+

TWI450365B - Method for manufacturing a cmos device having dual metal gate - Google Patents

Method for manufacturing a cmos device having dual metal gate Download PDF

Info

Publication number
TWI450365B
TWI450365B TW097101164A TW97101164A TWI450365B TW I450365 B TWI450365 B TW I450365B TW 097101164 A TW097101164 A TW 097101164A TW 97101164 A TW97101164 A TW 97101164A TW I450365 B TWI450365 B TW I450365B
Authority
TW
Taiwan
Prior art keywords
gate
layer
forming
type transistor
metal
Prior art date
Application number
TW097101164A
Other languages
Chinese (zh)
Other versions
TW200931596A (en
Inventor
Chien Ting Lin
Li Wei Cheng
Che Hua Hsu
Guang Hwa Ma
Chin Sheng Yang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW097101164A priority Critical patent/TWI450365B/en
Publication of TW200931596A publication Critical patent/TW200931596A/en
Application granted granted Critical
Publication of TWI450365B publication Critical patent/TWI450365B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

具有雙金屬閘極之互補式金氧半導體元件之製作方法Complementary MOS device with bimetal gate manufacturing method

本發明係有關於一種具有雙金屬閘極(dual metal gate)之互補式金氧半導體(complementary metal-oxide semiconductor,以下簡稱為CMOS)元件之製作方法,尤指一種實施後閘極(gate last)製程之具有雙金屬閘極CMOS元件之製作方法。The present invention relates to a method for fabricating a complementary metal-oxide semiconductor (hereinafter referred to as CMOS) device having a dual metal gate, and more particularly to a gate last. A manufacturing method for a bimetal gate CMOS device.

隨著CMOS元件尺寸持續微縮,傳統方法中利用降低閘極介電層,例如降低二氧化矽層厚度,以達到最佳化目的之方法,係面臨到因電子的穿遂效應(tunneling effect)而導致漏電流過大的物理限制。為了有效延展邏輯元件的世代演進,高介電常數(以下簡稱為High-K)材料因具有可有效降低物理極限厚度,並且在相同的等效氧化厚度(equivalent oxide thickness,以下簡稱為EOT)下,有效降低漏電流並達成等效電容以控制通道開關等優點,而被用以取代傳統二氧化矽層或氮氧化矽層作為閘極介電層。As CMOS components continue to shrink in size, conventional methods have used a method of reducing the thickness of the gate dielectric layer, such as reducing the thickness of the yttria layer, for optimization purposes, due to the tunneling effect of electrons. A physical limitation that causes excessive leakage current. In order to effectively extend the evolution of logic components, high dielectric constant (hereinafter referred to as High-K) materials have an effective reduction in physical limit thickness and are under the same equivalent oxide thickness (EOT). It effectively reduces the leakage current and achieves the equivalent capacitance to control the channel switch. It is used to replace the traditional germanium dioxide layer or the yttria layer as the gate dielectric layer.

而傳統的多晶矽閘極則因硼穿透(boron penetration)效應,導致元件效能降低等問題;且多晶矽閘極更遭遇難以避免的空乏效應(depletion effect),使得等效的閘極介電層厚度增加、閘極電容值下降,進而導致元件驅動能力的衰退等困境。故目前便有新的閘極材料被研製生產,其係利用雙功能函數(double work function)金屬來取代傳統的多晶矽閘極,用以作為匹配High-K閘極介電層的控制電極。However, the conventional polysilicon gate has problems due to boron penetration, which leads to a decrease in device performance. Moreover, the polysilicon gate encounters an inevitable depletion effect, resulting in an equivalent gate dielectric thickness. Increased, the gate capacitance value decreased, which led to the decline of component drive capability. Therefore, new gate materials have been developed and produced, which use a double work function metal to replace the conventional polysilicon gate as a control electrode for matching the High-K gate dielectric layer.

雙功能函數金屬閘極一與NMOS元件搭配,一則與PMOS元件搭配,因此使得相關元件的整合技術以及製程控制更形複雜,且各材料的厚度與成分控制要求亦更形嚴苛。舉例來說,在傳統雙功能函數金屬閘極之前閘極(gate first)製程中,會在形成金屬閘極後經過源極/汲極超淺接面活化回火以及形成金屬矽化物等製程,而在如此嚴苛的熱預算環境下,常會發現元件的寬帶電壓(flatband voltage,以下簡稱為Vfb )並未隨著高介電常數介電層的EOT降低而呈線性的上升或下降。請參閱第1圖,第1圖係為一PMOS元件的High-K閘極介電層EOT與Vfb 的關係圖。如第1圖所示,元件的Vfb 與EOT並未呈現預期的線性關係,反而在EOT減小時突然發生降低,而此Vfb 下降(roll-off)的情形在PMOS元件上尤其顯著。The dual function metal gate is matched with the NMOS component and the PMOS component is matched with the PMOS component, which makes the integration technology and process control of the related component more complicated, and the thickness and composition control requirements of each material are more stringent. For example, in the gate first process of a conventional bi-function metal gate, a process of forming a metal gate and a source/drain ultra-shallow junction activation tempering and forming a metal telluride are performed. Under such a severe thermal budget environment, it is often found that the flat voltage of the component (hereinafter referred to as V fb ) does not rise or fall linearly as the EOT of the high-k dielectric layer decreases. Please refer to FIG. 1. FIG. 1 is a diagram showing the relationship between the High-K gate dielectric layers EOT and Vfb of a PMOS device. As shown in Figure 1, the V fb and EOT of the component do not exhibit the expected linear relationship, but instead a sudden decrease occurs when the EOT decreases, and this V fb roll-off situation is particularly noticeable on the PMOS device.

因此,如何能在不再增加製程複雜度的前提下,有效的解決上述元件Vfb 下降的問題,係為一值得探討的問題。Therefore, how to effectively solve the problem of the drop of the above-mentioned components V fb without increasing the complexity of the process is a problem worthy of discussion.

因此,本發明之一目的係在於提供一種可有效解決元件Vfb 下降問題之具有雙金屬閘極之互補式金氧半導體元件之製作方法。SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of fabricating a complementary MOS device having a bimetal gate which can effectively solve the problem of a drop in the component Vfb .

根據本發明所提供之申請專利範圍,係提供一種具有雙金屬閘極之互補式金氧半導體(CMOS)元件之製作方法。該方法包含有提供一基底,該基底表面定義有一第一主動區域、一第二主動區域、以及一用以電性隔離該第一主動區域與該第二主動區域之淺溝隔離(shallow trench isolation,STI)。接下來於該第一主動區域與該第二主動區域內分別形成一第一導電型電晶體與一第二導電型電晶體,並進行一自對準金屬矽化物(salicide)製程。隨後於該基底上形成一內層介電層(inter-level dielectric layer,ILD),且該內層介電層係暴露出該第一導電型電晶體與該第二導電型電晶體之頂部。之後,進行一第一蝕刻製程,用以移除該第一導電型電晶體部分之一第一閘極,而於該第一主動區域內形成一開口(opening),且該第一導電型電晶體之一高介電常數閘極介電層係暴露於該開口之底部。最後於該開口內至少形成一第一金屬層。According to the scope of the invention provided by the present invention, a method of fabricating a complementary metal oxide semiconductor (CMOS) device having a bimetal gate is provided. The method includes providing a substrate, the surface of the substrate defining a first active region, a second active region, and a shallow trench isolation for electrically isolating the first active region from the second active region , STI). Then, a first conductive type transistor and a second conductive type transistor are respectively formed in the first active region and the second active region, and a self-aligned metal salicide process is performed. An inter-level dielectric layer (ILD) is then formed on the substrate, and the inner dielectric layer exposes the top of the first conductive type transistor and the second conductive type of transistor. Thereafter, a first etching process is performed to remove a first gate of the first conductive type transistor portion, and an opening is formed in the first active region, and the first conductive type is electrically A high dielectric constant gate dielectric layer of the crystal is exposed to the bottom of the opening. Finally, at least a first metal layer is formed in the opening.

根據本發明之申請專利範圍,另提供一種具有雙金屬閘極之互補式金氧半導體元件之製作方法。該方法包含有提供一基底,該基底表面係定義有一第一主動區域、一第二主動區域、以及一用以電性隔離該第一主動區域與該第二主動區域之淺溝隔離(STI)。接下來於該第一主動區域與該第二主動區域內分別形成一第一導電型電晶體與一第二導電型電晶體,並進行一自對準金屬矽化物製程。隨後於該基底上形成一內層介電層(ILD),且該內層介電層係暴露出該第一導電型電晶體與該第二導電型電晶體之頂部。之後,進行一第一蝕刻製程,以移除該第一導電型電晶體部分之一第一閘極,而於該第一主動區域內形成一第一開口,且該第一導電型電晶體之一高介電常數閘極介電層係暴露於該開口之底部。待該第一開口形成後,係於該第一開口內至少形成一第一金屬層。接下來,進行一第二蝕刻製程,以移除該第二導電型電晶體部分之一第二閘極,而於該第二主動區域內形成一第二開口,且該第二導電型電晶體之一高介電常數閘極介電層係暴露於該第二開口之底部。而待第二開口形成後,係於該第二開口內至少形成一第二金屬層。According to the scope of the invention, there is further provided a method of fabricating a complementary MOS device having a bimetal gate. The method includes providing a substrate defining a first active region, a second active region, and a shallow trench isolation (STI) for electrically isolating the first active region from the second active region . Then, a first conductive type transistor and a second conductive type transistor are respectively formed in the first active region and the second active region, and a self-aligned metal telluride process is performed. An inner dielectric layer (ILD) is then formed on the substrate, and the inner dielectric layer exposes the top of the first conductive type transistor and the second conductive type of transistor. Thereafter, a first etching process is performed to remove a first gate of the first conductive type transistor portion, and a first opening is formed in the first active region, and the first conductive type transistor A high dielectric constant gate dielectric layer is exposed to the bottom of the opening. After the first opening is formed, at least a first metal layer is formed in the first opening. Next, a second etching process is performed to remove a second gate of the second conductive type transistor portion, and a second opening is formed in the second active region, and the second conductive type transistor A high dielectric constant gate dielectric layer is exposed to the bottom of the second opening. After the second opening is formed, at least a second metal layer is formed in the second opening.

