+

TWI847371B - Driving circuits - Google Patents

Driving circuits Download PDF

Info

Publication number
TWI847371B
TWI847371B TW111143933A TW111143933A TWI847371B TW I847371 B TWI847371 B TW I847371B TW 111143933 A TW111143933 A TW 111143933A TW 111143933 A TW111143933 A TW 111143933A TW I847371 B TWI847371 B TW I847371B
Authority
TW
Taiwan
Prior art keywords
voltage
node
coupled
circuit
bonding pad
Prior art date
Application number
TW111143933A
Other languages
Chinese (zh)
Other versions
TW202423052A (en
Inventor
黃紹璋
李慶和
陳俊智
許凱傑
王前偉
林志軒
邱華琦
林功凱
陳立凡
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW111143933A priority Critical patent/TWI847371B/en
Publication of TW202423052A publication Critical patent/TW202423052A/en
Application granted granted Critical
Publication of TWI847371B publication Critical patent/TWI847371B/en

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Electronic Switches (AREA)

Abstract

A driving circuit is provided. The driving circuit includes a detection circuit, a control circuit, and a power device. The detection circuit is coupled between a first power terminal and a second power terminal and generates a detection voltage at the detection node according to a first voltage of the first power terminal and a second voltage of the second power terminal. The control circuit includes a transistor device having a back-to-back connected structure. The transistor device is coupled between a pad and a first node and controlled by the detection voltage. A driving voltage is generated at the first node. The power device is coupled between the pad and the second power terminal and controlled by the driving voltage. In response to an electrostatic discharge event occurring on the pad, the transistor device is turned on according to the detection voltage, and the power device is triggered by the driving voltage to provide a discharge path between the pad and the second power terminal.

Description

驅動電路Drive circuit

本發明是有關於一種驅動電路,特別是有關於一種具有靜電放電(electrostatic discharge,ESD)保護的驅動電路。The present invention relates to a driving circuit, and more particularly to a driving circuit with electrostatic discharge (ESD) protection.

隨著積體電路的半導體製程的發展,半導體元件尺寸已縮小至次微米階段,以增進積體電路的性能以及運算速度,但元件尺寸的縮減,卻出現了一些可靠度的問題,尤以積體電路對靜電放電(Electrostatic Discharge,ESD)的防護能力影響最大。因此,提供能有效提供靜電放電路徑的電路實為重要。尤其是,在高壓應用的情況下,用於控制靜電放電路徑的元件可能因為高壓而損壞,導致在靜電放電發生時無法有效地提供放電路徑。With the development of semiconductor manufacturing processes for integrated circuits, the size of semiconductor components has been reduced to the sub-micron stage to improve the performance and computing speed of integrated circuits. However, the reduction in component size has caused some reliability issues, especially the integrated circuit's protection against electrostatic discharge (ESD). Therefore, it is important to provide a circuit that can effectively provide an ESD path. In particular, in high-voltage applications, the components used to control the ESD path may be damaged by the high voltage, resulting in the inability to effectively provide a discharge path when ESD occurs.

有鑑於此,本發明提出一種驅動電路。此驅動電路包括一偵測電路、一控制電路、以及一功率元件。偵測電路耦接於一第一電源端與一第二電源端之間,且根據第一電源端的一第一電壓以及第二電源端的一第二電壓以在一偵測節點上產生一偵測電壓。控制電路包括具有一背對背連接結構的一電晶體元件。電晶體元件耦接於一接合墊與一第一節點之間,且受控於偵測電壓。一驅動電壓產生於第一節點。功率元件耦接於接合墊與二電源端之間,且受控於驅動電壓。當在接合墊上發生一靜電放電事件時,電晶體元件根據偵測電壓而導通,且功率元件被驅動電壓觸發以提供介於接合墊與第二電源端之間的一放電路徑。 In view of this, the present invention proposes a driving circuit. The driving circuit includes a detection circuit, a control circuit, and a power element. The detection circuit is coupled between a first power terminal and a second power terminal, and generates a detection voltage at a detection node according to a first voltage of the first power terminal and a second voltage of the second power terminal. The control circuit includes a transistor element having a back-to-back connection structure. The transistor element is coupled between a bonding pad and a first node, and is controlled by the detection voltage. A driving voltage is generated at the first node. The power element is coupled between the bonding pad and the two power terminals, and is controlled by the driving voltage. When an electrostatic discharge event occurs on the bonding pad, the transistor element is turned on according to the detection voltage, and the power element is triggered by the driving voltage to provide a discharge path between the bonding pad and the second power terminal.

1:電子電路 1: Electronic circuit

10:核心電路 10: Core circuit

11:驅動電路 11: Driving circuit

12:接合墊 12:Joint pad

13:偵測電路 13: Detection circuit

14:控制電路 14: Control circuit

15:功率元件 15: Power components

16:電壓追蹤電路 16: Voltage tracking circuit

17:傳輸閘電路 17: Transmission gate circuit

30~32,34~35:PMOS電晶體 30~32,34~35: PMOS transistor

40:NMOS電晶體 40:NMOS transistor

41:PMOS電晶體 41:PMOS transistor

42:反相器 42: Inverter

50_1~50_N:PMOS電晶體 50_1~50_N: PMOS transistor

60,61:降壓電路 60,61: Buck circuit

60_1~60_X,61_1~61_X:二極體 60_1~60_X,61_1~61_X: diode

130:電阻器 130: Resistor

131:電容器 131:Capacitor

140,141:PMOS電晶體 140,141:PMOS transistor

142:電晶體元件 142: Transistor components

150:NMOS電晶體 150:NMOS transistor

GND:接地端 GND: Ground terminal

N10:偵測節點 N10: Detection node

N11:節點 N11: Node

N12:共源極節點 N12: Common source node

N30,N31,N33:節點 N30, N31, N33: nodes

N30A,N60A,N61A:輸入節點 N30A, N60A, N61A: Input node

N30B,N60B,N61B:輸出節點 N30B, N60B, N61B: output nodes

S10:輸入信號 S10: Input signal

SW10,SW10B:切換信號 SW10, SW10B: Switching signal

T10,T11:電源端 T10, T11: power supply terminal

T30A,T31A,T32A,T34A,T35A,T36A:閘極 T30A, T31A, T32A, T34A, T35A, T36A: Gate

T30B,T31B,T32B,T34B,T35B,T36B:汲極 T30B, T31B, T32B, T34B, T35B, T36B: Drain

T30C,T31C,T32C,T34C,T35C,T36C:源極 T30C, T31C, T32C, T34C, T35C, T36C: Source

T30D,T31D,T32D,T34A,T34D,T36D:基極 T30D, T31D, T32D, T34A, T34D, T36D: Base

T40:電源端 T40: Power supply

T40A,T41A:閘極 T40A, T41A: Gate

T40B,T41B:汲極 T40B, T41B: Drain

T40C,T41C:源極 T40C, T41C: Source

T40D,T41D:基極 T40D, T41D: Base

T140A,T141A,T150A:閘極 T140A, T141A, T150A: Gate

T140B,T141B,T150B:汲極 T140B, T141B, T150B: Drain

T140C,T141C,T150C:源極 T140C, T141C, T150C: Source

T140D,T141D,T150D:基極 T140D, T141D, T150D: Base

T160:輸出端 T160: Output terminal

T170,T171:輸入端 T170, T171: Input terminal

T172:輸出端 T172: Output terminal

V10:偵測電壓 V10: Detect voltage

V11:驅動電壓 V11: driving voltage

V12:偏置電壓 V12: bias voltage

V16:追蹤電壓 V16: Tracking voltage

V30:控制電壓 V30: Control voltage

V60:輸入電壓 V60: Input voltage

VDD:操作電壓 VDD: operating voltage

第1圖表示根據本發明一實施例之具有驅動電路的電子電路。 FIG. 1 shows an electronic circuit having a driving circuit according to an embodiment of the present invention.

第2A圖係表示第1圖的電子電路在正常操作時的操作示意圖。 Figure 2A is a schematic diagram showing the operation of the electronic circuit in Figure 1 during normal operation.

第2B圖係表示第1圖的電子電路遭遇靜電放電事件時的操作示意圖。 Figure 2B is a schematic diagram showing the operation of the electronic circuit in Figure 1 when it encounters an electrostatic discharge event.

第3圖係表示根據本發明一實施例,第1圖中驅動電路的電壓追蹤電路。 FIG. 3 shows a voltage tracking circuit of the driving circuit in FIG. 1 according to an embodiment of the present invention.

第4圖係表示根據本發明一實施例,第1圖中驅動電路的傳輸閘電路。 FIG. 4 shows the transmission gate circuit of the driving circuit in FIG. 1 according to an embodiment of the present invention.

第5圖係表示根據本發明一實施例,第1圖中驅動電路的偵測電路。 FIG. 5 shows the detection circuit of the driving circuit in FIG. 1 according to an embodiment of the present invention.

第6圖表示根據本發明另一實施例之具有驅動電路的電子電路。 FIG. 6 shows an electronic circuit with a driving circuit according to another embodiment of the present invention.

為使本發明之上述目的、特徵和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the above-mentioned purposes, features and advantages of the present invention more clearly understood, a preferred embodiment is given below, and a detailed description is given in conjunction with the attached drawings.

