TWI855845B - User networking protection system, method, and computer-readable medium based on network threat information - Google Patents
User networking protection system, method, and computer-readable medium based on network threat information Download PDFInfo
- Publication number
- TWI855845B TWI855845B TW112133072A TW112133072A TWI855845B TW I855845 B TWI855845 B TW I855845B TW 112133072 A TW112133072 A TW 112133072A TW 112133072 A TW112133072 A TW 112133072A TW I855845 B TWI855845 B TW I855845B
- Authority
- TW
- Taiwan
- Prior art keywords
- traffic
- threat intelligence
- network
- malicious
- module
- Prior art date
Links
Images
Landscapes
- Computer And Data Communications (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
本發明係關於一種使用者上網防護技術,特別是指一種基於網路威脅情資之使用者上網防護系統、方法及電腦可讀媒介。 The present invention relates to a user online protection technology, and in particular to a user online protection system, method and computer-readable medium based on network threat intelligence.
近年來網路蓬勃發展,且網路具有複雜(如來源複雜)及迅速(攻擊迅速)之特性,讓使用者、企業或組織面臨嚴峻之網路威脅挑戰,亦讓駭客(如網路罪犯者)能針對特定之使用者、企業或組織(如政府/機關/團體)進行網路攻擊。 In recent years, the Internet has developed rapidly, and the Internet has the characteristics of complexity (such as complex sources) and rapidity (rapid attacks), which makes users, enterprises or organizations face severe network threat challenges, and also allows hackers (such as cyber criminals) to carry out network attacks on specific users, enterprises or organizations (such as governments/agencies/groups).
再者,國際間頻傳重大之資訊安全(資安)事件,駭客組織透過精心策畫之進階或持續性威脅,針對性入侵使用者、企業或組織之各種電子設備或資訊系統等,以竊取使用者、企業或組織之個人隱私、商業機密、重要情報並謀取巨額非法獲利。 Furthermore, major information security (information security) incidents are frequently reported internationally. Hacker organizations use carefully planned advanced or persistent threats to specifically invade various electronic devices or information systems of users, enterprises or organizations to steal personal privacy, business secrets, important intelligence of users, enterprises or organizations and make huge illegal profits.
資訊安全(資安)之攻防已是不對稱戰力之競爭,單一使用者、企業或組織愈來愈難以對抗有組織且專業分工之駭客集團。在新的網路戰 場上,網路威脅來自於世界各地,使用者、企業或組織應意識到若要面對全新的網路威脅需要有強大的威脅情資收集能力,亦需利用網路威脅情資做出符合目前外部威脅趨勢之相對應防禦。 Information security (ISE) offense and defense has become a competition of asymmetric combat power. It is increasingly difficult for a single user, enterprise or organization to fight against organized and professional hacker groups. In the new cyber battlefield, cyber threats come from all over the world. Users, enterprises or organizations should realize that in order to face new cyber threats, they need to have strong threat intelligence collection capabilities and use cyber threat intelligence to make corresponding defenses that are in line with current external threat trends.
然而,現有技術並無法將使用者裝置所提出之連線請求(如上網請求)相關聯之所有網路流量(如網路訊務)經過流量導流與過濾模組,以防止使用者裝置連線至外部之惡意網站/惡意IP位址/惡意網域名稱,亦無法快速地阻擋使用者裝置對外部之惡意網站/惡意IP位址/惡意網域名稱之惡意連線或惡意連線行為,也無法針對所有經過流量導流與過濾模組之網路流量(如網路訊務)進行側錄、分析或保存,更無法將網路威脅情資之連線之回溯結果回饋至威脅情資模組,以新增威脅情資模組之網路威脅情資之內容。 However, the existing technology cannot pass all network traffic (such as network traffic) associated with the connection request (such as Internet access request) made by the user device through the traffic diversion and filtering module to prevent the user device from connecting to external malicious websites/malicious IP addresses/malicious domain names, nor can it quickly block the user device from malicious connections or malicious connection behaviors to external malicious websites/malicious IP addresses/malicious domain names, nor can it profile, analyze or save all network traffic (such as network traffic) passing through the traffic diversion and filtering module, and it is even more impossible to feed back the traceback results of the network threat intelligence connection to the threat intelligence module to add the content of the network threat intelligence of the threat intelligence module.
因此,如何提供一種創新之使用者上網防護技術,以解決上述之任一問題並提供相關聯之系統/方法,已成為本領域技術人員之一大研究課題。 Therefore, how to provide an innovative user Internet protection technology to solve any of the above problems and provide related systems/methods has become a major research topic for technical personnel in this field.
本發明所述基於網路威脅情資之使用者上網防護系統包括:一流量導流與過濾模組,係於使用者裝置提出連線請求時,將有關使用者裝置之連線請求之網路流量經過流量導流與過濾模組進行過濾,以防止使用者裝置連線至外部之惡意網站、惡意IP(網際網路協定)位址與惡意網域名稱之任一者;一威脅情資模組,係提供最新網路威脅情資,俾於使用者裝置欲對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者進行惡意 連線或惡意連線行為時,由最新網路威脅情資之內容將使用者裝置對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者之惡意連線或惡意連線行為進行阻擋或防護;以及一側錄分析模組,係側錄、複製或保存經過流量導流與過濾模組之網路流量,其中,威脅情資模組將經過流量導流與過濾模組之網路流量進行網路威脅情資之分析,以於網路威脅情資之分析結果為網路威脅情資有威脅風險時,由側錄分析模組進行網路威脅情資之連線之回溯,俾由側錄分析模組將網路威脅情資之連線之回溯結果回饋至威脅情資模組,以新增威脅情資模組之網路威脅情資之內容。 The user Internet protection system based on network threat intelligence described in the present invention includes: a traffic diversion and filtering module, which filters the network traffic related to the connection request of the user device through the traffic diversion and filtering module when the user device makes a connection request to prevent the user device from connecting to any of the external malicious websites, malicious IP (Internet Protocol) addresses and malicious domain names; a threat intelligence module, which provides the latest network threat intelligence, so that when the user device intends to conduct malicious connection or malicious connection behavior to any of the external malicious websites, malicious IP addresses and malicious domain names, the user device is blocked from connecting to the external malicious websites, malicious IP addresses and malicious domain names according to the content of the latest network threat intelligence. a side-recording analysis module that side-records, copies or saves network traffic that passes through the traffic diversion and filtering module, wherein the threat intelligence module performs network analysis on the network traffic that passes through the traffic diversion and filtering module. Analysis of threat intelligence: When the analysis result of network threat intelligence indicates that the network threat intelligence has threat risk, the sidetrack analysis module will backtrack the connection of the network threat intelligence, so that the sidetrack analysis module can feed back the backtracking result of the connection of the network threat intelligence to the threat intelligence module to add the content of the network threat intelligence of the threat intelligence module.
