TWI376035B - X-ray photodetector of quantum dots thin film and photodetecting method thereof - Google Patents
X-ray photodetector of quantum dots thin film and photodetecting method thereof Download PDFInfo
- Publication number
- TWI376035B TWI376035B TW97151556A TW97151556A TWI376035B TW I376035 B TWI376035 B TW I376035B TW 97151556 A TW97151556 A TW 97151556A TW 97151556 A TW97151556 A TW 97151556A TW I376035 B TWI376035 B TW I376035B
- Authority
- TW
- Taiwan
- Prior art keywords
- thin layer
- quantum dot
- substrate
- layer
- ray
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims description 130
- 238000000034 method Methods 0.000 title claims description 40
- 239000010409 thin film Substances 0.000 title 1
- 239000000758 substrate Substances 0.000 claims description 66
- 239000013078 crystal Substances 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 9
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910017115 AlSb Inorganic materials 0.000 claims description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 4
- 229910015808 BaTe Inorganic materials 0.000 claims description 4
- 229910004813 CaTe Inorganic materials 0.000 claims description 4
- 229910004613 CdTe Inorganic materials 0.000 claims description 4
- 229910005542 GaSb Inorganic materials 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 4
- 229910004262 HgTe Inorganic materials 0.000 claims description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 4
- 229910007709 ZnTe Inorganic materials 0.000 claims description 4
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910017680 MgTe Inorganic materials 0.000 claims description 3
- 229910004411 SrTe Inorganic materials 0.000 claims description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 201000011510 cancer Diseases 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000002309 gasification Methods 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000005424 photoluminescence Methods 0.000 claims 1
- 229910052707 ruthenium Inorganic materials 0.000 claims 1
- 230000008569 process Effects 0.000 description 8
- 238000005286 illumination Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000001338 self-assembly Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Light Receiving Elements (AREA)
Description
1376035 六、發明說明: 【發明所屬之技術領域】 、則方Ϊ發:是有關於—種量子點薄層之X光感測元件及感 法’㈣是有關於—_用靜電鍵結而形成之自主成 型的量子點薄層,來作A y 成 乍為X先的感測7C件及其感測方法。 【先前技術】 # 由於半導體量子點晶體,其三個維度的尺寸都很小 ό J於j固電子費米波長),使得其内部電子在三维方 =上的運動都會受到限制’然而,在量子效應不容忽視的 不、未尺度下,物體的性質不只受到尺寸的影響,形狀也有 很^關\’這點對於光、電特性均取決於量子侷限效應 的里子點來說尤為明顯。由於量子點具有顆粒尺寸小、表 面能高、表面原子所占比例大等特性,可利用其特別的光 谱特性和南量子效率。 _ 胃知的量子狀製作m致分為τ列幾種方法: ⑴化學溶膠法(chemicai couoidal ,係以化學 .溶膠方式合成,過程簡單,且可大量生產。⑵自組成法 (self-assembly method),其採用分子束磊晶 (molecular-beam epitaxy)或化學氣相沉積(chemical vapor deposition)製程,並利用晶格不匹配(lattice mismatch)的原理,使量子點在特定基材表面自聚生長, 可大量生產排列規則的量子點,多用於基材上之薄層形 成。(3)微影蝕刻法(lithography and etching),以光束 1376035 1 或電子束直接在基材上餘刻製作出所要之 費時因而無法大量生產。⑷::相當 approach),以外加電壓的方式在二維 ^Pll1>gate 二=侷限,可控制閘極(Gate)改變量子點㈣狀 適合用於學術研究,無法大量生產。 〃、、、 目前膠體半導體量子點,已被用作各 光破元件,例如光感測元件和光生伏打電池。近年;^ 發展出製造具有膠體半導體量子點的光電子 = 術,例如採用旋塗膠體量子點 。、技 (Soiut應售tlng)的量子點聚合奈米複合材料。秋而, :管使用高效能的生產裝置’以該些技術生成量;點薄 ’其覆盍的1子點和量子點薄層的厚度亦無法精確押 制,而且僅能將量子點薄層塗覆於平面的基板上 : 控制量子點薄層形成於特定的位置。 尺^ 緣疋,本發明人有感上述缺失之可改善,提出—種設 計合理且有效改善上述缺失之本發明。 【發明内容】 —有鑑於此,本發明的主要目的,在於提供一種量子點 薄層之X光感測7C件’係由靜電鍵結而形成之自主成型 (Self-Assembly)的量子點薄層,利用半導體量子點 内部量子效率(High lnternal Quantum1376035 VI. Description of the invention: [Technical field to which the invention belongs], Fang Fangfa: It is about the X-ray sensing element of the thin layer of quantum dots and the sensation '(4) is related to - _ formed by electrostatic bonding The self-formed thin layer of quantum dots is used to make the sensing 7C component of A y into X first and its sensing method. [Prior Art] # Due to the size of the semiconductor quantum dot crystals, the dimensions of the three dimensions are small, and the motion of the internal electrons in the three-dimensional square is limited. However, in quantum The effect cannot be ignored. Under the unscaled, the nature of the object is not only affected by the size, but also the shape is very close. This is especially true for the neutron point where the optical and electrical properties are all dependent on the quantum confinement effect. Since quantum dots have characteristics such as small particle size, high