TWI843665B - Method for enhancing the interface strength between carbon fiber and acrylic resin - Google Patents
Method for enhancing the interface strength between carbon fiber and acrylic resin Download PDFInfo
- Publication number
- TWI843665B TWI843665B TW112139200A TW112139200A TWI843665B TW I843665 B TWI843665 B TW I843665B TW 112139200 A TW112139200 A TW 112139200A TW 112139200 A TW112139200 A TW 112139200A TW I843665 B TWI843665 B TW I843665B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon fiber
- silane
- acrylic resin
- heating
- temperature
- Prior art date
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 130
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 130
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 123
- 239000004925 Acrylic resin Substances 0.000 title claims abstract description 55
- 229920000178 Acrylic resin Polymers 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 12
- 229910000077 silane Inorganic materials 0.000 claims abstract description 58
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 48
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 238000005470 impregnation Methods 0.000 claims abstract description 26
- 239000002002 slurry Substances 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 18
- 238000001035 drying Methods 0.000 claims abstract description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 15
- 239000003960 organic solvent Substances 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- 125000000524 functional group Chemical group 0.000 claims description 9
- -1 oligomers Substances 0.000 claims description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 7
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 239000003999 initiator Substances 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 229950005499 carbon tetrachloride Drugs 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 3
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 3
- WIJVUKXVPNVPAQ-UHFFFAOYSA-N silyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)O[SiH3] WIJVUKXVPNVPAQ-UHFFFAOYSA-N 0.000 claims 1
- 229920001169 thermoplastic Polymers 0.000 abstract description 9
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 8
- 230000000694 effects Effects 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000004513 sizing Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- NLSFWPFWEPGCJJ-UHFFFAOYSA-N 2-methylprop-2-enoyloxysilicon Chemical compound CC(=C)C(=O)O[Si] NLSFWPFWEPGCJJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
一種「增強碳纖維與壓克力樹脂界面強度的方法」,其包含:備製一碳纖維,為含有表面漿劑之碳纖維;矽烷含浸作業,將所述含有表面漿劑之碳纖維通過含有矽烷之含浸槽,控制矽烷酸鹼值溫度條件下進行加熱反應及烘乾處理,進而改變所述碳纖維表面能量,俾可接著與壓克力樹脂進行加熱反應聚合構成一種矽烷碳纖維壓克力複材,此複材具碳纖維與所述壓克力樹脂結合後的良好界面強度,用以解決市面上沒有給熱塑壓克力樹脂使用的碳纖維表面漿劑,所造成界面物性低下的問題,俾使熱塑壓克力樹脂碳纖複材符合產業之應用。 A method for enhancing the interface strength between carbon fiber and acrylic resin comprises: preparing a carbon fiber containing a surface slurry; performing a silane impregnation operation, passing the carbon fiber containing the surface slurry through an impregnation tank containing silane, performing a heating reaction and a drying process under the condition of controlling the acid-base value and temperature of silane, thereby changing the surface energy of the carbon fiber so that it can be bonded to the surface of the acrylic resin. The silane carbon fiber acrylic composite is formed by heating and reacting with acrylic resin. The composite has good interface strength after the carbon fiber and the acrylic resin are combined. It is used to solve the problem of low interface properties caused by the lack of carbon fiber surface slurry for thermoplastic acrylic resin in the market, so that thermoplastic acrylic resin carbon fiber composites meet industrial applications.
Description
本發明係關於一種「增強碳纖維與壓克力樹脂界面強度的方法」,有助於提昇碳纖維表面能量,進一步與壓克力樹脂具有良好含浸效果,增進碳纖維與壓克力樹脂界面強度者。 The present invention relates to a "method for enhancing the interface strength between carbon fiber and acrylic resin", which helps to increase the surface energy of carbon fiber, further has a good impregnation effect with acrylic resin, and enhances the interface strength between carbon fiber and acrylic resin.
按,習知碳纖維複合材料是由碳纖維、基材(Matrixs)、界面所組成,而高分子材料是應用最廣泛的基材。界面的功能是在複合材料中擔任傳遞負載的部分,碳纖維與基材通過界面形成一個發揮綜合高性能的材料整體。但是,碳纖維在碳化燒結過程中使其表面呈化學惰性,致使其與基材的界面性能差,因此碳纖廠需再進行碳纖維表面處理使具有特定官能基供特定高分子基材使用。 According to the knowledge, carbon fiber composites are composed of carbon fibers, matrices, and interfaces, and polymer materials are the most widely used matrices. The function of the interface is to transfer the load in the composite material. The carbon fiber and the matrix form a material with comprehensive high performance through the interface. However, the carbon fiber surface becomes chemically inert during the carbonization and sintering process, resulting in poor interface performance with the matrix. Therefore, carbon fiber manufacturers need to further treat the carbon fiber surface to make it have specific functional groups for use with specific polymer matrices.
