第一線性轉換矩陣,獲得一對應該第二句義向量的待處理相關性向量, 對於該待分析相關性契約架構類別的每一待處理相關性向量,該處理模組根據該待處理相關性向量的所有元素,利用一歸一化指數函式進行映射轉換,以獲得一作為該待判定相關性預測結果的待分析相關性向量,該待分析相關性向量的所有元素係為該等待判定相關概率值。 The contract assisted review device as described in claim 10, wherein, when the processing module obtains the at least one relevance prediction result to be determined, for each relevance contract structure category to be analyzed in the relevance contract paragraph to be analyzed, the processing module performs a relevance probability value acquisition procedure to obtain the at least one relevance prediction result to be determined, and the relevance probability value acquisition procedure includes, For each relevance test sentence to be detected of the relevance contract structure category to be analyzed, the processing module uses a second sentence conversion vector model to obtain multiple second sentence meaning vectors about all relevance result sentences to be detected, the relevance test sentence to be detected, and the relevance contract paragraph to be analyzed according to all relevance result sentences to be detected of the relevance contract structure category to be analyzed, the relevance test sentence to be detected, and the relevance contract paragraph to be analyzed. For each second sentence meaning vector of the relevance contract structure category to be analyzed, the processing module uses a first linear conversion matrix according to the second sentence meaning vector to obtain a relevance vector to be processed corresponding to the second sentence meaning vector. For each correlation vector to be processed of the correlation contract structure category to be analyzed, the processing module uses a normalized index function to perform mapping transformation according to all elements of the correlation vector to be processed to obtain a correlation vector to be analyzed as the prediction result of the correlation to be determined, and all elements of the correlation vector to be analyzed are the correlation probability values to be determined. 如請求項10所述的契約輔助審閱裝置,其中,對於該待分析相關性契約段落的每一待分析相關性契約架構類別,該處理模組係根據該待分析相關性契約架構類別所對應所有待判定相關概率值中,將具有最大之該待判定相關概率值所對應的該相關性結果作為該目標相關性標記結果。A contract assisted review device as described in claim 10, wherein, for each relevant contract structure category to be analyzed in the relevant contract paragraph to be analyzed, the processing module uses the relevance result corresponding to the largest relevant probability value to be determined among all relevant probability values to be determined corresponding to the relevant contract structure category to be analyzed as the target relevance marking result. 如請求項10所述的契約輔助審閱裝置,其中,該儲存模組還儲存有一契約違約金提示對應表,及一段落擷取模型,該段落擷取模型用於根據關於違約金敘述的另一預設句子與該等段落中之一者來獲得該等段落中之該者中之每一個字屬於與該另一預設句子相關之敘述的第一個字所對應的一起點概率值和屬於與該另一預設句子相關之敘述的最後一個字所對應的一終點概率值,該契約違約金提示對應表包含多個違約金契約架構類別,及每一違約金契約架構類別所對應的至少一違約金測試句,每一違約金契約架構類別為該等契約架構類別中之一者,而對於每一已分類契約段落,該處理模組對該已分類契約段落進行一違約金段落擷取程序,其中,該違約金段落擷取程序包括, 該處理模組判定該已分類契約段落所對應的該至少一目標契約架構類別中,是否存在與該契約違約金提示對應表的該等違約金契約架構類別之任一者相同的至少一待分析違約金契約架構類別, 當該處理模組判定出存在該至少一待分析違約金契約架構類別時,對於每一待分析違約金契約架構類別,該處理模組根據該契約違約金提示對應表,將與該待分析違約金契約架構類別相同之該違約金契約架構類別所對應的該至少一違約金測試句作為至少一待檢測違約金測試句,並將該已分類契約段落作為一待分析違約金契約段落, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組根據該待分析違約金契約架構類別的每一待檢測違約金測試句及該待分析違約金契約段落,利用該段落擷取模型,獲得至少一待判定違約金擷取結果,每一待判定違約金擷取結果包含該待分析違約金契約段落之每一個字屬於關於所對應之待檢測違約金測試句之敘述之第一個字所對應的一違約金起點概率值與屬於關於所對應之待檢測違約金測試句之敘述之最後一個字所對應的一違約金終點概率值, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組根據該待分析違約金契約架構類別所有待判定違約金擷取結果,獲得一關於該待分析違約金契約架構類別,且指示出該待分析違約金契約段落中由一目標違約金起點字與一目標違約金終點字所定義出之一違約金段落的目標違約金擷取結果。 The contract assisted review device as described in claim 10, wherein the storage module further stores a contract breach penalty prompt correspondence table and a paragraph extraction model, the paragraph extraction model is used to obtain a starting point probability value corresponding to the first word of the description related to the other default sentence and a probability value of belonging to the description related to the other default sentence for each word in the paragraph according to another default sentence about the breach penalty description and one of the paragraphs. The last word corresponds to a terminal probability value, the contract penalty prompt corresponding table includes a plurality of penalty contract structure categories, and at least one penalty test sentence corresponding to each penalty contract structure category, each penalty contract structure category is one of the contract structure categories, and for each classified contract paragraph, the processing module performs a penalty paragraph extraction procedure on the classified contract paragraph, wherein the penalty paragraph extraction procedure includes, The processing module determines whether there is at least one target contract structure category to be analyzed that is the same as any of the default penalty contract structure categories in the contract default penalty prompt corresponding table in the at least one target contract structure category corresponding to the classified contract paragraph. When the processing module determines that there is at least one default penalty contract structure category to be analyzed, for each default penalty