TWI767320B - Method and apparatus for determining a characteistic of a defect in an electrical line of an electronic system - Google Patents
Method and apparatus for determining a characteistic of a defect in an electrical line of an electronic system Download PDFInfo
- Publication number
- TWI767320B TWI767320B TW109131118A TW109131118A TWI767320B TW I767320 B TWI767320 B TW I767320B TW 109131118 A TW109131118 A TW 109131118A TW 109131118 A TW109131118 A TW 109131118A TW I767320 B TWI767320 B TW I767320B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- defect
- clock
- electronic system
- clock signal
- Prior art date
Links
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
Description
本申請一般涉及電子系統,並且更具體地,涉及用於確定電子系統的電線中的缺陷的特徵的方法和裝置。The present application relates generally to electronic systems, and more particularly, to methods and apparatus for characterizing defects in electrical wiring of electronic systems.
電子系統不可避免地受到缺陷部件的影響,例如不完整的焊料,斷線,錯誤連接,有缺陷的插座等。這些缺陷部件會對電子系統的操作產生負面影響甚至破壞。檢測這些缺陷部件非常繁瑣,因為它涉及拆卸整個系統,然後探測其所有部件,直到找到缺陷。該過程在資料中心應用中尤其麻煩,資料中心應用中線路和連接的數量可以是數千甚至更多。Electronic systems are inevitably affected by defective parts, such as incomplete solder, broken wires, wrong connections, defective sockets, etc. These defective parts can negatively affect or even destroy the operation of electronic systems. Detecting these defective parts is tedious because it involves disassembling the entire system and then probing all its parts until the defect is found. This process is particularly troublesome in data center applications, where the number of wires and connections can be in the thousands or more.
以下概述僅是說明性的,並不旨在以任何方式進行限制。也就是說,提供以下概述以介紹本文描述的新穎和非顯而易見的技術的概念,要點,益處和優點。下面在詳細描述中進一步描述選擇的實現。因此,以下發明內容並非旨在標識所要求保護的主題的必要特徵,也不旨在用於確定所要求保護的主題的範圍。The following summary is illustrative only and is not intended to be limiting in any way. That is, the following summary is provided to introduce the concepts, gist, benefits and advantages of the novel and non-obvious techniques described herein. Selected implementations are further described below in the detailed description. Thus, the following summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
本發明提供一種確定電子系統的電線中的缺陷的特徵的方法,包括:(i)從複數個可選的時鐘信號中選擇時鐘信號;(ii)從複數個可選的參考電壓中選擇參考電壓;(iii)通過以下方式獲得信號:在所述電線上產生第一信號轉變;和接收響應於缺陷對所述第一信號轉變的反射而出現的第二信號轉變;(iv)通過使用所述選擇的時鐘信號對所述信號進行取樣來產生複數個數值;(v)通過將所述複數個數值與所述選擇的參考電壓進行比較來產生複數個輸出值;和(vi)基於複數個輸出值確定所述缺陷的特徵。The present invention provides a method of characterizing a defect in an electrical wire of an electronic system, comprising: (i) selecting a clock signal from a plurality of selectable clock signals; (ii) selecting a reference voltage from a plurality of selectable reference voltages (iii) obtaining a signal by: producing a first signal transition on the wire; and receiving a second signal transition that occurs in response to a reflection of the first signal transition by a defect; (iv) by using the a selected clock signal samples the signal to generate a plurality of values; (v) generates a plurality of output values by comparing the plurality of values to the selected reference voltage; and (vi) is based on the plurality of outputs The value determines the characteristics of the defect.
本發明提供一種用於確定電子系統的電線中的缺陷的特徵的裝置,包括:積體電路(IC),被配置為:(i)從複數個可選的時鐘信號中選擇時鐘信號;(ii)從複數個可選的參考電壓中選擇參考電壓;(iii)通過以下方式獲得信號:在所述電線上產生第一信號轉變;和接收響應於缺陷對所述第一信號轉變的反射而出現的第二信號轉變;(iv)通過使用所述選擇的時鐘信號對所述信號進行取樣來產生複數個數值;(v)通過將所述複數個數值與所述選擇的參考電壓進行比較來產生複數個輸出值;和(vi)基於所述複數個輸出值確定所述缺陷的特徵。The present invention provides an apparatus for characterizing defects in electrical wiring of an electronic system, comprising: an integrated circuit (IC) configured to: (i) select a clock signal from a plurality of selectable clock signals; (ii) ) selecting a reference voltage from a plurality of selectable reference voltages; (iii) obtaining a signal by: generating a first signal transition on the wire; and receiving the occurrence of a reflection of the first signal transition in response to a defect a second signal transition of ; (iv) generating a plurality of values by sampling the signal using the selected clock signal; (v) generating by comparing the plurality of values with the selected reference voltage a plurality of output values; and (vi) determining a characteristic of the defect based on the plurality of output values.
本發明提供另一種用於確定電子系統的電線中的缺陷的特徵的裝置,包括:積體電路,所述積體電路包括:發射器;信號驅動器,耦接於所述發射器和電線;類比數位轉換器(ADC),耦接於所述電線;時鐘選擇電路,耦接於所述ADC的時鐘輸入,所述時鐘選擇電路被配為從複數個可選的時鐘信號中選擇時鐘信號;參考電壓產生器,被配置為複數個可選的參考電壓中選擇參考電壓;比較器,包括耦接於所述ADC的第一輸入和耦接於所述參考電壓產生器的第二輸入;和時域反射法(TDR)電路,耦接於所述比較器。The present invention provides another apparatus for characterizing defects in wires of an electronic system, comprising: an integrated circuit comprising: a transmitter; a signal driver coupled to the transmitter and the wire; an analog a digital converter (ADC) coupled to the wires; a clock selection circuit coupled to a clock input of the ADC, the clock selection circuit configured to select a clock signal from a plurality of selectable clock signals; refer to a voltage generator configured to select a reference voltage among a plurality of selectable reference voltages; a comparator including a first input coupled to the ADC and a second input coupled to the reference voltage generator; and a time A Domain Reflectometry (TDR) circuit is coupled to the comparator.
實施本發明實施例可用於確定缺陷的各種特徵。Embodiments of the invention may be implemented to determine various characteristics of defects.
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬技術領域具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的“包含”及“包括”為一開放式的用語,故應解釋成“包含但不限定於”。“大體上”是指在可接受的誤差範圍內,所屬技術領域具有通常知識者能夠在一定誤差範圍內解決所述技術問題,基本達到所述技術效果。此外,“耦接”一詞在此包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電性連接於該第二裝置,或通過其它裝置或連接手段間接地電性連接至該第二裝置。以下所述為實施本發明的較佳方式,目的在於說明本發明的精神而非用以限定本發明的保護範圍,本發明的保護範圍當視後附的申請專利範圍所界定者為准。Certain terms are used throughout the specification and claims to refer to particular elements. It should be understood by those skilled in the art that hardware manufacturers may use different terms to refer to the same element. This specification and the scope of the patent application do not use the difference in name as a way to distinguish elements, but use the difference in function of the elements as a criterion for distinguishing. The "comprising" and "including" mentioned in the entire specification and the scope of the patent application are open-ended terms, so they should be interpreted as "including but not limited to". "Substantially" means that within an acceptable error range, a person with ordinary knowledge in the technical field can solve the technical problem within a certain error range, and basically achieve the technical effect. Furthermore, the term "coupled" herein includes any direct and indirect means of electrical connection. Therefore, if a first device is described as being coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connecting means device. The following descriptions are preferred modes of implementing the present invention, and are intended to illustrate the spirit of the present invention rather than limit the protection scope of the present invention.
接下面的描述為本發明預期的最優實施例。這些描述用於闡述本發明的大致原則而不應用於限制本發明。本發明的保護範圍應在參考本發明的申請專利範圍的基礎上進行認定。 I.概觀 The following description is the preferred embodiment contemplated by the present invention. These descriptions serve to illustrate the general principles of the invention and should not be used to limit the invention. The protection scope of the present invention should be determined on the basis of referring to the scope of the patent application of the present invention. I. Overview
發明人已經開發出顯著減少在大型電子系統(比如,資料中心)中檢測缺陷(例如不完整的焊料,破損的線纜,錯誤連接,有缺陷的插座,開路,短路等)的存在和/或位置所需的時間的方法。本發明人開發的方法基於時域反射法(Time-Domain Reflectometry,TDR),這是一種用於通過觀察反射波形來確定電線特性的測量技術。The inventors have developed to significantly reduce the presence and/or detection of defects (eg, incomplete solder, broken cables, misconnections, defective sockets, opens, shorts, etc.) in large electronic systems (eg, data centers) method for the time required for the location. The method developed by the present inventors is based on Time-Domain Reflectometry (TDR), a measurement technique used to determine electrical wire properties by observing reflected waveforms.
傳統技術依靠專用硬體來執行時域反射法。結果,在系統上執行時域反射法可能在系統可被測試之前需要執行複數個步驟。其中一些步驟包括,例如,系統斷電,斷開電纜或其他連接器與系統的連接,移動系統到合適的測試位置,並將要測試的系統連接到專用的TDR儀器。結果是為了進行測試需要破壞系統的正常運行。Traditional techniques rely on dedicated hardware to perform time-domain reflectometry. As a result, performing time domain reflectometry on a system may require performing a number of steps before the system can be tested. Some of these steps include, for example, powering down the system, disconnecting cables or other connectors from the system, moving the system to a suitable test location, and connecting the system to be tested to a dedicated TDR instrument. The result is that the normal operation of the system needs to be disrupted in order to perform the test.
發明人開發的TDR電路直接與系統集成在一起進行測試。這意味著可以在不破壞系統的操作的情況下測試系統以了解缺陷的存在或其他特徵。在一些實施例中,通過集成,TDR電路可以與其他電子電路共用硬體。例如同一個發射器硬體既可以用作資料發射器,也可以用作TDR發射器。具有分享的硬體特別適合於大型電路(例如用於資料中心,其中可能包含數千個發射器)。在這種情況下,實際上,TDR系統的設計人員不必設計專用的TDR發射器,而可以利用現有的發射器硬體,從而降低設計和製造成本。The TDR circuit developed by the inventor is directly integrated with the system for testing. This means that the system can be tested for the presence of defects or other characteristics without disrupting the operation of the system. In some embodiments, through integration, the TDR circuit can share hardware with other electronic circuits. For example, the same transmitter hardware can be used as both a data transmitter and a TDR transmitter. Having shared hardware is particularly suitable for large circuits (such as in data centers, which may contain thousands of transmitters). In this case, designers of TDR systems, in effect, do not have to design dedicated TDR transmitters, but can utilize existing transmitter hardware, thereby reducing design and manufacturing costs.
