TWI873945B - Differential amplification device and compensation method thereof - Google Patents
Differential amplification device and compensation method thereof Download PDFInfo
- Publication number
- TWI873945B TWI873945B TW112141383A TW112141383A TWI873945B TW I873945 B TWI873945 B TW I873945B TW 112141383 A TW112141383 A TW 112141383A TW 112141383 A TW112141383 A TW 112141383A TW I873945 B TWI873945 B TW I873945B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- signal
- end signal
- differential
- coupled
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45479—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
- H03F3/45928—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
本發明是有關於一種電子電路,且特別是有關於一種差動放大裝置及其補償方法。The present invention relates to an electronic circuit, and more particularly to a differential amplifier and a compensation method thereof.
傳送裝置的差動輸出訊號通過傳輸路徑被傳輸至接收裝置。舉例來說,傳送裝置的差動輸出訊號通過積體電路封裝(integrated circuit package)、印刷電路板(printed circuit board,PCB)、通用序列匯流排(Universal Serial Bus,USB)連接器以及USB纜線被傳輸至USB接收裝置。一般而言,傳輸路徑的非理想效應會影響差動訊號,致使接收裝置從傳輸路徑接收到的差動訊號(經傳輸差動訊號)產生對稱性差異(symmetry differences)。舉例來說,傳輸路徑對經傳輸差動訊號中第一端訊號與第二端訊號的不對稱影響可以包括:傳輸路徑對經傳輸差動訊號的第一端訊號的衰減不同於傳輸路徑對經傳輸差動訊號的第二端訊號的衰減。基此,接收裝置接收到的經傳輸差動訊號的共模電壓(common mode voltage)將會遠離額定共模電壓準位(例如0 V)。對於通用序列匯流排第四版(USB Fourth Edition,USB4)規範而言,經傳輸差動訊號的共模電壓遠離額定共模電壓準位是不能被接受的。The differential output signal of a transmitting device is transmitted to a receiving device through a transmission path. For example, the differential output signal of a transmitting device is transmitted to a USB receiving device through an integrated circuit package, a printed circuit board (PCB), a Universal Serial Bus (USB) connector, and a USB cable. Generally speaking, the non-ideal effects of the transmission path will affect the differential signal, causing symmetry differences in the differential signal (transmitted differential signal) received by the receiving device from the transmission path. For example, the asymmetric effect of the transmission path on the first end signal and the second end signal in the transmitted differential signal may include: the attenuation of the first end signal of the transmitted differential signal by the transmission path is different from the attenuation of the second end signal of the transmitted differential signal by the transmission path. Based on this, the common mode voltage of the transmitted differential signal received by the receiving device will be far away from the rated common mode voltage level (e.g., 0 V). For the USB Fourth Edition (USB4) specification, it is unacceptable for the common mode voltage of the transmitted differential signal to be far away from the rated common mode voltage level.
本發明提供一種差動放大裝置及其補償方法,以補償傳輸路徑對經傳輸差動訊號中第一端訊號與第二端訊號的不對稱影響。The present invention provides a differential amplifier device and a compensation method thereof to compensate for the asymmetric effect of a transmission path on a first-end signal and a second-end signal in a transmitted differential signal.
在本發明的一實施例中,上述的差動放大裝置用以產生差動輸出訊號至傳輸路徑的第一端。差動放大裝置包括第一端訊號電路、第二端訊號電路以及控制器。第一端訊號電路產生差動輸出訊號中的第一端訊號。第二端訊號電路耦接至第一端訊號電路。第二端訊號電路產生差動輸出訊號中的第二端訊號。控制器耦接至第一端訊號電路以及第二端訊號電路。控制器基於在傳輸路徑的第二端的經傳輸差動訊號而調整第一端訊號電路的至少一個第一元件參數或第二端訊號電路的至少一個第二元件參數,以補償傳輸路徑對經傳輸差動訊號中一第一端訊號與一第二端訊號的不對稱影響。其中,對第一端訊號電路的所述至少一個第一元件參數的調整獨立於對第二端訊號電路的所述至少一個第二元件參數的調整。In one embodiment of the present invention, the above-mentioned differential amplifier device is used to generate a differential output signal to the first end of a transmission path. The differential amplifier device includes a first-end signal circuit, a second-end signal circuit and a controller. The first-end signal circuit generates a first-end signal in the differential output signal. The second-end signal circuit is coupled to the first-end signal circuit. The second-end signal circuit generates a second-end signal in the differential output signal. The controller is coupled to the first-end signal circuit and the second-end signal circuit. The controller adjusts at least one first component parameter of the first-end signal circuit or at least one second component parameter of the second-end signal circuit based on the transmitted differential signal at the second end of the transmission path to compensate for the asymmetric effect of the transmission path on a first-end signal and a second-end signal in the transmitted differential signal. The adjustment of the at least one first component parameter of the first-end signal circuit is independent of the adjustment of the at least one second component parameter of the second-end signal circuit.