本發明所述基於網路威脅情資之使用者上網防護方法包括:當使用者裝置提出連線請求時,由一流量導流與過濾模組過濾有關使用者裝置之連線請求之網路流量,以防止使用者裝置連線至外部之惡意網站、惡意IP(網際網路協定)位址與惡意網域名稱之任一者;由一威脅情資模組提供最新網路威脅情資,俾於使用者裝置欲對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者進行惡意連線或惡意連線行為時,由最新網路威脅情資之內容將使用者裝置對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者之惡意連線或惡意連線行為進行阻擋或防護;以及由一側錄分析模組側錄、複製或保存經過流量導流與過濾模組之網路流量,且由威脅情資模組將經過流量導流與過濾模組之網路流量進行網路威脅情資之分析,以於網路威脅情資之分析結果為網路威脅情資有威脅風險時,由側錄分析模組進行網路威脅情資之連線之回溯,俾由側錄分析模組將網路威脅情資之連線之回溯結果回饋至威脅情資模組,以新增威脅情資模組之網路威脅情資之內容。 The user Internet protection method based on network threat intelligence described in the present invention includes: when a user device makes a connection request, a traffic diversion and filtering module filters the network traffic related to the connection request of the user device to prevent the user device from connecting to any of external malicious websites, malicious IP (Internet Protocol) addresses and malicious domain names; a threat intelligence module provides the latest network threat intelligence, so that when the user device intends to conduct malicious connection or malicious connection behavior to any of external malicious websites, malicious IP addresses and malicious domain names, the content of the latest network threat intelligence will be used to block the user device from connecting to external malicious websites, malicious IP addresses and malicious domain names. Block or protect malicious connections or malicious connection behaviors of any of malicious IP addresses and malicious domain names; and have a sidetrack analysis module sidetrack, copy or save network traffic passing through the traffic diversion and filtering module, and have the threat intelligence module analyze the network traffic passing through the traffic diversion and filtering module for network threat intelligence, so that when the analysis result of the network threat intelligence is that the network threat intelligence has a threat risk, the sidetrack analysis module backtracks the connection of the network threat intelligence, so that the sidetrack analysis module feeds back the backtracking result of the connection of the network threat intelligence to the threat intelligence module to add the content of the network threat intelligence of the threat intelligence module.
本發明之電腦可讀媒介應用於計算裝置或電腦中,係儲存有指令,以執行上述基於網路威脅情資之使用者上網防護方法。 The computer-readable medium of the present invention is applied to a computing device or a computer, and stores instructions to execute the above-mentioned user Internet protection method based on network threat information.
因此,本發明提供一種創新之基於網路威脅情資之使用者上網防護系統、方法及電腦可讀媒介,係於使用者裝置提出連線請求(如上網請求)時,自動地將此連線請求(如上網請求)相關聯之所有網路流量(如網路訊務)經過流量導流與過濾模組,以防止使用者裝置連線至外部之惡意網站/惡意IP位址/惡意網域名稱,亦能針對外部之惡意網站/惡意IP位址/惡意網域名稱對內部之使用者裝置之連線請求進行監控,以防止惡意連線或惡意連線行為(如網路掃描等)。 Therefore, the present invention provides an innovative user Internet protection system, method and computer-readable medium based on network threat intelligence. When a user device makes a connection request (such as an Internet request), all network traffic (such as network traffic) associated with the connection request (such as an Internet request) is automatically diverted and filtered through a traffic diversion and filtering module to prevent the user device from connecting to external malicious websites/malicious IP addresses/malicious domain names. It can also monitor the connection requests of internal user devices against external malicious websites/malicious IP addresses/malicious domain names to prevent malicious connections or malicious connection behaviors (such as network scanning, etc.).
或者,本發明所述基於網路威脅情資之使用者上網防護系統為一種創新之網路威脅情資上網防護系統,能快速地阻擋使用者裝置對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者之惡意連線或惡意連線行為。 Alternatively, the user online protection system based on network threat intelligence described in the present invention is an innovative network threat intelligence online protection system that can quickly block malicious connections or malicious connection behaviors of user devices to any external malicious websites, malicious IP addresses and malicious domain names.
亦或者,本發明之側錄分析模組能自動或有效地針對所有經過流量導流與過濾模組之網路流量(如網路訊務)進行側錄、分析或保存,亦能自動地將網路威脅情資之連線之回溯結果回饋至威脅情資模組,以新增威脅情資模組之網路威脅情資之內容。 Alternatively, the profile analysis module of the present invention can automatically or effectively profile, analyze or save all network traffic (such as network traffic) that passes through the traffic diversion and filtering module, and can also automatically feed back the traceback results of the network threat intelligence connection to the threat intelligence module to add the content of the network threat intelligence of the threat intelligence module.
為使本發明之上述特徵與優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明。在以下描述內容中將部分闡述本發明之額外特徵及優點,且此等特徵及優點將部分自所述描述內容可得而知,或可藉由對本發明之實踐習得。應理解,前文一般描述與以下詳細描述二者均為例示性及解釋性的,且不欲約束本發明所欲主張之範圍。 In order to make the above features and advantages of the present invention more clearly understandable, the following examples are given and detailed descriptions are provided in conjunction with the attached drawings. The following description will partially explain the additional features and advantages of the present invention, and these features and advantages will be partially known from the description or can be learned through the practice of the present invention. It should be understood that both the general description above and the detailed description below are exemplary and explanatory, and are not intended to limit the scope of the present invention.
1:使用者上網防護系統 1: User Internet protection system
10:流量導流與過濾模組 10: Flow diversion and filtration module
11:流量導流單元 11: Flow diversion unit
12:流量過濾單元 12: Flow filter unit
20:威脅情資模組 20: Threat Intelligence Module
21:威脅情資資料庫 21: Threat Intelligence Database
22:威脅情資分析與回溯單元 22: Threat intelligence analysis and backtracking unit
30:側錄分析模組 30: Profile analysis module
31:流量側錄單元 31: Traffic profiling unit
32:回溯分析單元 32: Retrospective analysis unit
A:使用者裝置 A: User device
B:網路 B: Internet
C:網路威脅情資 C: Cyber threat intelligence
D:網路流量 D: Network traffic
S01至S13:步驟 S01 to S13: Steps
圖1為本發明所述基於網路威脅情資之使用者上網防護系統之架構示意圖。 Figure 1 is a schematic diagram of the architecture of the user online protection system based on network threat intelligence described in the present invention.
圖2為本發明所述基於網路威脅情資之使用者上網防護系統之實施例示意圖。 Figure 2 is a schematic diagram of an embodiment of the user online protection system based on network threat information described in the present invention.