發明人已經意識到,取決於用戶希望確定哪些缺陷特徵可以使用不同方法用於執行TDR。在某些情況下,用戶可能希望確定缺陷的位置,但可能並不希望知道缺陷的其他特徵。在這些情況下,用戶可能可以根據缺陷的位置執行適當的測量,但不必瞭解缺陷的其他特徵。本申請的一些實施例針對用於確定缺陷位置的方法和電路。這樣的實施例可以使用閾值電壓以確定某些信號轉變的時間,並根據這些轉變的時間確定缺陷的位置。此類方法在本文中稱之為“用於時域反射法的非數位化方法”或簡稱為“非數位化TDR方法。”The inventors have realised that different methods can be used for performing TDR depending on which defect features the user wishes to determine. In some cases, the user may want to determine the location of the defect, but may not want to know other characteristics of the defect. In these cases, the user may be able to perform appropriate measurements based on the location of the defect, but does not have to know the other characteristics of the defect. Some embodiments of the present application are directed to methods and circuits for determining defect locations. Such an embodiment may use threshold voltages to determine the timing of certain signal transitions and determine the location of defects based on the timing of these transitions. Such methods are referred to herein as "non-digitalized methods for time domain reflectometry" or simply "non-digitalized TDR methods."
然而,在其他情況下,作為位置的補充或替代,用戶可能希望確定缺陷的其他特徵。例如,用戶可能希望確定缺陷的阻抗,進而可以指示缺陷的性質。用戶可以使用與缺陷性質有關的資訊來區分嚴重缺陷(例如,需要維修的缺陷)和非嚴重缺陷(例如,不需要維修的缺陷)。本申請的一些實施例針對用於確定缺陷的特徵的方法和電路,以作為位置的補充或替代。這樣的實施例可以依賴於使用類比數位轉換器來對TDR信號波形進行剖析,並且可以包括根據所述剖析確定缺陷的特徵的電路。這種方法在本文中稱為“用於時域反射法的數位化方法”或簡稱為“數位化TDR方法”。 II.用於時域反射法的非數位化方法 However, in other cases, in addition to or instead of the location, the user may wish to determine other characteristics of the defect. For example, a user may wish to determine the impedance of a defect, which in turn can indicate the nature of the defect. Users can use information about the nature of the defect to distinguish between serious defects (eg, defects requiring repair) and non-critical defects (eg, defects not requiring repair). Some embodiments of the present application are directed to methods and circuits for characterizing defects in addition to or instead of locations. Such an embodiment may rely on the use of an analog-to-digital converter to profile the TDR signal waveform, and may include circuitry to characterize the defect from the profile. This method is referred to herein as "digitized method for time domain reflectometry" or simply "digitized TDR method". II. Non-digitized method for time domain reflectometry
圖1根據一些非限制性實施例示出包括複數個電線的電子系統的示例。該具體示例示出設置在封裝102上的積體電路(IC)104,封裝102又設置在印刷電路板(PCB)100上。IC 104可以包括各種類型的類比和/或數位電路,微機械(MEMS)設備,感測器和/或其他電子元件。IC 104可以包括處理器,現場可程式設計閘陣列(FPGA),專用積體電路(ASIC),記憶體單元和/或任何其他合適的組件。IC 104可以用指令程式設計,該指令在被執行時執行不同的任務,例如以任何合適的方式發送,接收和/或處理信號。FIG. 1 illustrates an example of an electronic system including a plurality of wires, according to some non-limiting embodiments. This particular example shows an integrated circuit (IC) 104 disposed on a package 102 , which in turn is disposed on a printed circuit board (PCB) 100 . IC 104 may include various types of analog and/or digital circuits, micromechanical (MEMS) devices, sensors, and/or other electronic components. IC 104 may include processors, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), memory cells, and/or any other suitable components. IC 104 may be programmed with instructions that, when executed, perform various tasks, such as sending, receiving and/or processing signals in any suitable manner.
在該示例中,IC 104連接到若干電線,其中電線的相對端可以連接到其他電子設備。在一些實施例中,IC 104可以連接到數百甚至數千條電線。每條電線可以包括不同的物理傳輸介質,例如電纜,電線,金屬跡線,引腳,觸點,焊料,連接器,插座等。例如,電線可以包括金屬線110(其可以又包括形成在封裝102上的金屬跡線,形成在PCB 100上的金屬跡線和連接金屬跡線的連接器),連接器112的觸點114和電纜116。電纜116的另一端(圖1中未示出)可以連接到某些其他元件或導電路徑。另一電線可包括金屬線120,連接器122的觸點124,電纜126,底板125上的觸點,底板125上的金屬跡線128,連接器129等。In this example, the IC 104 is connected to several wires, where opposite ends of the wires can be connected to other electronic devices. In some embodiments, IC 104 may be connected to hundreds or even thousands of wires. Each wire can include a different physical transmission medium, such as cables, wires, metal traces, pins, contacts, solder, connectors, sockets, etc. For example, the wires may include metal wires 110 (which may in turn include metal traces formed on package 102 , metal traces formed on
至少在理論上,連接到IC 104的每條電線可能易存在缺陷。例如,焊料可能僅部分地形成,電纜可能有缺陷,一對觸點可能不正確地彼此配合,引腳之間可能發生錯誤連接,插座可能有缺陷等等。這些缺陷可能會改變電線的電氣特性。例如,可能出現開路或短路。另外或替代地,電線的阻抗(例如,電阻,電容和/或電感)可以增加或偏離預期值。通常,電線中的缺陷是不希望的,因為它們會負面地改變電子系統的行為。In theory at least, each wire connected to
缺陷的識別通常是具有挑戰性的任務。首先,可能難以識別哪些電子元件共用有缺陷的電線。其次,可能難以識別哪個特定電線有缺陷。第三,可能難以識別沿電線的哪個特定部件或位置是有缺陷的。在複雜的電子系統中,這些任務可能特別具有挑戰性,在這些電子系統中可能存在數千條電線。本文描述的技術提供了用於識別複雜系統中缺陷的存在和位置的實用方法。The identification of defects is often a challenging task. First, it can be difficult to identify which electronic components share a defective wire. Second, it can be difficult to identify which particular wire is defective. Third, it can be difficult to identify which particular component or location along the wire is defective. These tasks can be particularly challenging in complex electronic systems, where thousands of wires may exist. The techniques described herein provide a practical method for identifying the presence and location of defects in complex systems.
圖2A示出電線203及與電線203電連通的信號驅動器202的示意圖。信號驅動器202可以是IC 104的一部分。信號驅動器202可以包括用於產生要通過電線203傳輸的信號的電路。例如,信號驅動器202可以包括放大器,緩衝器,數模轉變器等。在該示例中,電線203包括缺陷204。缺陷204可能是由於錯誤連接,製造不良的焊料,電纜損壞,以及其他可能的原因。缺陷204的存在和位置可能是電子系統的用戶/操作者所不知道的。根據其性質,缺陷可能導致開路,接地短路,或者可能僅僅導致線路的阻抗偏離預期值。在一些實施例中,例如,線路的預期阻抗是50Ω,但是缺陷的存在使阻抗升高到50Ω以上,或者將阻抗降低到50Ω以下。FIG. 2A shows a schematic diagram of
圖2B示出信號驅動器202輸出到電線203上的信號如何沿電線進行傳輸的圖。在該示例中,信號驅動器202在t = t0
輸出信號轉變。在該示例中,為了說明起見,將假設信號驅動器被配置為輸出從0到1V的轉變(稱為“期望轉變”),並且將進一步假設信號驅動器的輸出阻抗,電線的特徵阻抗和負載的輸入阻抗均為50Ω。在這種情況下,在t = t0
實際輸出的轉變幅度是所期望的轉變的幅度的一半(也即,0到0.5V)。應當理解,如果阻抗不匹配,則實際轉變的幅度將不是所期望的轉變的幅度的一半。FIG. 2B shows a diagram of how the signal output by the
在時間t = t1
,0到0.5V的轉變已經沿著電線203移到位置P1,其中位置P1在信號驅動器202和缺陷204之間。在時間t = t2
,轉變到達缺陷204(在本例中為開路)所在的P2位置。當轉變到達缺陷時,轉變的幅度增加到信號驅動器配置為的輸出的幅度(0到1V)。這是因為僅當出現反射時,信號才實際達到其預期電壓。在假設沒有反射出現的場景中(例如在無限長的無缺陷電纜中),轉變的幅度永遠不會達到預期值。At time t = t 1 , the 0 to 0.5V transition has moved along
位置P2處的反射可能發生,因為缺陷204引起電線阻抗的不連續性。然後,反射的轉變可以朝向信號驅動器202返回,並且可以最終到達信號驅動器。圖2C示出信號驅動器202的輸出的圖,在本文中也稱為“ TDR信號”。在該實施例中,缺陷是開路。如上所述,第一轉變(0到0.5V)發生在t = t0
。在t = t2
時,轉變達到電路不連續處,並產生反射。但是,此時信號驅動器的輸出沒有任何反應。在時間t = t3
,反射到達信號驅動器,結果,在信號驅動器的輸出中出現第二轉變(0.5V到1V)。Reflection at location P2 may occur because
圖2D示出缺陷導致線的阻抗升高到線的特徵阻抗之上的示例。舉例來說,如果特性阻抗為50Ω,則缺陷可能會將阻抗提高到50Ω以上,例如70Ω或80Ω。如圖所示,在t = t3 ,來自缺陷的反射到達信號驅動器。然而,與缺陷是開路的情況不同,第二轉變僅達到0.6V而不是1V。這是因為缺陷具有有限的阻抗。Figure 2D shows an example where a defect causes the impedance of the line to rise above the characteristic impedance of the line. For example, if the characteristic impedance is 50Ω, the defect may raise the impedance above 50Ω, such as 70Ω or 80Ω. As shown, at t = t 3 , the reflection from the defect reaches the signal driver. However, unlike the case where the defect is an open circuit, the second transition only reaches 0.6V instead of 1V. This is because defects have finite impedance.