第1圖係表示根據本發明一實施例的電子電路。參閱第1圖,電子電路1包括核心電路10以及驅動電路11。驅動電路11包括接合墊12、偵測電路13、控制電路14、功率元件15、電壓追蹤電路16、以及傳輸閘電路17。功率元件15耦接於接合墊12與電源端T11之間。在此實施例中,功率元件15作為驅動電路11的輸出級,其由大電流驅動。功率元件15能承受大電流,且因此具有用於靜電放電的自我保護能力。在此實施例中,功率元件15為一大型陣列元件(large array device,LAD)。舉例來說,功率元件15包括複數個並聯的N型金氧半(N-type Metal-Oxide-Semiconductor,NMOS)電晶體。在第1圖中,以NMOS電晶體150表示複數個並聯的NMOS電晶體的等效元件。NMOS電晶體150具有四個電極端,包括閘極(gate)、汲極(drain)、源極(source)、以及基極(bulk)。在此實施例中,NMOS電晶體150係以橫向擴散N型金屬氧化半(laterally-diffused N-type metal-oxide semiconductor,LDNMOS)電晶體來實現。參閱第1圖,NMOS電晶體150的閘極T150A耦接節點N11,其汲極T150B耦接接合墊12,以及其源極T150C與基極T150D耦接電源端T11。當在接合墊12上發生一靜電放電事件時,NMOS電晶體150由產生於節點N11上的驅動電壓V11所觸發,以提供介於接合墊12與電源端T11之間的一放電路徑。在此實施例中,電源端T11為接地端(GND),其電壓例如為 0伏特(Volt,V)。 FIG. 1 shows an electronic circuit according to an embodiment of the present invention. Referring to FIG. 1, the electronic circuit 1 includes a core circuit 10 and a driver circuit 11. The driver circuit 11 includes a bonding pad 12, a detection circuit 13, a control circuit 14, a power element 15, a voltage tracking circuit 16, and a transmission gate circuit 17. The power element 15 is coupled between the bonding pad 12 and the power terminal T11. In this embodiment, the power element 15 serves as the output stage of the driver circuit 11, which is driven by a large current. The power element 15 can withstand a large current and therefore has a self-protection capability for electrostatic discharge. In this embodiment, the power element 15 is a large array device (LAD). For example, the power element 15 includes a plurality of parallel-connected N-type metal-oxide-semiconductor (NMOS) transistors. In FIG. 1 , an NMOS transistor 150 is used to represent an equivalent element of a plurality of parallel-connected NMOS transistors. The NMOS transistor 150 has four electrodes, including a gate, a drain, a source, and a bulk. In this embodiment, the NMOS transistor 150 is implemented as a laterally-diffused N-type metal-oxide semiconductor (LDNMOS) transistor. Referring to FIG. 1 , the gate T150A of the NMOS transistor 150 is coupled to the node N11, the drain T150B is coupled to the bonding pad 12, and the source T150C and the base T150D are coupled to the power terminal T11. When an electrostatic discharge event occurs on the bonding pad 12, the NMOS transistor 150 is triggered by the driving voltage V11 generated on the node N11 to provide a discharge path between the bonding pad 12 and the power terminal T11. In this embodiment, the power terminal T11 is a ground terminal (GND), and its voltage is, for example, 0 volts (Volt, V).

偵測電路13耦接於電源端T10與電源端T11之間,且根據電源端T10的電壓以及電源端T11的電壓以產生偵測電壓V10。參閱第1圖包括電阻器130以及電容器131。電阻器130耦接於電源端T10與偵測節點N10之間。電容器131耦接於偵測節點N10與電源端T11之間。偵測電壓V10產生於偵測節點N10。 The detection circuit 13 is coupled between the power terminal T10 and the power terminal T11, and generates a detection voltage V10 according to the voltage of the power terminal T10 and the voltage of the power terminal T11. Referring to FIG. 1, it includes a resistor 130 and a capacitor 131. The resistor 130 is coupled between the power terminal T10 and the detection node N10. The capacitor 131 is coupled between the detection node N10 and the power terminal T11. The detection voltage V10 is generated at the detection node N10.

控制電路14包括具有背對背連接結構的電晶體元件142。電晶體元件142耦接於接合墊12與節點N11之間,且受控於偵測電壓V10。電晶體元件142具有耦接於接合墊12的第一電極端、耦接節點N11的第二電極端、以及耦接偵測節點N10以接收偵測電壓V10的控制電極端。參閱第1圖,電晶體元件142係由P型金氧半(P-type Metal-Oxide-Semiconductor,PMOS)電晶體140與141所組成。PMOS電晶體140與141各自具有四個電極端,包括閘極、汲極、源極、以及基極。在此實施例中,PMOS電晶體140與141係以橫向擴散P型金屬氧化半(laterally-diffused P-type metal-oxide semiconductor,LDPMOS)電晶體來實現。PMOS電晶體140的閘極T140A耦接電晶體元件142的控制電極端(即耦接偵測節點N10),其汲極T140B耦接電晶體元件142的第一電極端(即耦接接合墊12),以及其源極T140C與基極T140D耦接共源極節點N12。PMOS電晶體141的閘極T141A耦接電晶體元件142的控制電極端(即耦接偵測節點N10),其汲極T141B耦接電晶體元件142的第二電極端(即耦接節點N11),以及其源極T141C與 基極T141D耦接共源極節點N12。根據上述連接關係,PMOS電晶體140與141彼此之間的連接關係形成了背對背連接結構。 The control circuit 14 includes a transistor element 142 having a back-to-back connection structure. The transistor element 142 is coupled between the bonding pad 12 and the node N11, and is controlled by the detection voltage V10. The transistor element 142 has a first electrode terminal coupled to the bonding pad 12, a second electrode terminal coupled to the node N11, and a control electrode terminal coupled to the detection node N10 to receive the detection voltage V10. Referring to FIG. 1, the transistor element 142 is composed of P-type Metal-Oxide-Semiconductor (PMOS) transistors 140 and 141. The PMOS transistors 140 and 141 each have four electrode terminals, including a gate, a drain, a source, and a base. In this embodiment, the PMOS transistors 140 and 141 are implemented by laterally-diffused P-type metal-oxide semiconductor (LDPMOS) transistors. The gate T140A of the PMOS transistor 140 is coupled to the control electrode terminal of the transistor element 142 (i.e., coupled to the detection node N10), the drain T140B thereof is coupled to the first electrode terminal of the transistor element 142 (i.e., coupled to the bonding pad 12), and the source T140C and the base T140D thereof are coupled to the common source node N12. The gate T141A of the PMOS transistor 141 is coupled to the control electrode end of the transistor element 142 (i.e., coupled to the detection node N10), the drain T141B is coupled to the second electrode end of the transistor element 142 (i.e., coupled to the node N11), and the source T141C and the base T141D are coupled to the common source node N12. According to the above connection relationship, the connection relationship between the PMOS transistors 140 and 141 forms a back-to-back connection structure.

如第1圖所示,電壓追蹤電路16耦接電源端T10與接合墊12,且受控於偵測電壓V10。電壓追蹤電路16用以追蹤電源端T10的電壓以及接合墊12的電壓中的一者以產生追蹤電壓V16,且將追蹤電壓V16施加至電晶體元件142的共源極節點N12以作為偏置電壓V12。詳細來說,電壓追蹤電路16追蹤電源端T10的電壓以及接合墊12的電壓中具有較高位準的一者,且使追蹤電壓V16(作為偏置電壓V12)等於具有較高位準的電壓。 As shown in FIG. 1 , the voltage tracking circuit 16 is coupled to the power terminal T10 and the bonding pad 12 and is controlled by the detection voltage V10. The voltage tracking circuit 16 is used to track one of the voltage of the power terminal T10 and the voltage of the bonding pad 12 to generate a tracking voltage V16, and applies the tracking voltage V16 to the common source node N12 of the transistor element 142 as a bias voltage V12. Specifically, the voltage tracking circuit 16 tracks the voltage of the power supply terminal T10 and the voltage of the bonding pad 12, whichever has a higher level, and makes the tracking voltage V16 (as the bias voltage V12) equal to the voltage having the higher level.

傳輸閘電路17包括輸入端T170與T171以及輸出端T171。輸入端T170與T171耦接核心電路10,輸出端T172耦接節點N11。當電子電路1正常操作時,核心電路10提供輸入信號S10至輸入端T170,並提供切換信號SW10至輸入端T171。傳輸閘電路17受控於切換信號SW10,以將輸入信號S10由輸入端T170傳送到輸出端T172。輸入信號S10提供到節點N11,也就是,產生於節點N11上的驅動電壓V11的位準隨著輸入信號S10的電壓位準而改變。在此實施例中,輸入信號S10與切換信號SW10的電壓位準在0V~5V的範圍內。 The transmission gate circuit 17 includes input terminals T170 and T171 and an output terminal T171. The input terminals T170 and T171 are coupled to the core circuit 10, and the output terminal T172 is coupled to the node N11. When the electronic circuit 1 operates normally, the core circuit 10 provides an input signal S10 to the input terminal T170 and provides a switching signal SW10 to the input terminal T171. The transmission gate circuit 17 is controlled by the switching signal SW10 to transmit the input signal S10 from the input terminal T170 to the output terminal T172. The input signal S10 is provided to the node N11, that is, the level of the driving voltage V11 generated on the node N11 changes with the voltage level of the input signal S10. In this embodiment, the voltage levels of the input signal S10 and the switching signal SW10 are in the range of 0V~5V.

驅動電路11的詳細操作將透過第2A圖與第2B圖以及下文來說明。 The detailed operation of the drive circuit 11 will be described in Figures 2A and 2B and below.

根據上述,PMOS電晶體140與141以及NMOS電晶體150為LDMOS電晶體。LDMOS電晶體的閘-源極耐壓為5V, 且LDMOS電晶體的閘-汲極耐壓為12V、24V、或40V。在以下各實施例中,電晶體140、141、與150是以閘-源極耐壓為5V且閘-汲極耐壓為40V的LDMOS電晶體作為例子來說明。 According to the above, PMOS transistors 140 and 141 and NMOS transistor 150 are LDMOS transistors. The gate-source withstand voltage of the LDMOS transistor is 5V, and the gate-drain withstand voltage of the LDMOS transistor is 12V, 24V, or 40V. In the following embodiments, transistors 140, 141, and 150 are described as LDMOS transistors with a gate-source withstand voltage of 5V and a gate-drain withstand voltage of 40V.