surface energy, and large proportion of surface atoms, their special spectral characteristics and south quantum efficiency can be utilized. _ The quantum production of the stomach is divided into several methods: (1) chemicai couoidal, which is synthesized by chemical sol method, which is simple in process and can be mass-produced. (2) Self-assembly method ), which employs a molecular-beam epitaxy or chemical vapor deposition process, and utilizes the principle of lattice mismatch to cause quantum dots to grow on a specific substrate surface. It can mass produce regular quantum dots, which are mostly used for thin layer formation on substrates. (3) Lithography and etching, with beam 1376035 1 or electron beam directly on the substrate to make the desired It takes a lot of time to produce in large quantities. (4):: quite approach), the method of applying voltage in two-dimensional ^Pll1>gate two=limit, can control the gate (Gate) to change the quantum dot (four) shape suitable for academic research, can not be large produce.胶,,,, currently colloidal semiconductor quantum dots have been used as light-breaking components such as light sensing components and photovoltaic cells. In recent years; ^ developed the production of photoelectrons with colloidal semiconductor quantum dots = surgery, for example using spin-coated colloidal quantum dots. , technology (Soiut should sell tlng) of quantum dot polymerized nanocomposites. In the autumn, the tube uses a high-performance production device to generate the amount by these techniques; the thickness of the thin layer of the sub-point and the thickness of the thin layer of the quantum dot cannot be precisely controlled, and only a thin layer of quantum dots can be used. Applied to a planar substrate: A thin layer of controlled quantum dots is formed at a specific location. The present inventors have felt that the above-mentioned deficiency can be improved, and the present invention which is reasonable in design and effective in improving the above-mentioned deficiency is proposed. SUMMARY OF THE INVENTION In view of the above, the main object of the present invention is to provide an X-ray sensing 7C piece of a quantum dot thin layer which is a self-forming (Self-Assembly) quantum dot thin layer formed by electrostatic bonding. , utilizing the internal quantum efficiency of semiconductor quantum dots (High lnternal Quantum
Efficiency):在 x光射線的照射下產生光電流(photocurrent),再藉由偵 測出光電流的大小,以判斷出該χ光射線的強弱,來作為 X光的感測元件。 ~ 4 1376035 包含本發種量子點薄層之x光感測元件,至少 :二:基板電極,係為能供—x光射線穿透之基板;複 數層置子點觸,係附著於該基板電極上,每—層該量子Efficiency): Photocurrent is generated by irradiation of x-ray rays, and the intensity of the photo-ray is detected by detecting the magnitude of the photo-current, and is used as a sensing element of X-ray. ~ 4 1376035 The x-ray sensing element comprising the thin layer of quantum dots of the present invention, at least: two: a substrate electrode, which is a substrate capable of transmitting -x light rays; and a plurality of layers of contacts are attached to the substrate On the electrode, each layer of the quantum
點溥層係由複數個量子點晶體組 H 間係透過靜電鍵結而堆叠鄰接 :::子點溥層之 ^ V . ^ Λ Μ接其中该些量子點晶體能在 口亥X先射線的照射下產生一光The point 溥 layer is stacked by a plurality of quantum dot crystal groups H through electrostatic bonding and is adjacent::: sub-point 溥 layer ^ V . ^ Μ 其中 该 该 该 该 该 该 该 该 该 该 该 该 该Produce a light under illumination
於最上層的該量子點⑽η ) 以電極,係接觸 電極之間具有—電位差;日以二公,金屬電極與該基板 板電極及该金屬電極,係於該 旦 極與該基板電極之間的I,里測该金屬電 該光電流=的電流’㈣測出於該電位差之下的 本电明的另一目的,在於蔣也仏 v ΈΙ . + 在於k供一種利用量子點薄層之 X先感測方法,該方法至少包含 升曰心 能穿诱夕$ 乂匕3步驟.(3)提供一乂光射線 π . 土反电極,(b)形成複數個靜電配位基 (ligands)於該基板電極表面 电诅丞 複數層置子點薄層並覆於該基板電極七m 電極接觸於最上層的該量子點薄 7 孟萄 兮八届t 里于占,專層之上’·(e)提供一電位 差於違金屬電極與該基板電極电1 於該些量子點薄層以產生一光電::㈣^ 茬夕丁 μ '丨L,(g)偵測出於該電位 差之下的该光電流;以及(h)計算 該X光射線的強弱。 -亥*電〜的大小以判斷 薄層成形技術,本發明係 子點薄層,藉由自主成型 薄層形成的層數及厚度的 藉此,相較於習知的量子點 透過靜電鍵結所形成的複數層量 製程,除了能簡易地控制量子點 5 t 方式,控制形成量子點薄層的特定位 薄層於任一非平面的纴糂μ 更肐形成里子點 邻旦早w Γ 聋上。並利用半導體量子點的高内 4子點晶體在χ光射線的照射下產生光 =;再2偵測出光電流的大小,以判斷出該χ光射線 的強弱,而達到感測X光之目的。 閱以步瞭解本發明之特徵及技術内容,請參 供丧考之袖糾與_,朗所_式僅提 (、參考與明用,並非用來對本發明加以限制者。 【實施方式】 配合圖示先說明本發明之量子點薄層之x光感測 例,再配合步驟流程,詳細說明本發明利 將光感測方法。在本發明中之較佳實施中 述其實施態樣,並以圖示於下做詳細的說明。 在圖示及說明中相同的對應符號將被用來對 應相同或相似的元件。 測-f—圖’係為本發明之量子點薄層之x光感 ::兀之較佳貧施例示意圖。如圖所示,本發明 ,層之X光感測元件100,包含一基板電極11〇層 =點薄層120、一金屬電極130以及一制單元140。曰 /、中,基板電極110係為能供一 X光射、線200穿透之基板。 