TWI851990B - Solar cell module having groove structure and manufacturing method thereof - Google Patents
Solar cell module having groove structure and manufacturing method thereof Download PDFInfo
- Publication number
- TWI851990B TWI851990B TW111113520A TW111113520A TWI851990B TW I851990 B TWI851990 B TW I851990B TW 111113520 A TW111113520 A TW 111113520A TW 111113520 A TW111113520 A TW 111113520A TW I851990 B TWI851990 B TW I851990B
- Authority
- TW
- Taiwan
- Prior art keywords
- solar cell
- layer
- transparent conductive
- cell module
- oxide
- Prior art date
Links
Images
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本發明揭示了一種槽式太陽能電池模組及其製備方法,尤指一種透過雷射或光蝕刻開槽手段將下導線下沉至基板中的槽式太陽能電池模組及其製備方法。 The present invention discloses a trench-type solar cell module and a preparation method thereof, in particular, a trench-type solar cell module and a preparation method thereof in which a lower conductor is sunk into a substrate by means of laser or photo-etching trenching.
隨著綠能相關的科技蓬勃發展且越來越受到重視,各種與綠能相關的技術逐漸成為能源相關科技的顯學。而在這麼多綠能科技之中,太陽能是其中相當重要的一個分支。具體來說,現有的太陽能利用大多均需要利用到太陽能電池來做為光電效應中,光能轉換成電能的元件應用。 As green energy-related technologies are booming and gaining more and more attention, various green energy-related technologies are gradually becoming prominent in energy-related technologies. Among so many green energy technologies, solar energy is a very important branch. Specifically, most existing solar energy applications require the use of solar cells as components for converting light energy into electrical energy in the photoelectric effect.
以現有的太陽能電池結構來說,主要可以根據構成其的材料區分為相當多種類的太陽能電池,例如矽基半導體電池、CdTe薄膜電池、CIGS薄膜電池、染料敏化薄膜電池、鈣鈦礦電池或有機材料電池等等。 In terms of the existing solar cell structure, they can be divided into many types according to the materials they are made of, such as silicon-based semiconductor cells, CdTe thin-film cells, CIGS thin-film cells, dye-sensitized thin-film cells, calcium-titanium batteries or organic material batteries, etc.
其中矽電池又分為單晶矽電池、多晶矽電池及無定形體矽薄膜電池。對於太陽能電池來說,最重要特性即其光電轉換效率。目前矽基太陽能電池中,單晶矽電池效率約為25.0%;多晶矽電池效率約為20.4%。 Silicon batteries are divided into single crystal silicon batteries, polycrystalline silicon batteries and amorphous silicon thin film batteries. For solar cells, the most important characteristic is its photoelectric conversion efficiency. Among current silicon-based solar cells, the efficiency of single crystal silicon batteries is about 25.0%; the efficiency of polycrystalline silicon batteries is about 20.4%.
而矽晶電池類別之外的固態太陽能電池在放大面積皆為內串聯式的電極設計。這些固態太陽能電池由複數個太陽能電池單元、複數個絕緣構件以及複數個連接構件串連而成。 Solid-state solar cells other than silicon cells all have an internal series electrode design when enlarged. These solid-state solar cells are composed of multiple solar cell units, multiple insulating components, and multiple connecting components connected in series.
但是,串聯設計的太陽能電池模組具有許多的缺點,例如:串聯式設計之太陽能模組特性為高電壓低電流。但是市面上之小型室內物聯網應用電源需求均屬低電壓高電流之應用範圍。而屋頂型戶外太陽能模組,在組合成超大型模組前,每個太陽能電池單位元件亦為低電壓高電流之設計。 However, the series-connected solar cell modules have many disadvantages, for example: the characteristics of the series-connected solar cell modules are high voltage and low current. However, the power requirements of small indoor IoT applications on the market are all in the low voltage and high current application range. Before the roof-type outdoor solar modules are combined into super-large modules, each solar cell unit component is also designed with low voltage and high current.