碳纖維表面處理方法很多,目前已經開展的研究方法歸納起來主要分為:氧化法、高能輻射處理法、塗層法等。 There are many methods for carbon fiber surface treatment. The research methods that have been carried out can be summarized into: oxidation method, high-energy radiation treatment method, coating method, etc.
氧化法根據使用的氧化介質不同分為液相氧化、氣相氧化、電化學氧化等。氧化法實際是通過不同的氧化技術,對碳纖維表面進行氧化處理,使碳纖表面含氧官能基增加與產生表面蝕刻,提昇鍵結與嵌合作用。然該方法常使用強氧化劑,強酸與臭氧等等,操作過程危險與產生許多廢液污染等問題。 The oxidation method is divided into liquid phase oxidation, gas phase oxidation, electrochemical oxidation, etc. according to the different oxidizing media used. The oxidation method actually uses different oxidation technologies to oxidize the surface of carbon fibers, increase the oxygen-containing functional groups on the surface of carbon fibers, produce surface etching, and enhance bonding and intercalation. However, this method often uses strong oxidants, strong acids, ozone, etc., and the operation process is dangerous and produces many waste liquid pollution problems.
高能輻射處理是利用高能射線發出的微粒子或者等離子體轟擊纖維的 表面,在纖維表面與樹脂基材間產生化學鍵合作用,提高樹脂基材對碳纖維的潤濕性。該方法達到的效果與氧化法類似,一方面在纖維表面產生化學反應活性自由基或接枝活性官能團,增大了碳纖維表面與樹脂基體間的化學鍵作用,提高了樹脂基體對碳纖維的潤濕性,另一方面高能射線對碳纖維表面進行適度刻蝕增大了纖維表面粗糙度,提高了纖維表面與基材間的機械作用。然這種製程設備高昂,操控複雜,生產成本高。 High-energy radiation treatment uses microparticles or plasma emitted by high-energy rays to bombard the fiber surface, generating chemical bonding between the fiber surface and the resin substrate, and improving the wettability of the resin substrate to the carbon fiber. The effect achieved by this method is similar to that of the oxidation method. On the one hand, chemically reactive free radicals or grafted active functional groups are generated on the fiber surface, increasing the chemical bonding between the carbon fiber surface and the resin matrix, and improving the wettability of the resin matrix to the carbon fiber. On the other hand, high-energy rays moderately etch the carbon fiber surface to increase the fiber surface roughness and improve the mechanical action between the fiber surface and the substrate. However, this process has high equipment costs, complex control, and high production costs.
表面塗層法是在碳纖維表面塗覆一定厚度和具有一定反應活性的介質,該介質能夠起到在碳纖維表面與樹脂基體之間搭建“橋樑”的作用,改善聚合物和增強纖維之間的相容性,降低界面張力,從物理方法角度對複合材料界面產生有益影響。表面塗層法除了包含偶聯劑法、電聚合法和上漿劑處理,化學氣相沉積法、磁控濺射等。 The surface coating method is to coat a medium with a certain thickness and certain reactivity on the surface of the carbon fiber. The medium can build a "bridge" between the carbon fiber surface and the resin matrix, improve the compatibility between the polymer and the reinforcing fiber, reduce the interfacial tension, and have a beneficial effect on the interface of the composite material from the perspective of physical methods. In addition to the coupling agent method, electropolymerization method and sizing agent treatment, the surface coating method also includes chemical vapor deposition method, magnetron sputtering, etc.
習知碳纖維的表面漿劑處理為供熱固環氧樹脂使用,若要用於熱塑樹脂如壓克力樹脂時,都需先將原有的碳纖維漿劑以溶劑去除,另外再處理熱塑樹脂專用漿劑,如文獻”Effect of sizing agent on interfacial properties of carbon fiber-reinforced PMMA composite”LiJian published online February 2,2021.https://doi.org/10.1177/2633366X20978657所示。造成碳纖維在熱塑壓克力樹脂使用上的問題與困擾。 It is known that the surface slurry treatment of carbon fiber is for use in thermosetting epoxy resin. If it is to be used in thermoplastic resins such as acrylic resin, the original carbon fiber slurry must be removed with a solvent and then treated with a thermoplastic resin slurry, as shown in the literature "Effect of sizing agent on interfacial properties of carbon fiber-reinforced PMMA composite" LiJian published online February 2, 2021. https://doi.org/10.1177/2633366X20978657 . This causes problems and troubles in the use of carbon fiber in thermoplastic acrylic resin.