參閱第2A圖,當電子電路1正常操作(即處於操作模式)時,電源端T10接收操作電壓VDD,核心電路10提供輸入信號S10以及切換信號SW10至傳輸閘電路17,且接合墊12的電壓在一範圍內變動。在此實施例中,操作電壓VDD例如為44V,且接合墊12的電壓在0V~44V的範圍,然本發明並不以此為限,本領域技術人員可依據實際電路應用範圍而定。操作電壓VDD透過電阻器130對電容器131充電,使得偵測節點N10上的偵測電壓V10具有一高位準,例如44V。根據上述,電壓追蹤電路16追蹤電源端T10的電壓以及接合墊12的電壓中具有較高位準的一者。由於電源端T10所接收的操作電壓VDD(44V)大於或等於接合墊12的電壓(0V~44V),因此電壓追蹤電路16追蹤到操作電壓VDD,且產生44V的追蹤電壓V16。44V的追蹤電壓V16傳送至共源極節點N12以作為偏置電壓V12(44V)。由於偵測電壓V10為44V且共源極節點N12處於44V,PMOS電晶體140與141被關斷(OFF)。傳輸閘電路17根據切換信號SW10以進行信號傳輸操作。詳細來說,傳輸閘電路17根據切換信號SW10以將輸入信號S10傳送到輸出端T172,且輸入信號S10接著提供到節點N11。此時,由於PMOS電晶體140與141被關斷,節點N11上的驅動電壓V11的位準隨著輸入信號S10的電壓位準(0V~5V)而改變。NMOS電晶體150則根據 驅動電壓V11以及接合墊12的電壓運作,以處於導通狀態或關斷狀態。 Referring to FIG. 2A , when the electronic circuit 1 operates normally (i.e., in the operating mode), the power terminal T10 receives the operating voltage VDD, the core circuit 10 provides the input signal S10 and the switching signal SW10 to the transmission gate circuit 17, and the voltage of the bonding pad 12 varies within a range. In this embodiment, the operating voltage VDD is, for example, 44V, and the voltage of the bonding pad 12 is in the range of 0V to 44V, but the present invention is not limited thereto, and those skilled in the art can determine it according to the actual circuit application range. The operating voltage VDD charges the capacitor 131 through the resistor 130, so that the detection voltage V10 on the detection node N10 has a high level, such as 44V. According to the above, the voltage tracking circuit 16 tracks the voltage of the power terminal T10 and the voltage of the bonding pad 12, whichever has a higher level. Since the operating voltage VDD (44V) received by the power terminal T10 is greater than or equal to the voltage of the bonding pad 12 (0V~44V), the voltage tracking circuit 16 tracks the operating voltage VDD and generates a tracking voltage V16 of 44V. The tracking voltage V16 of 44V is transmitted to the common source node N12 as a bias voltage V12 (44V). Since the detection voltage V10 is 44V and the common source node N12 is at 44V, the PMOS transistors 140 and 141 are turned off (OFF). The transmission gate circuit 17 performs a signal transmission operation according to the switching signal SW10. In detail, the transmission gate circuit 17 transmits the input signal S10 to the output terminal T172 according to the switching signal SW10, and the input signal S10 is then provided to the node N11. At this time, since the PMOS transistors 140 and 141 are turned off, the level of the driving voltage V11 on the node N11 changes with the voltage level (0V~5V) of the input signal S10. The NMOS transistor 150 operates according to the driving voltage V11 and the voltage of the bonding pad 12 to be in the on state or the off state.

根據上述,PMOS電晶體140與141組成了電晶體元件142。對於電晶體元件142而言,耦接接合墊12的端子是PMOS電晶體140的汲極T140B,且耦接節點N11的端子是PMOS電晶體141的汲極T141B。因此,電晶體元件142的上述兩個端子都可耐高壓。舉例來說,當NMOS電晶體150根據驅動電壓V11以及接合墊12的電壓而導通時,PMOS電晶體140的汲極T140B耦接電源端T11而處於一低位準,例如0V。在此情況下,PMOS電晶體140的閘-汲極電壓差大約等於44V(44V-0V=44V),不超過閘-汲極耐壓44V。當驅動電壓V11隨著輸入信號S10的電壓位準而為0V時,PMOS電晶體141的閘-汲極電壓差大約等於44V(44V-0V=44V),不超過閘-汲極耐壓44V。根據上述,電晶體元件142分別透過PMOS電晶體140與141的汲極T140B與T141B耦接接合墊12以及節點N11,因此電晶體元件142可耐高壓。 According to the above, the PMOS transistors 140 and 141 constitute a transistor element 142. For the transistor element 142, the terminal coupled to the bonding pad 12 is the drain T140B of the PMOS transistor 140, and the terminal coupled to the node N11 is the drain T141B of the PMOS transistor 141. Therefore, the above two terminals of the transistor element 142 can withstand high voltage. For example, when the NMOS transistor 150 is turned on according to the driving voltage V11 and the voltage of the bonding pad 12, the drain T140B of the PMOS transistor 140 is coupled to the power terminal T11 and is at a low level, such as 0V. In this case, the gate-drain voltage difference of the PMOS transistor 140 is approximately equal to 44V (44V-0V=44V), which does not exceed the gate-drain withstand voltage of 44V. When the driving voltage V11 is 0V as the voltage level of the input signal S10, the gate-drain voltage difference of the PMOS transistor 141 is approximately equal to 44V (44V-0V=44V), which does not exceed the gate-drain withstand voltage of 44V. According to the above, the transistor element 142 is coupled to the bonding pad 12 and the node N11 through the drains T140B and T141B of the PMOS transistors 140 and 141, respectively, so the transistor element 142 can withstand high voltage.

參閱第2B圖,當電子電路1非處於操作模式時,操作電壓VDD不提供至電源端T10,且核心電路10不提供輸入信號S10以及切換信號SW10。此時,電源端T10以及傳輸閘電路17的輸入端T170與T171以及輸出端T172處於浮動(floating)狀態。傳輸閘電路17不執行信號傳輸的操作。當電子電路1的接合墊12上發生一靜電放電事件時,接合墊12的電壓位準瞬間提高。基於電容器131的特性,偵測節點N10的偵測電壓V10與電源端T11的電壓相 同,即偵測電壓V10為0V。處於浮動狀態的電源端T10的電壓小於接合墊12的高電壓,因此電壓追蹤電路16追蹤到接合墊12的高電壓,且所產生的追蹤電壓V16等於接合墊12的高電壓。追蹤電壓V16傳送至共源極節點N12以作為偏置電壓V12。由於偵測電壓V10為0V且共源極節點N12具有高電壓,PMOS電晶體140與141被導通(ON)。節點N11上的驅動電壓V11隨著接合墊12上的電壓改變而提高,以導通(ON)NMOS電晶體15。導通的NMOS電晶體15提供一放電路徑P20。接合墊12上的靜電電荷可經由NMOS電晶體15並沿著此放電路徑P20傳導至電源端T11。 Referring to FIG. 2B , when the electronic circuit 1 is not in the operation mode, the operation voltage VDD is not provided to the power terminal T10, and the core circuit 10 does not provide the input signal S10 and the switching signal SW10. At this time, the power terminal T10 and the input terminals T170 and T171 and the output terminal T172 of the transmission gate circuit 17 are in a floating state. The transmission gate circuit 17 does not perform the signal transmission operation. When an electrostatic discharge event occurs on the bonding pad 12 of the electronic circuit 1, the voltage level of the bonding pad 12 increases instantaneously. Based on the characteristics of the capacitor 131, the detection voltage V10 of the detection node N10 is the same as the voltage of the power terminal T11, that is, the detection voltage V10 is 0V. The voltage of the power terminal T10 in a floating state is less than the high voltage of the bonding pad 12, so the voltage tracking circuit 16 tracks the high voltage of the bonding pad 12, and the generated tracking voltage V16 is equal to the high voltage of the bonding pad 12. The tracking voltage V16 is transmitted to the common source node N12 as a bias voltage V12. Since the detection voltage V10 is 0V and the common source node N12 has a high voltage, the PMOS transistors 140 and 141 are turned on. The driving voltage V11 on the node N11 increases as the voltage on the bonding pad 12 changes to turn on the NMOS transistor 15. The turned-on NMOS transistor 15 provides a discharge path P20. The electrostatic charge on the bonding pad 12 can be conducted to the power terminal T11 via the NMOS transistor 15 and along the discharge path P20.

根據上述,電晶體元件142用於耦接接合墊12以及節點N11的兩端子分別是PMOS電晶體140與141的汲極T140B與T141B,因此,電晶體元件142可耐高壓。在電子電路1的操作模式下,電晶體元件142不易受驅動電壓V11與接合墊12的電壓影響而損壞。此外,在電子電路1的操作模式下,電晶體元件142處於關斷狀態,因此,電晶體元件142的設置不會影響功率元件15的正常運作。當電子電路1的接合墊12上發生一靜電放電事件時,電晶體元件142則控制功率元件15導通以提供放電路徑,使得靜電電荷透過功率元件15傳導至電源端T11。 According to the above, the two terminals of the transistor element 142 for coupling the bonding pad 12 and the node N11 are the drains T140B and T141B of the PMOS transistors 140 and 141, respectively, so the transistor element 142 can withstand high voltage. In the operation mode of the electronic circuit 1, the transistor element 142 is not easily damaged by the driving voltage V11 and the voltage of the bonding pad 12. In addition, in the operation mode of the electronic circuit 1, the transistor element 142 is in the off state, so the setting of the transistor element 142 will not affect the normal operation of the power element 15. When an electrostatic discharge event occurs on the bonding pad 12 of the electronic circuit 1, the transistor element 142 controls the power element 15 to conduct to provide a discharge path, so that the electrostatic charge is conducted to the power terminal T11 through the power element 15.