除此之外,固態太陽能電池的有效發電面積會受限於連接構件與絕緣構件之寬度,無法做到大面積全面性成長光電轉換層,進而影響太陽能模組之光電轉換效率。而且連接構件與絕緣構件之寬度如要做的更細,將會提高製造生產成本。 In addition, the effective power generation area of solid-state solar cells is limited by the width of the connecting components and the insulating components, and it is impossible to grow the photoelectric conversion layer in a large area, which in turn affects the photoelectric conversion efficiency of the solar module. Moreover, if the width of the connecting components and the insulating components is made thinner, the manufacturing cost will increase.
為了解決先前技術中所提到的問題,本發明提供了一種槽式太陽能電池模組及其製備方法。其中,所述槽式太陽能電池模組主要由一基板、一下導線、一透明導電層、一光能轉換結構層及一上導電層所構成。 In order to solve the problems mentioned in the previous technology, the present invention provides a trough-type solar cell module and a preparation method thereof. The trough-type solar cell module is mainly composed of a substrate, a lower conductor, a transparent conductive layer, a light energy conversion structure layer and an upper conductive layer.
其中,該基板上設有複數個線槽。該下導線則對應設置於每個該線槽中。進一步地,該透明導電層設置於該基板上並且與該複數個下導線接觸。 The substrate is provided with a plurality of wire grooves. The lower wire is correspondingly arranged in each of the wire grooves. Furthermore, the transparent conductive layer is arranged on the substrate and contacts the plurality of lower wires.
至於該光能轉換結構層設置於該透明導電層之上,並且該上導電層設置於該光能轉換結構層之上。在本發明中,該複數個線槽兩兩之間以一間隔隔開。 The light energy conversion structure layer is disposed on the transparent conductive layer, and the upper conductive layer is disposed on the light energy conversion structure layer. In the present invention, the plurality of wire grooves are separated by a gap between each other.
為了製得本發明所稱的槽式太陽能電池模組,本發明更提供了一種槽式太陽能電池模組的製備方法。所述槽式太陽能電池模組的製備方法包含下列步驟。 In order to obtain the trough solar cell module referred to in the present invention, the present invention further provides a method for preparing the trough solar cell module. The method for preparing the trough solar cell module comprises the following steps.
首先,執行步驟(A),提供一基板,並於該基板上以一開槽手段製作複數個線槽。接著執行步驟(B),利用一填槽手段將一下導線設置於每個該線槽中。 First, perform step (A), provide a substrate, and make a plurality of wire grooves on the substrate by a slotting method. Then perform step (B), use a slot filling method to set a lower wire in each of the wire grooves.
再執行步驟(C),於該基板上形成一透明導電層。接著執行步驟(D),於該透明導電層上形成一光能轉換結構層。完成後,透過步驟(E),於該光能轉換結構層上形成一上導電層,製得如上所述的該槽式太陽能電池模組。 Then, step (C) is performed to form a transparent conductive layer on the substrate. Then, step (D) is performed to form a light energy conversion structure layer on the transparent conductive layer. After completion, step (E) is performed to form an upper conductive layer on the light energy conversion structure layer to obtain the above-mentioned trough solar cell module.
以上對本發明的簡述,目的在於對本發明之數種面向和技術特徵作一基本說明。發明簡述並非對本發明的詳細表述,因此其目的不在特別列舉本發明的關鍵性或重要元件,也不是用來界定本發明的範圍,僅為以簡明的方式呈現本發明的數種概念而已。 The above brief description of the present invention is intended to provide a basic explanation of several aspects and technical features of the present invention. The brief description of the invention is not a detailed description of the present invention, so its purpose is not to specifically list the key or important components of the present invention, nor is it used to define the scope of the present invention. It is only to present several concepts of the present invention in a concise way.