圖3為本發明所述基於網路威脅情資之使用者上網防護方法之使用情境實施例之流程示意圖。 Figure 3 is a flowchart of an implementation example of the user Internet protection method based on network threat information described in the present invention.
以下藉由特定的具體實施形態說明本發明之實施方式,熟悉此技術之人士可由本說明書所揭示之內容瞭解本發明之其他優點與功效,亦可因而藉由其他不同具體等同實施形態加以施行或運用。 The following describes the implementation of the present invention through a specific concrete implementation form. People familiar with this technology can understand other advantages and effects of the present invention from the content disclosed in this manual, and can also implement or use it through other different specific equivalent implementation forms.
圖1與圖2分別為本發明所述基於網路威脅情資之使用者上網防護系統1之架構示意圖及實施例示意圖。如圖1與圖2所示,基於網路威脅情資之使用者上網防護系統1可分別通訊連結使用者裝置A與網路B,並包括互相通訊連結之一流量導流與過濾模組10、一威脅情資模組20以及一側錄分析模組30等。此外,流量導流與過濾模組10可具有一流量導流單元11及一流量過濾單元12等,威脅情資模組20可具有一威脅情資資料庫21及一威脅情資分析與回溯單元22等,且側錄分析模組30可具有一流量側錄單元31及一回溯分析單元32等。
FIG1 and FIG2 are respectively a schematic diagram of the structure of the user
在一實施例中,使用者裝置A可為使用者及/或所使用之使用 者設備,且使用者裝置或設備可為智慧型手機、智慧型手錶、平板電腦、個人電腦、筆記型電腦、桌上型電腦等。網路B可為網際網路、有線網路、無線網路、廣域網路(Wide Area Network;WAN)、區域網路(Local Area Network;LAN)、都會網域(Metropolitan Area Network;MAN)等。 In one embodiment, user device A may be a user and/or a user device used, and the user device or device may be a smart phone, a smart watch, a tablet computer, a personal computer, a laptop computer, a desktop computer, etc. Network B may be the Internet, a wired network, a wireless network, a wide area network (WAN), a local area network (LAN), a metropolitan area network (MAN), etc.
在一實施例中,流量導流與過濾模組10可為流量導流與過濾器(晶片/電路)、流量導流與過濾軟體(程式)等,流量導流單元11可為流量導流器(晶片/電路)、流量導流軟體(程式)等,流量過濾單元12可為流量過濾器(晶片/電路)、流量過濾軟體(程式)等。威脅情資資料庫21可為威脅情資資料儲存器、威脅情資資料伺服器,亦可為用於儲存網路威脅情資C之記憶體、記憶卡、硬碟(如雲端/網路/外接式硬碟)、光碟、隨身碟等,威脅情資分析與回溯單元22可為威脅情資分析與回溯器、威脅情資分析與回溯軟體(程式)等。側錄分析模組30可為側錄分析器(晶片/電路)、側錄分析軟體(程式)等,流量側錄單元31可為流量側錄器(晶片/電路)、流量側錄軟體(程式)等,回溯分析單元32可為回溯分析器(晶片/電路)、回溯分析軟體(程式)等。
In one embodiment, the flow diversion and
在一實施例中,本發明所述「至少一」代表一個以上(如一、二或三個以上),「複數」代表二個以上(如二、三、四、十或百個以上),「通訊連結」代表以有線方式(如有線網路)或無線方式(如無線網路)互相通訊連結。網路流量(network traffic)D可為網路訊務等,「內部」可為內部之使用者裝置A、設備(如網路設備)、系統(如資訊系統)、網站等,「外部」有可能是或不是惡意網站、惡意IP(網際網路協定;Internet Protocol)位址、惡意網域名稱(domain name)等。但是,本發明並不以各實施例所提及者為 限。 In one embodiment, the "at least one" mentioned in the present invention represents more than one (such as one, two or three), "plurality" represents more than two (such as two, three, four, ten or one hundred), and "communication link" represents mutual communication link in wired mode (such as wired network) or wireless mode (such as wireless network). Network traffic D can be network traffic, etc., "internal" can be internal user device A, equipment (such as network equipment), system (such as information system), website, etc., and "external" may or may not be malicious website, malicious IP (Internet Protocol) address, malicious domain name, etc. However, the present invention is not limited to those mentioned in each embodiment.
詳言之,基於網路威脅情資之使用者上網防護系統1主要包括流量導流與過濾模組10、威脅情資模組20以及側錄分析模組30。流量導流與過濾模組10之流量導流單元11可控制網路流量D(如網路訊務)之方向,且流量導流與過濾模組10之流量過濾單元12可判斷網路流量D(如網路訊務)中是否存在惡意IP位址或惡意網域名稱之網路威脅情資C(如惡意威脅情資)。威脅情資模組20之威脅情資資料庫21可儲存網路威脅情資C,且威脅情資模組20之威脅情資分析與回溯單元22可分析欲新增之網路威脅情資C是否為惡意威脅情資(高風險惡意情資)。側錄分析模組30之流量側錄單元31可側錄及保存所有網路流量D(如網路訊務),且側錄分析模組30之回溯分析單元32可分析網路威脅情資C及查詢歷史(過去)之網路流量D(如網路訊務)。
In detail, the user