有鑑於此,本發明人於多年從事相關產品之製造開發與設計經驗,針對上述之目標,詳加設計與審慎評估後,終得一確具實用性之本發明。 In view of this, the inventor has been engaged in the manufacturing, development and design of related products for many years. After careful design and careful evaluation for the above-mentioned goals, he finally obtained this invention which is truly practical.
本發明所欲解決之技術問題在於針對目前碳纖維一般都經過了表面處理並且表面含有一定量的上漿劑,主要是供熱固環氧樹脂使 用,所以碳纖維很難找到供熱塑高分子使用含漿劑之碳纖維,尤其是專供壓克力樹脂使用的碳纖維,阻礙了具環保回收特性之熱塑碳纖複材的發展。提供供環氧樹脂使用的碳纖維,用於壓克力樹脂系統時其界面強度低下,無法發揮壓克力之碳纖維複材的整體性能。 The technical problem that this invention aims to solve is that currently carbon fibers are generally surface treated and contain a certain amount of sizing agent on the surface, mainly for use in thermosetting epoxy resins. Therefore, it is difficult to find carbon fibers containing sizing agents for use in thermoplastic polymers, especially carbon fibers specifically for use in acrylic resins, which hinders the development of thermoplastic carbon fiber composites with environmentally friendly recycling characteristics. Carbon fibers provided for use in epoxy resins have low interfacial strength when used in acrylic resin systems, and cannot exert the overall performance of acrylic carbon fiber composites.
有鑒於現有技術存在的上述缺失,本發明提供一種增強碳纖維與壓克力樹脂界面強度的方法,包括:備製一碳纖維,為含有表面漿劑之碳纖維;矽烷含浸作業,將所述含有表面漿劑之碳纖維通過含有矽烷之含浸槽,控制矽烷酸鹼值溫度條件下進行烘乾及加熱反應處理,進而改變所述碳纖維表面能量;壓克力樹脂聚合反應,將前述含有矽烷之碳纖維通過含有壓克力官能基的單體、寡聚體、起始劑等溶融漿液所混合之壓克力樹脂含浸槽,接著再進行壓模加熱反應聚合構成一種矽烷碳纖維壓克力複材,此複材具碳纖維與所述壓克力樹脂結合後的良好界面強度。 In view of the above-mentioned deficiencies in the prior art, the present invention provides a method for enhancing the interfacial strength between carbon fiber and acrylic resin, comprising: preparing a carbon fiber containing a surface slurry; performing a silane impregnation operation, passing the carbon fiber containing the surface slurry through an impregnation tank containing silane, and performing drying and heating reaction treatment under the condition of controlling the acid-base value and temperature of silane, thereby changing the The carbon fiber surface energy; acrylic resin polymerization reaction, the aforementioned carbon fiber containing silane is passed through an acrylic resin impregnation tank mixed with a molten slurry containing monomers, oligomers, initiators, etc. containing acrylic functional groups, and then pressed and heated for reaction polymerization to form a silane carbon fiber acrylic composite. This composite has good interface strength after the carbon fiber and the acrylic resin are combined.
較佳地,該含浸槽包含一有機溶劑,再將矽烷以0.5%~3%之比例分散於該有機溶劑中,並將該含浸槽的酸鹼值控制於pH2~3間。 Preferably, the impregnation tank contains an organic solvent, and silane is dispersed in the organic solvent at a ratio of 0.5% to 3%, and the pH value of the impregnation tank is controlled between pH 2 and 3.
較佳地,酸鹼值控制於pH2~3所用的為無機酸及有機酸,所述有機酸為含壓克力官能基之丙烯酸以及甲基丙烯酸等任一種者。 Preferably, the pH value is controlled at pH 2-3 using inorganic acid and organic acid, wherein the organic acid is any one of acrylic acid and methacrylic acid containing acrylic functional groups.
所述有機溶劑為乙醚、二氯甲烷、苯、四氯甲烷、氯仿等任一種有機溶劑者。 The organic solvent is any organic solvent such as ether, dichloromethane, benzene, tetrachloromethane, chloroform, etc.