10:槽式太陽能電池模組 10: Trough solar cell module
10’:槽式太陽能電池模組 10’: Trough-type solar cell module
100:基板 100: Substrate
101:線槽 101: Wire duct
200:下導線 200: Lower conductor
300:透明導電層 300: Transparent conductive layer
400:光能轉換結構層 400: Light energy conversion structure layer
401:電洞傳輸層 401: hole transport layer
402:鈣鈦礦吸光層 402: Calcium-titanium absorbing layer
403:電子傳輸層 403:Electronic transmission layer
500:上導電層 500: Upper conductive layer
501:上導線層 501: Upper conductor layer
600:封裝模組 600:Packaging module
(A)~(E):步驟 (A)~(E): Steps
圖1係本發明實施例槽式太陽能電池模組的結構示意圖。 Figure 1 is a schematic diagram of the structure of a trough-type solar cell module according to an embodiment of the present invention.
圖2係本發明實施例槽式太陽能電池模組的製備過程示意圖。 Figure 2 is a schematic diagram of the preparation process of the trough-type solar cell module of the embodiment of the present invention.
圖3係本發明實施例槽式太陽能電池模組的另一製備過程示意圖。 Figure 3 is a schematic diagram of another preparation process of the trough-type solar cell module according to an embodiment of the present invention.
圖4係本發明實施例槽式太陽能電池模組的另一結構示意圖。 Figure 4 is another structural schematic diagram of the trough-type solar cell module of the embodiment of the present invention.
圖5係本發明實施例槽式太陽能電池模組製備方法的流程圖。 Figure 5 is a flow chart of the method for preparing a trough-type solar cell module according to an embodiment of the present invention.
為能瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,茲進一步以如圖式所示的較佳實施例,詳細說明如後:首先請參照圖1,圖1係本發明實施例槽式太陽能電池模組的結構示意圖。如圖1所示,本實施例之槽式太陽能電池模組10主要由基板100、下導線200、透明導電層300、光能轉換結構層400及上導電層500
所構成。進一步地,由於槽式太陽能電池模組10因使用上有封裝的需求,本實施例之槽式太陽能電池模組10外更設有封裝模組600。
In order to understand the technical features and practical effects of the present invention and implement it according to the contents of the manual, the preferred embodiment shown in the figure is further described in detail as follows: First, please refer to Figure 1, which is a structural schematic diagram of the trough solar cell module of the embodiment of the present invention. As shown in Figure 1, the trough solar cell module 10 of the present embodiment is mainly composed of a
具體來說,本實施例採用的封裝模組600可以選自玻璃、高分子膠抑或金屬氧化物層據以實現,本發明並不加以限制。 Specifically, the packaging module 600 used in this embodiment can be selected from glass, polymer glue or metal oxide layer to achieve this, and the present invention is not limited to this.
在本實施例中,基板100上設有複數個線槽101。具體來說,本實施例之線槽101兩兩之間以一間隔隔開。並且,複數個線槽101係以雷射開槽或光蝕刻開槽等手段製作之。因此,線槽101能夠圖樣化為任何使用者需要的形狀,本發明並不加以限制。
In this embodiment, a plurality of
進一步地,在複數個線槽101製作完成之後,下導線200則對應設置於每個線槽101中。以本實施例來說,下導線200的材質為金屬,該金屬的材質為銅、銀、金、鉑金或其組合。以本實施例來說,下導線200的材質以導電性最佳的銀線做為首選。
Furthermore, after the plurality of
在本實施例中,下導線200填充至複數個線槽101的方式並不加以限制。除了一般半導體製程上的蒸鍍或蝕刻重複步驟製作之外,亦可以使用噴墨精準填充後再用精密雷射(如準分子雷射)去除外溢的銀線材料亦可,本發明並不加以限制。
In this embodiment, the method of filling the
而本實施例中的透明導電層300係設置於基板100上,並且與複數個下導線200接觸。具體來說,本實施例之透明導電層300的材料為透明導電氧化物材料(Transparent Conductive Oxide,TCO)。更仔細來說,該透明導電氧化物材料(Transparent Conductive Oxide,TCO)可以選自氧化銦錫(Indium Tin Oxide,ITO)、銦摻雜氧化鋅(Indium-doped Zinc Oxide,IZO)、鋁摻雜氧化鋅(Al-doped Zinc Oxide,AZO)或氟摻雜氧化錫(F-doped Tin Oxide,FTO)。
The transparent conductive layer 300 in this embodiment is disposed on the
至於本實施例之光能轉換結構層400係設置於透明導電層300之上。本實施例採用的光能轉換結構層400係由電洞傳輸層401、鈣鈦礦吸光層402以及電子傳輸層403所構成。 As for the light energy conversion structure layer 400 of this embodiment, it is disposed on the transparent conductive layer 300. The light energy conversion structure layer 400 used in this embodiment is composed of a hole transport layer 401, a calcium titanium light absorption layer 402 and an electron transport layer 403.