contract structure category to be analyzed, the processing module uses the at least one default penalty test sentence corresponding to the default penalty contract structure category that is the same as the default penalty contract structure category to be analyzed as at least one default penalty test sentence to be tested, and uses the classified contract paragraph as a default penalty contract paragraph to be analyzed. For each breach of contract structure category to be analyzed of the breach of contract paragraph to be analyzed, the processing module obtains at least one breach of contract capture result to be determined using the paragraph capture model according to each breach of contract test sentence to be detected of the breach of contract structure category to be analyzed and the breach of contract paragraph to be analyzed. Each breach of contract capture result to be determined includes a breach of contract starting point probability value corresponding to the first word of the description of the corresponding breach of contract test sentence to be detected and a breach of contract ending point probability value corresponding to the last word of the description of the corresponding breach of contract test sentence to be detected for each word of the breach of contract paragraph to be analyzed. For each of the to-be-analyzed penalty contract structure categories of the to-be-analyzed penalty contract paragraph, the processing module obtains a target penalty capture result for the to-be-analyzed penalty contract structure category according to all the to-be-determined penalty capture results of the to-be-analyzed penalty contract structure category, and indicates a target penalty capture result for a penalty paragraph defined by a target penalty starting point word and a target penalty ending point word in the to-be-analyzed penalty contract paragraph. 如請求項14所述的契約輔助審閱裝置,其中,在該處理模組獲得該至少一待判定違約金擷取結果中,對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組進行一起終點概率值獲取程序,以獲得該至少一待判定違約金擷取結果,該起終點概率值獲取程序包括, 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組根據該待檢測違約金測試句及該待分析違約金契約段落,利用一句子轉字向量模型,獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個待處理字義向量, 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組根據該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的所有待處理字義向量,利用一第二線性轉換矩陣,獲得多個分別對應該等待處理字義向量的待處理違約金起點概率值, 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組根據該待檢測違約金測試句所對應的所有待處理違約金起點概率值,利用一歸一化指數函式進行映射轉換,以獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個違約金起點概率值, 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組根據該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的所有待處理字義向量,利用一第三線性轉換矩陣,獲得多個分別對應該等待處理字義向量的待處理違約金終點概率值, 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組根據該待檢測違約金測試句所對應的所有待處理違約金終點概率值,利用該歸一化指數函式進行映射轉換,以獲得該待檢測違約金測試句關於該待分析違約金契約段落之每一個字的多個違約金終點概率值, 對於該待分析違約金契約架構類別的每一待檢測違約金測試句,該處理模組將該待檢測違約金測試句所對應的所有違約金起點概率值與所有違約金終點概率值作為該待判定違約金擷取結果。 The contract assisted review device as described in claim 14, wherein, when the processing module obtains the at least one pending penalty capture result, for each pending penalty contract structure category of the pending penalty contract paragraph, the processing module performs an end point probability value acquisition procedure to obtain the at least one pending penalty capture result, and the start and end point probability value acquisition procedure includes, For each test sentence of the contract structure category of the contract to be analyzed, the processing module uses a sentence-to-word vector model to obtain multiple word meaning vectors to be processed for each word of the contract to be analyzed paragraph of the contract. For each test sentence of the contract to be analyzed, the processing module uses a second linear transformation matrix to obtain multiple starting probability values of the contract to be processed corresponding to the word meaning vectors to be processed, according to the test sentence of the contract to be analyzed and the contract paragraph of the contract to be analyzed. For each penalty test sentence to be tested of the penalty contract structure category to be analyzed, the processing module uses a normalized index function to perform mapping conversion according to all penalty starting point probability values to be processed corresponding to the penalty test sentence to be detected, so as to obtain multiple penalty starting point probability values of each word of the penalty test sentence to be detected with respect to the penalty contract paragraph to be analyzed, For each pending penalty test sentence of the pending penalty contract structure category, the processing module uses a third linear transformation matrix to obtain multiple pending penalty endpoint probability values corresponding to the pending penalty word meaning vectors according to all pending word meaning vectors of each word in the pending penalty contract paragraph of the pending penalty test sentence. For each penalty test sentence to be detected in the penalty contract structure category to be analyzed, the processing module uses the normalized index function to perform mapping conversion according to all penalty endpoint probability values to be processed corresponding to the penalty test sentence to be detected, so as to obtain multiple penalty endpoint probability values of each word of the penalty contract paragraph to be analyzed in the penalty test sentence to be detected. For each penalty test sentence to be detected in the penalty contract structure category to be analyzed, the processing module uses all penalty starting point probability values and all penalty endpoint probability values corresponding to the penalty test sentence to be detected as the penalty capture result to be determined. 