當使用者裝置A提出連線請求(如上網請求)時,將有關使用者裝置A之連線請求(如上網請求)之所有網路流量D(如網路訊務)經過流量導流與過濾模組10進行過濾,以防止使用者裝置A連線至外部之惡意網站、惡意IP位址與惡意網域名稱之任一者,且在一實施例中,流量導流與過濾模組10可定期或不定期詢問威脅情資模組20是否有最新網路威脅情資C之內容,若有則將該最新網路威脅情資C傳送至該流量導流與過濾模組10,而在另一實施例中,當威脅情資模組20有最新網路威脅情資C之內容時,將該最新網路威脅情資C傳送至該流量導流與過濾模組10。當內部之使用者裝置A欲對外部(即內部對外部)之惡意網站、惡意IP位址與惡意網域名稱之任一者進行惡意連線或惡意連線行為時,威脅情資模組20
可依據最新網路威脅情資C之內容將使用者裝置A對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者之惡意連線或惡意連線行為進行阻擋或防護。
When user device A makes a connection request (such as an Internet access request), all network traffic D (such as network traffic) related to the connection request (such as an Internet access request) of user device A is filtered by the traffic diversion and
流量導流與過濾模組10對於外部對內部之連線請求之行為將一併進行監控,以防止惡意連線或惡意連線行為(如網路掃描等),所有經過流量導流與過濾模組10之網路流量D(如網路訊務)皆會被側錄或複製一份至側錄分析模組30之流量側錄單元31中進行保存,對於網路流量D(如網路訊務)中未被流量導流與過濾模組10偵測到之連線將傳送至威脅情資模組20,以進行網路威脅情資C之分析。當威脅情資模組20對網路威脅情資C之分析結果為網路威脅情資C有威脅風險(如高風險或潛在風險)時,由側錄分析模組30進行網路威脅情資C之連線之回溯,再由側錄分析模組30將網路威脅情資C之連線之回溯結果回饋至威脅情資模組20,以新增威脅情資模組20之網路威脅情資C(如最新網路威脅情資)之內容,藉此提升威脅情資模組20之網路威脅情資C之豐富度與廣度。
The traffic diversion and
一、流量導流與過濾模組10:可具有流量導流單元11及流量過濾單元12,在流量導流與過濾模組10之初始化階段,流量導流與過濾模組10之流量過濾單元12將接收威脅情資模組20所提供之最新網路威脅情資C之內容。
1. Traffic diversion and filtering module 10: It may have a
[1]內部對外部之連線行為:當內部之使用者裝置A欲對外部(即內部對外部)進行連線請求時,流量導流與過濾模組10之流量導流單元11可將使用者裝置A對外部之連線請求所包括之目的端之IP位址、DNS(網域名稱服務;Domain Name Service)查詢請求、回應之IP位
址紀錄進行解析及萃取,以由流量導流單元11將目的端之IP位址/網域名稱傳送至流量導流與過濾模組10之流量過濾單元12,再由流量過濾單元12將目的端之IP位址/網域名稱與已更新之最新網路威脅情資C(如IP位址/網域名稱)兩者進行比對。若流量過濾單元12之比對結果為目的端之IP位址/網域名稱與已更新之最新網路威脅情資C(如IP位址/網域名稱)兩者相符(命中),則代表本次內部之使用者裝置A對外部之連線請求為有威脅風險(如高風險或潛在風險)之連線行為,故流量過濾單元12可將有威脅風險之連線行為(結果)回應至流量導流單元11,俾由流量導流單元11拒絕本次內部之使用者裝置A對外部之連線請求。
[1] Internal to external connection behavior: When the internal user device A wishes to make a connection request to the outside (i.e., internal to external), the
[2]外部對內部之連線行為:若連線請求之來源端(如發起端)為外部對內部進行連線行為,則流量導流與過濾模組10之流量導流單元11可將外部對內部之連線行為所包括之來源端之IP位址進行解析及萃取,以由流量導流單元11將來源端之IP位址傳送至流量導流與過濾模組10之流量過濾單元12,再由流量過濾單元12將來源端之IP位址與已更新之最新網路威脅情資C(如IP位址)兩者進行比對。若流量過濾單元12之比對結果為來源端之IP位址與已更新之最新網路威脅情資C(如IP位址)兩者相符(命中),則代表本次外部對內部之連線請求為有威脅風險(如高風險或潛在風險)之連線行為,故流量導流與過濾模組10之流量過濾單元12可將有威脅風險之連線行為(結果)回應至流量導流單元11,俾由流量導流單元11拒絕本次外部對內部之連線請求。
[2] External-to-internal connection behavior: If the source end (such as the initiator) of the connection request is an external-to-internal connection behavior, the
[3]如果上述[1]內部對外部之連線行為與[2]外部對內部之連線行為,皆沒對應到任何網路威脅情資C(如惡意威脅情資),則流量導流與
過濾模組10之流量導流單元11將分別同意本次使用者裝置A之連線請求與本次外部之連線請求。
[3] If the above-mentioned [1] internal to external connection behavior and [2] external to internal connection behavior do not correspond to any network threat information C (such as malicious threat information), then the
為了增加網路威脅情資C之深度與廣度,流量導流與過濾模組10之流量過濾單元12於進行內部對外部之連線之監控過程中,會將未相符(未命中)之網域名稱服務(DNS)之查詢請求紀錄之連線解析結果傳送至威脅情資模組20,以進行網路威脅情資C之分析與回饋,且流量導流與過濾模組10之流量導流單元11皆會針對內部對外部之連線及外部對內部之連線之網路流量D(如網路訊務)側錄或複製一份至側錄分析模組30之流量側錄單元31中進行完整保存。
In order to increase the depth and breadth of network threat intelligence C, the
二、威脅情資模組20:可具有威脅情資資料庫21及威脅情資分析與回溯單元22,且威脅情資資料庫21儲存有IP位址與網域名稱共兩種類型之網路威脅情資C,以由威脅情資模組20定期推播威脅情資資料庫21中之最新網路威脅情資C至流量導流與過濾模組10,再由流量導流與過濾模組10依據最新網路威脅情資C進行過濾網路流量D(如網路訊務)中是否存在惡意連線或惡意連線行為。
2. Threat intelligence module 20: It may have a
[1]內部對外部之連線行為:當內部之使用者裝置A是以「IP位址」進行連線請求(直接連線)時,流量導流與過濾模組10可將使用者裝置A之IP位址與預先更新之網路威脅情資C兩者進行比對是否為惡意連線或惡意連線行為。若流量導流與過濾模組10之比對結果為使用者裝置A之IP位址與預先更新之網路威脅情資C兩者相符(命中),則流量導流與過濾模組10阻擋本次內部之使用者裝置A之連線請求,並將使用者裝置A之IP位址傳送至威脅情資模組20之威脅情資分析與回溯單元22,以由威