在本發明的一實施例中,上述的補償方法用以補償傳輸路徑對經傳輸差動訊號中第一端訊號與第二端訊號的不對稱影響。補償方法包括:由第一端訊號電路產生差動輸出訊號中的第一端訊號至傳輸路徑的第一端;由第二端訊號電路產生差動輸出訊號中的第二端訊號至傳輸路徑的第一端,其中第二端訊號電路耦接至第一端訊號電路;以及基於在傳輸路徑的第二端的經傳輸差動訊號而調整第一端訊號電路的至少一個第一元件參數或第二端訊號電路的至少一個第二元件參數,以補償傳輸路徑對經傳輸差動訊號的第一端訊號與第二端訊號的不對稱影響,其中對第一端訊號電路的所述至少一個第一元件參數的調整獨立於對第二端訊號電路的所述至少一個第二元件參數的調整。In an embodiment of the present invention, the above compensation method is used to compensate for the asymmetric effect of the transmission path on the first end signal and the second end signal in the transmitted differential signal. The compensation method includes: generating a first-end signal in a differential output signal from a first-end signal circuit to a first end of a transmission path; generating a second-end signal in a differential output signal from a second-end signal circuit to the first end of the transmission path, wherein the second-end signal circuit is coupled to the first-end signal circuit; and adjusting at least one first component parameter of the first-end signal circuit or at least one second component parameter of the second-end signal circuit based on the transmitted differential signal at the second end of the transmission path to compensate for the asymmetric effect of the transmission path on the first-end signal and the second-end signal of the transmitted differential signal, wherein the adjustment of the at least one first component parameter of the first-end signal circuit is independent of the adjustment of the at least one second component parameter of the second-end signal circuit.
基於上述,本發明諸實施例所述控制器對第一端訊號電路的元件參數的調整可以獨立於對第二端訊號電路的元件參數的調整,亦即對在差動輸出訊號中的第一端訊號的調整可以獨立於對在差動輸出訊號中的第二端訊號的調整。一般而言,傳輸路徑對經傳輸差動訊號可能會產生不對稱影響。舉例來說,傳輸路徑對經傳輸差動訊號的第一端訊號的衰減程度不同於傳輸路徑對經傳輸差動訊號的第二端訊號的衰減程度。因為傳輸路徑對經傳輸差動訊號的不對稱影響,接收裝置接收到的經傳輸差動訊號的共模電壓(common mode voltage)可能會遠離額定共模電壓準位(例如0 V或其他目標準位)。基於傳輸路徑的經傳輸差動訊號,控制器可以對應調整/設置第一端訊號電路的元件參數與/或第二端訊號電路的元件參數。因為對第一端訊號電路的元件參數的調整可以獨立於對第二端訊號電路的元件參數的調整,所以差動放大裝置可以補償傳輸路徑對經傳輸差動訊號的第一端訊號與第二端訊號的不對稱影響。Based on the above, the controller of various embodiments of the present invention can adjust the component parameters of the first-end signal circuit independently of the component parameters of the second-end signal circuit, that is, the adjustment of the first-end signal in the differential output signal can be independent of the adjustment of the second-end signal in the differential output signal. Generally speaking, the transmission path may produce an asymmetric effect on the transmitted differential signal. For example, the attenuation degree of the transmission path on the first-end signal of the transmitted differential signal is different from the attenuation degree of the transmission path on the second-end signal of the transmitted differential signal. Due to the asymmetric effect of the transmission path on the transmitted differential signal, the common mode voltage of the transmitted differential signal received by the receiving device may be far away from the rated common mode voltage level (e.g., 0 V or other target level). Based on the transmitted differential signal of the transmission path, the controller can adjust/set the component parameters of the first-end signal circuit and/or the component parameters of the second-end signal circuit accordingly. Because the adjustment of the component parameters of the first-end signal circuit can be independent of the adjustment of the component parameters of the second-end signal circuit, the differential amplifier device can compensate for the asymmetric effect of the transmission path on the first-end signal and the second-end signal of the transmitted differential signal.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more clearly understood, embodiments are specifically cited below and described in detail with reference to the accompanying drawings.
在本案說明書全文(包括申請專利範圍)中所使用的「耦接(或連接)」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接(或連接)於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。本案說明書全文(包括申請專利範圍)中提及的「第一」、「第二」等用語是用以命名元件(element)的名稱,或區別不同實施例或範圍,而並非用來限制元件數量的上限或下限,亦非用來限制元件的次序。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。The term "coupled (or connected)" used in the entire specification of this case (including the scope of the patent application) may refer to any direct or indirect means of connection. For example, if the text describes a first device coupled (or connected) to a second device, it should be interpreted that the first device can be directly connected to the second device, or the first device can be indirectly connected to the second device through other devices or some connection means. The terms "first", "second", etc. mentioned in the entire specification of this case (including the scope of the patent application) are used to name the elements or distinguish different embodiments or scopes, and are not used to limit the upper or lower limit of the number of elements, nor to limit the order of elements. In addition, wherever possible, elements/components/steps with the same number in the drawings and embodiments represent the same or similar parts. Elements/components/steps using the same reference numerals or the same terms in different embodiments may refer to each other for related descriptions.