如請求項14所述的契約輔助審閱裝置,其中, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組根據該待分析違約金契約架構類別所對應的所有違約金起點概率值,自該待分析違約金契約段落的所有字中,獲得一具有最大之該違約金起點概率值的字並作為該目標違約金起點字, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組根據該待分析違約金契約架構類別所對應的所有違約金終點概率值,自該待分析違約金契約段落的所有字中,獲得一具有最大之該違約金終點概率值的字並作為該目標違約金終點字, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組根據該待分析違約金契約架構類別所對應的該目標違約金起點字與該目標違約金終點字,定義出該違約金段落並作為該目標違約金擷取結果。 The contract assisted review device as described in claim 14, wherein, for each breach of contract structure category to be analyzed in the breach of contract paragraph to be analyzed, the processing module obtains a word with the largest breach of contract starting point probability value from all words in the breach of contract paragraph to be analyzed according to all breach of contract starting point probability values corresponding to the breach of contract structure category to be analyzed and uses it as the target breach of contract starting point word, For each of the penalty contract structure categories to be analyzed in the penalty contract paragraph to be analyzed, the processing module obtains a word with the largest penalty end point probability value from all the words in the penalty contract paragraph to be analyzed according to all the penalty end point probability values corresponding to the penalty contract structure category to be analyzed and uses it as the target penalty end point word. For each of the penalty contract structure categories to be analyzed in the penalty contract paragraph to be analyzed, the processing module defines the penalty paragraph according to the target penalty starting point word and the target penalty end point word corresponding to the penalty contract structure category to be analyzed and uses it as the target penalty capture result. 如請求項14所述的契約輔助審閱裝置,還包含一與該處理模組電連接的顯示模組,其中, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別,該處理模組根據該待分析違約金契約架構類別所對應之該目標違約金擷取結果的該違約金段落,利用一自然語言技術,獲得該違約金段落中的一違約金數值, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別所對應的該違約金數值,該處理模組判定該違約金數值是否大於一警示金額, 對於該待分析違約金契約段落的每一待分析違約金契約架構類別所對應的該違約金數值,當該處理模組判定出大於該警示金額時,該處理模組產生一指示出該待分析違約金契約架構類別所對應之該違約金段落需警示的警示訊號並顯示於該顯示模組。 The contract auxiliary review device as described in claim 14 further comprises a display module electrically connected to the processing module, wherein, for each default penalty contract structure category to be analyzed in the default penalty contract paragraph to be analyzed, the processing module obtains a default penalty value in the default penalty paragraph according to the default penalty paragraph of the target default penalty capture result corresponding to the default penalty contract structure category to be analyzed, for the default penalty value corresponding to each default penalty contract structure category to be analyzed in the default penalty contract paragraph to be analyzed, the processing module determines whether the default penalty value is greater than a warning amount, For the default penalty value corresponding to each default penalty contract structure type to be analyzed in the default penalty contract segment to be analyzed, when the processing module determines that it is greater than the warning amount, the processing module generates a warning signal indicating that the default penalty segment corresponding to the default penalty contract structure type to be analyzed needs to be warned and displays it on the display module. 如請求項10所述的契約輔助審閱裝置,其中,該待分類契約文檔包含一保密契約文檔,該等契約架構類別包含一契約主體類別、一契約目的類別、一機密資訊類別、一保密義務類別、一保密義務之排除類別、一保密期間及效力類別、一權利歸屬與擔保類別、一機密資訊之返回類別、一違約責任損害違約金類別、一違約責任違約金類別、一準據法及管轄法院類別,及一其他類別。A contract-assisted review device as described in claim 10, wherein the contract document to be classified includes a confidential contract document, and the contract structure categories include a contract subject category, a contract purpose category, a confidential information category, a confidentiality obligation category, a confidentiality obligation exclusion category, a confidentiality period and effectiveness category, a rights attribution and guarantee category, a confidential information return category, a breach of contract liability damages category, a breach of contract liability penalty category, a governing law and jurisdiction category, and an other category.
TW112125540A 2023-07-07 2023-07-07 Contract assisted review method and device TWI882378B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112125540A TWI882378B (en) 2023-07-07 2023-07-07 Contract assisted review method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112125540A TWI882378B (en) 2023-07-07 2023-07-07 Contract assisted review method and device