其中,該電洞傳輸層401形成於透明導電層300上。而該鈣鈦礦吸光層402形成於電洞傳輸層401上。最後,該電子傳輸層403形成於鈣鈦礦吸光層402之上。並且電子傳輸層403與上導電層500連接。 The hole transport layer 401 is formed on the transparent conductive layer 300. The calcium-titanium light absorption layer 402 is formed on the hole transport layer 401. Finally, the electron transport layer 403 is formed on the calcium-titanium light absorption layer 402. The electron transport layer 403 is connected to the upper conductive layer 500.
在本發明概念下其他可能實施例中,電洞傳輸層401以及電子傳輸層403的形成位置亦可以實施為顛倒的狀態。即電子傳輸層403形成於透明導電層300上。鈣鈦礦吸光層402形成於電子傳輸層403上。最後,電洞傳輸層401形成於鈣鈦礦吸光層402之上。並且電洞傳輸層401與上導電層500連接,本發明並不加以限制。 In other possible embodiments of the present invention, the hole transport layer 401 and the electron transport layer 403 can also be formed in an inverted state. That is, the electron transport layer 403 is formed on the transparent conductive layer 300. The calcium titanate light absorption layer 402 is formed on the electron transport layer 403. Finally, the hole transport layer 401 is formed on the calcium titanate light absorption layer 402. And the hole transport layer 401 is connected to the upper conductive layer 500, which is not limited by the present invention.
本實施例之光能轉換結構層400係可採用濕式製程製作。然在本發明概念下其他可能的實施例,亦可採用如真空鍍膜製程或固態反應法等乾式製程進行製作,本發明並不加以限制。因此,本實施例之上導電層500係設置於光能轉換結構層400之上。 The light energy conversion structure layer 400 of this embodiment can be manufactured by a wet process. However, other possible embodiments under the concept of the present invention can also be manufactured by a dry process such as a vacuum coating process or a solid-state reaction method, and the present invention is not limited thereto. Therefore, the upper conductive layer 500 of this embodiment is disposed on the light energy conversion structure layer 400.
在本實施例中,當上導電層500的材質選用會影響到本發明的應用可能性。具體來說,如圖1的實施例將上導電層500的材質選為金屬時,該金屬的材質為銅、銀、金、鉑金或其組合。以本實施例來說,上導電層500的材質以導電性最佳的銀線做為首選。且上導電層500覆蓋光能轉換結構層400應以盡量減少覆蓋面積的方式設計之。 In this embodiment, the material selection of the upper conductive layer 500 will affect the application possibility of the present invention. Specifically, when the material of the upper conductive layer 500 is selected as metal in the embodiment of FIG. 1, the material of the metal is copper, silver, gold, platinum or a combination thereof. In this embodiment, the material of the upper conductive layer 500 is preferably silver wire with the best conductivity. And the upper conductive layer 500 covering the light energy conversion structure layer 400 should be designed in a way to minimize the covering area.
相對地,當上導電層500的材質選用其他材質時,可先參照圖4。圖4係本發明實施例槽式太陽能電池模組的另一結構示意圖。 In contrast, when other materials are selected for the upper conductive layer 500, reference may be made to FIG4 first. FIG4 is another structural schematic diagram of a trough-type solar cell module according to an embodiment of the present invention.