根據本發明所提供之具有雙金屬閘極之互補式金氧半導體元件之製作方法,至少一種導電型電晶體係實施後閘極製程所得,因此可用以製作須避開高熱預算之導電型電晶體,以改善Vfb 下降問題並增加閘極金屬材料的選擇性。另外,在本發明所提供之方法中,由於高介電常數閘極介電層並未隨著閘極一併移除,而係保留於開口中,因此在後續填入金屬層完成閘極之製作時,對於此一極薄之薄膜,不須再監控高介電常數閘極介電層之厚度控制與均勻度控制,同時由於高介電常數閘極介電層並未隨著閘極一併移除,因此亦可避免高介電常數閘極介電層與矽基底間良好之介面受到影響,進而影響到通道區的電子遷移律(carrier mobility)。According to the method for fabricating a complementary metal oxide semiconductor device having a bimetal gate provided by the present invention, at least one conductivity type electro-optic system is obtained by a post gate process, and thus can be used to fabricate a conductive transistor that avoids a high thermal budget. To improve the V fb drop problem and increase the selectivity of the gate metal material. In addition, in the method provided by the present invention, since the high dielectric constant gate dielectric layer is not removed along with the gate, but remains in the opening, the gate layer is subsequently filled in the metal layer. During fabrication, it is no longer necessary to monitor the thickness control and uniformity control of the high dielectric constant gate dielectric layer for this very thin film, and because the high dielectric constant gate dielectric layer does not follow the gate one. And removed, so that a good interface between the high dielectric constant gate dielectric layer and the germanium substrate is also affected, thereby affecting the carrier mobility of the channel region.

請參閱第2圖至第8圖,第2圖至第8圖係為本發明所提供之具有雙金屬閘極之CMOS元件之製作方法之一第一較佳實施例之示意圖。如第2圖所示,首先提供一基底100,如一矽基底、含矽基底、或矽覆絕緣(silicon-on-insulator,以下簡稱為SOI)基底等,基底100表面定義有一第一主動區域110與一第二主動區域112,且基底100內係形成有一用以電性隔離第一主動區域110與第二主動區域112之淺溝隔離(shallow trench isolation,以下簡稱為STI)102。接下來於基底100上依序形成一高介電常數(以下簡稱為High-K)閘極介電層104、一碳化鉭(TaC)層106、與一多晶矽層108。此外,在本第一實施例中,High-K閘極介電層104與碳化鉭(TaC)層106之間更可形成一保護層(圖未示),以保護閘極介電層104在後續製程中受損。Please refer to FIG. 2 to FIG. 8 . FIG. 2 to FIG. 8 are schematic diagrams showing a first preferred embodiment of a method for fabricating a CMOS device having a bimetal gate according to the present invention. As shown in FIG. 2, a substrate 100, such as a germanium substrate, a germanium-containing substrate, or a silicon-on-insulator (SOI) substrate, is defined. A first active region 110 is defined on the surface of the substrate 100. And a second active region 112, and a shallow trench isolation (hereinafter referred to as STI) 102 for electrically isolating the first active region 110 from the second active region 112 is formed in the substrate 100. Next, a high dielectric constant (hereinafter abbreviated as High-K) gate dielectric layer 104, a tantalum carbide (TaC) layer 106, and a polysilicon layer 108 are sequentially formed on the substrate 100. In addition, in the first embodiment, a protective layer (not shown) may be formed between the High-K gate dielectric layer 104 and the tantalum carbide (TaC) layer 106 to protect the gate dielectric layer 104. Damaged in subsequent processes.

請參閱第3圖。進行一微影暨蝕刻製程,蝕刻多晶矽層108、碳化鉭層106、與High-K閘極介電層104,而於第一主動區域110與第二主動區域112內分別形成一第一閘極120與一第二閘極122。請繼續參閱第3圖,接下來係利用不同導電型之離子佈植製程於第一閘極120與第二閘極122兩側之基底100內分別形成一第一輕摻雜汲極(light doped drain,以下簡稱為LDD)130與一第二LDD 132。另外,在形成第一LDD 130與第二LDD 132之前還可分別於第一閘極120與第二閘極122之側壁分別先形成一offset spacer(圖未示)。隨後係於第一閘極120與第二閘極122之側壁分別形成一側壁子134。最後再利用不同導電型之離子佈植製程於第一閘極120與第二閘極122兩側之基底100內分別形成一第一源極/汲極140與一第二源極/汲極142。而於第一主動區域110與第二主動區域120內分別形成一第一導電型電晶體150與一第二導電型電晶體152。Please refer to Figure 3. A lithography and etching process is performed to etch the polysilicon layer 108, the tantalum carbide layer 106, and the High-K gate dielectric layer 104, and form a first gate in the first active region 110 and the second active region 112, respectively. 120 and a second gate 122. Please continue to refer to FIG. 3 , and then a first lightly doped buck (light doped) is formed in the substrate 100 on both sides of the first gate 120 and the second gate 122 by using different conductivity type ion implantation processes. Drain, hereinafter referred to as LDD) 130 and a second LDD 132. In addition, before the first LDD 130 and the second LDD 132 are formed, an offset spacer (not shown) may be formed on the sidewalls of the first gate 120 and the second gate 122, respectively. Then, a sidewall 134 is formed on the sidewalls of the first gate 120 and the second gate 122, respectively. Finally, a first source/drain 140 and a second source/drain 142 are respectively formed in the substrate 100 on both sides of the first gate 120 and the second gate 122 by using different conductivity type ion implantation processes. . A first conductive type transistor 150 and a second conductive type transistor 152 are formed in the first active region 110 and the second active region 120, respectively.

請參閱第4圖。接下來係進行一自對準金屬矽化物(salicide)製程,而於第一閘極120、第二閘極122、第一源極/汲極140、與第二源極/汲極142表面分別形成一金屬矽化物層154。隨後如第5圖所示,於基底100上形成一內層介電層(inter-level dielectric layer,以下簡稱為ILD層)160,並藉由一化學機械研磨(chemical mechanical polishing,以下簡稱為CMP)等之平坦化製程研磨ILD層160,使ILD層160暴露出第一導電型電晶體150與第二導電型電晶體152頂部之金屬矽化物層154。或待CMP平坦化ILD層160後再藉由一回蝕刻(etch back)製程回蝕刻第一導電型電晶體150上方之ILD層160直至暴露出第一導電型電晶體150頂部之金屬矽化物層154。無論實施哪一種方法,第一導電型電晶體150頂部之金屬矽化物層154可以一部份被去除,也可以完全保留。Please refer to Figure 4. Next, a self-aligned metal salicide process is performed on the surfaces of the first gate 120, the second gate 122, the first source/drain 140, and the second source/drain 142, respectively. A metal telluride layer 154 is formed. Then, as shown in FIG. 5, an inter-level dielectric layer (hereinafter referred to as ILD layer) 160 is formed on the substrate 100, and is subjected to chemical mechanical polishing (hereinafter referred to as CMP). The planarization process grinds the ILD layer 160 such that the ILD layer 160 exposes the metal oxide layer 154 on top of the first conductivity type transistor 150 and the second conductivity type transistor 152. Or after the CMP is planarized by the ILD layer 160, the ILD layer 160 above the first conductive type transistor 150 is etched back by an etch back process until the metal telluride layer on the top of the first conductive type transistor 150 is exposed. 154. Regardless of which method is implemented, the metal telluride layer 154 on top of the first conductivity type transistor 150 may be partially removed or completely retained.