第3圖係表示驅動電路11的電壓追蹤電路16。電壓追蹤電路16包括PMOS電晶體30~32以及降壓電路33。在此實施例中,PMOS電晶體30~32係以LDPMOS電晶體來實現。PMOS電晶體30包括四個電極端T30A~T30D,分別為閘極T30A、汲極 T30B、源極T30C、以及基極T30D。汲極T30B耦接電源端T10,其源極T30C與基極T30D耦接輸出端T160。降壓電路33具有輸入節點N30A與輸出節點N30B。輸入節點N30A耦接電源端T10,且輸出節點N30B耦接節點N33以及PMOS電晶體30的閘極T30A。參閱第3圖,輸出節點N30B與節點N33可視為同一節點。PMOS電晶體31包括四個電極端T31A~T31D,分別為閘極T31A、汲極T31B、源極T31以及基極T31D。閘極T31A耦接節點N10,其汲極T31B耦接接合墊12,其源極T31C與基極T31D耦接輸出端T160。PMOS電晶體32包括四個電極端T32A~T32D,分別為閘極T32A、汲極T32B、源極T32C、以及基極T32D。閘極T32A耦接電源端T10,其汲極T32B耦接接合墊12,其源極T32C與基極T32D耦接節點N33。 FIG. 3 shows a voltage tracking circuit 16 of the driving circuit 11. The voltage tracking circuit 16 includes PMOS transistors 30-32 and a buck circuit 33. In this embodiment, the PMOS transistors 30-32 are implemented by LDPMOS transistors. The PMOS transistor 30 includes four electrode terminals T30A-T30D, namely a gate T30A, a drain T30B, a source T30C, and a base T30D. The drain T30B is coupled to the power terminal T10, and its source T30C and base T30D are coupled to the output terminal T160. The buck circuit 33 has an input node N30A and an output node N30B. The input node N30A is coupled to the power terminal T10, and the output node N30B is coupled to the node N33 and the gate T30A of the PMOS transistor 30. Referring to FIG. 3 , the output node N30B and the node N33 can be regarded as the same node. The PMOS transistor 31 includes four electrode terminals T31A~T31D, which are the gate T31A, the drain T31B, the source T31 and the base T31D. The gate T31A is coupled to the node N10, its drain T31B is coupled to the bonding pad 12, and its source T31C and the base T31D are coupled to the output terminal T160. The PMOS transistor 32 includes four electrode terminals T32A~T32D, namely a gate T32A, a drain T32B, a source T32C, and a base T32D. The gate T32A is coupled to the power terminal T10, the drain T32B is coupled to the bonding pad 12, and the source T32C and the base T32D are coupled to the node N33.

降壓電路33包括複數串接於輸入節點N30A與輸出節點N30B之間的複數降壓元件,藉此實現降壓操作。降壓元件的實際數量可依照對於調節電壓的實際需求調整,本發明並不以此為限。參閱第3圖,在此實施例中,降壓電路33包括三個串接於輸入節點N30A與輸出節點N30B之間的PMOS電晶體34~36,以作為降壓元件。PMOS電晶體34~36係以LDPMOS電晶體來實現。PMOS電晶體34具有四個電極端T34~T34D,分別為閘極T34A、汲極T34B、源極T34C、以及基極T34D。汲極T34B耦接輸入節點N30A,且源極T34C以及基極T34D耦接節點N31。PMOS電晶體35具有四個電極端T35A~T35D,分別為閘極T35A、汲極T35B、 源極T35C、以及基極T35D。汲極T35B耦接節點N31,且源極T35C以及基極T35D耦接節點N32。PMOS電晶體36具有四個電極端T36A~T36D,分別為閘極T36A、汲極T36B、源極T36C、以及基極T36D。汲極T36B耦接節點N32,且源極T36C以及基極T36D耦接輸出節點N30B以及節點N33。PMOS電晶體34~36的閘極T34A、T35A、以及T36A皆耦接輸出端T160。 The buck circuit 33 includes a plurality of buck elements connected in series between the input node N30A and the output node N30B to implement the buck operation. The actual number of buck elements can be adjusted according to the actual demand for regulating the voltage, and the present invention is not limited thereto. Referring to FIG. 3 , in this embodiment, the buck circuit 33 includes three PMOS transistors 34 to 36 connected in series between the input node N30A and the output node N30B as buck elements. The PMOS transistors 34 to 36 are implemented by LDPMOS transistors. The PMOS transistor 34 has four electrode terminals T34~T34D, which are respectively a gate T34A, a drain T34B, a source T34C, and a base T34D. The drain T34B is coupled to the input node N30A, and the source T34C and the base T34D are coupled to the node N31. The PMOS transistor 35 has four electrode terminals T35A~T35D, which are respectively a gate T35A, a drain T35B, a source T35C, and a base T35D. The drain T35B is coupled to the node N31, and the source T35C and the base T35D are coupled to the node N32. The PMOS transistor 36 has four electrode terminals T36A~T36D, which are respectively a gate T36A, a drain T36B, a source T36C, and a base T36D. The drain T36B is coupled to the node N32, and the source T36C and the base T36D are coupled to the output node N30B and the node N33. The gates T34A, T35A, and T36A of the PMOS transistors 34~36 are all coupled to the output terminal T160.

在此實施例中,電晶體30~32與34~36是以閘-源極耐壓為5V且閘-汲極耐壓為40V的LDMOS電晶體作為例子來說明。電壓追蹤電路16的操作說明如下文。 In this embodiment, transistors 30-32 and 34-36 are described by taking LDMOS transistors with a gate-source withstand voltage of 5V and a gate-drain withstand voltage of 40V as an example. The operation of the voltage tracking circuit 16 is described as follows.

當電子電路1正常操作(即處於操作模式)時,電壓追蹤電路16透過電源端T10接收操作電壓VDD(44V),偵測節點N10的偵測電壓V10根據操作電壓VDD而為44V,且接合墊12的電壓在0V~44V的範圍。因此,PMOS電晶體31與32關斷。此時,PMOS電晶體34~36為關斷狀態。由於PMOS電晶體34~36存在寄生二極體,關斷的PMOS電晶體34~36作為正向二極體(forward diode)。PMOS電晶體34~36的每一者具有介於各自汲極與源極之間的0.7V的跨壓。因此,輸入節點N30A與輸出節點N30B之間的電壓差為2.1V(0.7Vx3=2.1V)。介於輸入節點N30A與輸出節點N30B之間的電壓差(2.1V)則作為降壓電路33提供的調節電壓。輸出節點N30B上的控制電壓V30則為41.9V(44V-2.1V=41.9V),藉此實現降壓操作,即實現了以調節電壓來降低電壓VDD以於輸出節點N30B產生控制電壓V30。此時, PMOS電晶體30的閘極T30A的電壓等於控制電壓V30。由於控制電壓V30小於操作電壓VDD,PMOS電晶體30導通以提供介於電源端T10與輸出端T160之間的一電流路徑。藉由此電流路徑,輸出端T160上的追蹤電壓V16追隨操作電壓VDD而增加,最終等於操作電壓VDD(V16=VDD=44V),實現了電壓追蹤電路16追蹤具有較高位準的電壓(即電源端T10上的操作電壓VDD)。 When the electronic circuit 1 operates normally (i.e., in the operating mode), the voltage tracking circuit 16 receives the operating voltage VDD (44V) through the power terminal T10, the detection voltage V10 of the detection node N10 is 44V according to the operating voltage VDD, and the voltage of the bonding pad 12 is in the range of 0V to 44V. Therefore, the PMOS transistors 31 and 32 are turned off. At this time, the PMOS transistors 34 to 36 are in the off state. Since the PMOS transistors 34 to 36 have parasitic diodes, the turned-off PMOS transistors 34 to 36 act as forward diodes. Each of the PMOS transistors 34 to 36 has a cross voltage of 0.7V between the respective drain and source. Therefore, the voltage difference between the input node N30A and the output node N30B is 2.1V (0.7Vx3=2.1V). The voltage difference (2.1V) between the input node N30A and the output node N30B is used as the regulation voltage provided by the buck circuit 33. The control voltage V30 on the output node N30B is 41.9V (44V-2.1V=41.9V), thereby realizing the buck operation, that is, realizing the use of the regulation voltage to reduce the voltage VDD to generate the control voltage V30 at the output node N30B. At this time, the voltage of the gate T30A of the PMOS transistor 30 is equal to the control voltage V30. Since the control voltage V30 is less than the operating voltage VDD, the PMOS transistor 30 is turned on to provide a current path between the power terminal T10 and the output terminal T160. Through this current path, the tracking voltage V16 on the output terminal T160 increases along with the operating voltage VDD and eventually becomes equal to the operating voltage VDD (V16=VDD=44V), thus realizing that the voltage tracking circuit 16 tracks a voltage with a higher level (i.e., the operating voltage VDD on the power terminal T10).

在操作模式下中,由於輸出端T160的追蹤電壓V16係追隨電源端T10的電壓以及接合墊12的電壓中具有較高位準的一者,因此PMOS電晶體34~36的閘極T34A、T35A、以及T36A具有較高的電壓,使得PMOS電晶體34~36能穩定地維持關斷狀態。 In the operation mode, since the tracking voltage V16 of the output terminal T160 follows the voltage of the power terminal T10 and the voltage of the bonding pad 12, whichever has a higher level, the gates T34A, T35A, and T36A of the PMOS transistors 34-36 have a higher voltage, so that the PMOS transistors 34-36 can stably maintain the off state.