較佳地,所述矽烷為胺基矽烷(Amino Silanes)、環氧基矽烷(Epoxy Silanes)以及甲基丙烯醯氧基矽烷(Acyloxy Silanes)等任一種矽烷或其混合者。 Preferably, the silane is any one of amino silane, epoxy silane and acyloxy silane or a mixture thereof.
較佳地,所述烘乾及加熱反應處理包含進行一低溫加熱以及 一高溫加熱,所述低溫加熱係通過一低溫烘箱進行去除溶劑,其加熱溫度設定於70℃以下並進行抽氣防爆與加熱去除溶劑,所述高溫加熱係透過一高溫烘箱如真空烘箱及連續烘箱任一種方式進行加熱,將所述碳纖維放入乾高溫烘箱中進行加熱反應處理,其加熱溫度設定於100℃~150℃間,並於真空環境下進行15~30分鐘的熱處理,以令所述矽烷能充分與碳纖維表面反應,增進所述碳纖維表面能量而構成一矽烷碳纖維。 Preferably, the drying and heating reaction treatment includes a low-temperature heating and a high-temperature heating. The low-temperature heating is to remove the solvent through a low-temperature oven, the heating temperature is set below 70°C, and the exhaust explosion-proof and heating removal of the solvent are performed. The high-temperature heating is to heat through a high-temperature oven such as a vacuum oven and a continuous oven. The carbon fiber is placed in a dry high-temperature oven for heating reaction treatment. The heating temperature is set between 100°C and 150°C, and the heat treatment is performed for 15 to 30 minutes in a vacuum environment, so that the silane can fully react with the surface of the carbon fiber, increase the surface energy of the carbon fiber, and form a silane carbon fiber.
所述低溫加熱以及高溫加熱係以分段進行以及連續施行等任一種方式處理者。 The low-temperature heating and high-temperature heating are processed in any manner such as staged or continuous.
較佳地,更包含一冷卻作業,將加熱反應後之所述碳纖維於真空環境中自然冷卻,再以一PE袋包裝置於-22℃之設備環境中冷卻,以避免所述碳纖維表面吸水和進一步反應。 Preferably, a cooling operation is further included, wherein the carbon fiber after the heating reaction is naturally cooled in a vacuum environment, and then packaged in a PE bag and placed in a -22°C equipment environment for cooling, so as to prevent the carbon fiber surface from absorbing water and further reacting.
較佳地,所述壓克力樹脂為聚甲基丙烯酸甲酯(PMMA)3~45%重量百分比溶融於甲基丙烯酸甲酯(MMA)單體中,再添加0.5~3%壓克力反應起始劑、抗紫外線添加劑與填充劑所組合的漿液。 Preferably, the acrylic resin is a slurry composed of 3-45% by weight of polymethyl methacrylate (PMMA) dissolved in methyl methacrylate (MMA) monomer, and then 0.5-3% of acrylic reaction initiator, anti-ultraviolet additive and filler are added.
對照先前技術之功效:1、增進碳纖維表面能量:經過本方法反應處理過的碳纖維10,表面能量明顯提高許多,原碳纖維表面能量小於壓克力樹脂的表面能量29.4mN/m,經處理後碳纖維表面能量大於40mN/m,意即能與壓克力樹脂40具有良好含浸效果者。
Compared with the effects of previous technologies: 1. Improve the surface energy of carbon fiber: The surface energy of
2、增強界面強度:經過本方法反應處理過的碳纖維10與壓克力樹脂40製作成矽烷碳纖維壓克力複材41,其層間剪切強度(interlaminar shear strength,ILSS)比未處理者更高,更是達到目前熱固環氧樹脂碳纖維複材應用水平之上。
2. Enhanced interface strength: The
3、製程簡易,有效降低成本:本方法無需使用到高昂的設備,無需使用到強酸,強氧化劑等有害化學品,有助於達到環境保護效果,進一步用以解決市面上沒有給熱塑壓克力樹脂使用的碳纖維表面漿劑,所造成界面物性低下的問題,俾使熱塑壓克力樹脂碳纖複材符合產業之應用。 3. Simple process, effectively reducing costs: This method does not require the use of expensive equipment, strong acids, strong oxidants and other harmful chemicals, which helps to achieve environmental protection effects. It is further used to solve the problem of low interface properties caused by the lack of carbon fiber surface slurry for thermoplastic acrylic resin on the market, so that thermoplastic acrylic resin carbon fiber composites meet industrial applications.