圖2E示出沿線沒有缺陷的示例。結果,即使在t = t3 之後,也不會發生反射並且信號保持在0.5V。Figure 2E shows an example with no defects along the line. As a result, no reflections occur and the signal remains at 0.5V even after t= t3 .
圖2F示出缺陷導致線的阻抗降低到線的特徵阻抗以下的示例。舉例來說,如果特性阻抗為50Ω,則缺陷可能會將阻抗降低至小於50Ω,例如20Ω或30Ω。如圖所示,在t = t3 ,來自缺陷的反射到達信號驅動器。因為阻抗小於特徵阻抗,所以在t = t3 之後信號的幅度小於0.5V(在該示例中為0.3V)。Figure 2F shows an example where a defect causes the impedance of the line to drop below the characteristic impedance of the line. For example, if the characteristic impedance is 50Ω, the defect may reduce the impedance to less than 50Ω, such as 20Ω or 30Ω. As shown, at t = t3 , the reflection from the defect reaches the signal driver. Because the impedance is less than the characteristic impedance, the amplitude of the signal after t= t3 is less than 0.5V (0.3V in this example).
圖2G示出缺陷導致沿線短路的示例。例如,如果線路無意地耦接於地平面,則可能發生這種情況。在這種情況下,阻抗為零,並且在t = t3 時,信號返回到零。FIG. 2G shows an example where a defect causes a short circuit along the line. This can happen, for example, if the line is unintentionally coupled to the ground plane. In this case the impedance is zero and at t= t3 the signal returns to zero.
一些實施例被配置為基於反射波形返回信號驅動器所花費的時間來確定缺陷204的位置。例如,一些實施例被配置為通過確定時間間隔Δt= t3
-t0
的持續時間來確定缺陷204的位置。在一些實施例中,可以通過計算Δx=vΔt來確定缺陷與信號驅動器的距離Δx,其中v是沿著電路路徑行進的電信號的速度。可以使用本領域已知的不同技術測量速度v。另外或替代地,一些實施例被配置為確定(例如,測量或估計)線的阻抗,包括缺陷或缺陷本身的阻抗。阻抗的值可以通知使用者是否需要替換部件。例如,如果缺陷導致阻抗偏離預期值5%(或另一個閾值)或更小,則用戶可以得出結論,不需要更換部件。另一方面,如果缺陷導致阻抗上升或下降超過5%,則用戶可以得出結論,可能需要更換部件。Some embodiments are configured to determine the location of
圖3根據一些非限制性實施例示出確定缺陷的位置的方法的圖。該圖示出信號驅動器202的輸出。如上所述,信號驅動器的輸出包括在t = t0
處發生的第一轉變和在t=t3
處發生的第二轉變,第二轉變由在缺陷204處發生的第一轉變的反射產生。可以通過確定兩個事件的發生來推斷缺陷的位置。第一事件發生在第一個信號轉變跨過(例如,在本實施例為向上跨過,在其他實施例中也可以為向下跨過)閾值Vth1
;第二事件發生在第二轉變跨過閾值Vth2
。在該具體示例中,Vth1
= 0.2V且Vth2
= 0.8V;然而,閾值可以使用任意其他適合的值。3 is a diagram illustrating a method of determining the location of a defect, according to some non-limiting embodiments. The figure shows the output of the
這些事件可以觸發被配置為測量該時間間隔的持續時間的電路。例如,第一事件的發生可以觸發比較器的輸出從一個值切換到另一個值(參見比較器輸出1);第二個事件的發生可以觸發比較器的輸出從一個值切換到另一個值(參見比較器輸出2)。可以基於比較器輸出1切換的時間與比較器輸出2切換的時間之間的間隔的持續時間來確定缺陷的位置。至少在一些實施例中,這可以通過計數時鐘週期來實現。應當理解,雖然本文描述的方法使用兩個單獨的比較器來確定何時信號轉變跨過相應的閾值,但是在其他實施例中,可以使用單個比較器。例如,單個比較器可以首先接收第一閾值作為第一輸入,隨後接收第二閾值作為第一輸入。可以將信號驅動器的輸出提供給比較器的第二輸入。當然,可以使用用於測量時間間隔的持續時間的其他方法。在一些實施例中,計數器可以計數時鐘週期,並且控制電路可以被配置為確定第一和第二事件發生在哪個時鐘計數。在該示例中,控制電路可以確定第一事件在時鐘週期3發生,並且第二事件在時鐘週期9發生。在一些實施例中,可以使用以下運算式來計算缺陷的位置:Δx=vΔt= vP(count2 - count1),其中v是波形的速度,P是時鐘的週期,count1(在本例中為3)是第一個事件發生時的時鐘計數和count2(在本例中為9)是第二個事件發生時的時鐘計數。
III.用於時域反射法的非數位化電路 These events can trigger circuitry configured to measure the duration of the time interval. For example, the occurrence of a first event can trigger the output of the comparator to switch from one value to another (see Comparator Output 1); the occurrence of a second event can trigger the output of the comparator to switch from one value to another ( See comparator output 2). The location of the defect can be determined based on the duration of the interval between the
圖3聯合圖4根據一些非限制性實施例示出用於實現結合圖1描述的方法的系統的示例。控制電路302可以經由電線203連接到負載320。如在先前的示例中,電線203包括缺陷204。控制電路302可以被配置為確定沿著電線的缺陷204的位置。在一些實施例中,控制電路302還可包括數文書處理器和記憶體單元(圖4中未示出)。FIG. 3, in conjunction with FIG. 4, illustrates an example of a system for implementing the method described in conjunction with FIG. 1, according to some non-limiting embodiments.
開關312可以在TDR模式下閉合,並且可以在正常模式下打開。在TDR模式中,可以執行這裡描述的類型的TDR測量。在正常模式中,信號驅動器202可以向/從負載320傳輸/接收資料。例如,信號“輸入”可以被傳輸到負載320。Switch 312 can be closed in TDR mode and open in normal mode. In TDR mode, TDR measurements of the type described herein can be performed. In the normal mode, the
控制電路302還可以包括比較器304,門305和306以及計數器308。在該示例中,使用單個比較器來比較第一信號轉變和第一閾值以及第二信號轉變和第二閾值。然而,如上所述,可以使用單獨的比較器來執行兩個比較。比較器的輸入端標記為“Vth
”用於接收閾值。耦接於比較器的輸入端Vth
的控制電路可以被配置為設置閾值的值。例如,控制電路可以首先將Vth
設置為第一閾值,並且在經過一定時間段之後,可以將Vth
設置為第二閾值。將Vth
設置為第二閾值的時間可使當接收到第二信號轉變時,將該轉變與第二閾值而不是第一閾值進行比較。當然,控制電路可能不能預先知道第二信號轉變將何時到達,因此難以估計何時將Vth
設定為第二閾值。儘管如此,可以克服該挑戰,例如,通過在確定第一信號轉變已經跨過第一閾值之後(例如,在跨過第一閾值1個時鐘週期之後, 2個時鐘週期之後,或者在3個時鐘週期之後等)將Vth
設置為第二閾值。
當第一信號轉變310跨過第一閾值(稱為第一事件)時,以及當第二信號轉變311跨過第二閾值(稱為第二事件)時,比較器304的輸出可以切換。例如,比較器的輸出可以在第一事件和第二事件之間啟用門306,使得計數器僅在第一事件和第二事件之間增加其時鐘週期計數。雖然在該示例中門306是及閘(AND),但是可以使用其他邏輯門來控制計數器的操作。在另一示例中,計數器308可以在任意時間點開始計數時鐘週期(例如,如圖3所示,在t = 0時)並當收到復位信號(reset)時進行復位。當第一信號轉變跨過第一閾值時,耦接於計數器308的控制電路(第4圖中未示出)可以確定該第一事件發生在哪個時鐘週期計數。隨後,當第二信號轉變跨過第二閾值時,控制電路可以確定該第二事件發生在哪個時鐘週期計數。然後可以基於這些計數確定第一和第二事件之間的間隔的持續時間。例如,可以通過計算第二事件的計數和第一事件的計數之間的差乘以時鐘的週期來確定間隔的持續時間。The output of the
門305(在該示例中為異或閘(XOR))可用於設置操作的模式。在一些實施例中,例如,對於這裡描述的電路,兩種操作模式(mode)是可能的(當然,在其他實施例中,也可以有兩種以上的模式)。一種操作模式可以旨在確定阻抗大於預期值的缺陷的位置(如結合圖3所述的情況),並且可選地確定阻抗的值,該模式被稱為“高阻抗模式”。另一種操作模式可以旨在確定阻抗小於預期值的缺陷的位置,並且可選地確定阻抗的值,該模式稱為“低阻抗模式”。A
因為預先可能不知道缺陷是否具有大於或小於預期值的阻抗,所以在一些實施例中,電路可以首先在一種模式下操作然後在另一種模式下操作。在該示例中,當“模式”控制信號等於0時,電路以高阻抗模式操作。反之亦然,當“模式”控制信號等於1時,電路工作在低阻抗模式。在高阻抗模式中,如果門306有效(例如,輸出1),則計數器308可以對時鐘週期進行計數。在低阻抗模式中,如果門306不活動(例如,輸出0),則計數器308可以計數時鐘週期。在本申請的IV部分中描述了不同操作模式的示例。Because it may not be known in advance whether a defect has an impedance greater or less than an expected value, in some embodiments, the circuit may operate first in one mode and then in another. In this example, when the "mode" control signal is equal to zero, the circuit operates in high impedance mode. Vice versa, when the "mode" control signal is equal to 1, the circuit operates in low impedance mode. In high impedance mode, if
在一些實施例中,控制電路302可能遭受毛刺(glitch)。由於信號轉變可能相對於時鐘邊沿非同步發生,因此可能出現毛刺。結果,毛刺可能錯誤地導致計數器308的計數增加。這種情況在圖5A中示出,如圖5A所示,比較器回應跨過事件的輸出切換(toggle)相較於時鐘邊沿的發生非同步。這可能在短時間內錯誤地啟用門306,這反過來可能導致計數器308錯誤地增加其計數。In some embodiments, the
如根據一些非限制性實施例的圖5C所示,在一些實施例中,可以使用一個或複數個觸發器來避免該問題。如圖5C所示,一對觸發器(Flip-flop,FF)插在比較器304和門306之間。觸發器可以由clkb觸發,clkb是clk的反轉。圖5B是說明當使用如圖5C所示的觸發器時門306的輸出的圖。在這種情況下,即使跨過事件不是相對於時鐘邊沿同步發生,直到接收到clkb的邊沿之前門306的輸出也不會切換。結果,防止了毛刺的形成。圖5C示出比較器304和門306之間的兩個觸發器,可以使用任何其他合適數量的觸發器。觸發器可以附加地或替代地用於重定信號。In some embodiments, one or more flip-flops may be used to avoid this problem, as shown in FIG. 5C according to some non-limiting embodiments. As shown in FIG. 5C , a pair of flip-flops (FFs) are inserted between the
在一些實施例中,IC 104可以包括控制電路302,用於IC所連接的每條(或至少一些)電線。以這種方式,可以並存執行複數個TDR測量。
IV.操作模式 In some embodiments,