如圖4所示,在本發明概念下如以圖4中所示的槽式太陽能電池模組10’進行實施時,該實施例之上導電層500的材質係選用如氧化銦錫 (Indium Tin Oxide,ITO)、銦摻雜氧化鋅(Indium-doped Zinc Oxide,IZO)、鋁摻雜氧化鋅(Al-doped Zinc Oxide,AZO)或氟摻雜氧化錫(F-doped Tin Oxide,FTO)等透明導電氧化物材料(Transparent Conductive Oxide,TCO)。 As shown in FIG. 4 , when the trough-type solar cell module 10 'as shown in FIG. 4 is implemented under the concept of the present invention, the material of the upper conductive layer 500 of the embodiment is selected from transparent conductive oxide materials (Transparent Conductive Oxide, TCO) such as indium tin oxide (Indium Tin Oxide, ITO), indium-doped zinc oxide (Indium-doped Zinc Oxide, IZO), aluminum-doped zinc oxide (Al-doped Zinc Oxide, AZO) or fluorine-doped tin oxide (F-doped Tin Oxide, FTO).
而因透明導電氧化物材料(Transparent Conductive Oxide,TCO)透光的特性,圖4的實施例中更可在上導電層500上以圖樣化的方式進一步製作上導線層501。據此,圖4中的槽式太陽能電池模組10’實施例便可透過此結構特性,進而具有雙面可受光發電的功能。 Due to the light-transmitting property of the transparent conductive oxide material (Transparent Conductive Oxide, TCO), the embodiment of FIG. 4 can further produce an upper conductive layer 501 on the upper conductive layer 500 in a patterned manner. Accordingly, the embodiment of the trough-type solar cell module 10' in FIG. 4 can have the function of receiving light and generating electricity on both sides through this structural characteristic.
同樣地,圖4實施例之上導線層501的材質可與下導線200的材質相同,選用金屬。而本實施例中用以製作上導線層501的金屬材質為銅、銀、金、鉑金或其組合。以本實施例來說,上導線層501的材質同樣以導電性最佳的銀線做為首選。
Similarly, the material of the upper conductor layer 501 in the embodiment of FIG. 4 can be the same as the material of the
請搭配圖2-4並參照圖5,圖2係本發明實施例槽式太陽能電池模組的製備過程示意圖;圖3係本發明實施例槽式太陽能電池模組的另一製備過程示意圖;而圖5係本發明實施例槽式太陽能電池模組製備方法的流程圖。 Please refer to Figure 5 in conjunction with Figures 2-4. Figure 2 is a schematic diagram of the preparation process of the trough solar battery module of the embodiment of the present invention; Figure 3 is another schematic diagram of the preparation process of the trough solar battery module of the embodiment of the present invention; and Figure 5 is a flow chart of the preparation method of the trough solar battery module of the embodiment of the present invention.
如圖2到圖5所示,首先本實施例係先執行步驟(A),提供一基板,並於該基板上以一開槽手段製作複數個線槽。 As shown in Figures 2 to 5, this embodiment first performs step (A), provides a substrate, and makes a plurality of wire grooves on the substrate by means of a slotting method.