10:碳纖維 10: Carbon fiber
11:矽烷碳纖維 11: Silane carbon fiber
20:含浸槽 20: Immersion tank
30:烘乾及加熱反應處理 30: Drying and heating reaction treatment
31:低溫烘箱 31: Low temperature oven
32:高溫烘箱 32: High temperature oven
40:壓克力樹脂 40:Acrylic resin
41:矽烷碳纖維壓克力複材 41: Silane carbon fiber acrylic composite
〔第1圖〕係本發明之碳纖維進行矽烷反應作業之示意圖。 [Figure 1] is a schematic diagram of the carbon fiber of the present invention undergoing silane reaction.
〔第2圖〕係本發明之矽烷碳纖維結合壓克力樹脂之示意圖。 [Figure 2] is a schematic diagram of the silane carbon fiber combined with acrylic resin of the present invention.
為使 貴審查委員對本發明之目的、特徵及功效能夠有更進一步之瞭解與認識,以下茲請配合【圖式簡單說明】詳述如後:首先,請由第1、2圖所示觀之,一種增強碳纖維與壓克力樹脂界面強度的方法,包括:備製一碳纖維10,為含有表面漿劑之碳纖維10;矽烷含浸作業,將所述含有表面漿劑之碳纖維10通過含有矽烷之含浸槽20,該含浸槽20包含一有機溶劑,再將矽烷以0.5%~3%之比例分散於該有機溶劑中,並將該含浸槽20的酸鹼值控制於pH2~3間,通過該含浸槽20後之碳纖維10接著進行烘乾及加熱反應處理30,進而改變所述碳纖維10表面能量;壓克力樹脂聚合反應,將前述含有矽烷之碳纖維10通過含有壓克力官能基的單體、寡聚體、起始劑等溶融漿液所混合之壓克力樹脂40之含浸槽,製成單向預浸材,疊層後,接著再進行壓模加熱反應聚合構成一種矽烷碳纖維壓克力複材41,此複材具碳纖維與所述壓克力樹脂結合後的良好界面強度。
In order to enable the Honorable Review Committee to have a further understanding and recognition of the purpose, features and efficacy of the present invention, the following is a detailed description in conjunction with the [Simple Explanation of Figures]: First, please refer to Figures 1 and 2, a method for enhancing the interfacial strength between carbon fiber and acrylic resin, including: preparing a
所述有機溶劑為乙醚、二氯甲烷、苯、四氯甲烷、氯仿等任 一種有機溶劑者,最佳使用為二氯甲烷者。 The organic solvent is any organic solvent such as ether, dichloromethane, benzene, tetrachloromethane, chloroform, etc., and dichloromethane is the best.
酸鹼值控制於pH2~3所用的為無機酸及有機酸,如含壓克力官能基的有機酸以及甲基丙烯酸等任一種酸劑,其中較佳為含壓克力官能基的有機酸,最佳為使用甲基丙烯酸。 The pH value is controlled at pH 2~3 using inorganic acids and organic acids, such as organic acids containing acrylic functional groups and any acid such as methacrylic acid. Among them, organic acids containing acrylic functional groups are preferred, and methacrylic acid is the best.