請參閱第6圖。接下來係移除第一閘極120頂部之金屬矽化物層154,並於移除金屬矽化物層154之後依序進行一第一蝕刻製程與一第二蝕刻製程,用以分別移除第一導電型電晶體150部分之第一閘極120。舉例來說,第一蝕刻製程係移除第一閘極120之多晶矽層108;而第二蝕刻製程則係移除第一閘極120之碳化鉭層106。而於第一主動區域150內形成一如第6圖所示之開口(opening)162。值得注意的是,在本實施例中,第一導電型電晶體150之High-K閘極介電層104係暴露於開口162之底部。如前所述,閘極介電層104上更可包括有一用以保護閘極介電層104之保護層,故在第二蝕刻製程後更可實施一第三蝕刻步驟移除該保護層,惟該保護層亦可保留而無須去除。此外,保護層之設置並不侷限於本第一較佳實施例中,而可成為本發明所揭露之各較佳實施例之一變化型。Please refer to Figure 6. Next, the metal germanide layer 154 on the top of the first gate 120 is removed, and after the metal germanide layer 154 is removed, a first etching process and a second etching process are sequentially performed to respectively remove the first The first gate 120 of the portion of the conductive transistor 150. For example, the first etch process removes the polysilicon layer 108 of the first gate 120; and the second etch process removes the ruthenium carbide layer 106 of the first gate 120. An opening 162 as shown in FIG. 6 is formed in the first active region 150. It should be noted that in the present embodiment, the High-K gate dielectric layer 104 of the first conductivity type transistor 150 is exposed to the bottom of the opening 162. As described above, the gate dielectric layer 104 further includes a protective layer for protecting the gate dielectric layer 104. Therefore, after the second etching process, a third etching step may be performed to remove the protective layer. However, the protective layer can also be retained without removal. In addition, the arrangement of the protective layer is not limited to the first preferred embodiment, but may be a variation of each of the preferred embodiments disclosed herein.

請參閱第7圖。接下來係於開口162內形成一金屬層170。金屬層170包含有氮化鉬鋁(MoAlN)、鎢(W)、氮化鉬(MoN)、碳氮氧化鉭(TaCNO)、氮化鈦(TiN)、或氮化鎢(WN)等金屬材料。由於上述金屬填洞能力較差,為避免填補完畢產生縫隙(seam),第一較佳實施例更於形成金屬層170之後,利用一金屬層172作為填補開口162之主要材料;而金屬層170則可用以調節功函數。金屬層172包含有鋁(Al)、鈦(Ti)、鉭(Ta)、鎢(W)、鈮(Nb)、鉬(Mo)、氮化鈦(TiN)、碳化鈦(TiC)、氮化鉭(TaN)、鈦鎢(Ti/W)、或鈦與氮化鈦(Ti/TiN)等複合金屬。另外,為避免High-K閘極介電層104與金屬層170產生反應或擴散效應,更可於形成金屬層170之前,先於開口162內形成一阻障層(barrier layer)(圖未示),阻障層係可包含有高溫過渡金屬、貴重金屬、稀土金屬等元素及其碳化物、氮化物、矽化物、鋁氮化物或氮矽化物等。Please refer to Figure 7. Next, a metal layer 170 is formed in the opening 162. The metal layer 170 includes a metal material such as molybdenum nitride (MoAlN), tungsten (W), molybdenum nitride (MoN), tantalum oxynitride (TaCNO), titanium nitride (TiN), or tungsten nitride (WN). . Since the above metal filling ability is poor, in order to avoid gaps in the filling, the first preferred embodiment uses a metal layer 172 as the main material for filling the opening 162 after forming the metal layer 170; and the metal layer 170 Can be used to adjust the work function. The metal layer 172 includes aluminum (Al), titanium (Ti), tantalum (Ta), tungsten (W), niobium (Nb), molybdenum (Mo), titanium nitride (TiN), titanium carbide (TiC), and nitriding. Tantalum (TaN), titanium tungsten (Ti/W), or a composite metal such as titanium and titanium nitride (Ti/TiN). In addition, in order to avoid the reaction or diffusion effect of the high-K gate dielectric layer 104 and the metal layer 170, a barrier layer may be formed in the opening 162 before the metal layer 170 is formed (not shown). The barrier layer may include an element such as a high temperature transition metal, a precious metal, a rare earth metal, and a carbide, a nitride, a telluride, an aluminum nitride or a nitrogen halide.

請參閱第8圖。最後,再藉由一CMP製程移除不必要的金屬層170、172,重新完成第一導電型電晶體150之製作。Please refer to Figure 8. Finally, the unnecessary conductive metal layers 170, 172 are removed by a CMP process to complete the fabrication of the first conductive type transistor 150.

根據本發明所提供之第一較佳實施例,可藉由後閘極製程部分用來製作容易受高溫製程影響而產生之Vfb 下降問題的PMOS元件,故可提供更廣泛的材料選擇。另外,一般在形成High-K閘極介電層104之前,會在High-K閘極介電層104與基底100之間形成一介面層(interface layer)(圖未示)以增進通道區的電子遷移率,此一介面層係為利用化學鍵結或加熱至850℃而形成之氧化矽層、氮氧化矽層、或氮化矽層等。而此高溫製程亦先完成於PMOS元件之金屬閘極製作,因此不會對PMOS元件造成影響。此外,由於本第一較佳實施例中High-K閘極介電層104並未移除,因此在步入45奈米(nm)線寬的半導體製程時,更可省卻源於移除High-K閘極介電層104,而必須在如此微小的開口162中重新再形成時,所必須面對的薄膜厚度控制與均勻度控制等考量。According to the first preferred embodiment of the present invention, the PMOS device can be used to fabricate a PMOS device which is susceptible to V fb degradation caused by high temperature process, thereby providing a wider selection of materials. In addition, an interface layer (not shown) is formed between the High-K gate dielectric layer 104 and the substrate 100 to enhance the channel region before the formation of the High-K gate dielectric layer 104. Electron mobility, this interface layer is a ruthenium oxide layer, a ruthenium oxynitride layer, or a tantalum nitride layer formed by chemical bonding or heating to 850 ° C. The high-temperature process is also completed in the metal gate of the PMOS device, so it does not affect the PMOS device. In addition, since the High-K gate dielectric layer 104 is not removed in the first preferred embodiment, when the semiconductor process of 45 nm (line) line width is stepped, the removal from the High is eliminated. -K gate dielectric layer 104, which must be faced with film thickness control and uniformity control when re-reforming in such a tiny opening 162.

請參閱第9圖至第15圖,第9圖至第15圖係為本發明所提供之具有雙金屬閘極之CMOS元件之製作方法之一第二較佳實施例之示意圖。如第9圖所示,首先提供一基底200,如一矽基底、含矽基底、或SOI基底等,基底200表面定義有一第一主動區域210與一第二主動區域212,基底200內係形成有一用以電性隔離第一主動區域210與第二主動區域212之淺溝隔離(STI)202。接下來,係於第一主動區域210與第二主動區域212內分別形成一第一導電型電晶體250與一第二導電型電晶體252。由於第一導電型電晶體250與第二導電型電晶體252形成之步驟係同於第一較佳實施例,故於此不再贅述。接下來於基底200上形成一覆蓋層(圖未示),覆蓋層其可為一氧化矽層、氮化矽層、或氮氧化矽層等。隨後藉由一微影暨蝕刻製程移除部分覆蓋層,而於第一導電型電晶體250之一第一閘極220上形成如第10圖所示之覆蓋層280。此外,覆蓋層280亦可以氧化,或與用以定義閘極之一硬遮罩層(圖未示)同時形成,且與第一閘極220同時蝕刻再移除硬遮罩層等其他方式形成。Please refer to FIG. 9 to FIG. 15. FIG. 9 to FIG. 15 are schematic diagrams showing a second preferred embodiment of a method for fabricating a CMOS device having a bimetal gate according to the present invention. As shown in FIG. 9, a substrate 200, such as a germanium substrate, a germanium-containing substrate, or an SOI substrate, is provided. The surface of the substrate 200 defines a first active region 210 and a second active region 212. A shallow trench isolation (STI) 202 for electrically isolating the first active region 210 from the second active region 212. Next, a first conductive type transistor 250 and a second conductive type transistor 252 are formed in the first active region 210 and the second active region 212, respectively. Since the steps of forming the first conductive type transistor 250 and the second conductive type transistor 252 are the same as those of the first preferred embodiment, they are not described herein again. Next, a capping layer (not shown) is formed on the substrate 200. The capping layer may be a hafnium oxide layer, a tantalum nitride layer, or a hafnium oxynitride layer. Then, a portion of the cap layer is removed by a lithography and etching process, and a cap layer 280 as shown in FIG. 10 is formed on one of the first gates 220 of the first conductivity type transistor 250. In addition, the cap layer 280 may also be oxidized or formed simultaneously with a hard mask layer (not shown) for defining a gate, and simultaneously etched with the first gate 220 to remove the hard mask layer. .

請參閱第10圖與第11圖。接下來係進行一自對準金屬矽化物(salicide)製程,由於第一閘極220係為覆蓋層280所覆蓋,因此在進行金屬矽化物製程時,僅第二閘極222之多晶矽層208、第一源極/汲極240、與第二源極/汲極242之表面可分別形成一金屬矽化物層254。另外在本第二較佳實施例中,如第11圖所示,更可於形成金屬矽化物層254後選擇性地於基底200上形成一接觸洞蝕刻停止層282(contact etch stop layer,以下簡稱為CESL),並藉由施加一紫外光或熱能之步驟,以使CESL 282產生一應力而作為一選擇性應力系統(selective strain scheme,SSS)。由於此一選擇性應力系統實際上並未影響CMOS元件製程,因此並不侷限於本第二較佳實施例中,而可成為本發明所揭露之各較佳實施例之一變化型。Please refer to Figure 10 and Figure 11. Next, a self-aligned metal salicide process is performed. Since the first gate 220 is covered by the cap layer 280, only the polysilicon layer 208 of the second gate 222 is formed during the metal telluride process. A metal telluride layer 254 may be formed on the surfaces of the first source/drain 240 and the second source/drain 242, respectively. In addition, in the second preferred embodiment, as shown in FIG. 11, a contact etch stop layer 282 can be selectively formed on the substrate 200 after the metal germanide layer 254 is formed. Referred to as CESL), a step of applying ultraviolet light or thermal energy causes CESL 282 to generate a stress as a selective strain scheme (SSS). Since the selective stress system does not actually affect the CMOS device process, it is not limited to the second preferred embodiment and can be a variation of the preferred embodiments of the present invention.