脅情資分析與回溯單元22進行使用者裝置A之IP位址之歷程回溯來找出與使用者裝置A之IP位址相關聯之網域名稱,再由威脅情資分析與回溯單元22將所找出之網域名稱回饋至威脅情資資料庫21中。反之,若流量導流與過濾模組10之比對結果為使用者裝置A之IP位址與預先更新之網路威脅情資C兩者未相符(未命中),則流量導流與過濾模組10允許內部之使用者裝置A對外部進行連線。
[1] Internal to external connection behavior: When an internal user device A makes a connection request (direct connection) using an "IP address", the traffic diversion and
又,當內部之使用者裝置A是以「網域名稱」進行連線請求時,流量導流與過濾模組10將使用者裝置A之網域名稱與預先更新之網路威脅情資C兩者進行比對是否為惡意連線或惡意連線行為。若流量導流與過濾模組10之比對結果為使用者裝置A之網域名稱與預先更新之網路威脅情資C兩者相符(命中),則流量導流與過濾模組10阻擋本次內部之使用者裝置A之連線請求。反之,若流量導流與過濾模組10之比對結果為使用者裝置A之網域名稱與預先更新之網路威脅情資C兩者未相符(未命中),則流量導流與過濾模組10允許內部之使用者裝置A對外部進行DNS(網域名稱服務)之查詢,以由流量導流與過濾模組10依據對外部進行DNS(網域名稱服務)之查詢後所回應之IP位址再一次進行網路威脅情資C之比對來確認是否為惡意連線或惡意連線行為,藉此進行即時防護。當所回應之IP位址為惡意連線或惡意連線行為時,流量導流與過濾模組10將所回應之IP位址即時進行阻擋防護,再由威脅情資模組20之威脅情資分析與回溯單元22進行所回應之IP位址之歷程回溯來找出與所回應之IP位址相關聯之網域名稱,再由威脅情資分析與回溯單元22將所找出之網域名稱回饋至威脅情資資料庫21中。經由上述即時防護或阻擋防護之過程後,
若流量導流與過濾模組10發現所找出之網域名稱皆無惡意行為,則流量導流與過濾模組10可將所找出之網域名稱傳送至威脅情資分析與回溯單元22以進行進一步之分析。
Furthermore, when the internal user device A makes a connection request using a "domain name", the traffic diversion and
[2]外部對內部之連線行為:當外部使用者是以「IP位址」之形式對內部之設備進行連線行為(即外部對內部之連線請求),流量導流與過濾模組10可將外部使用者之IP位址與預先更新之網路威脅情資C兩者進行比對是否為惡意連線或惡意連線行為。若流量導流與過濾模組10之比對結果為外部使用者之IP位址與預先更新之網路威脅情資C兩者相符(命中),則代表本次外部對內部之連線請求為有威脅風險(如高風險或潛在風險)之惡意連線或惡意連線行為,故流量導流與過濾模組10可阻擋本次外部對內部之連線請求,並將外部使用者之IP位址傳送至威脅情資模組20之威脅情資分析與回溯單元22,以由威脅情資分析與回溯單元22進行外部使用者之IP位址之歷程回溯來找出與外部使用者之IP位址相關聯之網域名稱,並將相關聯之網域名稱回饋至威脅情資資料庫21中。反之,若流量導流與過濾模組10之比對結果為外部使用者之IP位址與預先更新之網路威脅情資C兩者未相符(未命中),則代表本次外部對內部之連線請求為無威脅風險(如高風險或潛在風險)之連線行為,故流量導流與過濾模組10可允許本次外部對內部之連線請求。
[2] External to internal connection behavior: When an external user connects to an internal device in the form of an "IP address" (i.e., an external to internal connection request), the traffic diversion and
當威脅情資模組20之威脅情資分析與回溯單元22收到流量導流與過濾模組10之流量過濾單元12所發送之欲分析之網域名稱時,威脅情資分析與回溯單元22可利用下列威脅情資信譽計算方法,將已預先定義之分佈模型P與欲分析之網域名稱Q兩者進行計算以得出欲分析之網域
名稱Q之威脅情資信譽分數Verdict(σ)。例如,威脅情資信譽計算方法為
,其中,Verdict(σ)代表威脅情資
信譽分數,P代表已預先定義之分佈模型,Q代表欲分析之網域名稱,i代表1至n,且n代表等於或大於2之正整數。
When the threat intelligence analysis and
當欲分析之網域名稱Q之威脅情資信譽分數Verdict(σ)超過一定門檻值時,威脅情資模組20可將欲分析之網域名稱Q定義為惡意網域名稱,以由威脅情資模組20之威脅情資分析與回溯單元22針對惡意網域名稱向側錄分析模組30進行一定時間區間之歷程回溯來找出與惡意網域名稱相關聯之惡意IP位址,其中包括與惡意網域名稱Di相關聯之惡意IP位址(如IP1,IP2,...,IPn),例如Di={IP1,IP2,...,IPn},再由威脅情資分析與回溯單元22將與惡意網域名稱Di相關聯之惡意IP位址視為新增之網路威脅情資C,俾由威脅情資分析與回溯單元22將與惡意網域名稱Di相關聯之惡意IP位址回饋至威脅情資資料庫21中。
When the threat intelligence reputation score Verdict(σ) of the domain name Q to be analyzed exceeds a certain threshold value, the
當威脅情資分析與回溯單元22收到之資料為IP位址時,將直接向側錄分析模組30進行一定時間區間之歷程回溯來找出與此IP位址相關聯之網域名稱,其中包括與惡意IP位址IPi相關聯之惡意網域名稱(如D1,D2,...,Dn),例如IPi={D1,D2,...,Dn},再由威脅情資分析與回溯單元22將與惡意IP位址IPi相關聯之惡意網域名稱視為新增之網路威脅情資C,俾由威脅情資分析與回溯單元22將與惡意IP位址IPi相關聯之惡意網域名稱回饋至威脅情資資料庫21中。
When the data received by the threat intelligence analysis and backtracking
三、側錄分析模組30:可具有流量側錄單元31及回溯分析單元32,流量側錄單元31可將流量導流與過濾模組10所傳遞之流量進行
側錄及儲存,且回溯分析單元32可依據威脅情資模組20所要求之相關聯參數(例如:欲查詢之有威脅風險之網域名稱、IP位址與一定時間區間等)進行相關聯之歷程回溯,以由回溯分析單元32按照此歷程回溯回傳相關聯之惡意IP位址或惡意網域名稱之對應結果至威脅情資資料庫21。
3. Profile analysis module 30: It may have a
圖3為本發明所述基於網路威脅情資之使用者上網防護方法之使用情境實施例之流程示意圖,並參閱圖1與圖2所示基於網路威脅情資之使用者上網防護系統1一併說明。
FIG3 is a flowchart of an implementation example of the use scenario of the user online protection method based on network threat intelligence described in the present invention, and is also described together with the user