所述矽烷為胺基矽烷(Amino Silanes)、環氧基矽烷(Epoxy Silanes)以及甲基丙烯醯氧基矽烷(Acyloxy Silanes)等上述任一種矽烷或其混合者; The silane is any one of the above silanes such as amino silane, epoxy silane and methacryloxy silane or a mixture thereof;
所述矽烷為胺基矽烷(Amino Silanes),如下列所示: The silane is amino silane, as shown below:
所述矽烷為環氧基矽烷(Epoxy Silanes),如下列所示: The silane is epoxy silane, as shown below:
所述矽烷為甲基丙烯醯氧基矽烷(Acyloxy Silanes),如下列所示: The silane is methacrylic acyloxy silane (Acyloxy Silanes), as shown below:
以下僅以實施例說明本發明可能之實施態樣,然並非用以限制本發明所欲保護之範疇,合先敘明;請同時由第1圖所示觀之,本實施例將含有表面漿劑之碳纖維10通過該含浸槽20後再進行加熱反應,該含浸槽20包含二氯甲烷有機溶劑,再將矽烷以1%之比例分散於該有機溶劑中,並將該含浸槽20以壓克力酸將酸鹼值控制於pH2~3間,所述烘乾、加熱反應處理30包含進行一低溫加熱以及一高溫加熱,所述低溫加熱係通過一低溫烘箱31進行去除溶劑,其加熱溫度設定於50℃並進行防爆抽氣與加熱去除溶劑,低溫加熱後捲取所述碳纖維10,所述高溫加熱係透過高溫烘箱32如真空烘箱或連續烘箱進行加熱,將所述碳纖維10放入該高溫烘箱32中進行加熱反應處理,其加熱溫度設定於100℃~150℃間,並於真空環境下進行15~30分鐘的熱處理,以令所述矽烷能充分與碳纖維10表面反應,進而改變所述碳纖維10的表面能量而構成一矽烷碳纖維11。
The following is only an example to illustrate the possible implementation of the present invention, but it is not intended to limit the scope of the present invention to be protected. It is necessary to explain it first; please refer to FIG. 1 at the same time. In this embodiment, the
上述加熱反應後可再進行一冷卻作業,將加熱反應後之所述碳纖維10於真空環境中自然冷卻,再以一PE袋包裝置於-22℃之設備環境中
冷卻,以避免所述碳纖維10表面吸水和進一步反應。
After the above heating reaction, a cooling operation can be performed. The
以下將碳纖維、去除表面漿劑之碳纖維、經矽烷含浸作業之矽烷碳纖維11以及壓克力樹脂,經Kruss 12型tension meter儀器測量表面能量(Surface energy),包括polar force及dispersion force,其中比較例用去除表面漿劑之碳纖維,其處理過程係將碳纖約300g重新捲在玻璃管上,置於適當的超音波振盪器中。THF倒入超音波振盪器中,淹蓋碳纖,浸泡72小時以上,並隨時以超音波振盪。碳纖取出後,置於另一超音波振盪器中,以乾淨去離子水清洗,超音波振盪30分鐘後換水,共處理五次。再於真空烘箱中抽真空100℃下overnight。取出後以PE袋包裝置於冷凍櫃中。
The following carbon fiber, carbon fiber with surface sizing removed,
其表面能量測試結果如下列表格所示;
經由上述表面能量測試結果可知,碳纖維未進行反應前之表面能量小於壓克力樹脂的表面能量29.4mN/m,經過本發明方法反應處理後之矽烷碳纖維11,能產生更佳的49.0024mN/m表面能量效果,據此,碳纖維10經過含浸以及烘乾與加熱反應處理後,其碳纖維10表面能量(Surface energy)以及σs d(disperse part)數值明顯增加,意即含浸、加熱反應後之碳纖維表面能量具有顯著提升者。
From the above surface energy test results, it can be seen that the surface energy of the carbon fiber before the reaction is less than the surface energy of the acrylic resin 29.4mN/m. The
接著驗證其於複材的效果,將碳纖維、去除漿劑之碳纖維以及經矽烷處理之矽烷碳纖維11,分別經過壓克力樹脂40含浸與加熱成型作業構成壓克力複材,再以萬能試驗機測試層間剪切強度ILSS(Interlaminar shear strength)值,所述壓克力樹脂為聚甲基丙烯酸甲酯(PMMA)以3~45%重量百分比溶融於甲基丙烯酸甲酯(MMA)單體中,再添加0.5~3%壓克力反應起始劑、抗紫外線添加劑與填充劑所組合的漿液,並以壓克力酸調成具酸性之壓克力樹脂。所述壓克力樹脂40含浸碳纖維是以Drum type預浸成型機,將碳纖維、去除漿劑之碳纖維以及矽烷碳纖維11含浸所述壓克力樹脂40製作成預浸材料,接著將前述預浸材料疊層19cm×12cm×36Layers於50Ton油壓機中,以75℃×15min+100℃×15min,壓力70kg/cm2下成型平板試片,於模具中冷卻至50℃以下,取出後再以鑽石切片機將平板試片依ASTM D2344裁切試片後測ILSS;環氧樹脂碳纖維複材比較例中,是將碳纖維與環氧樹脂,以相同Drum type預浸成型機,做成預浸材料。前述預浸材料疊層19cm×12cm×36Layers於50Ton油壓機中,以120℃×60min硬化,壓力70kg/cm2下成型平板試片,於模具中冷卻至50℃以下,取出再後硬化120℃兩小時,確保硬化完全。再以鑽石切片機,將平板試片依ASTM D2344裁切試片後測ILSS。
Then, the effect on the composite is verified. The carbon fiber, the carbon fiber without the slurry, and the