隨後如第12圖所示,於基底200上形成一ILD層260,並藉由一CMP等之平坦化製程研磨ILD層260,且CMP平坦化製程係停止於第一導電型電晶體250與第二導電型電晶體252頂部之CESL282。或待CMP平坦化ILD層260後再藉由一回蝕刻製程回蝕刻第一導電型電晶體250上方之ILD層260直至暴露出第一導電型電晶體250頂部之CESL 282。此外,平坦化製程或回蝕刻製程亦可繼續進行至曝露出覆蓋層280為止。Then, as shown in FIG. 12, an ILD layer 260 is formed on the substrate 200, and the ILD layer 260 is polished by a planarization process such as CMP, and the CMP planarization process is stopped at the first conductive type transistor 250 and The CESL 282 on top of the second conductivity type transistor 252. Or after the CMP planarizes the ILD layer 260, the ILD layer 260 over the first conductive type transistor 250 is etched back by an etch back process until the CESL 282 at the top of the first conductive type transistor 250 is exposed. In addition, the planarization process or the etch back process may continue until the cover layer 280 is exposed.

請參閱第13圖。接下來係依序利用不同的蝕刻製程移除第一閘極220上之CESL 282與第一閘極220上之覆蓋層280。待該等膜層皆移除後,隨即依序進行一第一蝕刻製程與一第二蝕刻製程,用以分別移除第一導電型電晶體250部分之一第一閘極220。舉例來說,第一蝕刻製程係移除第一閘極220之多晶矽層208;而第二蝕刻製程則係移除碳化鉭層206。而於第一主動區域210內形成一如第13圖所示之開口262。值得注意的是,第一導電型電晶體250之High-K閘極介電層204係暴露於開口262之底部。如前所述,本第二較佳實施例中,High-K閘極介電層204上亦可包含有一保護層,因此在第二蝕刻製程後更可以有一第三蝕刻步驟將該保護層去除,惟該保護層亦可保留而無須去除。Please refer to Figure 13. Next, the CESL 282 on the first gate 220 and the cap layer 280 on the first gate 220 are sequentially removed by using different etching processes. After the film layers are removed, a first etching process and a second etching process are sequentially performed to respectively remove the first gate 220 of the first conductive type transistor 250 portion. For example, the first etch process removes the polysilicon layer 208 of the first gate 220; and the second etch process removes the ruthenium carbide layer 206. An opening 262 as shown in FIG. 13 is formed in the first active region 210. It is noted that the High-K gate dielectric layer 204 of the first conductivity type transistor 250 is exposed to the bottom of the opening 262. As described above, in the second preferred embodiment, the High-K gate dielectric layer 204 may also include a protective layer. Therefore, after the second etching process, a third etching step may be performed to remove the protective layer. However, the protective layer can also be retained without removal.

請參閱第14圖。接下來係於開口262內形成一金屬層270。金屬層270所使用之金屬材料係可同於第一較佳實施例。同上所述,由於金屬層270金屬填洞能力較差,為避免填補完畢產生縫隙,在本第二較佳實施例中,亦利用一金屬層272作為填補開口262之主要材料;而金屬層270則可用以調節功函數。同理,金屬層272所使用之金屬材料係可同於第一較佳實施例。請參閱第15圖。最後,再藉由一CMP製程移除不必要的第一金屬層270與第二金屬層272,重新完成第一導電型電晶體250閘極之製作。Please refer to Figure 14. Next, a metal layer 270 is formed in the opening 262. The metal material used for the metal layer 270 can be the same as the first preferred embodiment. As described above, since the metal layer 270 has a poor metal hole filling ability, in order to avoid gaps in the filling, in the second preferred embodiment, a metal layer 272 is also used as the main material for filling the opening 262; and the metal layer 270 is used. Can be used to adjust the work function. Similarly, the metal material used for the metal layer 272 can be the same as the first preferred embodiment. Please refer to Figure 15. Finally, the unnecessary first metal layer 270 and the second metal layer 272 are removed by a CMP process to complete the fabrication of the gate of the first conductivity type transistor 250.

由於金屬矽化物並不容易移除,甚至有可能在移除金屬矽化物時影響到下方閘極結構或其周邊的ILD層輪廓。因此在本第二較佳實施例中,係藉由覆蓋層280覆蓋第一閘極220之頂部,故在進行金屬矽化物製程時,第一閘極220頂部不會形成任何的金屬矽化物,而可避免上述金屬矽化物層的移除問題。Since the metal telluride is not easily removed, it is even possible to affect the profile of the ILD layer of the lower gate structure or its periphery when the metal halide is removed. Therefore, in the second preferred embodiment, the top of the first gate 220 is covered by the cap layer 280, so that no metal germanide is formed on the top of the first gate 220 during the metal telluride process. The removal of the above metal halide layer can be avoided.

請參閱第16圖至第21圖,第16圖至第21圖係為本發明所提供之具有雙金屬閘極之CMOS元件之製作方法之一第三較佳實施例之示意圖。如第18圖所示,首先提供一基底300,如一矽基底、含矽基底、或SOI基底等,基底300表面定義有一第一主動區域310與一第二主動區域312,且基底300內係形成有一用以電性隔離第一主動區域310與第二主動區域312之STI 302。接下來於基底300上依序形成一High-K閘極介電層304、一碳化鉭層306、與一多晶矽層308。如前所述,在本第三較佳實施例中,閘極介電層304與碳化鉭層306中間更可形成一保護層(圖未示)以保護閘極介電層304在後續製程中受損。隨後進行一微影暨蝕刻製程,蝕刻多晶矽層308、碳化鉭層306、與High-K閘極介電層304,而於第一主動區域310與第二主動區域312內分別形成該第一閘極320與一第二閘極322。請繼續參閱第16圖,接下來係可於基底300上形成一襯墊(liner)層(圖未示),其可為一氧化矽層。之後,利用不同導電型之離子佈植製程於第一閘極320與第二閘極322兩側之基底300內分別形成一第一LDD 330與一第二LDD 332。在形成第一LDD 330與第二LDD 332之後,係於基底300上再形成一氮化矽層380。Please refer to FIG. 16 to FIG. 21 . FIG. 16 to FIG. 21 are schematic diagrams showing a third preferred embodiment of a method for fabricating a CMOS device having a bimetal gate according to the present invention. As shown in FIG. 18, a substrate 300, such as a germanium substrate, a germanium-containing substrate, or an SOI substrate, is provided. A surface of the substrate 300 defines a first active region 310 and a second active region 312, and the substrate 300 is formed. There is an STI 302 for electrically isolating the first active region 310 from the second active region 312. Next, a High-K gate dielectric layer 304, a tantalum carbide layer 306, and a polysilicon layer 308 are sequentially formed on the substrate 300. As described above, in the third preferred embodiment, a protective layer (not shown) may be formed between the gate dielectric layer 304 and the tantalum carbide layer 306 to protect the gate dielectric layer 304 in a subsequent process. Damaged. Subsequently, a lithography and etching process is performed to etch the polysilicon layer 308, the tantalum carbide layer 306, and the High-K gate dielectric layer 304, and the first gate is formed in the first active region 310 and the second active region 312, respectively. The pole 320 and a second gate 322. Continuing to refer to FIG. 16, a liner layer (not shown) may be formed on the substrate 300, which may be a hafnium oxide layer. Then, a first LDD 330 and a second LDD 332 are respectively formed in the substrate 300 on both sides of the first gate 320 and the second gate 322 by ion implantation processes of different conductivity types. After the first LDD 330 and the second LDD 332 are formed, a tantalum nitride layer 380 is formed on the substrate 300.

請參閱第17圖。隨後再藉由一微影暨蝕刻製程移除位於第一閘極320上方之氮化矽層380與襯墊層,而於第一主動區域310內形成一暴露出第一閘極320之多晶矽層308之開口382。隨後進行一多晶矽氧化步驟,例如進行一快速熱氧化(rapid thermal oxidation,RTO)或氧電漿轟擊,透過開口382氧化第一閘極320部份或全部之多晶矽層308。Please refer to Figure 17. Then, the cerium nitride layer 380 and the lining layer above the first gate 320 are removed by a lithography and etching process, and a polysilicon layer exposing the first gate 320 is formed in the first active region 310. Opening 382 of 308. A polysilicon oxidation step is then performed, such as by a rapid thermal oxidation (RTO) or oxygen plasma bombardment, through which a portion or all of the polysilicon layer 308 of the first gate 320 is oxidized.