複數層量子點薄層12G係附著於該基板電極11()上,每— 層=量子點薄層均由複數個量子點晶體12nl組成,且該 f置子點薄層121〜12n之間係透過靜電鍵結而堆疊鄰 妾其中5玄些量子點晶體12nl具有高内部量子效率(High 6 1376035The quantum dot (10) η in the uppermost layer has a potential difference between the electrode and the contact electrode; the metal electrode and the substrate plate electrode and the metal electrode are between the dendron and the substrate electrode. I, the current measured by the metal current = current (4) Another purpose of measuring the power below the potential difference is that Jiang also 仏 v ΈΙ. + lies in a thin layer of quantum dots First sensing method, the method comprising at least a step of 曰 能 能 $ $ 乂匕 . . . . . . . ( ( ( ( ( ( ( ( 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土 土On the surface of the substrate electrode, a plurality of layers of the substrate are electrically layered and covered on the substrate electrode, and the seven m electrode is in contact with the uppermost layer of the quantum dot thin layer. (e) providing a potential difference between the metal-proof electrode and the substrate electrode to form a thin layer of the quantum dots to generate a photoelectric:: (4)^ 丁 丁 μ μ '丨L, (g) detected under the potential difference The photocurrent; and (h) calculating the intensity of the X-ray. - The size of the wall is determined by the thin layer forming technique, and the thin layer of the present invention is formed by the number and thickness of the autonomously formed thin layer, which is compared with the conventional quantum dots through the electrostatic bonding. The complex layer process is formed, except that the quantum dot 5 t mode can be easily controlled, and the specific thin layer of the thin layer forming the quantum dot is controlled in any non-planar 纴糂μ to form a neutron point adjacent to the early w Γ 聋on. And using the high-intra-four sub-point crystal of the semiconductor quantum dot to generate light under the irradiation of the X-ray ray; and then detecting the magnitude of the photocurrent to determine the intensity of the X-ray ray, and achieving the purpose of sensing X-ray . In order to understand the features and technical contents of the present invention, please refer to the stipulations of the sinister test, and the syllabus is only used to refer to the description. The figure first illustrates the x-ray sensing example of the thin layer of the quantum dot of the present invention, and the step of the step is used to describe the photo sensing method of the present invention in detail. In the preferred embodiment of the present invention, the embodiment is described, and The same reference numerals will be used to refer to the same or similar elements in the drawings and the description. The measurement -f-graph is the x-ray of the thin layer of the quantum dot of the present invention. The schematic diagram of the preferred embodiment of the invention is as shown in the figure. The X-ray sensing device 100 of the present invention comprises a substrate electrode 11 layer = a thin layer 120, a metal electrode 130 and a unit 140. The substrate electrode 110 is a substrate capable of transmitting an X-ray and a line 200. A plurality of quantum dot thin layers 12G are attached to the substrate electrode 11 (each layer = quantum dot thin) The layers are composed of a plurality of quantum dot crystals 12nl, and the thin layers of the f-position dots are 12 to 12n. Electrostatic bonding stacked o concubine 5 wherein some of the quantum dot crystals Hyun 12nl having high internal quantum efficiency (High 6 1376035
Interna丨 Quantum Efficiency),因量子侷限效應 (Quantum-Confinement Effect)的影響,能在該 χ 光射線 200的照射下產生光電流。金屬電極13〇係接觸於最上層 的該量子點薄層12η之上,其中金屬電極!3〇與基板電^ 110之間具有一電位差。偵測單元14〇係電連接於基板電 極110及金屬電極130,係於該電位差之下,量測金屬電 極13 0與基板氧極11 〇之間的電流,以债測出於該電位差Interna丨 Quantum Efficiency), due to the influence of the Quantum-Confinement Effect, produces photocurrent under the illumination of the X-ray ray 200. The metal electrode 13 is in contact with the uppermost layer of the quantum dot layer 12n, wherein the metal electrode! There is a potential difference between the metal plate and the substrate. The detecting unit 14 is electrically connected to the substrate electrode 110 and the metal electrode 130, and is under the potential difference, and measures the current between the metal electrode 13 0 and the substrate oxygen electrode 11 , to measure the potential difference.