如上所述,本文描述的一些電路可以以兩種不同模式操作:高阻抗模式或低阻抗模式。在高阻抗模式中,可以佈置電路以確定阻抗(例如,電線的特徵阻抗)大於預期值的缺陷的位置和可選的阻抗值。圖3是高阻抗模式下的操作的示例。其他示例如下所述,在一些實施例中,可以根據缺陷的阻抗是高於還是低於預期值來不同地設置閾值這一事實可以保證兩種單獨的模式。 a.高阻抗模式As mentioned above, some of the circuits described herein can operate in two different modes: a high impedance mode or a low impedance mode. In the high impedance mode, the circuit can be laid out to determine the location and optional impedance value of the defect whose impedance (eg, the characteristic impedance of the wire) is greater than the expected value. Figure 3 is an example of operation in high impedance mode. Other examples are described below, and in some embodiments the fact that the threshold can be set differently depending on whether the impedance of the defect is higher or lower than the expected value may warrant two separate modes. a. High impedance mode
本文根據一些非限制性的實施例描述的在高阻抗模式下的操作方法的示例在圖6A -6F中示出。具體而言,圖6A示出缺陷是開路(無窮大電阻)的示例;圖6C示出缺陷的阻抗(在這種情況下為80Ω)大於預期的50Ω阻抗的示例;圖6E示出缺陷的阻抗(在這種情況下為20Ω)小於預期的50Ω阻抗的示例。圖6B示出在圖6A的情況下以時鐘週期表示的計數器的輸出。圖6D示出圖6C的情況下的計數器的輸出。圖6F示出圖6E的情況下的計數器的輸出。應當注意,雖然在這些示例中50Ω被視為預期阻抗,但是其他值也是可能的,因為本發明不限於任何特定值。An example of the method of operation in the high impedance mode described herein in accordance with some non-limiting embodiments is shown in Figures 6A-6F. Specifically, Figure 6A shows an example where the defect is an open circuit (infinite resistance); Figure 6C shows an example where the defect's impedance (80Ω in this case) is greater than the expected 50Ω impedance; Figure 6E shows the defect's impedance ( 20Ω in this case) is less than the expected 50Ω impedance example. Figure 6B shows the output of the counter in clock cycles in the case of Figure 6A. Fig. 6D shows the output of the counter in the case of Fig. 6C. Fig. 6F shows the output of the counter in the case of Fig. 6E. It should be noted that while 50Ω is considered the expected impedance in these examples, other values are possible, as the invention is not limited to any particular value.
首先參考圖6A -6B,在t = t0
處信號驅動器輸出0至0.5V的轉變(也即第一信號轉變),在t = t3
處信號驅動器輸出0.5至1V的轉變(也即第二信號轉變)。在這種情況下,假設計數器已經在t0
之前的某個時間t = 0開始計數時鐘週期。該電路可以這樣安排,使得當信號驅動器輸出的0至0.5V的轉變跨過Vth2
時,計數器被禁能並且時鐘週期計數(即計數器輸出)被登記(例如,存儲在記憶體中)。在本實施例中,在信號驅動器輸出0至0.5V的轉變跨過Vth2
時,計數器輸出為X1(例如,3個時鐘週期)。當信號驅動器輸出的0.5至1V的轉變跨過Vth3
時,計數器被禁能(相同計數器或另一計數器,其中,當為相同計數器時,當信號驅動器輸出跨過Vth2
之後,計數器從禁能的計數位置接著計數),並且時鐘週期計數(即計數器輸出)被登記(例如,存儲在記憶體中)。在本實施例中,在信號驅動器輸出0.5至1V的轉變跨過Vth3
時,計數器輸出為X2(例如,9個時鐘週期)。如結合圖3所討論的,可以基於X2與X1的差值確定開路的位置。Referring first to Figures 6A-6B, the signal driver outputs a 0 to 0.5V transition at t = t0 (ie, the first signal transition), and the signal driver outputs a 0.5 to 1V transition at t = t3 (ie, the second signal transition). signal transition). In this case it is assumed that the counter has already started counting clock cycles at some time t= 0 before t0. The circuit can be arranged such that when a 0 to 0.5V transition of the signal driver output crosses V th2 , the counter is disabled and the clock cycle count (ie, the counter output) is registered (eg, stored in memory). In this embodiment, when the transition of the
現在參考圖6C -6D,在該實施例中,缺陷具有80Ω阻抗,且在t = t0 時信號驅動器輸出0到0.5V的轉變(也即第一信號轉變),在t = t3 處信號驅動器輸出0.5至0.615V的轉變(也即第二信號轉變)。當0到0.5V的轉變跨過Vth2 時,計數器被禁能,計數器輸出為X1。隨後,當0.5至0.615V的轉變跨過Vth3 時,計數器被禁能,計數器輸出為X2。與前一種情況一樣,可以基於X2與X1的差值推斷缺陷的位置。應注意,與前一情況不同,t3 之後信號驅動器輸出的信號的電壓小於1V(本例中為0.615V)。電壓小於1V的原因是缺陷的阻抗是有限的。實際上,t3 之後信號的電壓取決於缺陷的阻抗。無限阻抗導致1V電壓。相比之下,50Ω阻抗導致0.5V。中間的任何值產生0.5V和1V之間的電壓。Referring now to Figures 6C-6D, in this embodiment the defect has an 80Ω impedance and the signal driver outputs a 0 to 0.5V transition (ie, the first signal transition) at t=t0, the signal at t= t3 The driver outputs a transition of 0.5 to 0.615V (ie, the second signal transition). When the 0 to 0.5V transition crosses V th2 , the counter is disabled and the counter output is X1. Then, when the 0.5 to 0.615V transition crosses Vt h3 , the counter is disabled and the counter output is X2. As in the previous case, the location of the defect can be inferred based on the difference between X2 and X1. It should be noted that, unlike the previous case, the voltage of the signal output by the signal driver after t3 is less than 1V (0.615V in this example). The reason the voltage is less than 1V is that the impedance of the defect is limited. In fact, the voltage of the signal after t3 depends on the impedance of the defect. Infinite impedance results in 1V. In contrast, a 50Ω impedance results in 0.5V. Any value in between produces a voltage between 0.5V and 1V.
發明人已經意識到,可以通過確定在缺陷處反射的信號驅動輸出的幅度來確定由於缺陷而產生的阻抗值。在第6C的示例中,引入了附加閾值Vth4 。作為示例,假設Vth4 設置為0.7V並且Vth3 設置為0.6V。由於信號驅動器輸出的信號永遠不會超過Vth4 ,因此在輸出X2之後,計數器永遠不會被禁能並繼續計數。但是,在某些時候,計數器達到其最大值。例如,當計數器計數1024個時鐘週期時,10位元數目器達到其最大值。當計數器達到最大值時,據說它已經溢出。The inventors have realized that the impedance value due to the defect can be determined by determining the magnitude of the signal driven output reflected at the defect. In the example of 6C, an additional threshold V th4 is introduced. As an example, assume that V th4 is set to 0.7V and V th3 is set to 0.6V. Since the signal output by the signal driver never exceeds V th4 , the counter is never disabled and continues to count after X2 is output. However, at some point the counter reaches its maximum value. For example, when the counter counts 1024 clock cycles, the 10-bit counter reaches its maximum value. When the counter reaches its maximum value, it is said to have overflowed.
因為計數器由於將Vth4 設置為0.7V而溢出,所以可以推斷出信號小於0.7V。同時,還可以推斷出信號大於Vth3 = 0.6V,因為0.5至0.615V的轉變跨過該閾值觸發了計數器輸出X2。結果,可以推斷出在t3 之後信號驅動器輸出的信號在0.6V和0.7V之間,最終缺陷的阻抗在75Ω和116Ω之間。應當理解,可以通過增加閾值的數量來增加確定阻抗值的解析度。在一個示例中,可以在0和1V之間以0.1V步長引入十個不同的閾值。Because the counter overflowed due to setting V th4 to 0.7V, it can be deduced that the signal is less than 0.7V. At the same time, it can also be deduced that the signal is greater than V th3 = 0.6V, since the transition from 0.5 to 0.615V crossed this threshold to trigger the counter output X2. As a result, it can be deduced that the signal output by the signal driver is between 0.6V and 0.7V after t3 , and the impedance of the final defect is between 75Ω and 116Ω. It should be understood that the resolution with which the impedance value is determined can be increased by increasing the number of thresholds. In one example, ten different thresholds can be introduced between 0 and 1V in 0.1V steps.