請參閱第18圖。隨後藉由一回蝕刻製程回蝕刻氮化矽層380,以於第一閘極320與第二閘極322之側壁分別形成一側壁子334。再利用不同導電型之離子佈植製程於第一閘極320與第二閘極322兩側之基底300內分別形成一第一源極/汲極340與一第二源極/汲極342。而於第一主動區域310與第二主動區域320內分別形成一第一導電型電晶體350與一第二導電型電晶體352。Please refer to Figure 18. Then, the tantalum nitride layer 380 is etched back by an etching process to form a sidewall 334 on the sidewalls of the first gate 320 and the second gate 322, respectively. A first source/drain 340 and a second source/drain 342 are respectively formed in the substrate 300 on both sides of the first gate 320 and the second gate 322 by using different conductivity type ion implantation processes. A first conductive type transistor 350 and a second conductive type transistor 352 are formed in the first active region 310 and the second active region 320, respectively.

請參閱第19圖。接下來係進行一自對準金屬矽化物(salicide)製程,由於第一閘極320之多晶矽層308已於多晶矽氧化步驟中氧化,因此在此自對準金屬矽化物製程時,僅第二閘極322之多晶矽層308、第一源極/汲極340、與第二源極/汲極342之表面可分別形成一金屬矽化物層354。此外如前所述,亦可選擇性地於基底300上形成一CESL 386,並藉由施加一紫外光或熱能之步驟,以使CESL 386產生一應力,而作為一選擇性應力系統。如前所述,由於此一選擇性應力系統實際上並未影響CMOS元件製程,因此亦不侷限於本第三較佳實施例中。Please refer to Figure 19. Next, a self-aligned metal salicide process is performed. Since the polysilicon layer 308 of the first gate 320 has been oxidized in the polysilicon oxidation step, only the second gate is used in the self-aligned metal germanide process. A metal germanide layer 354 can be formed on the surface of the polysilicon layer 308, the first source/drain 340, and the second source/drain 342 of the pole 322, respectively. In addition, as previously described, a CESL 386 can also be selectively formed on the substrate 300 and subjected to a step of applying ultraviolet light or thermal energy to cause a stress in the CESL 386 as a selective stress system. As described above, since this selective stress system does not actually affect the CMOS device process, it is not limited to the third preferred embodiment.

請繼續參閱第19圖,接下來於基底300上形成一ILD層360,並藉由一CMP平坦化製程研磨ILD層360,且CMP平坦化製程係停止於CESL 386。或待CMP平坦化ILD層360後再藉由一回蝕刻製程回蝕刻第一導電型電晶體350上方之ILD層360直至暴露出第一導電型電晶體350頂部之CESL 386。Continuing to refer to FIG. 19, an ILD layer 360 is formed on the substrate 300, and the ILD layer 360 is polished by a CMP planarization process, and the CMP planarization process is stopped at the CESL 386. Or after the CMP planarizes the ILD layer 360, the ILD layer 360 over the first conductive type transistor 350 is etched back by an etch back process until the CESL 386 at the top of the first conductive type transistor 350 is exposed.

請參閱第20圖。接下來係一蝕刻製程移除第一閘極320上之CESL 386。移除CESL 386後,隨即依序進行一第一蝕刻製程與一第二蝕刻製程,用以分別移除第一導電型電晶體350部分之一第一閘極320。舉例來說,第一蝕刻製程係移除第一閘極320之氧化多晶矽層308;而第二蝕刻製程則係移除碳化鉭層306。而於第一主動區域310內形成一如第20圖所示之開口362。值得注意的是,第一導電型電晶體350之High-K閘極介電層304係暴露於開口362之底部。如前所述,High-K閘極介電層304上更可包括有一用以保護High-K閘極介電層304之保護層,故在第二蝕刻製程後更可實施一第三蝕刻步驟移除該保護層,惟該保護層亦可保留而無須去除。Please refer to Figure 20. Next, an etch process is performed to remove the CESL 386 on the first gate 320. After the CESL 386 is removed, a first etching process and a second etching process are sequentially performed to respectively remove the first gate 320 of one of the first conductive type transistors 350. For example, the first etch process removes the oxidized polysilicon layer 308 of the first gate 320; and the second etch process removes the ruthenium carbide layer 306. An opening 362 as shown in FIG. 20 is formed in the first active region 310. It is noted that the High-K gate dielectric layer 304 of the first conductivity type transistor 350 is exposed to the bottom of the opening 362. As described above, the High-K gate dielectric layer 304 may further include a protective layer for protecting the High-K gate dielectric layer 304. Therefore, a third etching step may be performed after the second etching process. The protective layer is removed, but the protective layer can also be retained without removal.

請參閱第21圖。接下來係於開口362內形成一用以調節功函數之金屬層370與一作為填補開口362主要材料之金屬層372,最後再藉由一CMP製程移除不必要的金屬層370、372,重新完成第一導電型電晶體350閘極之製作。由於該等步驟以及金屬層370、372所使用之金屬材料係可同於前述第一、第二較佳實施例,因此於本第三較佳實施例中係省略該等細節。Please refer to Figure 21. Next, a metal layer 370 for adjusting the work function and a metal layer 372 as a main material for filling the opening 362 are formed in the opening 362, and finally the unnecessary metal layers 370, 372 are removed by a CMP process. The fabrication of the gate of the first conductivity type transistor 350 is completed. Since the steps and the metal materials used for the metal layers 370, 372 are the same as the first and second preferred embodiments described above, such details are omitted in the third preferred embodiment.

如前所述,由於金屬矽化物並不容易移除,甚至有可能在移除金屬矽化物時影響到下方閘極結構或其周邊的ILD層360之輪廓。因此在本第三較佳實施例中,係藉由多晶矽氧化製程氧化第一閘極320之多晶矽層308,故在進行金屬矽化物製程時,第一閘極320頂部不會形成任何的金屬矽化物,而可避免上述金屬矽化物層的移除問題。As previously mentioned, since the metal telluride is not easily removed, it is even possible to affect the contour of the lower gate structure or the ILD layer 360 around it when the metal halide is removed. Therefore, in the third preferred embodiment, the polysilicon layer 308 of the first gate 320 is oxidized by the polysilicon germanium oxidation process, so that no metal germanium is formed on the top of the first gate 320 during the metal telluride process. The problem of removal of the above metal halide layer can be avoided.

請參閱第22圖至第26圖,第22圖至第26圖係為本發明所提供之具有雙金屬閘極之CMOS元件之製作方法之一第四較佳實施例之示意圖。如第22圖所示,首先提供一基底400,如一矽基底、含矽基底、或SOI基底,基底400表面定義有一第一主動區域410與一第二主動區域412,且基底400內係形成有一用以電性隔離第一主動區域410與第二主動區域412之STI 402。接下來於基底400上依序形成一High-K閘極介電層404與一多晶矽層408。在本第四較佳實施例中,閘極介電層404與多晶矽層408中間更可形成一保護層(圖未示)以保護閘極介電層404在後續製程中受損。隨後藉由一微影暨蝕刻製程移除部分多晶矽層408與High-K閘極介電層404,而分別於第一主動區域410與第二主動區域412內形成一第一閘極420與一第二閘極422。隨後,係分別於第一閘極420與第二閘極422兩側之基底400內形成第一LDD 430與一第二LDD 432;隨後於第一閘極420與第二閘極422之側壁分別形成一側壁子434。最後在第一閘極420與第二閘極422兩側之基底400內分別形成一第一源極/汲極440與一第二源極/汲極442,而形成如第22圖所示之第一導電型電晶體450與第二導電型電晶體452。Referring to FIG. 22 to FIG. 26, FIG. 22 to FIG. 26 are schematic diagrams showing a fourth preferred embodiment of a method for fabricating a CMOS device having a bimetal gate according to the present invention. As shown in FIG. 22, a substrate 400, such as a germanium substrate, a germanium-containing substrate, or an SOI substrate, is defined. A surface of the substrate 400 defines a first active region 410 and a second active region 412, and a substrate 400 is formed therein. The STI 402 is used to electrically isolate the first active region 410 from the second active region 412. Next, a High-K gate dielectric layer 404 and a polysilicon layer 408 are sequentially formed on the substrate 400. In the fourth preferred embodiment, a protective layer (not shown) may be formed between the gate dielectric layer 404 and the polysilicon layer 408 to protect the gate dielectric layer 404 from damage during subsequent processes. Then, a portion of the polysilicon layer 408 and the high-K gate dielectric layer 404 are removed by a lithography and etching process to form a first gate 420 and a first active region 410 and a second active region 412, respectively. The second gate 422. Then, a first LDD 430 and a second LDD 432 are formed in the substrate 400 on both sides of the first gate 420 and the second gate 422 respectively; then the sidewalls of the first gate 420 and the second gate 422 are respectively respectively A sidewall 434 is formed. Finally, a first source/drain 440 and a second source/drain 442 are respectively formed in the substrate 400 on both sides of the first gate 420 and the second gate 422, and are formed as shown in FIG. The first conductive type transistor 450 and the second conductive type transistor 452.

請參閱第23圖。隨後係進行一自對準金屬矽化物製程,並利用一硬遮罩層或覆蓋層(圖未示)覆蓋第一閘極420與第二閘極422的多晶矽層408表面,而僅於第一源極/汲極440與第二源極/汲極442表面分別形成一金屬矽化物層454。請繼續參閱第23圖,隨後再於基底400上形成一ILD層460,並藉由一CMP平坦化製程研磨ILD層460,使其暴露出第一閘極420與第二閘極422之頂部。Please refer to Figure 23. Subsequently, a self-aligned metal telluride process is performed, and a hard mask layer or a cap layer (not shown) is used to cover the surface of the polysilicon layer 408 of the first gate 420 and the second gate 422, and only the first The source/drain 440 and the second source/drain 442 surface respectively form a metal telluride layer 454. Referring to FIG. 23, an ILD layer 460 is then formed on the substrate 400, and the ILD layer 460 is polished by a CMP planarization process to expose the tops of the first gate 420 and the second gate 422.