圖1是依照本發明的一實施例的一種電子設備100的電路方塊(circuit block)示意圖。圖1所示電子設備100包括傳送裝置TX11以及接收裝置RX11,其中傳送裝置TX11被配置在積體電路封裝(integrated circuit package)PKG11中,以及接收裝置RX11被配置在積體電路封裝PKG12中。積體電路封裝PKG11被配置在印刷電路板(printed circuit board,PCB)PCB11上,而積體電路封裝PKG12被配置在印刷電路板PCB12上。纜線CBL11的一端連接至印刷電路板PCB11的連接器,而纜線CBL11的另一端連接至印刷電路板PCB12的連接器。基於實際設計,纜線CBL11可以是通用序列匯流排(Universal Serial Bus,USB)纜線或是其他纜線。FIG1 is a schematic diagram of a circuit block of an
在傳送裝置TX11內的差動放大裝置AMP11的差動輸出訊號(端訊號TXp與TXn)可以通過積體電路封裝PKG11、印刷電路板PCB11、纜線CBL11、印刷電路板PCB12以及積體電路封裝PKG12被傳輸至接收裝置RX11。通常,在測試點TP1的差動訊號的共模電壓(common mode voltage)可以吻合額定共模電壓準位(例如0 V或其他目標準位,由實際設計來決定)。一般而言,差動輸出訊號的傳輸路徑具有非理想效應(non-ideal effects)。舉例來說,非理想效應可能包括不連續性(discontinuousness)、不匹配(mismatch)、反射(reflection)、耦合(coupling)等效應。傳輸路徑的非理想效應可能造成經傳輸差動訊號(端訊號RXp與RXn)產生共模雜訊(common-mode noise),此雜訊會影響到接收裝置RX11的接收能力。因此,USB第四版(USB4)規範此雜訊需小於100m Vpp。The differential output signal (end signals TXp and TXn) of the differential amplifier device AMP11 in the transmitting device TX11 can be transmitted to the receiving device RX11 through the integrated circuit package PKG11, the printed circuit board PCB11, the cable CBL11, the printed circuit board PCB12 and the integrated circuit package PKG12. Usually, the common mode voltage of the differential signal at the test point TP1 can match the rated common mode voltage level (such as 0 V or other target standard level, determined by the actual design). In general, the transmission path of the differential output signal has non-ideal effects. For example, non-ideal effects may include discontinuousness, mismatch, reflection, coupling and other effects. The non-ideal effects of the transmission path may cause common-mode noise to be generated in the transmitted differential signal (end signals RXp and RXn), which will affect the receiving capability of the receiving device RX11. Therefore, the USB 4th version (USB4) specifies that this noise must be less than 100m Vpp.
詳而言之,傳輸路徑的非理想效應可能對經傳輸差動訊號(端訊號RXp與RXn)產生不對稱影響。舉例來說,傳輸路徑對端訊號RXp的衰減程度可能不同於傳輸路徑對端訊號RXn的衰減程度。因為傳輸路徑對經傳輸差動訊號的不對稱影響,接收裝置RX11接收到的經傳輸差動訊號的共模電壓可能會飄離額定共模電壓準位(例如0 V或其他目標準位,由實際設計來決定)。亦即,在測試點TP2、TP3’、TP3與/或TP4的差動訊號的共模電壓可能會遠離額定共模電壓準位。In detail, the non-ideal effects of the transmission path may produce an asymmetric effect on the transmitted differential signals (end signals RXp and RXn). For example, the attenuation degree of the end signal RXp of the transmission path may be different from the attenuation degree of the end signal RXn of the transmission path. Because of the asymmetric effect of the transmission path on the transmitted differential signals, the common-mode voltage of the transmitted differential signals received by the receiving device RX11 may drift away from the rated common-mode voltage level (e.g., 0 V or other target standard levels, determined by the actual design). That is, the common-mode voltage of the differential signals at the test points TP2, TP3', TP3 and/or TP4 may be far away from the rated common-mode voltage level.
基於傳輸路徑的經傳輸差動訊號(端訊號RXp與RXn),差動放大裝置AMP11可以獨立地調整差動輸出訊號的端訊號TXp與/或TXn。舉例來說,響應於傳輸路徑對端訊號RXp的衰減大於傳輸路徑對端訊號RXn的衰減,差動放大裝置AMP11可以上調端訊號TXp的電壓準位而不調整端訊號TXn的電壓準位,或者差動放大裝置AMP11可以下調端訊號TXn的電壓準位而不調整端訊號TXp的電壓準位。因此,差動放大裝置AMP11可以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與/或RXn的不對稱影響。再舉例來說,響應於傳輸路徑對端訊號RXp的衰減小於傳輸路徑對端訊號RXn的衰減,差動放大裝置AMP11可以下調端訊號TXp的電壓準位而不調整端訊號TXn的電壓準位,或者差動放大裝置AMP11可以上調端訊號TXn的電壓準位而不調整端訊號TXp的電壓準位。因為對端訊號TXp的調整可以獨立於對端訊號TXn的調整,所以差動放大裝置AMP11可以補償傳輸路徑對經傳輸差動訊號的不對稱影響。因此,差動放大裝置AMP11可以補償在USB4高速電路的傳送端的共模電壓,進而符合USB4規範的要求。Based on the transmitted differential signals (end signals RXp and RXn) of the transmission path, the differential amplifier AMP11 can independently adjust the end signals TXp and/or TXn of the differential output signals. For example, in response to the attenuation of the end signal RXp of the transmission path being greater than the attenuation of the end signal RXn of the transmission path, the differential amplifier AMP11 can increase the voltage level of the end signal TXp without adjusting the voltage level of the end signal TXn, or the differential amplifier AMP11 can decrease the voltage level of the end signal TXn without adjusting the voltage level of the end signal TXp. Therefore, the differential amplifier AMP11 can compensate for the asymmetric effect of the transmission path on the end signals RXp and/or RXn of the transmitted differential signals. For another example, in response to the attenuation of the opposite end signal RXp of the transmission path being less than the attenuation of the opposite end signal RXn of the transmission path, the differential amplifier AMP11 can lower the voltage level of the end signal TXp without adjusting the voltage level of the end signal TXn, or the differential amplifier AMP11 can increase the voltage level of the end signal TXn without adjusting the voltage level of the end signal TXp. Because the adjustment of the opposite end signal TXp can be independent of the adjustment of the opposite end signal TXn, the differential amplifier AMP11 can compensate for the asymmetric effect of the transmission path on the transmitted differential signal. Therefore, the differential amplifier AMP11 can compensate for the common mode voltage at the transmission end of the USB4 high-speed circuit, thereby meeting the requirements of the USB4 specification.