圖6E -6F的實施例說明瞭為什麼高阻抗模式可能不適用於阻抗小於50Ω(或其他預期的阻抗值)的缺陷。在本實施例中,缺陷的阻抗為20Ω。與前面的情況一樣,當信號驅動器輸出的0至0.5V的轉變跨過Vth2 時,計數器輸出X1。然而,由於信號驅動器接下來輸出0.5至0.286V的轉變,因此圖中的Vth1 (小於0.286V)從未被跨過。結果,計數器在達到最大值時溢出。因此,永遠不會產生第二計數器輸出,並且可能無法確定缺陷的位置。 b.低阻抗模式The embodiments of Figures 6E-6F illustrate why high impedance mode may not be suitable for defects with impedances less than 50Ω (or other expected impedance values). In this embodiment, the impedance of the defect is 20Ω. As in the previous case, when the 0 to 0.5V transition of the signal driver output crosses V th2 , the counter outputs X1. However, since the signal driver next outputs a 0.5 to 0.286V transition, Vth1 (less than 0.286V ) in the figure is never crossed. As a result, the counter overflows when it reaches its maximum value. Therefore, the second counter output is never generated and the location of the defect may not be determined. b. Low impedance mode
為了確定阻抗小於預期阻抗的缺陷的位置,並且可選地確定阻抗的值,可以反轉計數器的邏輯。例如,這可以通過將門305的模式輸入設置為1來實現。在高阻抗模式中,計數器在測量開始之前被啟用,而與在高阻抗模式中不同,在低阻抗模式下,計數器由特定事件啟用,例如信號驅動器輸出跨過預定義閾值。低阻抗模式下的操作示例根據一些非限制性實施例在圖6G -6L中示出。特別地,圖6G -6H指的是缺陷是短路(零阻抗)的情況。To determine the location of a defect whose impedance is less than the expected impedance, and optionally to determine the value of the impedance, the logic of the counter can be reversed. This can be accomplished, for example, by setting the mode input of
在圖6G -6H中,在t = t0 處信號驅動器輸出0至0.5V的轉變(也即第一信號轉變),在t = t3 處信號驅動器輸出0.5至0的轉變(也即第二信號轉變),在t = t0 之前,計數器被禁能。信號驅動器輸出的0至0.5V的轉變跨過Vth1 時,計數器被使能,結果開始計數時鐘週期。在= t3 ,由於連接短路,信號驅動器輸出0.5至0的轉變,該轉變跨過Vth2 時,計數器被禁能,結果停止計數。在這種情況下,計數器的輸出Y1表示在t0 和t3 之間經過的時間,其基於短路連接的位置。實質上,在低阻抗模式中,計數器可以被視為被配置為測量信號脈衝的寬度。In Figures 6G-6H, the signal driver outputs a 0 to 0.5V transition at t = t0 (ie, the first signal transition), and the signal driver outputs a 0.5 to 0 transition at t = t3 (ie, the second signal transition). signal transition), the counter is disabled until t = t 0 . When the 0 to 0.5V transition of the signal driver output crosses V th1 , the counter is enabled and as a result begins to count clock cycles. At = t 3 , the signal driver outputs a 0.5 to 0 transition that crosses V th2 due to a shorted connection, the counter is disabled and as a result stops counting. In this case, the output Y1 of the counter represents the time elapsed between t0 and t3 , which is based on the position of the short-circuit connection. Essentially, in the low impedance mode, the counter can be seen as being configured to measure the width of the signal pulses.
在圖6I -6J的示例中,缺陷的阻抗為20Ω。在圖6I -6J中,在t = t0
處信號驅動器輸出0至0.5V的轉變(也即第一信號轉變),在t = t3
處信號驅動器輸出0.5至0.286V的轉變(也即第二信號轉變)。與前一種情況一樣,當信號驅動器輸出0至0.5V的轉變跨過Vth1
時,計數器被使能。然後當信號驅動器輸出0.5至0.286V的轉變跨過Vth2
時停用計數器,從而產生Y1。在一些實施例中 ,如果Vth2
的值設置得過低,則信號驅動器輸出的信號可能永遠不會低於該閾值Vth2
,例如在本實施例中,如果將為Vth2
設置為0.25V,而信號驅動器輸出的信號最低只會到0.286V,則最終計數器溢出。在這種情況下,可以推斷,在t3
之後,信號驅動器輸出的信號在0.5V和Vth2
(例如,0.25V)之間,並且阻抗在50Ω和16.7Ω之間。In the example of Figures 6I-6J, the impedance of the defect is 20Ω. In Figures 6I-6J, the signal driver outputs a 0 to 0.5V transition at t = t0 (ie, the first signal transition), and the signal driver outputs a 0.5 to 0.286V transition at t = t3 (ie, the first signal transition). two signal transitions). As in the previous case, when the transition of the
圖6K -6L的實施例說明瞭低阻抗模式可能不適用於阻抗大於50Ω(或其他預期阻抗值)的缺陷的原因。在本實施例中,缺陷的阻抗是無限的(開路)。與前面的情況一樣,當信號驅動器輸出的第一信號轉變(例如,0到0.5V的轉變)跨過Vth1 時啟用計數器。但是,信號驅動器輸出的第二信號轉變(例如,0.5V到1V的轉變)永遠不會跨過Vth2 (例如,為0.3V),結果計數器溢出,因此不提供有用的資訊。 V.時域反射 法的反覆運算方法 The embodiments of FIGS. 6K-6L illustrate why the low impedance mode may not be suitable for defects with impedances greater than 50Ω (or other expected impedance values). In this embodiment, the impedance of the defect is infinite (open circuit). As in the previous case, the counter is enabled when the first signal transition (eg, a 0 to 0.5V transition) of the signal driver output crosses V th1 . However, the second signal transition of the signal driver output (eg, a 0.5V to 1V transition) never crosses Vth2 (eg, 0.3V), and the resulting counter overflows, thus providing no useful information. V. Iterative operation method of time domain reflectometry
圖3的實施例示出第一和第二轉變具有相同幅度(0.5V)的情況。這可能是因為信號驅動器的輸出阻抗與電線的特徵阻抗和負載的輸入阻抗相匹配。在這種情況下,分別將閾值設置為0.2V和0.8V將確保上述方法和電路的正確操作。然而,在其他情況下,阻抗可能是不匹配的,這可能導致第一和第二信號轉變具有不同的幅度。不幸的是,由於阻抗值的不可預測性質,第一信號轉變的幅度與第二轉變的幅度不同的程度可能不是預先已知的。結果,可能難以設置適合所有情況的閾值。The embodiment of Figure 3 shows the case where the first and second transitions have the same amplitude (0.5V). This may be because the output impedance of the signal driver matches the characteristic impedance of the wire and the input impedance of the load. In this case, setting the thresholds to 0.2V and 0.8V, respectively, will ensure the correct operation of the above method and circuit. However, in other cases, the impedances may not be matched, which may cause the first and second signal transitions to have different amplitudes. Unfortunately, due to the unpredictable nature of impedance values, the extent to which the magnitude of the first signal transition differs from the magnitude of the second transition may not be known in advance. As a result, it may be difficult to set thresholds suitable for all situations.
為了避免該問題,可以使用反覆運算TDR方法,其中閾值的值隨時間變化,並且其中統計地確定缺陷的位置。該方法在圖7A -7C中示出。方法600(圖7A)可以在動作602處開始,其中第一閾值被設置為特定值並且第二閾值被設置為另一個值。如圖7B所示,第一閾值可以初始設置為值1A,並且第二閾值可以設置為值2A。雖然結合在高阻抗模式下操作的電路描述了該方法,但是應當理解,類似的方法可以在低阻抗模式中使用。To avoid this problem, an iterative TDR method can be used, in which the value of the threshold varies with time, and in which the location of the defect is determined statistically. This method is illustrated in Figures 7A-7C. Method 600 (FIG. 7A) may begin at
在動作604,可以生成第一信號轉變(例如,圖4中的信號轉變310)並將其輸出到電線上進行監視。在動作606,回應於第一信號轉變沿著電線缺陷的反射,可以接收第二信號轉變(例如,圖4中的信號轉變311)。在動作608,可以基於第一信號轉變跨過第一閾值來確定第一事件的發生。在動作610,可以基於第二信號轉變跨過第二閾值來確定第二事件的發生。在動作612,可以改變第一閾值的值和/或第二閾值的值。例如,如圖7B所示,第一閾值可以設置為值1B,第二閾值可以設置為值2B。然後,動作604-612可以重複N次,其中N> 0。在一些實施例中,兩個閾值的值在相同的反覆運算中變化。在其他實施例中,在反覆運算期間僅改變一個閾值的值,並且可以在後續反覆運算期間單獨改變另一閾值的值。At
圖7C是柱狀圖,示出在高阻抗模式中第一事件的發生(第一信號轉變跨過第一閾值)和第二事件的發生(第二信號轉變跨過第二閾值),其中第一和第二閾值如圖7B所示。柱狀圖繪製為以時鐘週期表示的時間的函數。7C is a bar graph showing the occurrence of a first event (a first signal transition across a first threshold) and a second event (a second signal transition across a second threshold) in high impedance mode, where the first The first and second thresholds are shown in Figure 7B. The histogram is plotted as a function of time in clock cycles.
在動作614,可以基於第一跨過事件的發生來計算第一代表性測量值(例如,多數票決或平均值),並且可以基於第二跨過事件的發生來計算第二代表性測量值。這些代表性測量值可以表示發生跨過事件時的平均時鐘計數。例如,代表性測量值可以通過計算多數票決或圖7C中所示的分佈的平均值(例如,算術平均值,幾何平均值,中值等)來計算。在該示例中,第一和第二代表性測量值分別等於10和115。At
在動作616,可以基於第一和第二代表性測量值確定缺陷的位置。例如,可以通過計算第二代表性測量值與第一代表性測量值之間的差來確定缺陷的位置。如圖7C中所示,該差異在該示例中等於105個時鐘週期。可以使用以下運算式來計算缺陷的位置:Δx= vP(Δcount),其中v是波形的速度,P是時鐘的週期性,Δcount是第一代表性測量值和第二代表性測量值之間的差(在該示例中為105)。At
圖7D示出用於低阻抗模式的代表性閾值組,圖7E示出對應的柱狀圖。如圖所示,柱狀圖示出兩個連續事件的發生(信號正向跨過第一閾值並且信號負向跨過相同閾值)以及沒有發生這種事件(對應於閾值2A)。基於這些事件的統計,可以確定缺陷的位置(不考慮計數器溢出)。 VI.用於時域反射法的數位化方法和電路 Figure 7D shows a representative set of thresholds for the low impedance mode, and Figure 7E shows the corresponding histogram. As shown, the histogram shows the occurrence of two consecutive events (the signal crossing the first threshold in a positive direction and the signal crossing the same threshold in a negative direction) and the absence of such an event (corresponding to threshold 2A). Based on the statistics of these events, the location of the defect can be determined (regardless of counter overflow). VI. Digitization Method and Circuit for Time Domain Reflectometry
當用戶希望確定沿著電子系統的一條或多條電線的缺陷的位置時,上述的TDR方法可能就足夠了。但在其他情況下,除了位置之外或作為位置的替換,用戶可能希望確定缺陷的其他特徵,包括例如缺陷的電阻抗和/或缺陷的性質(例如缺陷是否為短路,開路,焊接不良的連接,異常高阻抗的引腳等)。When a user wishes to locate a defect along one or more wires of an electronic system, the TDR method described above may be sufficient. But in other cases, in addition to or as an alternative to location, the user may wish to determine other characteristics of the defect, including, for example, the electrical impedance of the defect and/or the nature of the defect (e.g. whether the defect is a short, open, poorly soldered connection , unusually high impedance pins, etc.).