請參閱第24圖。接下來係進行一第一蝕刻製程,以移除第一閘極420之多晶矽層408,而於第一主動區域450內形成一開口462。值得注意的是,第一閘極420之High-K閘極介電層404係暴露於開口462之底部。閘極介電層404上更可包括有一用以保護閘極介電層404之保護層,故在第一蝕刻製程後更可實施另一蝕刻步驟移除該保護層,惟該保護層亦可保留而無須去除。Please refer to Figure 24. Next, a first etching process is performed to remove the polysilicon layer 408 of the first gate 420, and an opening 462 is formed in the first active region 450. It is noted that the High-K gate dielectric layer 404 of the first gate 420 is exposed to the bottom of the opening 462. The gate dielectric layer 404 may further include a protective layer for protecting the gate dielectric layer 404. Therefore, after the first etching process, another etching step may be performed to remove the protective layer, but the protective layer may also be used. Reserved without removal.

請參閱第25圖。隨後於開口462內至少形成一金屬層470;金屬層470包含有氮化鉬鋁、鎢、氮化鉬、碳氮氧化鉭、氮化鈦、或氮化鎢等金屬材料。由於上述金屬填洞能力較差,為避免填補完畢產生縫隙,更可利用一金屬層472作為填補開口462之主要材料;而金屬層470則可用以調節功函數。金屬層472包含有鋁、鈦、鉭、鎢、鈮、鉬、氮化鈦、碳化鈦、氮化鉭、鈦鎢合金、或鈦與氮化鈦合金。另外,為避免High-K閘極介電層404與金屬層470產生反應或擴散效應,更可於形成第一金屬層470之前,於開口462內形成一阻障層(圖未示),阻障層係可包含有高溫過渡金屬、貴重金屬、稀土金屬等元素及其碳化物、氮化物、矽化物、鋁氮化物或氮矽化物等。Please refer to Figure 25. Then at least one metal layer 470 is formed in the opening 462; the metal layer 470 comprises a metal material such as aluminum molybdenum nitride, tungsten, molybdenum nitride, tantalum carbonitride, titanium nitride, or tungsten nitride. Since the metal filling ability is poor, in order to avoid gaps in filling, a metal layer 472 can be used as the main material for filling the opening 462; and the metal layer 470 can be used to adjust the work function. The metal layer 472 includes aluminum, titanium, tantalum, tungsten, tantalum, molybdenum, titanium nitride, titanium carbide, tantalum nitride, titanium tungsten alloy, or titanium and titanium nitride alloy. In addition, in order to prevent the high-K gate dielectric layer 404 from reacting or diffusing with the metal layer 470, a barrier layer (not shown) may be formed in the opening 462 before forming the first metal layer 470. The barrier layer may include an element such as a high temperature transition metal, a precious metal, a rare earth metal, and a carbide, a nitride, a telluride, an aluminum nitride or a nitrogen halide.

請繼續參閱第25圖。接下來係進行一第二蝕刻製程,以移除第二閘極422之多晶矽層408,而於第二主動區域412內形成一開口464。值得注意的是,第二閘極422之High-K閘極介電層404係暴露於開口464之底部。若閘極介電層404上更包括一保護層,則在第二蝕刻製程後更可實施另一蝕刻步驟移除該保護層,惟該保護層亦可保留而無須去除。Please continue to see Figure 25. Next, a second etching process is performed to remove the polysilicon layer 408 of the second gate 422, and an opening 464 is formed in the second active region 412. It is noted that the High-K gate dielectric layer 404 of the second gate 422 is exposed to the bottom of the opening 464. If the gate dielectric layer 404 further includes a protective layer, another etching step may be performed to remove the protective layer after the second etching process, but the protective layer may be retained without removing.

請參閱第26圖。隨後係於開口464形成一金屬層474。金屬層474包含有碳化鉭或氮化鋁鈦(TiAlN)等金屬材料。如前所述,由於上述金屬填洞能力較差,為避免填補完畢產生縫隙,更可利用一金屬層476作為填補開口464之主要材料。金屬層476則包含有鋁、鈦、鉭、鎢、鈮、鉬、氮化鈦、碳化鈦、氮化鉭、鈦鎢合金、或鈦與氮化鈦合金。另外,為避免High-K閘極介電層404與金屬層474產生反應或擴散效應,更可於形成第一金屬層474之前,於開口464內形成一阻障層(圖未示)。最後,再藉由一CMP製程或其他蝕刻製程移除不必要的金屬層470、472、474、476,重新完成第一導電型電晶體450與第二導電型電晶體452之製作。Please refer to Figure 26. A metal layer 474 is then formed in the opening 464. The metal layer 474 contains a metal material such as tantalum carbide or titanium aluminum nitride (TiAlN). As described above, since the metal filling ability is poor, in order to avoid gaps in filling, a metal layer 476 can be utilized as the main material for filling the opening 464. The metal layer 476 comprises aluminum, titanium, tantalum, tungsten, tantalum, molybdenum, titanium nitride, titanium carbide, tantalum nitride, titanium tungsten alloy, or titanium and titanium nitride alloy. In addition, in order to prevent the high-K gate dielectric layer 404 from reacting or diffusing with the metal layer 474, a barrier layer (not shown) may be formed in the opening 464 before the first metal layer 474 is formed. Finally, the unnecessary metal layers 470, 472, 474, 476 are removed by a CMP process or other etching process to complete the fabrication of the first conductive type transistor 450 and the second conductive type transistor 452.

根據本發明所提供之具有雙金屬閘極之互補式金氧半導體元件之製作方法,至少一導電型電晶體係實施後閘極製程所得,因此可用以製作須避開高熱預算之導電型電晶體,改善元件Vfb 下降問題,同時增加閘極金屬材料的選擇性。另外,在本發明所提供之方法中,High-K閘極介電層並未隨著閘極一併移除,而係保留於開口中,因此在後續填入金屬層完成閘極之製作時,對於此一極薄之薄膜,不須再監控高介電常數閘極介電層之厚度控制與均勻度控制。同時由於高介電常數閘極介電層並未隨著閘極一併移除,亦可避免高介電常數閘極介電層與矽基底間良好之介面受到影響進而影響到通道區的電子遷移律。此外,本發明更可整合CESL等之選擇性應力系統(selective strain scheme,SSS)來提高MOS元件的性能。According to the method for fabricating a complementary metal oxide semiconductor device having a bimetal gate according to the present invention, at least one conductivity type electro-optic system is obtained by a post gate process, so that it can be used to fabricate a conductive transistor that avoids a high thermal budget. Improves the problem of component V fb drop while increasing the selectivity of the gate metal material. In addition, in the method provided by the present invention, the High-K gate dielectric layer is not removed along with the gate, but remains in the opening, so when the metal layer is subsequently filled to complete the gate fabrication For this extremely thin film, it is no longer necessary to monitor the thickness control and uniformity control of the high dielectric constant gate dielectric layer. At the same time, since the high dielectric constant gate dielectric layer is not removed along with the gate, it is also possible to prevent the good interface between the high dielectric constant gate dielectric layer and the germanium substrate from being affected and affecting the electrons in the channel region. Migration law. In addition, the present invention can integrate a selective strain scheme (SSS) such as CESL to improve the performance of the MOS device.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、200、300、400...基底100, 200, 300, 400. . . Base

102、202、302、402...淺溝隔離102, 202, 302, 402. . . Shallow trench isolation

104、204、304、404...高介電常數閘極介電層104, 204, 304, 404. . . High dielectric constant gate dielectric layer

105、205、305、405...保護層105, 205, 305, 405. . . The protective layer

106、206、306...碳化鉭層106, 206, 306. . . Tantalum carbide layer

108、208、308、408...多晶矽層108, 208, 308, 408. . . Polycrystalline layer

110、210、310、410...第一主動區域110, 210, 310, 410. . . First active area

112、212、312、412...第二主動區域112, 212, 312, 412. . . Second active area

120、220、320、420...第一閘極120, 220, 320, 420. . . First gate

122、222、322、422...第二閘極122, 222, 322, 422. . . Second gate

130、330、430...第一輕摻雜汲極130, 330, 430. . . First lightly doped bungee

132、332、432...第二輕摻雜汲極132, 332, 432. . . Second lightly doped bungee

134、334、434...側壁子134, 334, 434. . . Side wall

140、240、340、440...第一源極/汲極140, 240, 340, 440. . . First source/dip

142、242、342、442...第二源極/汲極142, 242, 342, 442. . . Second source/dip

150、250、350、450...第一導電型電晶體150, 250, 350, 450. . . First conductivity type transistor

152、252、352、452...第二導電型電晶體152, 252, 352, 452. . . Second conductivity type transistor

154、254、354、454...金屬矽化物層154, 254, 354, 454. . . Metal telluride layer

160、260、360、460...內層介電層160, 260, 360, 460. . . Inner dielectric layer

162、262、362、382、462、464...開口162, 262, 362, 382, 462, 464. . . Opening

170、172、270、272、370、372、470、472、474、476...金屬層170, 172, 270, 272, 370, 372, 470, 472, 474, 476. . . Metal layer

280...覆蓋層280. . . Cover layer

282、386...接觸洞蝕刻停止層282, 386. . . Contact hole etch stop layer

380...氮化矽層380. . . Tantalum nitride layer

第1圖係為一PMOS元件的高介電常數介電層EOT與Vfb 的關係圖。Figure 1 is a diagram showing the relationship between the high-k dielectric layers EOT and V fb of a PMOS device.