如圖3所示,基於網路威脅情資之使用者上網防護系統1在收到連線請求時(見步驟S01),會先進入流量導流與過濾模組10之流量導流單元11(見步驟S02),流量導流單元11除了將網路流量D(如網路訊務)傳送至流量過濾單元12,以偵測網路威脅情資C外(見步驟S03),還會側錄或複製一份網路流量D(如網路訊務)至側錄分析模組30之流量側錄單元31以進行儲存完整網路流量D之內容(見步驟S04)。
As shown in FIG3 , when the user
流量導流與過濾模組10之流量過濾單元12通過威脅情資模組20之威脅情資資料庫21中之網路威脅情資C(如惡意威脅情資)進行即時比對本次之連線請求。[1]若流量過濾單元12對於本次之連線請求比對到網路威脅情資C之惡意IP位址或惡意網域名稱,則由流量過濾單元12拒絕本次之連線請求(見步驟S05),並將本次之連線請求傳送至威脅情資分析與回溯單元22(見步驟S09)。[2]若流量過濾單元12對於本次之連線請求未比對到網路威脅情資C之惡意IP位址,則由流量過濾單元12判定本次之連線請求之IP位址為非惡意IP位址,並同意本次之連線請求(見步驟S06)。[3]若流量過濾單元12對於本次之連線請求未比對到網路威脅情
資C之網域名稱,則由流量過濾單元12判定本次之連線請求之網域名稱為未知網域名稱,以由流量過濾單元12將未知網域名稱透過網域名稱服務伺服器(DNS server)查詢所有對應IP位址(例如IP={IP1,IP2,...,IPn};見步驟S07),再透過網域名稱服務伺服器(圖未示)將所有對應IP位址逐一傳送至流量過濾單元12進行比對或偵測(見步驟S08)。
The
當流量過濾單元12比對或偵測到所有對應IP位址之任一者為惡意對應IP位址時,由流量過濾單元12拒絕本次之連線請求(見步驟S05),並將惡意對應IP位址傳送至威脅情資分析與回溯單元22。反之,當流量過濾單元12對所有對應IP位址皆未比對或偵測到惡意對應IP位址時,由流量過濾單元12將未知網域名稱傳送至威脅情資分析與回溯單元22(見步驟S09)。
When the
威脅情資模組20之威脅情資分析與回溯單元22可依據網路威脅情資C(如惡意威脅情資)中不同的惡意請求或未知請求進行不同的回溯或分析。[1]若網路威脅情資C(如惡意威脅情資)中之惡意請求為「惡意IP位址或惡意對應IP位址」,則威脅情資分析與回溯單元22可透過側錄分析模組30之流量側錄單元31所側錄之網路流量D(如網路訊務)之資料進行回溯相關聯之網域名稱(如{D1,D2,...,Dn};見步驟S10),再由威脅情資分析與回溯單元22將相關聯之網域名稱(如{D1,D2,...,Dn})新增至威脅情資資料庫21(見步驟S13)。[2]若網路威脅情資C(如惡意威脅情資)中之惡意請求為「惡意網域名稱」,則威脅情資分析與回溯單元22可回溯相關聯之IP位址(如IP{IP1,IP2,...,IPn};見步驟S11),再由威脅情資分析與回溯單元22將相關聯之IP位址(如IP{IP1,IP2,...,IPn})新增至威脅情資資料庫21(見步
驟S13)。[3]若網路威脅情資C(如惡意威脅情資)中之未知請求為未知網域名稱,則威脅情資分析與回溯單元22可通過威脅情資信譽計算方法計算出未知網域名稱之威脅情資信譽分數Verdict(σ),例如威脅情資信譽計算方法
為,以由威脅情資分析與回溯單
元22依據未知網域名稱之威脅情資信譽分數Verdict(σ)判斷未知網域名稱是否有威脅風險(見步驟S12)。
The threat intelligence analysis and backtracking
例如,當未知網域名稱之威脅情資信譽分數Verdict(σ)超過一定門檻值時,由威脅情資分析與回溯單元22判斷未知網域名稱為有威脅風險(如高風險或潛在風險);反之,當威脅情資信譽分數Verdict(σ)未超過一定門檻值時,由威脅情資分析與回溯單元22判斷未知網域名稱為無威脅風險(如無風險及無潛在風險)。如果未知網域名稱為有威脅風險(如高風險或潛在風險),則將有威脅風險(如高風險或潛在風險)之未知網域名稱傳送至威脅情資分析與回溯單元22,以回溯所有關聯IP位址(如IP{IP1,IP2,...,IPn};見步驟S11),再由威脅情資分析與回溯單元22將所有關聯IP位址新增至威脅情資資料庫21(見步驟S13)。相對地,如果未知網域名稱為無威脅風險(如無風險及無潛在風險),則由流量導流與過濾模組10之流量過濾單元12同意本次之連線請求(見步驟S06)。
For example, when the threat intelligence reputation score Verdict(σ) of the unknown domain name exceeds a certain threshold value, the threat intelligence analysis and backtracking
申言之,本發明所述基於網路威脅情資之使用者上網防護方法可包括:[1]流量導流之方法、[2]流量過濾之方法、[3]威脅情資資料庫21、[4]威脅情資分析與回溯之方法、[5]流量側錄之方法、[6]回溯分析之方法。
In other words, the user Internet protection method based on network threat intelligence described in the present invention may include: [1] a traffic diversion method, [2] a traffic filtering method, [3] a
[1]流量導流之方法:流量導流單元11之網路流量D(如網路
訊務)之導流可透通內部對外部之連線行為與外部對內部之連線行為,這些網路流量D(如網路訊務)經由埠控制(Port Control)方式被側錄或複製至其他埠進行輸出到側錄分析模組30之流量側錄單元31中,透通之過程中也一併將連線指標(例如:來源端之IP位址、目的端之IP位址、網域名稱服務DNS之查詢請求、回應之IP位址紀錄)進行解析及萃取。若連線請求中存在惡意連線或惡意連線行為,則由流量導流與過濾模組10進行即時阻擋本次之連線請求之惡意連線或惡意連線行為;反之,若連線請求中不存在惡意連線或惡意連線行為,則由流量導流與過濾模組10允許網路透通而不阻擋本次之連線請求或連線行為。
[1] Traffic diversion method: The diversion of network traffic D (such as network traffic) by the
[2]流量過濾之方法:基於威脅情資模組20之最新網路威脅情資C以及內部對外部與外部對內部之連線指標(例如:來源端之IP位址、目的端之IP位址、網域名稱服務DNS之查詢請求、回應之IP位址紀錄)進行比對,當指標連線中包括惡意連線或惡意連線行為時,由流量導流與過濾模組10之流量導流單元11進行控制,以拒絕本次之連線請求,且將IP位址或網域名稱傳送至威脅情資模組20之威脅情資分析與回溯單元22,以進行網路威脅情資C之回溯及搜尋。
[2] Traffic filtering method: Based on the latest network threat intelligence C from
[3]威脅情資資料庫21:可儲存IP位址與網域名稱等兩種網路威脅情資C(如惡意威脅情資),威脅情資資料庫21亦可提供最新網路威脅情資C至流量導流與過濾模組10之流量過濾單元12,且威脅情資模組20之威脅情資分析與回溯單元22可對威脅情資資料庫21進行新增網路威脅情資C之操作。
[3] Threat intelligence database 21: can store two types of network threat intelligence C (such as malicious threat intelligence), such as IP addresses and domain names.