圖2是依照本發明的一實施例的一種差動放大裝置AMP21的電路方塊示意圖。圖2所示差動放大裝置AMP21可以參照圖1所示差動放大裝置AMP11的相關說明並且加以類推。基於差動輸入訊號DSin的端訊號VIn與VIp,圖2所示差動放大裝置AMP21可以產生差動輸出訊號DSout至傳輸路徑的第一端。基於實際測試情境,所述傳輸路徑可以包括從圖1所示差動放大裝置AMP11(圖2所示差動放大裝置AMP21)至測試點TP1、TP2、TP3’、TP3與TP4其中任一者之間的傳輸路徑。在圖2所示實施例中,差動放大裝置AMP21包括控制器110以及放大器120。圖2所示放大器120包括端訊號電路121以及端訊號電路122。端訊號電路122直接或間接耦接至端訊號電路121。基於控制器110的控制,放大器120對差動輸出訊號DSout的端訊號TXn的調整可以獨立於對差動輸出訊號DSout的端訊號TXp的調整。FIG2 is a circuit block diagram of a differential amplifier AMP21 according to an embodiment of the present invention. The differential amplifier AMP21 shown in FIG2 can refer to the relevant description of the differential amplifier AMP11 shown in FIG1 and be deduced by analogy. Based on the terminal signals VIn and VIp of the differential input signal DSin, the differential amplifier AMP21 shown in FIG2 can generate a differential output signal DSout to the first end of the transmission path. Based on the actual test scenario, the transmission path may include a transmission path from the differential amplifier AMP11 shown in FIG1 (differential amplifier AMP21 shown in FIG2) to any one of the test points TP1, TP2, TP3', TP3 and TP4. In the embodiment shown in FIG2, the differential amplifier AMP21 includes a
依照不同的設計,在一些實施例中,上述控制器110的實現方式可以是硬體(hardware)電路。在另一些實施例中,控制器110的實現方式可以是韌體(firmware)、軟體(software,即程式)或是前述二者的組合形式。在又一些實施例中,控制器110的實現方式可以是硬體、韌體、軟體中的多者的組合形式。According to different designs, in some embodiments, the
以硬體形式而言,上述控制器110可以實現於積體電路(integrated circuit)上的邏輯電路。舉例來說,控制器110的相關功能可以被實現於一或多個控制器、微控制器(Microcontroller)、微處理器(Microprocessor)、特殊應用積體電路(Application-specific integrated circuit,ASIC)、數位訊號處理器(digital signal processor,DSP)、場可程式邏輯閘陣列(Field Programmable Gate Array,FPGA)、中央處理器(Central Processing Unit,CPU)及/或其他處理單元中的各種邏輯區塊、模組和電路。控制器110的相關功能可以利用硬體描述語言(hardware description languages,例如Verilog HDL或VHDL)或其他合適的編程語言來實現為硬體電路,例如積體電路中的各種邏輯區塊、模組和電路。In terms of hardware, the
以軟體形式及/或韌體形式而言,上述控制器110的相關功能可以被實現為編程碼(programming codes)。例如,利用一般的編程語言(programming languages,例如C、C++或組合語言)或其他合適的編程語言來實現控制器110。所述編程碼可以被記錄/存放在「非臨時的機器可讀取儲存媒體(non-transitory machine-readable storage medium)」中。在一些實施例中,所述非臨時的機器可讀取儲存媒體例如包括半導體記憶體以及(或是)儲存裝置。所述半導體記憶體包括記憶卡、唯讀記憶體(Read Only Memory,ROM)、快閃記憶體(FLASH memory)、可程式設計的邏輯電路或是其他半導體記憶體。所述儲存裝置包括帶(tape)、碟(disk)、硬碟(hard disk drive,HDD)、固態硬碟(Solid-state drive,SSD)或是其他儲存裝置。電子設備(例如電腦、CPU、控制器、微控制器或微處理器)可以從所述非臨時的機器可讀取儲存媒體中讀取並執行所述編程碼,從而實現控制器110的相關功能。In software form and/or firmware form, the relevant functions of the
圖3是依照本發明的一實施例的一種補償方法的流程示意圖。圖3所示補償方法可以補償傳輸路徑對經傳輸差動訊號中端訊號RXp與RXn的不對稱影響。請參照圖2與圖3。在步驟S310中,放大器120的不同端訊號電路產生差動輸出訊號DSout中的不同端訊號TXp與TXn至傳輸路徑的第一端。詳而言之,端訊號電路121可以產生差動輸出訊號DSout中的端訊號TXp至傳輸路徑的第一端,以及端訊號電路122可以產生差動輸出訊號DSout中的端訊號TXn至傳輸路徑的第一端。FIG3 is a flow chart of a compensation method according to an embodiment of the present invention. The compensation method shown in FIG3 can compensate for the asymmetric effect of the transmission path on the end signals RXp and RXn in the transmitted differential signal. Please refer to FIG2 and FIG3. In step S310, different end signal circuits of the