第2圖至第8圖係為本發明所提供之一第一較佳實施例之示意圖。2 to 8 are schematic views showing a first preferred embodiment of the present invention.

第9圖至第15圖係為本發明所提供之一第二較佳實施例之示意圖。9 to 15 are schematic views showing a second preferred embodiment of the present invention.

第16圖至第21圖係為本發明所提供之一第三較佳實施例之示意圖。16 to 21 are schematic views showing a third preferred embodiment of the present invention.

第22圖至第26圖係為本發明所提供之一第四較佳實施例之示意圖。22 to 26 are schematic views showing a fourth preferred embodiment of the present invention.

100...基底100. . . Base

102...淺溝隔離102. . . Shallow trench isolation

104...高介電常數閘極介電層104. . . High dielectric constant gate dielectric layer

106...碳化鉭層106. . . Tantalum carbide layer

108...多晶矽層108. . . Polycrystalline layer

110...第一主動區域110. . . First active area

112...第二主動區域112. . . Second active area

122...第二閘極122. . . Second gate

130...第一輕摻雜汲極130. . . First lightly doped bungee

132...第二輕摻雜汲極132. . . Second lightly doped bungee

134...側壁子134. . . Side wall

140...第一源極/汲極140. . . First source/dip

142...第二源極/汲極142. . . Second source/dip

150...第一導電型電晶體150. . . First conductivity type transistor

152...第二導電型電晶體152. . . Second conductivity type transistor

154...金屬矽化物154. . . Metal telluride

160...內層介電層160. . . Inner dielectric layer

162...開口162. . . Opening

Claims (20)

一種具有雙金屬閘極之互補式金氧半導體(complementary metal oxide semiconductor,CMOS)元件之製作方法,包含有:提供一基底,該基底表面定義有一第一主動區域與一第二主動區域;於該第一主動區域與該第二主動區域內分別形成一第一導電型電晶體與一第二導電型電晶體,該第一導電型電晶體包含一第一閘極,而該第二導電型電晶體包含一第二閘極;進行一自對準金屬矽化物(salicide)製程,至少於該第二閘極表面形成一金屬矽化物;於該基底上形成一內層介電層(inter-level dielectric,ILD layer),且該內層介電層係暴露出該第一導電型電晶體與該第二導電型電晶體之頂部;進行一第一蝕刻製程,用以移除該第一導電型電晶體部分之一第一閘極,而於該第一主動區域內形成一開口(opening),且該第一導電型電晶體之一高介電常數閘極介電層係暴露於該開口之底部;以及於該開口內至少形成一第一金屬層。 A method for fabricating a complementary metal oxide semiconductor (CMOS) device having a bimetal gate includes: providing a substrate, the surface of the substrate defining a first active region and a second active region; Forming a first conductive type transistor and a second conductive type transistor in the first active area and the second active area, the first conductive type transistor includes a first gate, and the second conductive type The crystal includes a second gate; performing a self-aligned metal salicide process to form at least a metal halide on the surface of the second gate; forming an inner dielectric layer on the substrate (inter-level) a dielectric layer, the inner dielectric layer exposing the top of the first conductive type transistor and the second conductive type transistor; performing a first etching process for removing the first conductive type a first gate of the transistor portion, and an opening is formed in the first active region, and a high dielectric constant gate dielectric layer of the first conductive type transistor is exposed to the opening Bottom; And forming at least a first metal layer in the opening. 如申請專利範圍第1項所述之方法,其中形成該第一導電型電晶體與該第二導電型電晶體之步驟更包含有: 於該基底上依序形成該高介電常數閘極介電層與一碳化鉭(TaC)層、與一多晶矽層;進行一微影暨蝕刻製程,蝕刻該多晶矽層、該碳化鉭層、與該高介電常數閘極介電層,而於該第一主動區域與該第二主動區域內分別形成該第一閘極與一第二閘極;於該第一閘極與該第二閘極兩側之基底內分別形成一第一輕摻雜汲極(light doped drain,LDD)與一第二輕摻雜汲極;於該第一閘極與該第二閘極之側壁分別形成一側壁子;以及於該第一閘極與該第二閘極兩側之基底內分別形成一第一源極/汲極與一第二源極/汲極。 The method of claim 1, wherein the step of forming the first conductivity type transistor and the second conductivity type transistor further comprises: Forming the high dielectric constant gate dielectric layer and a tantalum carbide (TaC) layer and a polysilicon layer on the substrate; performing a lithography and etching process to etch the polysilicon layer, the tantalum carbide layer, and The high dielectric constant gate dielectric layer, and the first gate and the second gate are respectively formed in the first active region and the second active region; and the first gate and the second gate are respectively formed Forming a first lightly doped drain (LDD) and a second lightly doped drain in the base of the two sides; forming a first sidewall of the first gate and the second gate respectively a first source/drain and a second source/drain are respectively formed in the substrate on both sides of the first gate and the second gate. 如申請專利範圍第2項所述之方法,更包含一第二蝕刻製程,進行於該第一蝕刻製程之後,該第一蝕刻製程係用以移除該第一導電型電晶體之該多晶矽層,而該第二蝕刻製程係用以移除該第一導電型電晶體之該碳化鉭層。 The method of claim 2, further comprising a second etching process, after the first etching process, the first etching process is for removing the polysilicon layer of the first conductive type transistor And the second etching process is for removing the tantalum carbide layer of the first conductive type transistor. 如申請專利範圍第2項所述之方法,更包含一於該第一主動區域內形成一保護層(protective layer)之步驟,且該保護層係覆蓋該高介電常數閘極介電層。 The method of claim 2, further comprising the step of forming a protective layer in the first active region, and the protective layer covers the high dielectric constant gate dielectric layer. 如申請專利範圍第4項所述之方法,更包含一第三蝕刻 製程,進行於該第一蝕刻製程之後,用以移除該保護層並暴露出該高介電常數閘極介電層。 The method of claim 4, further comprising a third etching The process is performed after the first etching process to remove the protective layer and expose the high dielectric constant gate dielectric layer. 如申請專利範圍第2項所述之方法,更包含一多晶矽氧化步驟,進行於形成該第一輕摻雜汲極與該第二輕摻雜汲極之後,以氧化該第一閘極部份或全部之該多晶矽層。 The method of claim 2, further comprising a polysilicon oxidation step, after forming the first lightly doped drain and the second lightly doped drain to oxidize the first gate portion Or all of the polycrystalline layer. 如申請專利範圍第2項所述之方法,更包含一於該第一閘極上形成一覆蓋層之步驟,進行於該自對準金屬矽化物製程之前,以避免該第一閘極頂部形成一金屬矽化物。 The method of claim 2, further comprising the step of forming a cap layer on the first gate, before the self-aligned metal telluride process, to avoid forming a top of the first gate Metal telluride. 如申請專利範圍第7項所述之方法,更包含一第四蝕刻製程,進行於該第一蝕刻製程之前,用以移除該覆蓋層。 The method of claim 7, further comprising a fourth etching process for removing the cap layer before the first etching process. 如申請專利範圍第2項所述之方法,更包含一於該基底上形成一接觸洞蝕刻停止層(contact etch stop layer,CESL)之步驟,進行於形成該內層介電層之前。 The method of claim 2, further comprising the step of forming a contact etch stop layer (CESL) on the substrate before forming the inner dielectric layer. 如申請專利範圍第9項所述之方法,更包含一第五蝕刻製程,進行於該第一蝕刻製程之前,用以移除該第一閘極上之該接觸洞蝕刻停止層。 The method of claim 9, further comprising a fifth etching process for removing the contact hole etch stop layer on the first gate before the first etching process. 如申請專利範圍第1項所述之方法,其中該第一金屬層包含有氮化鉬鋁(MoAlN)、鎢(W)、氮化鉬(MoN)、碳氮 氧化鉭(TaCNO)、氮化鈦(TiN)、或氮化鎢(WN)。 The method of claim 1, wherein the first metal layer comprises molybdenum nitride aluminum (MoAlN), tungsten (W), molybdenum nitride (MoN), carbon nitrogen. TaCNO, titanium nitride (TiN), or tungsten nitride (WN). 如申請專利範圍第1項所述之方法,更包含一於該開口內形成一第二金屬層之步驟,進行於形成該第一金屬層之後,且該第二金屬層包含有鋁(Al)、鈦(Ti)、鉭(Ta)、鎢(W)、鈮(Nb)、鉬(Mo)、氮化鈦(TiN)、碳化鈦(TiC)、氮化鉭(TaN)、鈦鎢(Ti/W)、或鈦與氮化鈦(Ti/TiN)等複合金屬。 The method of claim 1, further comprising the step of forming a second metal layer in the opening, after forming the first metal layer, and the second metal layer comprises aluminum (Al) , titanium (Ti), tantalum (Ta), tungsten (W), niobium (Nb), molybdenum (Mo), titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (TaN), titanium tungsten (Ti /W), or a composite metal such as titanium and titanium nitride (Ti/TiN). 一種具有雙金屬閘極之互補式金氧半導體元件之製作方法,包含有:提供一基底,該基底表面係定義有一第一主動區域與一第二主動區域;於該第一主動區域與該第二主動區域內分別形成一第一導電型電晶體與一第二導電型電晶體,該第一導電型電晶體包含一第一閘極,而該第二導電型電晶體包含一第二閘極;進行一自對準金屬矽化物製程,至少於該第二閘極表面形成一金屬矽化物;於該基底上形成一內層介電層(ILD),且該內層介電層係暴露出該第一導電型電晶體與該第二導電型電晶體之頂部;進行一第一蝕刻製程,以移除該第一導電型電晶體部分之一第一閘極,而於該第一主動區域內形成一第一開口, 且該第一導電型電晶體之一高介電常數閘極介電層係暴露於該第一開口之底部;於該第一開口內至少形成一第一金屬層;進行一第二蝕刻製程,以移除該第二導電型電晶體部分之一第二閘極,而於該第二主動區域內形成一第二開口,且該第二導電型電晶體之一高介電常數閘極介電層係暴露於該第二開口之底部;以及於該第二開口內至少形成一第二金屬層。 A method for fabricating a complementary metal oxide semiconductor device having a bimetal gate includes: providing a substrate defining a first active region and a second active region; wherein the first active region and the first Forming a first conductivity type transistor and a second conductivity type transistor in the active region, the first conductivity type transistor includes a first gate, and the second conductivity type transistor includes a second gate Performing a self-aligned metal telluride process to form at least a metal halide on the surface of the second gate; forming an inner dielectric layer (ILD) on the substrate, and exposing the inner dielectric layer a first conductive type transistor and a top portion of the second conductive type transistor; performing a first etching process to remove a first gate of the first conductive type transistor portion, and in the first active region Forming a first opening therein, And a high dielectric constant gate dielectric layer of the first conductive type transistor is exposed to the bottom of the first opening; at least a first metal layer is formed in the first opening; and a second etching process is performed, And removing a second gate of the second conductive type transistor portion to form a second opening in the second active region, and one of the second conductive type transistors has a high dielectric constant gate dielectric The layer is exposed to the bottom of the second opening; and at least a second metal layer is formed in the second opening. 如申請專利範圍第13項所述之方法,其中形成該第一導電型電晶體與該第二導電型電晶體之步驟更包含有:於該基底上依序形成該高介電常數閘極介電層與一多晶矽層;進行一微影暨蝕刻製程,以蝕刻該多晶矽層與該高介電常數閘極介電層,而於該第一主動區域與該第二主動區域內分別形成該第一閘極與該第二閘極;於該第一閘極與該第二閘極兩側之基底內分別形成一第一輕摻雜汲極(LDD)與一第二輕摻雜汲極;於該第一閘極與該第二閘極之側壁分別形成一側壁子;以及於該第一閘極與該第二閘極兩側之基底內分別形成一第一源極/汲極與一第二源極/汲極。 The method of claim 13, wherein the step of forming the first conductive type transistor and the second conductive type transistor further comprises: sequentially forming the high dielectric constant gate dielectric on the substrate An electric layer and a polysilicon layer; performing a lithography and etching process to etch the polysilicon layer and the high dielectric constant gate dielectric layer, respectively forming the first active region and the second active region a first light-doped drain (LDD) and a second light-doped drain are respectively formed in the base of the first gate and the second gate; Forming a sidewall on the sidewalls of the first gate and the second gate respectively; and forming a first source/drain and a gate in the bases on both sides of the first gate and the second gate Second source / drain. 如申請專利範圍第14項所述之方法,更包含一於該基底上形成一保護層(protective layer)之步驟,進行於形成該高介電常數閘極介電層之後,且該保護層係覆蓋該高介電常數閘極介電層。 The method of claim 14, further comprising the step of forming a protective layer on the substrate, after forming the high dielectric constant gate dielectric layer, and the protective layer is The high dielectric constant gate dielectric layer is covered. 如申請專利範圍第15項所述之方法,更包含一第三蝕刻製程,進行於該第一蝕刻製程之後,用以移除該保護層並暴露出該高介電常數閘極介電層。 The method of claim 15, further comprising a third etching process for removing the protective layer and exposing the high dielectric constant gate dielectric layer after the first etching process. 如申請專利範圍第13項所述之方法,其中該第一金屬層包含有氮化鉬鋁、鎢、氮化鉬、碳氮氧化鉭、氮化鈦或氮化鎢。 The method of claim 13, wherein the first metal layer comprises aluminum molybdenum nitride, tungsten, molybdenum nitride, niobium carbonitride, titanium nitride or tungsten nitride. 如申請專利範圍第13項所述之方法,其中該第二金屬層包含有碳化鉭或氮化鋁鈦(TiAlN)。 The method of claim 13, wherein the second metal layer comprises tantalum carbide or titanium aluminum nitride (TiAlN). 如申請專利範圍第13項所述之方法,更包含於該第一開口與該第二開口內分別形成一第三金屬層之步驟。 The method of claim 13, further comprising the step of forming a third metal layer in the first opening and the second opening, respectively. 如申請專利範圍第19項所述之方法,其中該第三金屬層包含有鋁、鈦、鉭、鎢、鈮、鉬、氮化鈦、碳化鈦、氮化鉭、鈦鎢合金、或鈦與氮化鈦合金。The method of claim 19, wherein the third metal layer comprises aluminum, titanium, tantalum, tungsten, tantalum, molybdenum, titanium nitride, titanium carbide, tantalum nitride, titanium tungsten alloy, or titanium. Titanium nitride alloy.
TW097101164A 2008-01-11 2008-01-11 Method for manufacturing a cmos device having dual metal gate TWI450365B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097101164A TWI450365B (en) 2008-01-11 2008-01-11 Method for manufacturing a cmos device having dual metal gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097101164A TWI450365B (en) 2008-01-11 2008-01-11 Method for manufacturing a cmos device having dual metal gate