其測試數值如下列表格所示:
經由上述測試結果可知,所述碳纖維10經矽烷反應處理後所構成的矽烷碳纖維壓克力複材41,其ILSS值明顯提高,達到目前熱固環氧樹脂碳纖維複材應用水平之上。
From the above test results, it can be seen that the ILSS value of the silane carbon fiber acrylic composite 41 formed by the
茲由以上說明得知,本發明及其製法,確可達到如下之優點:增進碳纖表面能量:經過本方法處理過的碳纖維10,表面能量明顯提高許多,原碳纖維10表面能量小於壓克力樹脂40的表面能量29.4mN/m,經處理後碳纖維10表面能量大於40mN/m,意即與壓克力樹脂的含浸非常好。
From the above description, it can be seen that the present invention and its preparation method can achieve the following advantages: Improve the surface energy of carbon fiber: The surface energy of
藉上述具體實施例之結構,可得到下述之效益: The following benefits can be obtained by using the structure of the above specific implementation example:
1、增進碳纖維表面能量:經過本方法反應處理過的碳纖維10,表面能量明顯提高許多,原碳纖維表面能量小於壓克力樹脂的表面能量29.4mN/m,經處理後碳纖維表面能量大於40mN/m,意即能與壓克力樹脂40具有良好含浸效果者。
1. Improve the surface energy of carbon fiber: The surface energy of
2、增強界面強度:經過本方法反應處理過的碳纖維10與壓克力樹脂40製作成矽烷碳纖維壓克力複材41,其層間剪切強度(interlaminar shear strength,ILSS)比未處理者更高,更是達到目前熱固環氧樹脂碳纖維複材應用水平之上。
2. Enhanced interface strength: The
3、製程簡易,有效降低成本:本方法無需使用到高昂的設備,無需使用到強酸,強氧化劑等有害化學品,有助於達到環境保護效果,進一步用以解決市面上沒有給熱塑壓克力樹脂使用的碳纖維表面漿劑,所造成界面物性低下的問題,俾使熱塑壓克力樹脂碳纖複材符合產業之應用。 3. Simple process, effectively reducing costs: This method does not require the use of expensive equipment, strong acids, strong oxidants and other harmful chemicals, which helps to achieve environmental protection effects. It is further used to solve the problem of low interface properties caused by the lack of carbon fiber surface slurry for thermoplastic acrylic resin on the market, so that thermoplastic acrylic resin carbon fiber composites meet industrial applications.
綜上所述,本發明確實已達突破性之結構設計,而具有改良之發明內容,同時又能夠達到產業上之利用性與進步性,且本發明未見於任何刊物,亦具新穎性,當符合專利法相關法條之規定,爰依法提出發明專利申請,懇請 鈞局審查委員授予合法專利權,至為感禱。 In summary, this invention has indeed achieved a breakthrough structural design and has improved invention content. At the same time, it can achieve industrial applicability and progress. Moreover, this invention has not been seen in any publication and is also novel. It should comply with the relevant provisions of the Patent Law. Therefore, we have filed an invention patent application in accordance with the law and pleaded with the review committee of the Jun Bureau to grant legal patent rights. We are very grateful.
唯以上所述者,僅為本發明之一較佳實施例而已,當不能以之限定本發明實施之範圍;即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 However, the above is only a preferred embodiment of the present invention and should not be used to limit the scope of implementation of the present invention; that is, all equivalent changes and modifications made according to the scope of the patent application of the present invention should still fall within the scope of the patent of the present invention.