控制器110耦接至端訊號電路121以及端訊號電路122。在步驟S320中,基於在傳輸路徑的第二端的經傳輸差動訊號(端訊號RXp與RXn),控制器110可以獨立調整端訊號電路121的一個或多個元件參數,或獨立調整端訊號電路122的一個或多個元件參數。亦即,控制器110對端訊號電路121的元件參數的調整可以獨立於對端訊號電路122的元件參數的調整。基此,端訊號TXp的調整可以獨立於端訊號TXn的調整,以補償傳輸路徑對經傳輸差動訊號中端訊號RXp與RXn的不對稱影響。舉例來說,響應於傳輸路徑對端訊號RXp的衰減大於傳輸路徑對經傳輸差動訊號的端訊號RXn的衰減,差動放大裝置AMP21可以上調端訊號TXp的電壓準位而不調整端訊號TXn的電壓準位,或者差動放大裝置AMP21可以下調端訊號TXn的電壓準位而不調整端訊號TXp的電壓準位。因此,差動放大裝置AMP21可以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與/或RXn的不對稱影響。再舉例來說,響應於傳輸路徑對經傳輸差動訊號的端訊號RXp的衰減小於傳輸路徑對經傳輸差動訊號的端訊號RXn的衰減,差動放大裝置AMP21可以下調端訊號TXp的電壓準位而不調整端訊號TXn的電壓準位,或者差動放大裝置AMP21可以上調端訊號TXn的電壓準位而不調整端訊號TXp的電壓準位。因為對端訊號TXp的調整可以獨立於對端訊號TXn的調整,所以差動放大裝置AMP21可以補償傳輸路徑對經傳輸差動訊號的不對稱影響。因此,差動放大裝置AMP21可以補償在USB4高速電路的傳送端的共模電壓,進而符合USB4規範的要求。The
圖4是依照本發明的另一實施例的一種補償方法的流程示意圖。在步驟S410中,控制器110以預設參數設定放大裝置AMP21的端訊號電路121與122,以使差動輸出訊號DSout的端訊號TXp或TXn對稱於額定共模電壓準位(例如0 V或其他目標準位,由實際設計來決定)。在步驟S420中,放大裝置AMP21的放大器120輸出差動輸出訊號DSout至傳輸路徑的第一端。在步驟S430中,量測設備(未繪示)量測在傳輸路徑的第二端的經傳輸差動訊號(端訊號RXp與RXn),以獲知經傳輸差動訊號的端訊號RXp的第一漂移與端訊號RXn的第二漂移。在步驟S440中,依據第一漂移與第二漂移,控制器110獨立調整放大裝置AMP21的差動輸出訊號DSout的端訊號TXp或TXn。舉例來說,當傳輸路徑對端訊號RXp的衰減大於傳輸路徑對端訊號RXn的衰減時,控制器110可以上調端訊號TXp的電壓準位而不調整端訊號TXn的電壓準位,或者控制器110可以下調端訊號TXn的電壓準位而不調整端訊號TXp的電壓準位。FIG4 is a flow chart of a compensation method according to another embodiment of the present invention. In step S410, the
綜上所述,控制器110對端訊號電路121的元件參數的調整可以獨立於對第二端訊號電路122的元件參數的調整。亦即,控制器110對在差動輸出訊號DSout中的端訊號TXp的調整可以獨立於對在差動輸出訊號DSout中的端訊號TXn的調整。一般而言,傳輸路徑對經傳輸差動訊號(端訊號RXp與RXn)可能會產生不對稱影響。舉例來說,傳輸路徑對端訊號RXp的衰減程度不同於傳輸路徑對端訊號RXn的衰減程度。因為傳輸路徑對端訊號RXp與RXn的不對稱影響,接收裝置接收到的端訊號RXp與RXn的共模電壓可能會遠離額定共模電壓準位(例如0 V或其他目標準位)。基於傳輸路徑的經傳輸差動訊號(端訊號RXp與RXn),控制器110可以對應調整/設置端訊號電路121的元件參數與/或端訊號電路122的元件參數。因為對端訊號電路121的元件參數的調整可以獨立於對端訊號電路122的元件參數的調整,所以差動放大裝置AMP21可以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與RXn的不對稱影響。In summary, the
圖5是依照本發明的一實施例所繪示,放大器120的電路方塊示意圖。在圖5所示實施例中,放大器120的端訊號電路121包括負載電路510、放大電路520以及電流源CS51。負載電路510的第一端耦接至電壓VCCA。電壓VCCA的準位可以依照實際設計來決定。負載電路510的第二端耦接至端訊號電路121的輸出端,以提供差動輸出訊號DSout中的端訊號TXp。放大電路520的輸入端接收差動輸入訊號DSin中的端訊號VIp。放大電路520的第一電流端耦接至負載電路510的第二端。電流源CS51耦接至放大電路520的第二電流端。控制器110可以調整/設置端訊號電路121的一個或多個元件參數,其中所述元件參數包括負載電路510的阻抗、放大電路520的增益或是電流源CS51的電流值。FIG5 is a circuit block diagram of an
在圖5所示實施例中,端訊號電路122包括負載電路530、放大電路540以及電流源CS52。負載電路530的第一端耦接至電壓VCCA。負載電路530的第二端耦接至端訊號電路122的輸出端,以提供差動輸出訊號DSout中的端訊號TXn。放大電路540的輸入端接收差動輸入訊號DSin中的端訊號VIn。放大電路540的第一電流端耦接至負載電路530的第二端。電流源CS52耦接至放大電路540的第二電流端。控制器110可以調整/設置端訊號電路122的一個或多個元件參數,其中所述元件參數包括負載電路530的阻抗、放大電路540的增益或是電流源CS52的電流值。In the embodiment shown in FIG. 5 , the
端訊號電路121的放大電路520的第二電流端耦接至端訊號電路122的放大電路540的第二電流端,以及端訊號電路121的輸出端耦接至端訊號電路122的輸出端。在圖5所示實施例中,放大器120更包括電阻R53與R54。電阻R53的第一端耦接至端訊號電路121的輸出端。電阻R53的第二端耦接至端訊號電路122的輸出端。電阻R54的第一端耦接至放大電路520的第二電流端。電阻R54的第二端耦接至放大電路540的第二電流端。The second current terminal of the