[4]威脅情資分析與回溯之方法:流量導流與過濾模組10之
流量過濾單元12可判斷網路威脅情資C是否為惡意IP位址與惡意網域名稱等惡意威脅情資,且側錄分析模組30之回溯分析單元32可回溯相關聯之對應IP位址或網域名稱以新增至威脅情資資料庫21。
[4] Method for threat intelligence analysis and backtracking: The
[5]流量側錄之方法:側錄分析模組30之流量側錄單元31可採用全時(如24小時)方式進行網路流量D(如網路訊務)之側錄及保存,且側錄分析模組30之回溯分析單元32可進行網路流量D(如網路訊務)之查詢。
[5] Traffic profiling method: The
[6]回溯分析之方法:當威脅情資分析與回溯單元22查詢IP位址時,由威脅情資分析與回溯單元22向側錄分析模組30進行一定時間區間之歷程回溯來找出與此IP位址相關聯之網域名稱(例如IPi={D1,D2,...,Dn})。而當威脅情資分析與回溯單元22查詢網域名稱時,由威脅情資分析與回溯單元22向側錄分析模組30進行一定時間區間之歷程回溯來找出與此網域名稱相關聯之IP位址(例如Di={IP1,IP2,...,IPn})。然後,威脅情資分析與回溯單元22可將相關聯之網域名稱或IP位址視為新增之網路威脅情資C以回饋至威脅情資資料庫21中。
[6] Backtracking analysis method: When the threat intelligence analysis and backtracking
此外,本發明還提供一種針對基於網路威脅情資之使用者上網防護方法之電腦可讀媒介,係應用於具有處理器及/或記憶體之計算裝置或電腦中,且電腦可讀媒介儲存有指令,並可利用計算裝置或電腦透過處理器及/或記憶體執行電腦可讀媒介,以於執行電腦可讀媒介時執行上述內容。 In addition, the present invention also provides a computer-readable medium for a user Internet protection method based on network threat intelligence, which is applied to a computing device or computer having a processor and/or memory, and the computer-readable medium stores instructions, and the computing device or computer can execute the computer-readable medium through the processor and/or memory to execute the above content when executing the computer-readable medium.
在一實施例中,處理器可為處理電路、中央處理器(CPU)、圖形處理器(GPU)、微處理器(MPU)、微控制器(MCU)等,記憶體可為隨 機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃(flash)記憶體、記憶卡、硬碟(如雲端/網路/外接式硬碟)、光碟、隨身碟、資料庫等,且計算裝置或電腦可為計算機、智慧型手機、平板電腦、個人電腦、筆記型電腦、桌上型電腦、伺服器(如雲端/遠端/網路伺服器)等。 In one embodiment, the processor may be a processing circuit, a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor (MPU), a microcontroller (MCU), etc., the memory may be a random access memory (RAM), a read-only memory (ROM), a flash memory, a memory card, a hard disk (such as a cloud/network/external hard disk), an optical disk, a flash drive, a database, etc., and the computing device or computer may be a computer, a smart phone, a tablet computer, a personal computer, a laptop, a desktop computer, a server (such as a cloud/remote/network server), etc.
綜上,本發明所述基於網路威脅情資之使用者上網防護系統及其方法係至少具有下列特色、優點或技術功效。 In summary, the user online protection system and method based on network threat intelligence described in the present invention have at least the following features, advantages or technical effects.
一、本發明能於使用者裝置提出連線請求(如上網請求)時,自動地將此連線請求(如上網請求)相關聯之所有網路流量(如網路訊務)經過流量導流與過濾模組,以防止使用者裝置連線至外部之惡意網站/惡意IP位址/惡意網域名稱,亦能針對外部之惡意網站/惡意IP位址/惡意網域名稱對內部之使用者裝置之連線請求進行監控,以防止惡意連線或惡意連線行為(如網路掃描等)。 1. When a user device makes a connection request (such as an Internet access request), the present invention can automatically route all network traffic (such as network communications) associated with the connection request (such as an Internet access request) through a traffic diversion and filtering module to prevent the user device from connecting to external malicious websites/malicious IP addresses/malicious domain names. It can also monitor the connection requests of internal user devices against external malicious websites/malicious IP addresses/malicious domain names to prevent malicious connections or malicious connection behaviors (such as network scanning, etc.).
二、本發明所述基於網路威脅情資之使用者上網防護系統為一種創新之網路威脅情資上網防護系統,能快速地阻擋使用者裝置對外部之惡意網站、惡意IP位址與惡意網域名稱之任一者之惡意連線或惡意連線行為。 2. The user online protection system based on network threat intelligence described in the present invention is an innovative network threat intelligence online protection system that can quickly block malicious connections or malicious connection behaviors of user devices to any external malicious websites, malicious IP addresses and malicious domain names.
三、本發明能有效運用威脅情資模組之威脅情資資料庫所儲存之網路威脅情資(如IP位址與網域名稱)等大數據,以利保護使用者裝置之上網安全,亦能降低使用者裝置進行上網之風險。 3. The present invention can effectively utilize the big data such as network threat intelligence (such as IP addresses and domain names) stored in the threat intelligence database of the threat intelligence module to protect the Internet security of user devices and reduce the risks of Internet access of user devices.
四、本發明之威脅情資模組之威脅情資分析與回溯單元能提供威脅情資信譽計算方法,以有效地基於已預先定義之分佈模型與欲分析之網域名稱計算出威脅情資信譽分數,藉此迅速地找出可能或潛在之網域 威脅情資,亦能依據威脅情資信譽分數判斷未知網域名稱是否有威脅風險。 4. The threat intelligence analysis and backtracking unit of the threat intelligence module of the present invention can provide a threat intelligence reputation calculation method to effectively calculate the threat intelligence reputation score based on the pre-defined distribution model and the domain name to be analyzed, thereby quickly finding possible or potential domain threat intelligence, and can also judge whether an unknown domain name has a threat risk based on the threat intelligence reputation score.
五、本發明之威脅情資模組能對未知網域名稱(如未被偵測到之網域名稱)進行分析,以利於威脅情資模組之分析結果為未知網域名稱有威脅風險(如高風險或潛在風險)時,由威脅情資模組自動進行威脅風險情資之連線之回溯及新增網路威脅情資,俾有效地提升網路威脅情資之豐富度及廣度。 5. The threat intelligence module of the present invention can analyze unknown domain names (such as domain names that have not been detected). When the analysis result of the threat intelligence module is that the unknown domain name has a threat risk (such as a high risk or potential risk), the threat intelligence module automatically traces back the connection of the threat risk intelligence and adds new network threat intelligence, so as to effectively improve the richness and breadth of network threat intelligence.
六、本發明之側錄分析模組之流量側錄單元能自動或有效地針對所有經過流量導流與過濾模組之網路流量(如網路訊務)進行側錄、分析或保存。 6. The traffic profiling unit of the profiling analysis module of the present invention can automatically or effectively profile, analyze or save all network traffic (such as network traffic) passing through the traffic diversion and filtering module.