在步驟(A)中,本實施例之基板100係採用透明基板實現之。該透明基板可以是石英玻璃抑或藍寶石玻璃等,本發明並不加以限制。具體來說,複數個線槽101的開槽手段可以透過雷射或是光化學等方式,透過遮罩精準蝕刻出預定的圖樣。
In step (A), the
因此,如圖2所示,經過精密製作的複數個線槽101係以有序的方式分佈於基板100之上。接著,執行步驟(B),利用一填槽手段將一下導線設置於每個該線槽中。
Therefore, as shown in FIG. 2 , a plurality of precisely manufactured
步驟(B)係對應圖2中間的示意圖。在步驟(B)中,所述填槽手段除了一般半導體製程上的蒸鍍或蝕刻重複步驟製作之外,亦可以使用噴墨精準填充後再用精密雷射(如準分子雷射)去除外溢的銀線材料亦可,本發明並不加以限制。據此,能夠在複數個線槽101中製作出下導線200。
Step (B) corresponds to the schematic diagram in the middle of Figure 2. In step (B), in addition to the repeated steps of evaporation or etching in the general semiconductor process, the slot filling method can also use inkjet to accurately fill and then use precision laser (such as excimer laser) to remove the overflowed silver wire material. The present invention is not limited to this. Accordingly, the
接著執行步驟(C),於該基板上形成一透明導電層。步驟(C)係對應於圖2中最下方的示意圖。在步驟(C)的製作中,透明導電層300的材料為透明導電氧化物材料(Transparent Conductive Oxide,TCO)。更仔細來說,該透明導電氧化物材料(Transparent Conductive Oxide,TCO)可以選自氧化銦錫(Indium Tin Oxide,ITO)、銦摻雜氧化鋅(Indium-doped Zinc Oxide,IZO)、鋁摻雜氧化鋅(Al-doped Zinc Oxide,AZO)或氟摻雜氧化錫(F-doped Tin Oxide,FTO)。 Then, step (C) is performed to form a transparent conductive layer on the substrate. Step (C) corresponds to the bottom schematic diagram in FIG. 2 . In the preparation of step (C), the material of the transparent conductive layer 300 is a transparent conductive oxide material (Transparent Conductive Oxide, TCO). More specifically, the transparent conductive oxide material (Transparent Conductive Oxide, TCO) can be selected from indium tin oxide (Indium Tin Oxide, ITO), indium-doped zinc oxide (Indium-doped Zinc Oxide, IZO), aluminum-doped zinc oxide (Al-doped Zinc Oxide, AZO) or fluorine-doped tin oxide (F-doped Tin Oxide, FTO).
步驟(C)透明導電層300的製作方式同樣可以使用如蒸鍍或濺鍍等半導體製程上的手段實現,本發明並不加以限制。接著,請同時參照圖3及圖5,步驟(D)係對應於圖3中最上方的示意圖。 The manufacturing method of the transparent conductive layer 300 in step (C) can also be realized by using semiconductor process methods such as evaporation or sputtering, and the present invention is not limited thereto. Next, please refer to FIG. 3 and FIG. 5 at the same time. Step (D) corresponds to the top schematic diagram in FIG. 3 .
步驟(D)係於該透明導電層上形成一光能轉換結構層。在本實施例中,光能轉換結構層400係分為三層進行製作的固態結構。進一步來說,步驟(D)係先於透明導電層300上形成電洞傳輸層401之後,在於電洞傳輸層401上形成鈣鈦礦吸光層402。緊接著,在鈣鈦礦吸光層402上形成電洞傳輸層403,以完成本實施例光能轉換結構層400的製作。 Step (D) is to form a light energy conversion structure layer on the transparent conductive layer. In this embodiment, the light energy conversion structure layer 400 is a solid structure made of three layers. Further, step (D) is to form a calcium titanite light absorption layer 402 on the hole transport layer 401 after forming a hole transport layer 401 on the transparent conductive layer 300. Next, a hole transport layer 403 is formed on the calcium titanite light absorption layer 402 to complete the manufacture of the light energy conversion structure layer 400 of this embodiment.
同樣地,本實施例光能轉換結構層400中的各層結構係可採用濕式製程製作。然在本發明概念下其他可能的實施例,亦可採用如真空鍍膜製程或固態反應法等乾式製程進行製作,本發明並不加以限制。 Similarly, each layer structure in the light energy conversion structure layer 400 of this embodiment can be manufactured by a wet process. However, other possible embodiments under the concept of the present invention can also be manufactured by a dry process such as a vacuum coating process or a solid-state reaction method, and the present invention is not limited thereto.
接著,如圖3中下方兩個示意圖所示,步驟(E)係於該光能轉換結構層上形成一上導電層,製得如上所述的該槽式太陽能電池模組。具體來說,透過本實施例製得的槽式太陽能電池模組10具有極高的光電轉換面積。 Next, as shown in the two lower schematic diagrams in FIG. 3 , step (E) is to form an upper conductive layer on the light energy conversion structure layer to obtain the trough solar cell module as described above. Specifically, the trough solar cell module 10 obtained by this embodiment has an extremely high photoelectric conversion area.