在圖5所示實施例中,負載電路510包括可變電阻R51,而放大電路520包括推動單元521以及放大單元522。可變電阻R51受控於控制器110。可變電阻R51的第一端耦接至電壓VCCA。可變電阻R51的第二端耦接端訊號電路121的輸出端。放大單元522的第一電流端耦接至負載電路510的第二端。放大單元522的第二電流端耦接至電流源CS51。推動單元521的輸出端耦接至放大單元522的控制端。推動單元521的輸入端接收差動輸入訊號DSin中的端訊號VIp。In the embodiment shown in FIG5 , the
在圖5所示實施例中,推動單元521包括緩衝器B51,以及放大單元522包括電晶體M51。緩衝器B51的輸入端接收差動輸入訊號DSin中的端訊號VIp。緩衝器B51的輸出端耦接至放大單元522的控制端。控制器110可以控制緩衝器B51的增益。電晶體M51的第一端(例如汲極)耦接至負載電路510的第二端。電晶體M51的第二端(例如源極)耦接至電流源CS51。電晶體M51的控制端(例如閘極)耦接至推動單元521的輸出端。控制器110可以控制電晶體M51的通道寬長比(width to length ratio,W/L)。為了將差動輸出訊號DSout中的端訊號TXp的電壓準位往上調,控制器110可以調小電流源CS51的電流值,和/或調小電晶體M51的通道寬長比,和/或調小可變電阻R51的阻值,和/或調小緩衝器B51的增益。In the embodiment shown in FIG. 5 , the driving
響應於傳輸路徑對經傳輸差動訊號的端訊號RXp的衰減大於傳輸路徑對經傳輸差動訊號的端訊號RXn的衰減,控制器110可以減少電流源CS51的電流值(以下稱為第一電流值),和/或減少放大電路520的增益(以下稱為第一增益),和/或減少負載電路510的阻抗(以下稱為第一阻抗),和/或減少第一電流值與第一增益,和/或減少第一增益與第一阻抗,和/或減少第一電流值、第一增益與第一阻抗。基此,在不調整差動輸出訊號DSout中的端訊號TXn的情況下,控制器110可以上調差動輸出訊號DSout中的端訊號TXp的電壓準位,以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與RXn的不對稱影響。In response to the transmission path attenuating the end signal RXp of the transmitted differential signal more than the transmission path attenuating the end signal RXn of the transmitted differential signal, the
在圖5所示實施例中,負載電路530包括可變電阻R52,而放大電路540包括推動單元541以及放大單元542。可變電阻R52受控於控制器110。可變電阻R52的第一端耦接至電壓VCCA。可變電阻R52的第二端耦接端訊號電路122的輸出端。放大單元542的第一電流端耦接至負載電路530的第二端。放大單元542的第二電流端耦接至電流源CS52。推動單元541的輸出端耦接至放大單元542的控制端。推動單元541的輸入端接收差動輸入訊號DSin中的端訊號VIn。In the embodiment shown in FIG. 5 , the
在圖5所示實施例中,推動單元541包括緩衝器B52,以及放大單元542包括電晶體M52。緩衝器B52的輸入端接收差動輸入訊號DSin中的端訊號VIn。緩衝器B52的輸出端耦接至放大單元542的控制端。控制器110可以控制緩衝器B52的增益。電晶體M52的第一端(例如汲極)耦接至負載電路530的第二端。電晶體M52的第二端(例如源極)耦接至電流源CS52。電晶體M52的控制端(例如閘極)耦接至推動單元541的輸出端。控制器110可以控制電晶體M52的通道寬長比(W/L)。為了將差動輸出訊號DSout中的端訊號TXn的電壓準位往上調,控制器110可以調小電流源CS52的電流值,和/或調小電晶體M52的通道寬長比,和/或調小可變電阻R52的阻值,和/或調小緩衝器B52的增益。In the embodiment shown in FIG. 5 , the driving
響應於傳輸路徑對經傳輸差動訊號的端訊號RXp的衰減小於傳輸路徑對經傳輸差動訊號的端訊號RXn的衰減,控制器110可以減少電流源CS52的電流值(以下稱為第二電流值),和/或減少放大電路540的增益(以下稱為第二增益),和/或減少負載電路530的阻抗(以下稱為第二阻抗),和/或減少第二電流值與第二增益,和/或減少第二增益與第二阻抗,和/或減少第二電流值、第二增益與第二阻抗。基此,在不調整差動輸出訊號DSout中的端訊號TXp的情況下,控制器110可以上調差動輸出訊號DSout中的端訊號TXn的電壓準位,以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與RXn的不對稱影響。In response to the transmission path attenuating the end signal RXp of the transmitted differential signal less than the transmission path attenuating the end signal RXn of the transmitted differential signal, the
圖6是依照本發明的另一實施例所繪示,放大器120的電路方塊示意圖。圖6所示放大器120、端訊號電路121以及端訊號電路122可以參照圖5所示放大器120、端訊號電路121以及端訊號電路122的相關說明,故在此不予贅述。不同於圖5所示放大器120之處包括,圖6所示放大器120省略了電阻R53。FIG6 is a schematic circuit block diagram of an
圖7是依照本發明的又一實施例所繪示,放大器120的電路方塊示意圖。圖7所示放大器120的端訊號電路121包括負載電路710以及放大電路720,以及端訊號電路122包括負載電路730以及放大電路740。圖7所示負載電路710以及放大電路720可以參照圖5所示負載電路510以及放大電路520的相關說明,而圖7所示負載電路730以及放大電路740可以參照圖5所示負載電路530以及放大電路540的相關說明,故在此不予贅述。在圖7所示實施例中,放大器120更包括電流源CS71。電流源CS71耦接至端訊號電路121的放大電路720的第二電流端以及端訊號電路122的放大電路740的第二電流端。FIG7 is a circuit block diagram of an