發明人已經認識到,在這種情況下,可能希望對TDR信號的波形進行剖析,所述剖析可能包括對TDR信號進行取樣和數位化。根據一些實施例,以這種方式執行時域反射法的代表性電路如圖8A所示。IC 802可以設計為至少以兩種模式運行。在發送模式下,IC 802配置為生成表示資訊的資料(例如,以位元的形式)並將資料發送到接收器。所述資料可以表示例如文本資訊,視覺資訊(例如視頻或圖像),聲音資訊,位置資訊,數值資訊,財務資訊等。在TDR模式下,IC 802配置為執行時域反射法。因此,IC 802的相同硬體可用於兩個目的-將資料傳輸到另一個電子設備電路並執行時域反射法-從而無需破壞IC的運作即可進行測試。The inventors have realised that in this case it may be desirable to profile the waveform of the TDR signal, which may include sampling and digitizing the TDR signal. A representative circuit for performing time domain reflectometry in this manner is shown in Figure 8A, according to some embodiments.
IC 802包括發射器804,信號驅動器202,開關312,類比數位轉換器(ADC)808,時鐘選擇電路810,參考電壓產生器812,比較器814和時域反射法(TDR)電路820。在發送模式下,發射器804生成表示將要發送到接收器的資訊的資料。發射器804可以被設計為根據任何通信協議進行操作,包括例如“56G”標準(以56Gb / s的速度運行)和“112G”標準(以112Gb / s的速度運行)。其他通信標準也是可能的。在某些實施例中,發射器設計為以超過1Gb / s的速度發送資料。在發送模式下,開關312可以是斷開的(open)。
如以上結合圖2A所述,信號驅動器202可以包括放大器,緩衝器,數位類比轉換器或其他用於將信號輸出到電線203的電路。信號驅動器202輸出給電線203的輸出是從發射器804接收的。相對於信號驅動器202而言,資料接收器830位於電線203的另一端。資料接收器830可以是任何電子電路的一部分,並且可以包括放大器,濾波器,類比數位轉換器,處理器,記憶體等。As described above in connection with FIG. 2A ,
在TDR模式下,發射器804生成用於執行時域反射法的信號轉變。例如,發射器804輸出類似於上面結合圖2B所描述的那些信號轉變。信號驅動器202輸出第一信號轉變310到電線203上。當電線上存在缺陷204時,響應於第一信號轉變310在缺陷204處的反射而出現第二個信號轉變311。除其他因素外,第二信號轉變311的幅度可以取決於信號的性質,如以上結合圖2C-2G所述的那樣。In TDR mode,
在TDR模式下,開關312閉合(closed)。結果,電線203上存在的信號被耦接於ADC 808,所述信號包括第一信號轉變310和第二信號轉變311。ADC 808被配置為對接收到的包括信號轉變310和311的信號或所述信號的至少一部分進行取樣和數位化。In TDR mode,
在一些實施例中,ADC 808被配置為以相對低的頻率進行操作,從而降低了ADC電路的複雜性以及降低了功耗。例如,ADC 808可以以小於1 /(t3
-t0
)的頻率進行取樣(參見圖2D-2G)。但是,可以控制ADC 808以足夠高的解析度對信號進行取樣來分析發生轉變的信號部分。在一些實施例中,可通過生成第一信號轉變310的複數個實例(instance)來完成(從而生成第二信號轉變311的複數個實例),並且對於每個實例,都可以使用不同的時鐘信號對信號進行取樣。在某些實施例中,用於取樣信號的不同實例的時鐘信號可以是主時鐘信號的延遲複製。時鐘信號之間的延遲可能足夠小,以獲得高的整體取樣解析度。In some embodiments,
ADC 808對信號進行取樣的時序由時鐘選擇電路810控制。時鐘選擇電路810被配置為選擇複數個可選的時鐘信號之一。例如,時鐘選擇電路810可以從時鐘產生器811接收主時鐘信號,並且可以輸出複數個時鐘信號Φ0
…ΦN
中的一個,每個這樣的時鐘信號相對於主時鐘信號具有不同的延遲。例如,時鐘信號Φ0
可以通過不引入延遲來獲得,時鐘信號Φ1
可以通過將主時鐘信號延遲δt來獲得,時鐘信號Φ2
可以通過將主時鐘信號延遲2δt來獲得,時鐘信號ΦN
可以通過將主時鐘信號延遲Nδt來獲得,N是大於1的整數。在一些實施例中,延遲δt小於t3
-t0
。The timing at which the
因此,時鐘選擇電路810可以在以下可選的延遲中選擇一個:0,δt,2δt…Nδt,並根據選擇的延遲輸出時鐘信號。應該理解,儘管在該示例中延遲以線性方式增加,但是並非所有實施例均受此限制,因為延遲可以任何其他合適的方式增加。Therefore, the
根據一些非限制性實施例,圖8B示出根據所選的延遲輸出時鐘信號的示例。時鐘信號Φ0 ,Φ1 和ΦN 是相同主時鐘的複製,但是延遲了不同的時間。在該示例中,時鐘信號Φ0 的上升沿出現在t = t0 ,t = T + t0 、2T + t0 等處(其中T表示時鐘信號的週期),時鐘信號Φ1 的上升沿出現在t = t1 ,t = T + t1 、2T +t1 等,並且時鐘信號ΦN 的上升沿出現在t = tN ,t = T + tN ,2T + tN 等處。According to some non-limiting embodiments, FIG. 8B shows an example of an output clock signal according to a selected delay. Clock signals Φ 0 , Φ 1 and Φ N are copies of the same master clock, but delayed by different times. In this example, the rising edge of clock signal Φ 0 occurs at t = t 0 , t = T + t 0 , 2T + t 0 , etc. (where T represents the period of the clock signal), the rising edge of clock signal Φ 1 occurs at Now t = t 1 , t = T + t 1 , 2T + t 1 , etc., and the rising edge of the clock signal Φ N occurs at t = t N , t = T + t N , 2T + t N , etc.
ADC 808以由所選的時鐘信號(例如,在所選的時鐘信號的上升沿或下降沿)所確定的時序對信號進行取樣。ADC 808的輸出為代表取樣時所述信號的電壓的複數個數值。例如,當選擇時鐘信號Φ0
時,ADC 808在t=t0
產生第一數值,t = T + t0
產生第二數值,t = 2T + t0
產生第三數值,依此類推。The
比較器814將ADC 808產生的數值與參考電壓進行比較。如果ADC 808的輸出超過所述參考電壓,則比較器814的輸出為1,否則為0(可以選擇使用相反的邏輯)。
參考電壓產生器812選擇要與ADC 808的輸出進行比較的參考電壓。在一些實施例中,參考電壓產生器812從複數個可選的電壓V0
... VM
中選擇一個參考電壓,其中M為大於1的整數。M的值越大,則電路確定信號的電壓的解析度越高。比較器814輸出複數個輸出值。第一輸出值是通過將t = t0
時取樣獲得的數值與選擇的參考電壓進行比較而得到,第二輸出值是通過將t = T+t0
時取樣獲得的數值與選擇的參考電壓進行比較而得到,第二輸出值是通過將t = 2T+t0
時取樣獲得的數值與選擇的參考電壓進行比較而得到,等等。所述輸出值實質上表示ADC 808接收到的信號的數位化版本。
比較器的輸出被提供為TDR電路820的輸入。TDR電路820可以編程為基於所述輸出值確定缺陷的特徵。例如,TDR電路820可以被編程為基於第二信號轉變311的時間與第一信號轉變310的時間之間的差確定缺陷的位置。另外地或可替代地,TDR電路820可以被編程為根據第二信號轉變311之後的信號的電壓確定缺陷的阻抗的大小。另外地或可替代地,TDR電路820可以被編程為根據第二信號轉變311之後的信號的電壓確定缺陷是否為短路,開路,焊接不良的連接,一個異常高阻抗的引腳。The output of the comparator is provided as the input of
圖8C示出根據一些非限制性實施例的用於確定缺陷的特徵的典型方法的流程圖。可以使用圖8A的積體電路來執行圖8C的方法,任何其他合適的電路也可被使用。方法850的動作可以按照圖8C所示的順序執行,或以任何其他順序執行。方法850開始於動作852,在該動作中,從複數個可選的時鐘信號中選擇時鐘信號。所述複數個時鐘信號可以是主時鐘的延遲版本,其中每個時鐘信號的延遲量不同。在某些實施例中,選擇時鐘信號包括選擇延遲和將主時鐘信號延遲與所選的延遲相對應的量。8C illustrates a flowchart of an exemplary method for characterizing a defect, according to some non-limiting embodiments. The method of FIG. 8C may be performed using the integrated circuit of FIG. 8A, although any other suitable circuit may be used. The actions of
在動作854,從M個可選的電壓中選擇參考電壓。所述可選的電壓可以例如在0至VDD
之間或在-VDD
至VDD
之間。At
在動作856,通過在電線上產生第一信號轉變並接收響應於缺陷對第一信號的反射而產生的第二信號轉變來獲得信號。因此,所述信號包括第一信號轉變和第二信號轉變。At
在動作858,通過使用選擇的時鐘信號對所述信號進行取樣來產生複數個數值。例如,在所選時鐘信號的第一邊沿(上升沿或下降沿)處或第一邊沿之後產生第一數值,在所選時鐘信號的第二邊沿處或第二邊沿之後產生第二數值,在所選時鐘信號的第三邊沿處或第三邊沿之後產生第三數值,等。At
在動作860,通過將所述複數個數值與所選的參考電壓進行比較來產生複數個輸出值。例如,通過將動作858的第一數值與所選的參考電壓進行比較來產生第一輸出值,通過將動作858的第二數值與所選的參考電壓進行比較來產生第二輸出值,通過將動作858的第三數值與所選的參考電壓進行比較來產生第三輸出值,等。At
方法850可以迭代地進行。例如,方法850可以循環(loop)可選的參考電壓,並且可以循環可選的時鐘信號。在一些在實施例中,如圖8C的示例所示,循環可選的參考電壓是內循環(inner loop)和循環可選的時鐘信號是外循環(outer loop),其他實施例中,循環可選的參考電壓可以是外循環,並且循環可選的時鐘信號是內循環。
動作862表示對參考電壓的循環。在動作862,選擇與上一次迭代所選擇的參考電壓不同的參考電壓。隨後,獲得另一個信號(動作856),產生複數個數值(動作858),並且產生複數個輸出值(動作860)。參考電壓的循環重複M次,其中M是可選的參考電壓的數量。可選地,如圖8C的虛線所示,參考電壓上的循環可能不包括動作856。