當電子電路1非處於操作模式時,電源端T10未接收任何操作電壓而處於浮動狀態,且偵測電壓V10為0V。當接合墊12上發生一靜電放電事件時,接合墊12的電壓位準瞬間提高。此時,根據偵測節點N10的偵測電壓V10(0V),PMOS電晶體31導通以提供介於接合墊12與輸出端T160之間的一電流路徑。透過此電流路徑,輸出端T160上的追蹤電壓V16追隨接合墊12的電壓而增加,最終等於接合墊12的電壓,實現了電壓追蹤電路16追蹤具有較高位準的電壓(即接合墊12的電壓)。 When the electronic circuit 1 is not in the operation mode, the power terminal T10 does not receive any operation voltage and is in a floating state, and the detection voltage V10 is 0 V. When an electrostatic discharge event occurs on the bonding pad 12, the voltage level of the bonding pad 12 increases instantaneously. At this time, according to the detection voltage V10 (0 V) of the detection node N10, the PMOS transistor 31 is turned on to provide a current path between the bonding pad 12 and the output terminal T160. Through this current path, the tracking voltage V16 on the output terminal T160 increases along with the voltage of the bonding pad 12 and eventually becomes equal to the voltage of the bonding pad 12, thereby realizing that the voltage tracking circuit 16 tracks a voltage with a higher level (i.e., the voltage of the bonding pad 12).

此外,當接合墊12上發生一靜電放電事件時,由於電源端T10處於浮動狀態且接合墊12的電壓位準瞬間提高,因此PMOS電晶體32導通,使得控制電壓V30等於接合墊12的電壓。此時,雖然降壓電路33仍進行上述的降壓操作,但由於控制電壓V30 隨著接合墊12的電壓而改變至一高位准,因此PMOS電晶體30在此情況下處於關斷狀態。基於PMOS電晶體30的關斷狀態,即使追蹤電壓V16大於電源端T10的電壓,也不會產生由輸出端T160至電源端T10的漏電流。如此一來,追蹤電壓V16能穩定地維持等於接合墊12的電壓。 In addition, when an electrostatic discharge event occurs on the bonding pad 12, since the power terminal T10 is in a floating state and the voltage level of the bonding pad 12 increases instantaneously, the PMOS transistor 32 is turned on, so that the control voltage V30 is equal to the voltage of the bonding pad 12. At this time, although the buck circuit 33 still performs the above-mentioned buck operation, since the control voltage V30 changes to a high level along with the voltage of the bonding pad 12, the PMOS transistor 30 is in a turned-off state in this case. Based on the turned-off state of the PMOS transistor 30, even if the tracking voltage V16 is greater than the voltage of the power terminal T10, no leakage current will be generated from the output terminal T160 to the power terminal T10. In this way, the tracking voltage V16 can be stably maintained equal to the voltage of the bonding pad 12.

根據上述,當電子電路1正常操作時,電源端T10舉例而言接收高達44V的操作電壓VDD,且接合墊12的電壓在0V~44V的範圍;當電子電路1非處於操作模式時,接合墊12上可能發生一靜電放電事件導致接合墊12的電壓位準瞬間提高。在第3圖中,電晶體30的汲極T30B耦接電源端T10,且電晶體31的汲極T31B以及電晶體32的汲極T32B耦接接合墊12。在第3圖的電路架構下,由於電晶體30、31、32各自的閘-汲極耐壓約為40V,使得電源端T10與接合墊12之間的較大電壓差不致導致電晶體31~32損壞。 According to the above, when the electronic circuit 1 is operating normally, the power terminal T10 receives an operating voltage VDD of up to 44V, and the voltage of the bonding pad 12 is in the range of 0V to 44V; when the electronic circuit 1 is not in the operating mode, an electrostatic discharge event may occur on the bonding pad 12, causing the voltage level of the bonding pad 12 to increase instantly. In FIG. 3 , the drain T30B of the transistor 30 is coupled to the power terminal T10, and the drain T31B of the transistor 31 and the drain T32B of the transistor 32 are coupled to the bonding pad 12. In the circuit structure of Figure 3, since the gate-drain withstand voltage of transistors 30, 31, and 32 is approximately 40V, the large voltage difference between the power terminal T10 and the bonding pad 12 will not cause damage to transistors 31 and 32.

第4圖係表示驅動電路11的的傳輸閘電路17。為了能清楚說明傳輸閘電路17的架構以及操作,第4圖也顯示核心電路10。參閱第4圖,傳輸閘電路17包括NMOS電晶體40、PMOS電晶體41、以及反相器42。在此實施例中,核心電路10提供的輸入信號S10與切換信號SW10的操作電壓位準係在0V~5V範圍內,且NMOS電晶體40以及PMOS電晶體41以閘-汲極耐壓不超過5V的MOS電晶體來實現。 FIG. 4 shows the transmission gate circuit 17 of the driving circuit 11. In order to clearly explain the structure and operation of the transmission gate circuit 17, FIG. 4 also shows the core circuit 10. Referring to FIG. 4, the transmission gate circuit 17 includes an NMOS transistor 40, a PMOS transistor 41, and an inverter 42. In this embodiment, the operating voltage level of the input signal S10 and the switching signal SW10 provided by the core circuit 10 is within the range of 0V~5V, and the NMOS transistor 40 and the PMOS transistor 41 are implemented with MOS transistors whose gate-drain withstand voltage does not exceed 5V.

參閱第4圖,NMOS電晶體40包括四個電極端T40A~T40D,分別為閘極T40A、汲極T40B、源極T40C、以及基極T40D。閘極T40A耦接傳輸閘電路17的輸入端T171,汲極T40B耦接傳輸閘電路17的輸入端T170,源極T40C耦接傳輸閘電路17的輸出端T172,且基極T40D耦接接地端GND。反相器42的輸入端耦接輸入端T171。PMOS電晶體41包括四個電極端T41A~T41D,分別為閘極T41A、汲極T41B、源極T41C、以及基極T41D。閘極T41A耦接反向器42的輸出端,汲極T41B耦接輸入端T170,源極T41C耦接輸出端T172,且基極T41D耦接電源端T40。在此實施例中,電源端T40可接收在0V~5V範圍內的操作電壓。 Referring to FIG. 4 , the NMOS transistor 40 includes four electrode terminals T40A-T40D, namely a gate T40A, a drain T40B, a source T40C, and a base T40D. The gate T40A is coupled to the input terminal T171 of the transmission gate circuit 17, the drain T40B is coupled to the input terminal T170 of the transmission gate circuit 17, the source T40C is coupled to the output terminal T172 of the transmission gate circuit 17, and the base T40D is coupled to the ground terminal GND. The input terminal of the inverter 42 is coupled to the input terminal T171. The PMOS transistor 41 includes four electrode terminals T41A~T41D, namely a gate T41A, a drain T41B, a source T41C, and a base T41D. The gate T41A is coupled to the output terminal of the inverter 42, the drain T41B is coupled to the input terminal T170, the source T41C is coupled to the output terminal T172, and the base T41D is coupled to the power terminal T40. In this embodiment, the power terminal T40 can receive an operating voltage in the range of 0V~5V.

傳輸閘電路17的操作說明如下文。 The operation of the transmission gate circuit 17 is described as follows.

當電子電路1正常操作(即處於操作模式)時,核心電路10分別提供輸入信號S10以及切換信號SW10至輸入端T170與T171,且電源端T40接收一操作電壓。在操作模式下,切換信號SW10處於一高電壓位準(例如5V的位準),且核心電路10根據電子電路1的操作將輸入信號S10設定在0V~5V的範圍內的一電壓位準。反相器42透過輸入端T171接收切換信號SW10,且將其反相後產生處於一低電壓位準(例如0V的位準)的切換信號SW10B。NMOS電晶體40的閘極T40A透過輸入端T171接收高電壓位準的切換信號SW10,且PMOS電晶體41的閘極T41A接收來自反相器42的低電壓位準的切換信號SW10B。因此,NMOS電晶體40以及NMOS電晶體41皆處於導通狀態。核心電路10所提供的輸 入信號S10則透過導通的NMOS電晶體40以及NMOS電晶體41傳送到輸出端T172,藉此實現傳輸閘電路17的信號傳輸操作。輸入信號S10接著傳送到節點N10。如此一來,節點N11上的驅動電壓V11的位準隨著輸入信號S10的電壓位準而改變。NMOS電晶體150則根據驅動電壓V11以及接合墊12的電壓運作。 When the electronic circuit 1 operates normally (i.e., in the operating mode), the core circuit 10 provides the input signal S10 and the switching signal SW10 to the input terminals T170 and T171, respectively, and the power terminal T40 receives an operating voltage. In the operating mode, the switching signal SW10 is at a high voltage level (e.g., a 5V level), and the core circuit 10 sets the input signal S10 to a voltage level in the range of 0V to 5V according to the operation of the electronic circuit 1. The inverter 42 receives the switching signal SW10 through the input terminal T171, and generates a switching signal SW10B at a low voltage level (e.g., a 0V level) after inverting it. The gate T40A of the NMOS transistor 40 receives the high voltage level switching signal SW10 through the input terminal T171, and the gate T41A of the PMOS transistor 41 receives the low voltage level switching signal SW10B from the inverter 42. Therefore, both the NMOS transistor 40 and the NMOS transistor 41 are in the on state. The input signal S10 provided by the core circuit 10 is transmitted to the output terminal T172 through the turned-on NMOS transistor 40 and the NMOS transistor 41, thereby realizing the signal transmission operation of the transmission gate circuit 17. The input signal S10 is then transmitted to the node N10. In this way, the level of the driving voltage V11 on the node N11 changes with the voltage level of the input signal S10. The NMOS transistor 150 operates according to the driving voltage V11 and the voltage of the bonding pad 12.