Publications (2)

Publication Number Publication Date
TW202503666A TW202503666A (en) 2025-01-16
TWI882378B true TWI882378B (en) 2025-05-01

Family

ID=95152580

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112125540A TWI882378B (en) 2023-07-07 2023-07-07 Contract assisted review method and device

Country Status (1)

Country Link
TW (1) TWI882378B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9286290B2 (en) * 2014-04-25 2016-03-15 International Business Machines Corporation Producing insight information from tables using natural language processing
CN110163478A (en) * 2019-04-18 2019-08-23 平安科技(深圳)有限公司 A kind of the risk checking method and device of contract terms
CN110442872A (en) * 2019-08-06 2019-11-12 中科鼎富(北京)科技发展有限公司 A kind of text elements integrality checking method and device
US20210201013A1 (en) * 2019-12-26 2021-07-01 NB Ventures, Inc., dba GEP Contract lifecycle management
CN113836941A (en) * 2021-09-27 2021-12-24 上海合合信息科技股份有限公司 Contract navigation method and device
TWM646953U (en) * 2023-07-07 2023-10-01 大聯大控股股份有限公司 Contract auxiliary review device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9286290B2 (en) * 2014-04-25 2016-03-15 International Business Machines Corporation Producing insight information from tables using natural language processing
CN110163478A (en) * 2019-04-18 2019-08-23 平安科技(深圳)有限公司 A kind of the risk checking method and device of contract terms
CN110442872A (en) * 2019-08-06 2019-11-12 中科鼎富(北京)科技发展有限公司 A kind of text elements integrality checking method and device
US20210201013A1 (en) * 2019-12-26 2021-07-01 NB Ventures, Inc., dba GEP Contract lifecycle management
CN113836941A (en) * 2021-09-27 2021-12-24 上海合合信息科技股份有限公司 Contract navigation method and device
TWM646953U (en) * 2023-07-07 2023-10-01 大聯大控股股份有限公司 Contract auxiliary review device

Also Published As

Publication number Publication date
TW202503666A (en) 2025-01-16

Similar Documents

Publication Publication Date Title
CN110163478B (en) Risk examination method and device for contract clauses
CN109597994B (en) Short text problem semantic matching method and system
WO2021051867A1 (en) Asset information identification method and apparatus, computer device and storage medium
CN112925877B (en) A method and system for identifying associations between one person and multiple cases based on deep metric learning
Chen et al. Viseval: A benchmark for data visualization in the era of large language models
CN111046142A (en) Text examination method and device, electronic equipment and computer storage medium
CN111383101A (en) Post-loan risk monitoring method, device, equipment and computer-readable storage medium
CN110348003B (en) Text effective information extraction method and device
CN110852054A (en) Automatic contract version comparison tool and method in field of undesirable asset management
CN112529743A (en) Contract element extraction method, contract element extraction device, electronic equipment and medium
CN118689979A (en) A question-answering method and device based on multimodal knowledge fusion enhancement
TWM646953U (en) Contract auxiliary review device
Ilias et al. XBRL adoption in Malaysia: Perception of the accountants and auditors
TWI882378B (en) Contract assisted review method and device
CN118568423A (en) A method and system for realizing data cleaning by using intelligent AI model
CN114936271B (en) Method, equipment and medium for converting natural language into database query statement
CN117744628A (en) Document quality assessment method, system and equipment based on multi-modal representation learning
CN116151219A (en) Named entity identification-based bid winning data analysis treatment method, device and medium
CN113326698B (en) Method for detecting entity relationship, model training method and electronic device
CN113961672A (en) Information labeling method and device, electronic equipment and storage medium
CN114357978A (en) Document comparison method and device, computer equipment and storage medium
Li et al. An Accounting Classification System Using Constituency Analysis and Semantic Web Technologies
CN111797237A (en) Text entity relation identification method, system and medium
TWI886755B (en) A system of intelligent patent type recommendation and draft generation and the method thereof
TWI880593B (en) A system of intelligent patent type recommendation and draft generation and the method thereof
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载