同理,步驟(E)中用以製作上導電層500的材質如選為金屬時,該金屬的材質為銅、銀、金、鉑金或其組合。以本實施例來說,上導電層500的材質以導電性最佳的銀線做為首選。且上導電層500覆蓋光能轉換結構層400應以盡量減少覆蓋面積的方式設計之。 Similarly, if the material used to make the upper conductive layer 500 in step (E) is metal, the material of the metal is copper, silver, gold, platinum or a combination thereof. In this embodiment, the material of the upper conductive layer 500 is preferably silver wire with the best conductivity. And the upper conductive layer 500 covering the light energy conversion structure layer 400 should be designed in a way to minimize the covering area.
相對地,當步驟(E)中上導電層500的材質選用其他材質時,可如圖4的實施例一般,將上導電層500的材質以氧化銦錫(Indium Tin Oxide,ITO)、銦摻雜氧化鋅(Indium-doped Zinc Oxide,IZO)、鋁摻雜氧化鋅(Al-doped Zinc Oxide,AZO)或氟摻雜氧化錫(F-doped Tin Oxide,FTO)等透明導電氧化物材料(Transparent Conductive Oxide,TCO)據以實現。 In contrast, when other materials are selected as the material of the upper conductive layer 500 in step (E), the material of the upper conductive layer 500 can be implemented as in the embodiment of FIG. 4 using transparent conductive oxide materials (Transparent Conductive Oxide, TCO) such as Indium Tin Oxide (ITO), Indium-doped Zinc Oxide (IZO), Al-doped Zinc Oxide (AZO) or F-doped Tin Oxide (FTO).
而因透明導電氧化物材料(Transparent Conductive Oxide,TCO)透光的特性,待步驟(E)將上導電層500完成後,可以在上導電層500之上以圖樣化的方式進一步製作如圖4所示的上導線層501。據此,便可如圖4中的槽式太陽能電池模組10’一般透過此結構特性,進而使槽式太陽能電池模組10’具有雙面可受光發電的功能。 Due to the light-transmitting property of the transparent conductive oxide material (Transparent Conductive Oxide, TCO), after the upper conductive layer 500 is completed in step (E), an upper conductive layer 501 as shown in FIG. 4 can be further manufactured on the upper conductive layer 500 in a patterned manner. Accordingly, the trough solar cell module 10' in FIG. 4 can be made to have the function of receiving light and generating electricity on both sides through this structural property.
於本製備方法的實施例中,同圖4一般,當有製作上導線層501的需求時,上導線層501所用的材質可與製作下導線200時相同,選用金屬。而本實施例中用以製作上導線層501的金屬材質為銅、銀、金、鉑
金或其組合。具體而言,上導線層501的材質同樣以導電性最佳的銀線做為首選。
In the embodiment of the preparation method, as shown in FIG. 4, when there is a need to make the upper conductor layer 501, the material used for the upper conductor layer 501 can be the same as that used for making the
在本發明概念下的實施例於製作時可透過更平坦化的條件進行製備。平坦化製程有助於大面積製造時的品質管理,並能有效減少太陽能電池模組中的角落缺陷。除此之外,槽式太陽能電池模組10或槽式太陽能電池模組10’的結構更可最大化模組發電之有效面積與製程品質,進而提升整體光電轉換的效率。 The embodiments of the present invention can be manufactured under more flattened conditions. The flattening process helps with quality management during large-area manufacturing and can effectively reduce corner defects in solar cell modules. In addition, the structure of the trough solar cell module 10 or trough solar cell module 10' can maximize the effective area and process quality of the module power generation, thereby improving the overall photoelectric conversion efficiency.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及說明內容所作之簡單變化與修飾,皆仍屬本發明涵蓋之範圍內。 However, the above is only a preferred embodiment of the present invention, and it cannot be used to limit the scope of implementation of the present invention. That is, simple changes and modifications made according to the scope of the patent application and the description of the present invention are still within the scope of the present invention.