在圖7所示實施例中,控制器110可以調整/設置端訊號電路121的一個或多個元件參數,以及/或是調整/設置端訊號電路122的一個或多個元件參數。其中,端訊號電路121的元件參數包括負載電路710的阻抗以及/或是放大電路720的增益,而端訊號電路122的元件參數包括負載電路730的阻抗以及/或是放大電路740的增益。In the embodiment shown in FIG7 , the
響應於傳輸路徑對經傳輸差動訊號的端訊號RXp的衰減大於傳輸路徑對經傳輸差動訊號的端訊號RXn的衰減,控制器110可以減少放大電路720的增益(以下稱為第一增益),和/或減少負載電路710的阻抗(以下稱為第一阻抗),和/或減少第一增益與第一阻抗。基此,在不調整差動輸出訊號DSout中的端訊號TXn的情況下,控制器110可以上調差動輸出訊號DSout中的端訊號TXp的電壓準位,以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與RXn的不對稱影響。In response to the transmission path attenuating the end signal RXp of the transmitted differential signal more than the transmission path attenuating the end signal RXn of the transmitted differential signal, the
響應於傳輸路徑對經傳輸差動訊號的端訊號RXp的衰減小於傳輸路徑對經傳輸差動訊號的端訊號RXn的衰減,控制器110可以減少放大電路740的增益(以下稱為第二增益),和/或減少負載電路730的阻抗(以下稱為第二阻抗),和/或減少第二增益與第二阻抗。基此,在不調整差動輸出訊號DSout中的端訊號TXp的情況下,控制器110可以上調差動輸出訊號DSout中的端訊號TXn的電壓準位,以補償傳輸路徑對經傳輸差動訊號的端訊號RXp與RXn的不對稱影響。In response to the transmission path attenuating the end signal RXp of the transmitted differential signal less than the transmission path attenuating the end signal RXn of the transmitted differential signal, the
綜上所述,透過控制器110獨立調整端訊號電路121或122的元件參數,差動放大裝置AMP21可以補償傳輸路徑的非理想效應對差動訊號的正負端訊號所造成的共模電壓差異,進而降低共模雜訊,以符合USB4規範的要求。In summary, by independently adjusting the component parameters of the
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above by the embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be defined by the scope of the attached patent application.
100:電子設備
110:控制器
120:放大器
121、122:端訊號電路
510、530、710、730:負載電路
520、540、720、740:放大電路
521、541:推動單元
522、542:放大單元
AMP11、AMP21:差動放大裝置
B51、B52:緩衝器
CBL11:纜線
CS51、CS52、CS71:電流源
DSin:差動輸入訊號
DSout:差動輸出訊號
M51、M52:電晶體
PCB11、PCB12:印刷電路板
PKG11、PKG12:積體電路封裝
R51、R52:可變電阻
R53、R54:電阻
RX11:接收裝置
RXn、RXp、TXn、TXp、VIn、VIp:端訊號
S310、S320、S410、S420、S430、S440:步驟
TP1、TP2、TP3’、TP3、TP4:測試點
TX11:傳送裝置
100: electronic equipment
110: controller
120:
圖1是依照本發明的一實施例的一種電子設備的電路方塊(circuit block)示意圖。 圖2是依照本發明的一實施例的一種差動放大裝置的電路方塊示意圖。 圖3是依照本發明的一實施例的一種補償方法的流程示意圖。 圖4是依照本發明的另一實施例的一種補償方法的流程示意圖。 圖5是依照本發明的一實施例所繪示,放大器的電路方塊示意圖。 圖6是依照本發明的另一實施例所繪示,放大器的電路方塊示意圖。 圖7是依照本發明的又一實施例所繪示,放大器的電路方塊示意圖。 FIG. 1 is a schematic diagram of a circuit block of an electronic device according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a circuit block of a differential amplifier according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a flow chart of a compensation method according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a flow chart of a compensation method according to another embodiment of the present invention. FIG. 5 is a schematic diagram of a circuit block of an amplifier according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a circuit block of an amplifier according to another embodiment of the present invention. FIG. 7 is a schematic diagram of a circuit block of an amplifier according to another embodiment of the present invention.