動作864表示時鐘信號的循環。在動作864,選擇與上一次迭代時所選擇的時鐘信號不同的時鐘信號。隨後,選擇參考電壓(動作854),獲得另一個信號(動作856),產生複數個數值(動作858),產生複數個輸出值(動作860),並且參考電壓的循環再次重複M次。時鐘信號的循環重複N次,其中N是可選的時鐘信號的數量。因此,方法850包括MxN次迭代。
在動作866,基於通過MxN次迭代獲得的複數個輸出值來確定缺陷的特徵。可以在動作866確定的特徵的示例包括缺陷的位置,缺陷的阻抗和缺陷的性質。在一些實施例中,可以基於第一信號轉變和第二信號轉變之間經過的時間確定缺陷的位置。在一些實施例中,可以基於第二信號轉變之後的電壓電平相對於第二信號轉變之前的電壓電平的關係來確定缺陷的阻抗。At
圖8D是根據一些實施例說明如何在複數個時鐘週期內,在可選的時鐘信號的複數個循環內以及在參考電壓的複數個循環內對信號進行取樣的圖。表8E-8H表示比較器814的輸出。在該非限制性的示例中,可選的時鐘信號為Φ0
,Φ1
,Φ2
和Φ3
,可選的參考電壓為V0
,V1
,V2
和V3
,當然也可以使用任意其他合適的時鐘信號和參考電壓。8D is a diagram illustrating how a signal is sampled over a plurality of clock cycles, over a plurality of cycles of a selectable clock signal, and over a plurality of cycles of a reference voltage, according to some embodiments. Tables 8E-8H represent the outputs of
參考圖8D和表8E,控制電路首先選擇時鐘信號Φ0
和參考電壓V0
。在該循環中,ADC 808在第一時鐘週期從信號的第一實例獲得數值A0
,在第二時鐘週期獲得數值B0
,在第三時鐘週期 獲得數值C0
。數值大於所選的參考電壓導致比較器產生1,而數值小於所選的參考電壓會導致比較器產生0(相反的邏輯也可以)。因此,如圖8E的表的第一列(row)所示,當與參考電壓V0
比較時,比較器814產生以下輸出值:1(在第一時鐘週期),1(在第二時鐘週期)和1(在第三時鐘週期)。Referring to FIG. 8D and Table 8E, the control circuit first selects the clock signal Φ 0 and the reference voltage V 0 . In this cycle, the
隨後,選擇不同的參考電壓:V1 。這次,如圖8E的表的第二列所示,輸出值為:0(在第一時鐘週期),1(在第二時鐘週期)和1(在第三時鐘週期)。控制電路繼續循環可選的參考電壓。後續的輸出值反映在圖8E的表的最後兩列中。Subsequently, a different reference voltage is selected: V 1 . This time, as shown in the second column of the table of Figure 8E, the output values are: 0 (at the first clock cycle), 1 (at the second clock cycle), and 1 (at the third clock cycle). The control circuit continues to cycle through the optional reference voltage. Subsequent output values are reflected in the last two columns of the table of Figure 8E.
隨後,控制電路選擇不同的時鐘信號Φ1 ,並循環參考電壓。選擇該時鐘信號時的輸出值顯示在圖8F的表中。隨後,控制電路選擇不同的時鐘信號Φ2 ,並循環參考電壓。選擇時鐘信號Φ2 時的輸出值顯示在圖8G的表中。最後,控制電路選擇不同的時鐘信號Φ3 ,並循環參考電壓。選擇時鐘信號Φ3 時的輸出值顯示在圖8H的表中。Subsequently, the control circuit selects a different clock signal Φ 1 and cycles the reference voltage. The output values when this clock signal is selected are shown in the table of Fig. 8F. Subsequently, the control circuit selects a different clock signal Φ 2 and cycles the reference voltage. The output values when the clock signal Φ2 is selected are shown in the table of Fig. 8G. Finally, the control circuit selects a different clock signal Φ 3 and cycles the reference voltage. The output values when the clock signal Φ3 is selected are shown in the table of Fig. 8H.
圖8E-8H的表的輸出值被存儲在控制電路的記憶體中,並用於在數位域中重建信號的形狀。重建後的信號可以進行後處理以確定用戶感興趣的任何特徵,例如缺陷的位置,阻抗或性質。The output values of the tables of Figures 8E-8H are stored in the memory of the control circuit and used to reconstruct the shape of the signal in the digital domain. The reconstructed signal can be post-processed to determine any features of interest to the user, such as the location, impedance or nature of the defect.
如上所述,一些實施例針對包括循環設置的方法,以便在每次循環迭代時選擇具有不同延遲的不同時鐘信號。以此方式,儘管使用了相對低速的時鐘,也可以以相當高的解析度掃描信號的感興趣部分。然而,在其他實施例中,可以掃描複數個複製的信號,其中每個複製包括單個時鐘信號且每個複製具有不同的延遲。因此,代替迭代複數個可選的時鐘週期,這樣的方法迭代複數個可選的TDR信號。As described above, some embodiments are directed to methods that include loop settings to select different clock signals with different delays at each loop iteration. In this way, the portion of interest of the signal can be scanned at a relatively high resolution despite the use of a relatively low speed clock. However, in other embodiments, a plurality of replicas of the signal may be scanned, where each replica includes a single clock signal and each replica has a different delay. Thus, instead of iterating over multiple selectable clock cycles, such a method iterates over multiple selectable TDR signals.
儘管如此,發明人已經意識到,與迭代具有不同延遲的TDR信號的方法相比,迭代具有不同的延遲的可選的時鐘信號可以減少與積體電路設計和製造相關的成本。這尤其在發射器硬體同時充當資料發射器和TDR發射器的系統中特別顯著。實際上,在這些情況下,使積體電路能夠迭代具有不同延遲的TDR信號包括重新設計已經設計為用於執行資料傳輸的發射器硬體的至少一部分。反之亦然,使積體電路能夠迭代具有不同的延遲的時鐘信號可簡單地包括在積體電路上沖壓發射器硬體範本,並在其旁邊添加用於選擇不同時鐘信號的電路。這種方法更具成本效益,因為其實施可能依賴於沒有發射器硬體範本的預先存在。Nonetheless, the inventors have realized that iterating alternative clock signals with different delays can reduce costs associated with integrated circuit design and manufacturing, as compared to methods of iterating TDR signals with different delays. This is especially noticeable in systems where the transmitter hardware acts as both a data transmitter and a TDR transmitter. Indeed, in these cases, enabling the integrated circuit to iterate over TDR signals with different delays involves redesigning at least a portion of the transmitter hardware that has been designed to perform the data transfer. Vice versa, enabling an IC to iterate over clock signals with different delays may simply include stamping a transmitter hardware template on the IC and adding circuitry next to it for selecting different clock signals. This approach is more cost-effective because its implementation may rely on the pre-existence of no transmitter hardware templates.
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域具有通常知識者,在不脫離本發明的精神和範圍內,當可做些許的更動與潤飾,因此本發明的保護範圍當視申請專利範圍所界定者為准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the scope of the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope of the patent application.