10:槽式太陽能電池模組 10: Trough solar cell module
100:基板 100: Substrate
101:線槽 101: Wire duct
200:下導線 200: Lower conductor
300:透明導電層 300: Transparent conductive layer
400:光能轉換結構層 400: Light energy conversion structure layer
401:電洞傳輸層 401: hole transport layer
402:鈣鈦礦吸光層 402: Calcium-titanium absorbing layer
403:電子傳輸層 403:Electronic transmission layer
500:上導電層 500: Upper conductive layer
600:封裝模組 600:Packaging module
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111113520A TWI851990B (en) | 2022-04-08 | 2022-04-08 | Solar cell module having groove structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111113520A TWI851990B (en) | 2022-04-08 | 2022-04-08 | Solar cell module having groove structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202341510A TW202341510A (en) | 2023-10-16 |
TWI851990B true TWI851990B (en) | 2024-08-11 |
Family
ID=89856106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111113520A TWI851990B (en) | 2022-04-08 | 2022-04-08 | Solar cell module having groove structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI851990B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170194525A1 (en) * | 2016-01-04 | 2017-07-06 | Win Win Precision Technology Co., Ltd. | High power solar cell module |
US20200313020A1 (en) * | 2019-03-29 | 2020-10-01 | Panasonic Corporation | Solar cell assembly and method of manufacturing solar cell |
US20210408315A1 (en) * | 2020-03-19 | 2021-12-30 | Kabushiki Kaisha Toshiba | Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system |
-
2022
- 2022-04-08 TW TW111113520A patent/TWI851990B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170194525A1 (en) * | 2016-01-04 | 2017-07-06 | Win Win Precision Technology Co., Ltd. | High power solar cell module |
US20200313020A1 (en) * | 2019-03-29 | 2020-10-01 | Panasonic Corporation | Solar cell assembly and method of manufacturing solar cell |
US20210408315A1 (en) * | 2020-03-19 | 2021-12-30 | Kabushiki Kaisha Toshiba | Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system |
Also Published As
Publication number | Publication date |
---|---|
TW202341510A (en) | 2023-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080121264A1 (en) | Thin film solar module and method of fabricating the same | |
CN104538464B (en) | Silicon heterojunction solar cell and manufacturing method thereof | |
JP3205613U (en) | Heterojunction solar cell structure | |
CN101651163B (en) | Thin film type solar cell and method for manufacturing the same | |
CN115249750B (en) | Photovoltaic cell and manufacturing method thereof, photovoltaic module | |
TWI727728B (en) | Thin film photovoltaic cell series structure and preparation process of thin film photovoltaic cell series | |
US8779282B2 (en) | Solar cell apparatus and method for manufacturing the same | |
CN211828805U (en) | Heterojunction solar cell and photovoltaic module | |
KR20100059410A (en) | Solar cell and method of fabricating the same | |
WO2022062381A1 (en) | Stacked cell structure and manufacturing method therefor | |
CN103117329A (en) | Heterojunction MWT (metal wrap through) battery and manufacturing method thereof and carrier boat | |
TWI531079B (en) | Solar cell and manufacturing method thereof | |
TWI851990B (en) | Solar cell module having groove structure and manufacturing method thereof | |
CN104011876B (en) | Solar battery apparatus and manufacture method thereof | |
JP4169463B2 (en) | Photovoltaic element manufacturing method | |
CN102280501B (en) | Silicon-based buried contact film solar cell | |
TWI816357B (en) | Solar cell module and manufacturing method thereof | |
CN103594552B (en) | A kind of manufacture method of photovoltaic cell | |
KR102165004B1 (en) | A photovoltaic particle unit and a transparent solar battery with the unit | |
KR101186242B1 (en) | Optoelectronic component having three-dimentional pattern and fablication method thereof | |
KR20120034308A (en) | Thin film type solar cell and method for manufacturing the same | |
CN207705207U (en) | Full back-contact heterojunction solar battery | |
CN201270255Y (en) | Thin film solar cell module | |
CN101123279A (en) | Photoelectric conversion device, manufacturing method thereof and electrode | |
KR102396820B1 (en) | Solar cell module and method of fabricating the same |