S310、S320:步驟 S310, S320: Steps
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/604,506 US20240348219A1 (en) | 2023-04-12 | 2024-03-14 | Differential amplification device and compensation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202363458908P | 2023-04-12 | 2023-04-12 | |
US63/458,908 | 2023-04-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202444044A TW202444044A (en) | 2024-11-01 |
TWI873945B true TWI873945B (en) | 2025-02-21 |
Family
ID=90019103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112141383A TWI873945B (en) | 2023-04-12 | 2023-10-27 | Differential amplification device and compensation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117639693A (en) |
TW (1) | TWI873945B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030085736A1 (en) * | 2001-11-08 | 2003-05-08 | Steven Tinsley | Interchangeable CML/LVDS data transmission circuit |
JP2003179451A (en) * | 2001-12-12 | 2003-06-27 | Matsushita Electric Ind Co Ltd | AGC circuit, optical receiver, and optical transmission system |
TW200412718A (en) * | 2003-01-07 | 2004-07-16 | Faraday Tech Corp | Pulse width control system for transmitting serial data |
US7236018B1 (en) * | 2004-09-08 | 2007-06-26 | Altera Corporation | Programmable low-voltage differential signaling output driver |
US20080054969A2 (en) * | 2005-09-30 | 2008-03-06 | Alan Fiedler | Output driver with slew rate control |
US20080270817A1 (en) * | 2002-09-16 | 2008-10-30 | Silicon Labs Cp, Inc. | Precision oscillator for an asynchronous transmission system |
US20090190648A1 (en) * | 2008-01-18 | 2009-07-30 | Rohm Co., Ltd. | Differential transmitter |
US8183887B2 (en) * | 2003-04-09 | 2012-05-22 | Rambus Inc. | High speed signaling system with adaptive transmit pre-emphasis |
US20140320229A1 (en) * | 2013-04-29 | 2014-10-30 | Broadcom Corporation | Transmission line driver with output swing control |
US10191526B2 (en) * | 2016-11-08 | 2019-01-29 | Qualcomm Incorporated | Apparatus and method for transmitting data signal based on different supply voltages |
US11061844B2 (en) * | 2017-03-07 | 2021-07-13 | Nxp B.V. | Transmitter with independently adjustable voltage and impedance |
WO2022109122A1 (en) * | 2020-11-20 | 2022-05-27 | Synaptics Incorporated | Self-biased differential transmitter |
-
2023
- 2023-10-27 TW TW112141383A patent/TWI873945B/en active
- 2023-11-17 CN CN202311540227.0A patent/CN117639693A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030085736A1 (en) * | 2001-11-08 | 2003-05-08 | Steven Tinsley | Interchangeable CML/LVDS data transmission circuit |
JP2003179451A (en) * | 2001-12-12 | 2003-06-27 | Matsushita Electric Ind Co Ltd | AGC circuit, optical receiver, and optical transmission system |
US20080270817A1 (en) * | 2002-09-16 | 2008-10-30 | Silicon Labs Cp, Inc. | Precision oscillator for an asynchronous transmission system |
TW200412718A (en) * | 2003-01-07 | 2004-07-16 | Faraday Tech Corp | Pulse width control system for transmitting serial data |
US8183887B2 (en) * | 2003-04-09 | 2012-05-22 | Rambus Inc. | High speed signaling system with adaptive transmit pre-emphasis |
US7236018B1 (en) * | 2004-09-08 | 2007-06-26 | Altera Corporation | Programmable low-voltage differential signaling output driver |
US20080054969A2 (en) * | 2005-09-30 | 2008-03-06 | Alan Fiedler | Output driver with slew rate control |
US20090190648A1 (en) * | 2008-01-18 | 2009-07-30 | Rohm Co., Ltd. | Differential transmitter |
US20140320229A1 (en) * | 2013-04-29 | 2014-10-30 | Broadcom Corporation | Transmission line driver with output swing control |
US10191526B2 (en) * | 2016-11-08 | 2019-01-29 | Qualcomm Incorporated | Apparatus and method for transmitting data signal based on different supply voltages |
US11061844B2 (en) * | 2017-03-07 | 2021-07-13 | Nxp B.V. | Transmitter with independently adjustable voltage and impedance |
WO2022109122A1 (en) * | 2020-11-20 | 2022-05-27 | Synaptics Incorporated | Self-biased differential transmitter |
Also Published As
Publication number | Publication date |
---|---|
CN117639693A (en) | 2024-03-01 |
TW202444044A (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4267655B2 (en) | Electronic circuit, differential transmitter configured as electronic circuit, and method of forming self-series terminated transmitter (segmentation and amplitude accuracy and high voltage protection for amplitude control, pre-emphasis control and slew rate control Self-series terminated serial link transmitter with voltage regulation for) | |
US7420387B2 (en) | Semiconductor device capable of controlling OCD and ODT circuits and control method used by the semiconductor device | |
EP1349273A2 (en) | Single-ended-to-differential converter with common-mode voltage control | |
US8599966B2 (en) | Coupling system for data receivers | |
CN109905094B (en) | Variable gain amplifier and continuous time linear equalizer | |
US6556039B2 (en) | Impedance adjustment circuit | |
US6366159B1 (en) | Dynamic bias circuitry utilizing early voltage clamp and translinear techniques | |
US20130162353A1 (en) | Signal amplification circuit | |
TWI390840B (en) | Line driver with automatically adjusting output impedance | |
TWI873945B (en) | Differential amplification device and compensation method thereof | |
KR102555449B1 (en) | Amplification circuit, receiving circuit, semiconductor apparatus and semiconductor system using the same | |
CN114650032A (en) | Impedance matching system for high speed digital receiver | |
US9099975B2 (en) | Current divider based voltage controlled gain amplifier | |
CN115219774B (en) | Detection circuit, system and method with common mode locking function | |
US20240348219A1 (en) | Differential amplification device and compensation method thereof | |
US20080111580A1 (en) | Suppressing ringing in high speed CMOS output buffers driving transmission line load | |
TWI559682B (en) | Driving circuit, driving apparatus, and method for adjusting output impedance to match transmission line impedance by current adjusting | |
CN116633284A (en) | High-gain transimpedance amplifier and high-gain photoelectric converter | |
TWI641253B (en) | Network driving circuit and method of driving network device | |
JP4966803B2 (en) | Semiconductor circuit and computer and communication apparatus using the same | |
CN105939156B (en) | Input buffer circuit | |
TWI884552B (en) | Auto calibration circuit, variable gain amplifier and auto calibration method for calibrating output voltages of the variable gain amplifier | |
CN108234137B (en) | Network driving circuit and driving method of network device | |
TW201412061A (en) | Decision feedback equalizer | |
CN112671355A (en) | Feedback system and related signal processing method |