Publications (2)

Publication Number Publication Date
TW200931596A TW200931596A (en) 2009-07-16
TWI450365B true TWI450365B (en) 2014-08-21

Family

ID=44865341

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097101164A TWI450365B (en) 2008-01-11 2008-01-11 Method for manufacturing a cmos device having dual metal gate

Country Status (1)

Country Link
TW (1) TWI450365B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229873B2 (en) * 2005-08-10 2007-06-12 Texas Instruments Incorporated Process for manufacturing dual work function metal gates in a microelectronics device
TW200739907A (en) * 2006-04-03 2007-10-16 Taiwan Semiconductor Mfg Co Ltd CMOS device having PMOS and NMOS transistors with different gate structures
US20070296002A1 (en) * 2006-06-27 2007-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Backside contacts for MOS devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229873B2 (en) * 2005-08-10 2007-06-12 Texas Instruments Incorporated Process for manufacturing dual work function metal gates in a microelectronics device
TW200739907A (en) * 2006-04-03 2007-10-16 Taiwan Semiconductor Mfg Co Ltd CMOS device having PMOS and NMOS transistors with different gate structures
US20070296002A1 (en) * 2006-06-27 2007-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Backside contacts for MOS devices

Also Published As

Publication number Publication date
TW200931596A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US8685811B2 (en) Method for manufacturing a CMOS device having dual metal gate
US7799630B2 (en) Method for manufacturing a CMOS device having dual metal gate
US8536040B1 (en) Techniques for using material substitution processes to form replacement metal gate electrodes of semiconductor devices with self-aligned contacts
US8198151B2 (en) Method for fabricating a metal gate structure
US8952451B2 (en) Semiconductor device having metal gate and manufacturing method thereof
TWI415263B (en) Semiconductor device and method of manufacturing same
US7723192B2 (en) Integrated circuit long and short channel metal gate devices and method of manufacture
TWI462187B (en) Semiconductor component and method of manufacturing same
TWI397951B (en) Method of manufacturing a semiconductor device
TWI534870B (en) Semiconductor component manufacturing method
CN102237399B (en) Semiconductor element with metal gate and manufacturing method thereof
JP4728323B2 (en) Dual metal CMOS transistor with adjustable gate electrode work function and fabrication method thereof
US8994125B2 (en) Semiconductor device including a field effect transistor
CN101494199A (en) Method for manufacturing complementary metal oxide semiconductor element with dual metal grid
CN101499440A (en) Method for manufacturing complementary metal oxide semiconductor element with dual metal grid
US8664057B2 (en) High-K metal gate electrode structures formed by early cap layer adaptation
CN102956460A (en) Method for manufacturing semiconductor element with metal gate
TWI497716B (en) Semiconductor device having metal gate and manufacturing methd thereof
TWI450365B (en) Method for manufacturing a cmos device having dual metal gate
JP2005228761A (en) Semiconductor device and its manufacturing method
TWI509702B (en) Metal gate transistor and method for fabricating the same
TWI517379B (en) Metal gate structure and manufacturing method thereof
TWI609430B (en) Semiconductor device having metal gate and manufacturing method thereof
TW201327687A (en) Semiconductor device and fabricating method thereof
TWI490949B (en) Metal gate transistor and method for fabricating the same
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载