10:碳纖維 10: Carbon fiber
11:矽烷碳纖維 11: Silane carbon fiber
20:含浸槽 20: Immersion tank
30:烘乾及加熱反應處理 30: Drying and heating reaction treatment
31:低溫烘箱 31: Low temperature oven
32:高溫烘箱 32: High temperature oven
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112139200A TWI843665B (en) | 2023-10-13 | 2023-10-13 | Method for enhancing the interface strength between carbon fiber and acrylic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112139200A TWI843665B (en) | 2023-10-13 | 2023-10-13 | Method for enhancing the interface strength between carbon fiber and acrylic resin |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI843665B true TWI843665B (en) | 2024-05-21 |
TW202516076A TW202516076A (en) | 2025-04-16 |
Family
ID=92077203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112139200A TWI843665B (en) | 2023-10-13 | 2023-10-13 | Method for enhancing the interface strength between carbon fiber and acrylic resin |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI843665B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2660385A1 (en) * | 2006-05-02 | 2013-11-06 | Goodrich Corporation | Methods of making nanoreinforced carbon fiber and components comprising nanoreinforced carbon fiber |
CN104562698A (en) * | 2013-10-11 | 2015-04-29 | 中国石油化工股份有限公司 | Preparation method of sizing agent of carbon fibers for reinforcement of thermoplastic resin |
CN104911917A (en) * | 2015-06-17 | 2015-09-16 | 浙江理工大学 | Preparation method of water-based carbon fiber sizing agent suitable for thermoplastic matrix |
CN116254704A (en) * | 2022-01-14 | 2023-06-13 | 江苏亨睿航空工业有限公司 | Modified sizing agent for carbon fiber composite material production and preparation and application methods thereof |
-
2023
- 2023-10-13 TW TW112139200A patent/TWI843665B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2660385A1 (en) * | 2006-05-02 | 2013-11-06 | Goodrich Corporation | Methods of making nanoreinforced carbon fiber and components comprising nanoreinforced carbon fiber |
CN104562698A (en) * | 2013-10-11 | 2015-04-29 | 中国石油化工股份有限公司 | Preparation method of sizing agent of carbon fibers for reinforcement of thermoplastic resin |
CN104911917A (en) * | 2015-06-17 | 2015-09-16 | 浙江理工大学 | Preparation method of water-based carbon fiber sizing agent suitable for thermoplastic matrix |
CN116254704A (en) * | 2022-01-14 | 2023-06-13 | 江苏亨睿航空工业有限公司 | Modified sizing agent for carbon fiber composite material production and preparation and application methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tiwari et al. | Surface treatment of carbon fibers-a review | |
CN104032565B (en) | The chemical modification method of a kind of microwave ultrasound coprocessing carbon fiber surface and device | |
CN103275282B (en) | Preparation method of acrylic polymer grafted carbon fiber multi-scale reinforcement | |
CN103031708B (en) | Method for improving surface activity of aramid fiber | |
CN109280302B (en) | A kind of preparation method and product of fiber-reinforced fluororesin composite membrane material | |
CN108454135B (en) | Phthalonitrile resin prepreg, composite material and preparation method thereof | |
Haijuan et al. | Improvement of adhesion of kevlar fabrics to epoxy by surface modification with acetic anhydride in supercritical carbon dioxide | |
CN102795873A (en) | Method for interface modification of carbon/carbon composite material by graphene/polymer coating | |
CN101445613B (en) | A method for interfacial modification of poly(p-phenylenebenzobisoxazole) fiber reinforced soluble polyarylether resin-based composites | |
CN107629461A (en) | A kind of efficient modification functionalization means for inactive surfaces | |
CN101235590B (en) | A kind of sonochemical surface modification method of PBO fiber | |
CN103183844A (en) | Surface modification glass fiber and preparation method and application thereof | |
CN109987948A (en) | A kind of preparation method of carbon fiber reinforced ceramic matrix composite pyrolysis carbon interface layer | |
CN108330692A (en) | A kind of superhigh molecular weight polyethylene fibers substep is modified and its composite material and preparation method thereof | |
Shi et al. | Enhanced mechanical and electromagnetic interference shielding performance of carbon fiber/epoxy composite with intercalation of modified aramid fiber | |
TWI843665B (en) | Method for enhancing the interface strength between carbon fiber and acrylic resin | |
Feng et al. | Construction of dendritic polymers on carbon fiber surfaces to improve the interfacial bonding of carbon fiber/silicone rubber composites | |
CN114573983A (en) | Preparation method of nano-diamond/aramid nanofiber multifunctional composite heat-conducting film | |
CN105002732B (en) | Preparation method of comb-shaped branched polymer modified carbon fiber | |
Liu et al. | Comparison of effects on PBO fiber by air and oxygen dielectric barrier discharge plasma | |
CN107474221B (en) | Preparation method of CB/CFDSF/AG-80 epoxy resin composite material modified by silane coupling agent | |
CN118344722A (en) | Carbon filler @ MXene material reinforced polymer composite material, and preparation method and application thereof | |
CN107698738A (en) | The preparation method of the epoxy resin composite materials of oxidation modification CB/CFDSF/AG 80 | |
CN102295418B (en) | Method for grafting polymers on surface of glass | |
Liu et al. | Latest Research Progress in Modification Technologies of PBO Fibers |