當電子電路1非處於操作模式時,核心電路10不提供輸入信號S10以及切換信號SW10,且電源端T40未接收任何操作電壓。此時,傳輸閘電路17的電源端T40、輸入端T170與T171、以及輸出端T172處於浮動狀態。因此,傳輸閘電路17不進行信號傳輸操作。換句話說,傳輸閘電路17的輸入端T170上的信號或電壓將不影響節點N11上驅動電壓V11的位準。 When the electronic circuit 1 is not in the operating mode, the core circuit 10 does not provide the input signal S10 and the switching signal SW10, and the power terminal T40 does not receive any operating voltage. At this time, the power terminal T40, the input terminals T170 and T171, and the output terminal T172 of the transmission gate circuit 17 are in a floating state. Therefore, the transmission gate circuit 17 does not perform a signal transmission operation. In other words, the signal or voltage on the input terminal T170 of the transmission gate circuit 17 will not affect the level of the driving voltage V11 on the node N11.

第5圖係表示驅動電路11的偵測電路13。偵測電路13的電容器131係以多個串接的電晶體來實現。如第5圖所示,電容器131包括複數PMOS電晶體50_1~50_N,其中,N為大於或等於2的整數。在此實施例中,PMOS電晶體50_1~50_N可以閘-汲極耐壓為5V的MOS電晶體來實現。在NMOS電晶體140、141、與150為LDMOS電晶體且操作電壓VDD為44V的例子中,舉例而言,N可等於9,也就是電容器131包括9個PMOS電晶體50_1~50_9,然本發明並不以此為限。 FIG. 5 shows the detection circuit 13 of the drive circuit 11. The capacitor 131 of the detection circuit 13 is implemented by a plurality of transistors connected in series. As shown in FIG. 5, the capacitor 131 includes a plurality of PMOS transistors 50_1 to 50_N, wherein N is an integer greater than or equal to 2. In this embodiment, the PMOS transistors 50_1 to 50_N can be implemented by MOS transistors with a gate-drain withstand voltage of 5V. In an example where the NMOS transistors 140, 141, and 150 are LDMOS transistors and the operating voltage VDD is 44V, for example, N can be equal to 9, that is, the capacitor 131 includes 9 PMOS transistors 50_1 to 50_9, but the present invention is not limited thereto.

參閱第5圖,PMOS電晶體50_1~50_N依序串接於偵測節點N10與電源端T11之間。對於PMOS電晶體50_1~50_N中每一者而言,其汲極、源極、與基極彼此耦接,使得此PMOS電晶 體等效作為一電容器。PMOS電晶體50_1的汲極、源極、與基極耦接偵測節點N10。PMOS電晶體50_2~50_N中每一者的汲極、源極、與基極耦接前一個PMOS電晶體的閘極。PMOS電晶體50_N的閘極耦接電源端T11。 Referring to FIG. 5, PMOS transistors 50_1~50_N are sequentially connected in series between the detection node N10 and the power terminal T11. For each of the PMOS transistors 50_1~50_N, its drain, source, and base are coupled to each other, so that the PMOS transistor is equivalent to a capacitor. The drain, source, and base of the PMOS transistor 50_1 are coupled to the detection node N10. The drain, source, and base of each of the PMOS transistors 50_2~50_N are coupled to the gate of the previous PMOS transistor. The gate of the PMOS transistor 50_N is coupled to the power terminal T11.

第6圖表示根據本發明另一實施例之具有驅動電路的電子電路。參閱第6圖,更包括降壓電路60與61。降壓電路60耦接於接合墊12與電晶體元件142之間,且提供一調節電壓。降壓電路60以此調節電壓來降低接合墊12的電壓以產生輸入電壓V60,且將輸入電壓V60提供至電晶體元件142。 FIG. 6 shows an electronic circuit with a driving circuit according to another embodiment of the present invention. Referring to FIG. 6, it further includes step-down circuits 60 and 61. Step-down circuit 60 is coupled between bonding pad 12 and transistor element 142, and provides a regulated voltage. Step-down circuit 60 uses the regulated voltage to reduce the voltage of bonding pad 12 to generate input voltage V60, and provides input voltage V60 to transistor element 142.

降壓電路60包括輸入節點N60A、輸出節點N60B、以及串接於輸入節點N60A與輸出節點N60B之間的複數降壓元件。輸入節點N60A耦接接合墊12,且輸出節點N60B耦接電晶體元件142的PMOS電晶體140的汲極T140B。在此實施例中,降壓電路60包括依序串接於輸入節點N60A與輸出節點N60B之間的二極體60_1~60_X,以作為降壓元件,其中,X為大於或等於1的整數。降壓元件的實際數量可依照對於調節電壓的實際需求調整。二極體60_1的陽極耦接輸入節點N60A。二極體60_2~60_X中每一者的陽極耦接前一個二極體的陰極。二極體60_X的陰極耦接輸出節點N60B。 The buck circuit 60 includes an input node N60A, an output node N60B, and a plurality of buck elements connected in series between the input node N60A and the output node N60B. The input node N60A is coupled to the bonding pad 12, and the output node N60B is coupled to the drain T140B of the PMOS transistor 140 of the transistor element 142. In this embodiment, the buck circuit 60 includes diodes 60_1 to 60_X connected in series between the input node N60A and the output node N60B in sequence as buck elements, where X is an integer greater than or equal to 1. The actual number of buck elements can be adjusted according to the actual demand for regulating voltage. The anode of diode 60_1 is coupled to input node N60A. The anode of each of diodes 60_2 to 60_X is coupled to the cathode of the previous diode. The cathode of diode 60_X is coupled to output node N60B.

二極體60_1~60_X中每一者提供於其陽極端與陰極端之間的0.7V跨壓。因此,降壓電路60的輸入節點N60A與輸出節點N60B之間的電壓差等於0.7×X。介於輸入節點N60A與輸出節 點N60B之間的電壓差則作為降壓電路60所提供的調節電壓。降壓電路60以此調節電壓來降低接合墊12的電壓以產生輸入電壓V60。 Each of the diodes 60_1~60_X provides a 0.7V voltage across its anode and cathode. Therefore, the voltage difference between the input node N60A and the output node N60B of the buck circuit 60 is equal to 0.7×X. The voltage difference between the input node N60A and the output node N60B is used as the regulated voltage provided by the buck circuit 60. The buck circuit 60 uses this regulated voltage to reduce the voltage of the bonding pad 12 to generate the input voltage V60.

根據上述,降壓電路60耦接於接合墊12與電晶體元件142之間,且其可執行降壓操作。當接合墊12上具有大電壓時,基於此降壓操作而產生的輸入電壓V60可小於接合墊12的電壓,避免電晶體元件142遭遇到接合墊12的大電壓而損壞。 According to the above, the buck circuit 60 is coupled between the bonding pad 12 and the transistor element 142, and it can perform a buck operation. When there is a large voltage on the bonding pad 12, the input voltage V60 generated based on this buck operation can be smaller than the voltage of the bonding pad 12, thereby preventing the transistor element 142 from being damaged by the large voltage of the bonding pad 12.

降壓電路61耦接於電壓追蹤電路16與共源極節點N12之間,且提供一調節電壓。在第1圖的實施例中,追蹤電壓V16是施加至共源極節點N12以作為偏置電壓V12,換句話說,偏置電壓V12等於追蹤電壓V16。而在此實施例中,降壓電路61以調節電壓來降低追蹤電壓V16以產生偏置電壓V12,且將偏置電壓V12提供至共源極節點N12。 The buck circuit 61 is coupled between the voltage tracking circuit 16 and the common source node N12, and provides a regulated voltage. In the embodiment of FIG. 1, the tracking voltage V16 is applied to the common source node N12 as the bias voltage V12. In other words, the bias voltage V12 is equal to the tracking voltage V16. In this embodiment, the buck circuit 61 reduces the tracking voltage V16 by the regulated voltage to generate the bias voltage V12, and provides the bias voltage V12 to the common source node N12.

降壓電路61包括輸入節點N61A、輸出節點N61B、以及串接於輸入節點N61A與輸出節點N61B之間的複數降壓元件。輸入節點N61A耦接電壓追蹤電路16以接收追蹤電壓V16,且輸出節點N61B耦接共源極節點N12。在此實施例中,降壓電路61包括依序串接於輸入節點N61A與輸出節點N61B之間的二極體61_1~61_Y,以作為降壓元件,其中,Y為大於或等於1的整數。降壓元件的實際數量可依照對於調節電壓的實際需求調整。二極體61_1的陽極耦接輸入節點N61A。二極體61_2~61_Y中每一者的陽極耦接前一個二極體的陰極。二極體61_Y的陰極耦接輸出節點N61B。 The buck circuit 61 includes an input node N61A, an output node N61B, and a plurality of buck elements connected in series between the input node N61A and the output node N61B. The input node N61A is coupled to the voltage tracking circuit 16 to receive the tracking voltage V16, and the output node N61B is coupled to the common source node N12. In this embodiment, the buck circuit 61 includes diodes 61_1 to 61_Y connected in series between the input node N61A and the output node N61B in sequence as buck elements, wherein Y is an integer greater than or equal to 1. The actual number of buck elements can be adjusted according to the actual demand for regulating voltage. The anode of diode 61_1 is coupled to input node N61A. The anode of each of diodes 61_2 to 61_Y is coupled to the cathode of the previous diode. The cathode of diode 61_Y is coupled to output node N61B.

二極體61_1~61_Y中每一者提供於其陽極端與陰極端之間的0.7V跨壓。因此,降壓電路61的輸入節點N61A與輸出節點N61B之間的電壓差等於0.7×Y。介於輸入節點N61A與輸出節點N61B之間的電壓差則作為降壓電路61所提供的調節電壓。降壓電路61以此調節電壓來降低追蹤電壓V16以產生偏置電壓V12。 Each of the diodes 61_1~61_Y provides a 0.7V voltage across its anode and cathode. Therefore, the voltage difference between the input node N61A and the output node N61B of the buck circuit 61 is equal to 0.7×Y. The voltage difference between the input node N61A and the output node N61B serves as the regulated voltage provided by the buck circuit 61. The buck circuit 61 uses this regulated voltage to reduce the tracking voltage V16 to generate the bias voltage V12.