七、本發明之側錄分析模組之回溯分析單元能自動地將網路威脅情資之連線之回溯結果回饋至威脅情資模組,以新增威脅情資模組之網路威脅情資之內容,亦能透過服務(如網域名稱服務)即時查詢與關聯網路威脅情資,以有效達到網路威脅情資之回溯與即時防護之目的。 7. The retrospective analysis unit of the sidetrack analysis module of the present invention can automatically feed back the retrospective results of the connection of the network threat intelligence to the threat intelligence module to add the content of the network threat intelligence of the threat intelligence module. It can also query and associate network threat intelligence in real time through services (such as domain name services) to effectively achieve the purpose of retrospection and real-time protection of network threat intelligence.
八、本發明能透過網路威脅情資之正向循環,以新增或強化網路威脅情資之內容之即時性、正確性及完整性,亦能全面提高網路安全事故(如網路資訊安全事故)之早期預警及應變能力,也能降低使用者裝置之網路安全風險(如網路資訊安全風險)。 8. The present invention can increase or strengthen the timeliness, accuracy and completeness of the content of network threat intelligence through the positive cycle of network threat intelligence, and can also comprehensively improve the early warning and response capabilities of network security incidents (such as network information security incidents), and can also reduce the network security risks of user devices (such as network information security risks).
上述實施形態僅例示性說明本發明之原理、特點及其功效,並非用以限制本發明之可實施範疇,任何熟習此項技藝之人士均能在不違背本發明之精神及範疇下,對上述實施形態進行修飾與改變。任何使用本發明所揭示內容而完成之等效改變及修飾,均仍應為申請專利範圍所涵蓋。因此,本發明之權利保護範圍應如申請專利範圍所列。 The above implementation forms are only illustrative of the principles, features and effects of the present invention, and are not intended to limit the scope of implementation of the present invention. Anyone familiar with this technology can modify and change the above implementation forms without violating the spirit and scope of the present invention. Any equivalent changes and modifications completed using the content disclosed by the present invention should still be covered by the scope of the patent application. Therefore, the scope of protection of the present invention should be as listed in the scope of the patent application.
1:使用者上網防護系統 1: User Internet protection system
10:流量導流與過濾模組 10: Flow diversion and filtration module
11:流量導流單元 11: Flow diversion unit
12:流量過濾單元 12: Flow filter unit
20:威脅情資模組 20: Threat Intelligence Module
21:威脅情資資料庫 21: Threat Intelligence Database
22:威脅情資分析與回溯單元 22: Threat intelligence analysis and backtracking unit
30:側錄分析模組 30: Profile analysis module
31:流量側錄單元 31: Traffic recording unit
32:回溯分析單元 32: Retrospective analysis unit
A:使用者裝置 A: User device
B:網路 B: Internet
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112133072A TWI855845B (en) | 2023-08-31 | 2023-08-31 | User networking protection system, method, and computer-readable medium based on network threat information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112133072A TWI855845B (en) | 2023-08-31 | 2023-08-31 | User networking protection system, method, and computer-readable medium based on network threat information |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI855845B true TWI855845B (en) | 2024-09-11 |
TW202511991A TW202511991A (en) | 2025-03-16 |
Family
ID=93649219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112133072A TWI855845B (en) | 2023-08-31 | 2023-08-31 | User networking protection system, method, and computer-readable medium based on network threat information |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI855845B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201002008A (en) * | 2008-06-18 | 2010-01-01 | Acer Inc | Method and system for preventing from communication by hackers |
TW201947442A (en) * | 2018-05-09 | 2019-12-16 | 中華電信股份有限公司 | Suspicious domain detecting method, gateway apparatus and non-transitory computer readable medium apparatus |
CN113691491A (en) * | 2020-05-18 | 2021-11-23 | 安碁资讯股份有限公司 | Method and device for detecting malicious domain name in domain name system |
US11720844B2 (en) * | 2018-08-31 | 2023-08-08 | Sophos Limited | Enterprise network threat detection |
-
2023
- 2023-08-31 TW TW112133072A patent/TWI855845B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201002008A (en) * | 2008-06-18 | 2010-01-01 | Acer Inc | Method and system for preventing from communication by hackers |
TW201947442A (en) * | 2018-05-09 | 2019-12-16 | 中華電信股份有限公司 | Suspicious domain detecting method, gateway apparatus and non-transitory computer readable medium apparatus |
US11720844B2 (en) * | 2018-08-31 | 2023-08-08 | Sophos Limited | Enterprise network threat detection |
CN113691491A (en) * | 2020-05-18 | 2021-11-23 | 安碁资讯股份有限公司 | Method and device for detecting malicious domain name in domain name system |
Also Published As
Publication number | Publication date |
---|---|
TW202511991A (en) | 2025-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109639670B (en) | Knowledge graph-based industrial control network security situation quantitative evaluation method | |
CN108696473B (en) | Attack path restoration method and device | |
CN115134099B (en) | Network attack behavior analysis method and device based on full flow | |
CN104052734B (en) | It the attack detecting that is identified using global device-fingerprint and prevents | |
US8051484B2 (en) | Method and security system for indentifying and blocking web attacks by enforcing read-only parameters | |
CN104579773B (en) | Domain name system analyzes method and device | |
CN107392016A (en) | A kind of web data storehouse attack detecting system based on agency | |
CN102685145A (en) | Domain name server (DNS) data packet-based bot-net domain name discovery method | |
CN110417578B (en) | An abnormal FTP connection alarm processing method | |
CN106850647A (en) | Malice domain name detection algorithm based on the DNS request cycle | |
CN116451215A (en) | Correlation analysis method and related equipment | |
CN105141573A (en) | Security protection method and security protection system based on WEB access compliance auditing | |
CN107733867A (en) | It is a kind of to find Botnet and the method and system of protection | |
WO2024198285A1 (en) | Method and system for reporting alarm event by vehicle-mounted firewall on basis of probe mechanism | |
CN117527412A (en) | Data security monitoring method and device | |
Gamundani et al. | A review of new trends in cyber attacks: A zoom into distributed database systems | |
Shaorong et al. | RETRACTED ARTICLE: Research on campus network security protection system framework based on cloud data and intrusion detection algorithm | |
CN114238279B (en) | Database security protection method, device, system, storage medium and electronic device | |
TWI855845B (en) | User networking protection system, method, and computer-readable medium based on network threat information | |
CN114430344A (en) | Attack organization identification method based on industrial control flow and threat information correlation analysis | |
CN117792733A (en) | Network threat detection method and related device | |
CN117650923A (en) | K-means-based information security active defense method | |
AU2022213452B2 (en) | Evaluating access requests using assigned common actor identifiers | |
Anashkin et al. | Implementation of Behavioral Indicators in Threat Detection and User Behavior Analysis | |
Hsiao et al. | Detecting stepping‐stone intrusion using association rule mining |