100:印刷電路板
102:封裝
104,802:積體電路
110,120:金屬線
112,122,129:連接器
114,124:觸點
116,126:電纜
125:底板
128:金屬跡線
202:信號驅動器
204:缺陷
203:電線
302:控制電路
308:計數器
306,305:門
304,814:比較器
312:開關
310,311:信號轉變
320:負載
602,604,606,608,610,614,616,612,852,854,856,858,860,866,862,864:動作
804:發射器
820:時域反射法電路
812:參考電壓產生器
808:類比數位轉換器
810:時鐘選擇電路
811:時鐘產生器
830:資料接收器
850:方法100: Printed Circuit Board
102: Package
104,802: Integrated Circuits
110,120:
圖1根據一些非限制性實施例示出包括由電線進行互連的複數個電子組件的電子系統的示例。
圖2A根據一些非限制性實施例示出信號驅動器202和包括缺陷的電線203的示意圖。
圖2B根據一些非限制性實施例示出圖2A的信號驅動器輸出的信號轉變如何沿電線進行傳輸的示意圖。
圖2C根據一些非限制性實施例示出在電線中出現開路的情形下信號驅動器202的輸出的示例。
圖2D根據一些非限制性實施例示出存在的缺陷具有的阻抗高於電線的特徵阻抗時信號驅動器的輸出的示例。
圖2E根據一些非限制性實施例示出沿著電線沒有缺陷的示例。
圖2F根據一些非限制性實施例示出存在的缺陷具有的阻抗小於電線的特徵阻抗時信號驅動器的輸出的示例。
圖2G根據一些非限制性實施例示出電線存在短路時信號驅動器的輸出的示例。
圖3根據一些非限制性實施例示出用於確定缺陷位置的方法的圖。
圖4根據一些非限制性實施例示出實現圖3中所示的技術的控制電路的示例的電路圖。
圖5A根據一些非限制性實施例示出在存在毛刺的情況下柵極的輸出的圖。
圖5B根據一些非限制性實施例示出已去除了毛刺的柵極的輸出的圖。
圖5C根據一些非限制性實施例示出實現圖3中所示的技術的控制電路的另一示例的電路圖。
圖6A根據一些非限制性實施例示出在存在開路的情況下的信號驅動器輸出的圖。
圖6B根據一些非限制性實施例示出當圖6A的信號驅動器的輸出產生時計數器的輸出的圖。
圖6C根據一些非限制性實施例示出在存在具有80Ω阻抗的缺陷的情況下的信號驅動器的輸出的圖。
圖6D根據一些非限制性實施例示出當圖6C的信號驅動器的輸出產生時計數器的輸出的圖。
圖6E根據一些非限制性實施例示出在存在具有20Ω阻抗的缺陷的情況下的信號驅動器輸出的圖。
圖6F根據一些非限制性實施例示出當圖6E的信號驅動器的輸出產生時計數器的輸出的圖。
圖6G根據一些非限制性實施例示出存在短路時的信號驅動器的輸出的圖。
圖6H根據一些非限制性實施例示出當圖6G的信號驅動器的輸出產生時計數器的輸出的圖。
圖6I根據一些非限制性實施例示出在存在具有20Ω阻抗的缺陷的情況下的另一信號驅動器的輸出的圖。
圖6J根據一些非限制性實施例示出當圖6I的信號驅動器的輸出產生時計數器的輸出的圖。
圖6K根據一些非限制性實施例示出在存在開路的情況下的信號驅動器的輸出的圖。
圖6L根據一些非限制性實施例示出當圖6K的信號驅動器的輸出產生時計數器的輸出的圖。
圖7A根據一些非限制性實施例示出確定沿電線的缺陷的位置的代表性方法的流程圖。
圖7B根據一些非限制性實施例示出代表性信號驅動器的輸出和複數個閾值的圖。
圖7C根據一些非限制性實施例示出跨過事件的發生的柱狀圖。
圖7D根據一些非限制性實施例示出另一代表性信號驅動器的輸出和複數個閾值的圖。
圖7E根據一些非限制性實施例示出跨過事件的發生的另一柱狀圖。
圖8A根據一些非限制性實施例示出包括類比數位轉換器的控制電路的示例。
圖8B根據一些非限制性實施例示出一組可選的時鐘信號的示例。
圖8C示出根據一些非限制性實施例的用於確定缺陷的特徵的典型方法的流程圖。
圖8D根據一些非限制性實施例示出如何在複數個時鐘週期內,在可選的時鐘信號的複數個循環內以及在參考電壓的複數個循環內對信號進行取樣的圖。
圖8E-8H根據一些非限制性實施例示出複數個輸出值的表。1 illustrates an example of an electronic system including a plurality of electronic components interconnected by electrical wires, according to some non-limiting embodiments.
2A shows a schematic diagram of a
850:方法850: Method
852,854,856,858,860,866,862,864:動作852,854,856,858,860,866,862,864: Action
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962902429P | 2019-09-19 | 2019-09-19 | |
US62/902,429 | 2019-09-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202113383A TW202113383A (en) | 2021-04-01 |
TWI767320B true TWI767320B (en) | 2022-06-11 |
Family
ID=76604159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109131118A TWI767320B (en) | 2019-09-19 | 2020-09-10 | Method and apparatus for determining a characteistic of a defect in an electrical line of an electronic system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI767320B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113608100A (en) * | 2021-06-25 | 2021-11-05 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Open circuit failure analysis method and system |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629825A (en) * | 1990-04-02 | 1997-05-13 | Square D Company | Apparatus and method for detecting a fault in a distributed line network |
TW200535440A (en) * | 2004-04-19 | 2005-11-01 | Agilent Technologies Inc | Apparatus, system and/or method for combining multiple tests to a single test in a multiple independent port test environment |
TW200710412A (en) * | 2005-04-27 | 2007-03-16 | Aehr Test Systems | Apparatus for testing electronic devices |
US7279908B2 (en) * | 2005-12-06 | 2007-10-09 | Honeywell International Inc. | Dynamically switched line and fault detection for differential signaling systems |
US7675544B2 (en) * | 2005-06-10 | 2010-03-09 | Maxim Integrated Products, Inc. | System and method for video transmission line fault detection |
US20100176815A1 (en) * | 2007-04-20 | 2010-07-15 | Verigy (Singapore) Pte. Ltd. | Apparatus, Method, and Computer Program for Obtaining a Time-Domain-Reflection Response-Information |
TW201113539A (en) * | 2009-05-13 | 2011-04-16 | Qualcomm Inc | Systems and methods for a phase locked loop built in self test |
TW201333496A (en) * | 2011-09-26 | 2013-08-16 | Belkin International Inc | Systems and methods for data compression and feature extraction for the purpose of disaggregating loads on an electrical network |
TW201516994A (en) * | 2013-10-17 | 2015-05-01 | Au Optronics Xiamen Corp | System and method for identifying factory source of display panel and the display panel |
TW201537185A (en) * | 2013-09-27 | 2015-10-01 | Novachips Canada Inc | Method and apparatus for testing surface mounted devices |
US20190189038A1 (en) * | 2017-12-20 | 2019-06-20 | Lg Display Co., Ltd. | Electroluminescence display and method of managing defective pixels thereon |
US20190195936A1 (en) * | 2017-12-21 | 2019-06-27 | Mediatek Singapore Pte. Ltd. | Systems and methods for on-chip time-domain reflectometry |
-
2020
- 2020-09-10 TW TW109131118A patent/TWI767320B/en active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629825A (en) * | 1990-04-02 | 1997-05-13 | Square D Company | Apparatus and method for detecting a fault in a distributed line network |
TW200535440A (en) * | 2004-04-19 | 2005-11-01 | Agilent Technologies Inc | Apparatus, system and/or method for combining multiple tests to a single test in a multiple independent port test environment |
TW200710412A (en) * | 2005-04-27 | 2007-03-16 | Aehr Test Systems | Apparatus for testing electronic devices |
US7675544B2 (en) * | 2005-06-10 | 2010-03-09 | Maxim Integrated Products, Inc. | System and method for video transmission line fault detection |
US7279908B2 (en) * | 2005-12-06 | 2007-10-09 | Honeywell International Inc. | Dynamically switched line and fault detection for differential signaling systems |
US20100176815A1 (en) * | 2007-04-20 | 2010-07-15 | Verigy (Singapore) Pte. Ltd. | Apparatus, Method, and Computer Program for Obtaining a Time-Domain-Reflection Response-Information |
TW201113539A (en) * | 2009-05-13 | 2011-04-16 | Qualcomm Inc | Systems and methods for a phase locked loop built in self test |
TW201333496A (en) * | 2011-09-26 | 2013-08-16 | Belkin International Inc | Systems and methods for data compression and feature extraction for the purpose of disaggregating loads on an electrical network |
TW201537185A (en) * | 2013-09-27 | 2015-10-01 | Novachips Canada Inc | Method and apparatus for testing surface mounted devices |
TW201516994A (en) * | 2013-10-17 | 2015-05-01 | Au Optronics Xiamen Corp | System and method for identifying factory source of display panel and the display panel |
US20190189038A1 (en) * | 2017-12-20 | 2019-06-20 | Lg Display Co., Ltd. | Electroluminescence display and method of managing defective pixels thereon |
US20190195936A1 (en) * | 2017-12-21 | 2019-06-27 | Mediatek Singapore Pte. Ltd. | Systems and methods for on-chip time-domain reflectometry |
TW201928373A (en) * | 2017-12-21 | 2019-07-16 | 新加坡商 聯發科技(新加坡)私人有限公司 | Method for determining a location of a defect in an eletrical line of eletronic system |
Also Published As
Publication number | Publication date |
---|---|
TW202113383A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI716770B (en) | Method for determining a location of a defect in an eletrical line of eletronic system | |
US10277213B1 (en) | Glitch detection in input/output bus | |
US11221379B2 (en) | Systems and methods for on-chip time-domain reflectometry | |
US8643405B2 (en) | Passive capture adapter circuit for sensing signals of a high-speed circuit | |
US6924651B2 (en) | Printed board inspecting apparatus | |
US9442136B2 (en) | Real-time oscilloscope for generating a fast real-time eye diagram | |
TWI767320B (en) | Method and apparatus for determining a characteistic of a defect in an electrical line of an electronic system | |
US20210311118A1 (en) | Systems and methods for automatic time domain reflectometer measurement on a uni-directional drive channel | |
TWI424179B (en) | Method, automatic test equipment (ate), and non-transitort machine-readable media for use in identifying periodic jitter in a digital signal and method for use in testing a device | |
US7113749B2 (en) | System and method for measuring a high speed signal | |
KR20070072479A (en) | Comparator feedback peak detector | |
TWI494573B (en) | Detecting circuit and detecting method for determining connection status between first pin and second pin | |
JP4382362B2 (en) | Jitter measuring apparatus and total jitter measuring method for high-speed data output element | |
US7671602B1 (en) | Method and apparatus for cross-point detection | |
EP3796010B1 (en) | System and methods for on-chip time-domain reflectometry | |
KR101226330B1 (en) | Method and computer readable storage medium for quantifying the timing error induced by an impedance variation of a signal path | |
TW202102869A (en) | Device interface board compliance testing using impedance response profiling | |
TWI594191B (en) | Identification system, pysical apparatus, identification apparatus, and identification method of pysical apparatus | |
TWI738937B (en) | Testing system for differential clock signaling and method thereof | |
JP2002208898A (en) | Network test instrument | |
JP5631600B2 (en) | Semiconductor device and pulse width detection method | |
Yang | System-level design, simulation and measurement for high-speed data links | |
Maichen | Measurement Hardware | |
Hancock | Finding Sources of Jitter with Real-Time Jitter Analysis | |
KR20000007989A (en) | Delay time measuring device |