根據上述,降壓電路61耦接於電壓追蹤電路16與共源極節點N12之間,且其可執行降壓操作。當根據電壓追蹤電路16的追蹤操作所產生的追蹤電壓V16為大電壓時,基於此降壓操作而產生的偏置電壓V12可小於追蹤電壓V16,避免電晶體元件142的共源極節點N12因遭遇到大電壓而損壞。 According to the above, the buck circuit 61 is coupled between the voltage tracking circuit 16 and the common source node N12, and it can perform a buck operation. When the tracking voltage V16 generated by the tracking operation of the voltage tracking circuit 16 is a large voltage, the bias voltage V12 generated based on this buck operation can be smaller than the tracking voltage V16, so as to prevent the common source node N12 of the transistor element 142 from being damaged due to the large voltage.

在此實施例中,降壓電路60的二極體60_1~60_X的數量等於降壓電路61的二極體61_1~61_Y的數量,即X=Y。而在其他實施例中,依據電子電路1的需求,二極體60_1~60_X的數量不等於二極體61_1~61_Y的數量。舉例來說,二極體60_1~60_X的數量大於於二極體61_1~61_Y的數量,即X>Y。 In this embodiment, the number of diodes 60_1 to 60_X of the step-down circuit 60 is equal to the number of diodes 61_1 to 61_Y of the step-down circuit 61, that is, X=Y. In other embodiments, according to the requirements of the electronic circuit 1, the number of diodes 60_1 to 60_X is not equal to the number of diodes 61_1 to 61_Y. For example, the number of diodes 60_1 to 60_X is greater than the number of diodes 61_1 to 61_Y, that is, X>Y.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the preferred embodiment, it is not intended to limit the present invention. Anyone familiar with this technology can make changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the patent application attached hereto.

1:電子電路 10:核心電路 11:驅動電路 12:接合墊 13:偵測電路 14:控制電路 15:功率元件 16:電壓追蹤電路 17:傳輸閘電路 130:電阻器 131:電容器 140, 141:PMOS電晶體 142:電晶體元件 150:NMOS電晶體 GND:接地端 N10:偵測節點 N11:節點 N12: 共源極節點 S10:輸入信號 SW10:切換信號 T10, T11:電源端 T140A, T141A, T150A:閘極 T140B, T141B, T150B:汲極 T140C, T141C, T150C:源極 T140D, T141D, T150D:基極 T160:輸出端 T170, T171:輸入端 T172:輸出端 V10:偵測電壓 V11:驅動電壓 V12:偏置電壓 V16:追蹤電壓 1: Electronic circuit 10: Core circuit 11: Driver circuit 12: Bonding pad 13: Detection circuit 14: Control circuit 15: Power element 16: Voltage tracking circuit 17: Transmission gate circuit 130: Resistor 131: Capacitor 140, 141: PMOS transistor 142: Transistor element 150: NMOS transistor GND: Ground terminal N10: Detection node N11: Node N12: Common source node S10: Input signal SW10: Switching signal T10, T11: Power terminal T140A, T141A, T150A: Gate T140B, T141B, T150B: Drain T140C, T141C, T150C: Source T140D, T141D, T150D: Base T160: Output T170, T171: Input T172: Output V10: Detection voltage V11: Drive voltage V12: Bias voltage V16: Tracking voltage

Claims (20)

一種驅動電路,包括:一偵測電路,耦接於一第一電源端與一第二電源端之間,且根據該第一電源端的一第一電壓以及該第二電源端的一第二電壓以在一偵測節點上產生一偵測電壓;一控制電路,包括具有一背對背連接結構的一電晶體元件,其中,該電晶體元件耦接於一接合墊與一第一節點之間,且受控於該偵測電壓,其中,一驅動電壓產生於該第一節點;以及一功率元件,耦接於該接合墊與該第二電源端之間,且受控於該驅動電壓;其中,當在該接合墊上發生一靜電放電事件時,該電晶體元件根據該偵測電壓而導通,且該功率元件被該驅動電壓觸發以提供介於該接合墊與該第二電源端之間的一放電路徑;其中,具有該背對背連接結構的該電晶體元件包括串接的兩個P型電晶體。 A driving circuit includes: a detection circuit coupled between a first power terminal and a second power terminal, and generating a detection voltage at a detection node according to a first voltage of the first power terminal and a second voltage of the second power terminal; a control circuit including a transistor element having a back-to-back connection structure, wherein the transistor element is coupled between a bonding pad and a first node and is controlled by the detection voltage, wherein a driving voltage is generated at The first node; and a power element coupled between the bonding pad and the second power supply terminal and controlled by the driving voltage; wherein, when an electrostatic discharge event occurs on the bonding pad, the transistor element is turned on according to the detection voltage, and the power element is triggered by the driving voltage to provide a discharge path between the bonding pad and the second power supply terminal; wherein, the transistor element having the back-to-back connection structure includes two P-type transistors connected in series. 如請求項1的驅動電路,其中,串接的該等P型電晶體包括:一第一P型電晶體,具有耦接該偵測節點的一閘極、耦接該接合墊的一汲極、以及一源極;以及一第二P型電晶體,具有耦接該偵測節點的一閘極、耦接該第一P型電晶體的該源極的一源極、以及耦接該第一節點的一汲極。 The driving circuit of claim 1, wherein the P-type transistors connected in series include: a first P-type transistor having a gate coupled to the detection node, a drain coupled to the bonding pad, and a source; and a second P-type transistor having a gate coupled to the detection node, a source coupled to the source of the first P-type transistor, and a drain coupled to the first node. 如請求項2的驅動電路,其中,該第一P型電晶體以 及該第二P型電晶體為橫向擴散金屬氧化半(laterally-diffused metal-oxide semiconductor,LDMOS)電晶體。 A driving circuit as claimed in claim 2, wherein the first P-type transistor and the second P-type transistor are laterally-diffused metal-oxide semiconductor (LDMOS) transistors. 如請求項1的驅動電路,其中,該功率元件為一大型陣列元件(large array device,LAD)。 A driver circuit as claimed in claim 1, wherein the power device is a large array device (LAD). 如請求項4的驅動電路,其中,該大型陣列元件由複數橫向擴散N型金屬氧化半(laterally-diffused N-type metal-oxide semiconductor,LDNMOS)電晶體所組成。 A driving circuit as claimed in claim 4, wherein the large array element is composed of a plurality of laterally-diffused N-type metal-oxide semiconductor (LDNMOS) transistors. 如請求項1的驅動電路,其中,該控制電路更包括:一降壓電路,耦接於該接合墊與該電晶體元件之間,且提供一調節電壓,其中,該降壓電路以該調節電壓來降低該接合墊的電壓以產生一輸入電壓,且將該輸入電壓提供至該電晶體元件。 The driving circuit of claim 1, wherein the control circuit further comprises: a step-down circuit coupled between the bonding pad and the transistor element and providing a regulated voltage, wherein the step-down circuit uses the regulated voltage to reduce the voltage of the bonding pad to generate an input voltage, and provides the input voltage to the transistor element. 如請求項6的驅動電路,其中,該降壓電路包括:一輸入節點,耦接該接合墊;一輸出節點,耦接該電晶體元件;以及複數降壓元件,串接於該輸入節點與該輸出節點之間;其中,該調節電壓為該輸入節點與該輸出節點之間的電壓差。 A driving circuit as claimed in claim 6, wherein the buck circuit comprises: an input node coupled to the bonding pad; an output node coupled to the transistor element; and a plurality of buck elements connected in series between the input node and the output node; wherein the regulated voltage is the voltage difference between the input node and the output node. 如請求項1的驅動電路,其中,該控制電路更包括:一第一降壓電路,耦接該背對背連接結構的一共源極節點,接收一追蹤電壓,且提供一第一調節電壓,其中,該第一降壓電路以該第一調節電壓來降低該追蹤電壓以產生一偏置電壓,且將該偏置電壓提供至該共源極節點;其中,該追蹤電壓等於該第一電源端的該第一電壓或該接合墊的 電壓。 The driving circuit of claim 1, wherein the control circuit further comprises: a first buck circuit coupled to a common source node of the back-to-back connection structure, receiving a tracking voltage, and providing a first regulating voltage, wherein the first buck circuit reduces the tracking voltage with the first regulating voltage to generate a bias voltage, and provides the bias voltage to the common source node; wherein the tracking voltage is equal to the first voltage of the first power terminal or the voltage of the bonding pad. 如請求項8的驅動電路,其中,該第一降壓電路包括:一第一輸入節點,接收該追蹤電壓;一第一輸出節點,耦接該背對背連接結構的該共源極節點;以及複數第一降壓元件,串接於該第一輸入節點與該第一輸出節點之間;其中,該第一調節電壓為該第一輸入節點與該第一輸出節點之間的電壓差。 The driving circuit of claim 8, wherein the first buck circuit comprises: a first input node receiving the tracking voltage; a first output node coupled to the common source node of the back-to-back connection structure; and a plurality of first buck elements connected in series between the first input node and the first output node; wherein the first regulated voltage is the voltage difference between the first input node and the first output node. 如請求項8的驅動電路,更包括:一電壓追蹤電路,耦接該第一電源端與該接合墊,用以追蹤該第一電源端的該第一電壓以及該接合墊的電壓中的一者以產生該追蹤電壓,且將該追蹤電壓施加至該第一降壓電路。 The driving circuit of claim 8 further includes: a voltage tracking circuit, coupling the first power terminal and the bonding pad, for tracking one of the first voltage of the first power terminal and the voltage of the bonding pad to generate the tracking voltage, and applying the tracking voltage to the first step-down circuit. 如請求項10的驅動電路,其中,該電壓追蹤電路包括:一第一P型電晶體,具有一閘極、耦接該第一電源端的一汲極、以及一源極;一第二P型電晶體,具有耦接該偵測節點的一閘極、耦接該接合墊的一汲極、以及一源極;一第三P型電晶體,具有耦接該第一電源端的一閘極、耦接該接合墊的一汲極、以及一源極,其中,該第三P型電晶體的該源極耦接該第一P型電晶體的該閘極於一第二節點;以及 一第二降壓電路,耦接於該第一電源端與該第二節點之間,且提供一第二調節電壓;其中,該第一P型電晶體的該源極與該第二P型電晶體的該源極耦接該電壓追蹤電路的一輸出端,且該追蹤電壓產生於該輸出端。 The driving circuit of claim 10, wherein the voltage tracking circuit includes: a first P-type transistor having a gate, a drain coupled to the first power terminal, and a source; a second P-type transistor having a gate coupled to the detection node, a drain coupled to the bonding pad, and a source; a third P-type transistor having a gate coupled to the first power terminal, a drain coupled to the bonding pad, and a source. Source, wherein the source of the third P-type transistor is coupled to the gate of the first P-type transistor at a second node; and A second step-down circuit is coupled between the first power terminal and the second node and provides a second regulated voltage; wherein the source of the first P-type transistor and the source of the second P-type transistor are coupled to an output terminal of the voltage tracking circuit, and the tracking voltage is generated at the output terminal. 如請求項11的驅動電路,其中,當該第一電源端的該第一電壓大於或等於該接合墊的電壓時,該第二降壓電路以該第二調節電壓來降低該第一電源端的該第一電壓以決定該第二節點上的一控制電壓,且該第一P型電晶體根據該控制電壓而導通,使得該追蹤電壓等於該第一電壓。 The driving circuit of claim 11, wherein when the first voltage of the first power supply terminal is greater than or equal to the voltage of the bonding pad, the second step-down circuit reduces the first voltage of the first power supply terminal by the second regulating voltage to determine a control voltage on the second node, and the first P-type transistor is turned on according to the control voltage, so that the tracking voltage is equal to the first voltage. 如請求項11的驅動電路,其中,當該第一電源端的該第一電壓小於該接合墊的電壓時,該第二P型電晶體導通,且該追蹤電壓等於該接合墊的電壓。 A driving circuit as claimed in claim 11, wherein when the first voltage at the first power supply terminal is less than the voltage of the bonding pad, the second P-type transistor is turned on and the tracking voltage is equal to the voltage of the bonding pad. 如請求項13的驅動電路,其中,當該第一電源端的該第一電壓小於該接合墊的電壓時,該第三P型電晶體導通,且該第二節點上的一控制電壓根據該接合墊的電壓而決定,以關斷該第一P型電晶體。 A driving circuit as claimed in claim 13, wherein when the first voltage at the first power supply terminal is less than the voltage of the bonding pad, the third P-type transistor is turned on, and a control voltage at the second node is determined according to the voltage of the bonding pad to turn off the first P-type transistor. 如請求項11的驅動電路,其中,該第二降壓電路包括:一第一輸入節點,耦接該第一電源端;一第一輸出節點,耦接該第一P型電晶體於該第二節點;以及複數第一降壓元件,串接於該第一輸入節點與該第一輸出節點之 間;其中,該第二調節電壓為該第一輸入節點與該第一輸出節點之間的電壓差。 The driving circuit of claim 11, wherein the second buck circuit comprises: a first input node coupled to the first power supply terminal; a first output node coupled to the first P-type transistor at the second node; and a plurality of first buck elements connected in series between the first input node and the first output node; wherein the second regulated voltage is the voltage difference between the first input node and the first output node. 如請求項11的驅動電路,其中,該第一P型電晶體、該第二P型電晶體、以及該第三P型電晶體為橫向擴散金屬氧化半(LDMOS)電晶體。 The driving circuit of claim 11, wherein the first P-type transistor, the second P-type transistor, and the third P-type transistor are lateral diffused metal oxide semiconductor (LDMOS) transistors. 如請求項1的驅動電路,更包括:一電壓追蹤電路,耦接該第一電源端與該接合墊,用以追蹤該第一電源端的該第一電壓或該接合墊的電壓中的一者以產生一追蹤電壓,且將該追蹤電壓提供至該背對背連接結構的一共源極節點。 The driving circuit of claim 1 further includes: a voltage tracking circuit, coupling the first power terminal and the bonding pad, for tracking one of the first voltage of the first power terminal or the voltage of the bonding pad to generate a tracking voltage, and providing the tracking voltage to a common source node of the back-to-back connection structure. 如請求項1的驅動電路,更包括:一傳輸閘電路,具有一輸入端以及耦接該第一節點的一輸出端,且受控於一第一切換信號;其中,當該第一電源端接收一操作電壓以作為該第一電壓時,該傳輸閘電路的輸入端接收一輸入信號,且根據該第一切換信號以將該輸入信號傳送至該輸出端。 The driving circuit of claim 1 further includes: a transmission gate circuit having an input terminal and an output terminal coupled to the first node and controlled by a first switching signal; wherein, when the first power terminal receives an operating voltage as the first voltage, the input terminal of the transmission gate circuit receives an input signal, and transmits the input signal to the output terminal according to the first switching signal. 如請求項18的驅動電路,其中,該傳輸閘電路包括:一N型電晶體,具有接收該第一切換信號的一閘極、耦接該輸入端的一汲極、耦接該輸出端的一源極;以及一P型電晶體,具有接收一第二切換信號的一閘極、耦接該輸入 端的一源極、耦接該輸出端的一汲極;其中,該第一切換信號與該第二切換信號互為反相。 The driving circuit of claim 18, wherein the transmission gate circuit comprises: an N-type transistor having a gate for receiving the first switching signal, a drain coupled to the input end, and a source coupled to the output end; and a P-type transistor having a gate for receiving a second switching signal, a source coupled to the input end, and a drain coupled to the output end; wherein the first switching signal and the second switching signal are inverted. 如請求項1的驅動電路,其中,該偵測電路包括:一電阻器,耦接於該第一電源端與該偵測節點之間;以及一電容器,耦接於該偵測節點與該第二電源端之間。 A driving circuit as claimed in claim 1, wherein the detection circuit comprises: a resistor coupled between the first power supply terminal and the detection node; and a capacitor coupled between the detection node and the second power supply terminal.
TW111143933A 2022-11-17 2022-11-17 Driving circuits TWI847371B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111143933A TWI847371B (en) 2022-11-17 2022-11-17 Driving circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111143933A TWI847371B (en) 2022-11-17 2022-11-17 Driving circuits

Publications (2)

Publication Number Publication Date
TW202423052A TW202423052A (en) 2024-06-01
TWI847371B true TWI847371B (en) 2024-07-01

Family

ID=92540071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111143933A TWI847371B (en) 2022-11-17 2022-11-17 Driving circuits

Country Status (1)

Country Link
TW (1) TWI847371B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243262A (en) * 2010-04-07 2011-11-16 松下电器产业株式会社 Current detection circuit
CN110635797A (en) * 2018-06-25 2019-12-31 世界先进积体电路股份有限公司 Drive circuit
US10867989B2 (en) * 2018-07-30 2020-12-15 Vanguard International Semiconductor Corporation Driving circuit having electrostatic discharge protection
US20220238509A1 (en) * 2021-01-28 2022-07-28 SK Hynix Inc. Electrostatic discharge circuit and electrostatic discharge control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243262A (en) * 2010-04-07 2011-11-16 松下电器产业株式会社 Current detection circuit
CN110635797A (en) * 2018-06-25 2019-12-31 世界先进积体电路股份有限公司 Drive circuit
US10867989B2 (en) * 2018-07-30 2020-12-15 Vanguard International Semiconductor Corporation Driving circuit having electrostatic discharge protection
US20220238509A1 (en) * 2021-01-28 2022-07-28 SK Hynix Inc. Electrostatic discharge circuit and electrostatic discharge control system
CN114825303A (en) * 2021-01-28 2022-07-29 爱思开海力士有限公司 Electrostatic discharge circuit and electrostatic discharge control system

Also Published As

Publication number Publication date
TW202423052A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
US7388410B2 (en) Input circuits configured to operate using a range of supply voltages
TWI481192B (en) Overvoltage resistant gate
EP0116820A2 (en) Complementary MOS circuit
US6043681A (en) CMOS I/O circuit with high-voltage input tolerance
US7834677B2 (en) Transmission gate with body effect compensation circuit
US8269547B2 (en) Bootstrap circuit
US7486127B2 (en) Transistor switch with integral body connection to prevent latchup
US20190305778A1 (en) Pad tracking circuit for high-voltage input-tolerant output buffer
US8120413B2 (en) Charge pump circuit
US6980194B2 (en) Amplitude conversion circuit for converting signal amplitude
US6838908B2 (en) Mixed-voltage I/O design with novel floating N-well and gate-tracking circuits
TWI790861B (en) Electrostatic discharge protection circuit
TWI847371B (en) Driving circuits
CN102655406B (en) receiving circuit
US12212317B2 (en) Stress reduction on stacked transistor circuits
JPH0786917A (en) Inverter circuit
US10439596B2 (en) Input circuit
US20230335546A1 (en) Electrostatic discharge protection circuit
KR100391991B1 (en) Semiconductor integrated circuit device with voltage interface circuit
CN118074495A (en) Driving circuit
US20240222965A1 (en) Driving circuit
US6194943B1 (en) Input circuit protection
US7333373B2 (en) Charge pump for use in a semiconductor memory
TWI867554B (en) Electronic circuits
US5726590A (en) Interface in a semiconductor integrated circuit
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载