之下的該光電流的大小,並透過計算該光電流的大小,以 判斷出该X光射線200的強弱。因此,能提供作為感測χ 光之功用。 其中,因泫些量子點晶體的尺寸小至奈米等級,其電 子口又到星子侷限效應的影響,除了會使原本連續的能帶 結構變為分裂的能階結構之外,也會使原來的間接能隙變 為接近直接能隙的能帶結構,使得其最低能量狀態密度 =ensity Qf States)大為增加,因此,受χ光光子的衝 鲁}會產生數個電子’使載體或帶電體倍增,亦即產生倍增 =電子或空穴(Carrier MultlplicatiGn)的現象,而產^ ,外’本發明之基板電極11〇係藉由化學反應,使基 =電極110的表面形成複數個靜電配位基⑴gands)⑴, #電配位基111透過靜電而鍵結量子點薄層⑵的該 ^量子點晶體1211 ’而形成量子點薄層121於基板電極 上。另外,上述的該些量子點薄層ι2ΐ〜⑽,其中 5層的S亥買子點薄層上之該些量子點晶體,其表面所帶 7 1376035 * » 的,=电性均相同,而相鄰的量子點薄層上個別的該此旦 子點:體表面所帶的靜電電性相異,而藉由靜電鍵結:: 如子點薄層122與量子點薄層123,其個別的該此= 子點晶體1221及量子點晶體1231 *面所帶的靜電電^二 異,藉由該些量子點晶體1221、1231的靜電相互鍵纟士目 而使相鄰的量子點薄層122與量子點薄層123之間堆:鄰 接。如此,將一層接著一層帶著不同靜電電荷的量子點薄 層,透過靜電鍵結而相互堆疊,同時藉由反覆堆疊,量子 點薄層’而控制複數層量子點薄層120的層數及厚度,形 成所-月複數層自主成型(Layer-by-Layer Self-Assembly) 的量子點薄層。 再者,本發明之量子點薄層上用以照射X光的量子點 曰曰體’係為球形顆粒狀之奈米晶體(nan〇crySfal ),可包 含具有矽之半導體量子點晶體,較佳係選用CdTe量子點 晶體’但尚可包含適合之半導體材料,如MgS、MgSe、MgTe、The magnitude of the photocurrent below it is calculated by calculating the magnitude of the photocurrent to determine the strength of the X-ray ray 200. Therefore, it can be provided as a function of sensing the light. Among them, because the size of these quantum dot crystals is as small as the nanometer level, the influence of the electronic interface to the confinement effect of the stars, in addition to the original energy band structure into a split energy level structure, will also make the original The indirect energy gap becomes an energy band structure close to the direct energy gap, so that its lowest energy state density = ensity Qf States) is greatly increased. Therefore, the photon of the photon photon will generate several electrons to make the carrier or electrify. Bulk multiplication, that is, a phenomenon of doubling = electron or hole (Carrier MultlplicatiGn), and the substrate electrode 11 of the present invention is formed by a chemical reaction to form a plurality of electrostatics on the surface of the base electrode 110. The group (1) gands) (1), #电配基 111 is electrostatically bonded to the quantum dot crystal 1211' of the quantum dot layer (2) to form a quantum dot thin layer 121 on the substrate electrode. In addition, the above-mentioned quantum dot thin layers ι2 ΐ ~ (10), wherein the quantum dots crystals on the thin layer of the 5 layers of the S haibu sub-point have 7 1376035 * » on the surface, and the electrical properties are the same, The individual dendritic points on the adjacent thin layer of quantum dots: the electrostatic properties of the surface of the body are different, and by electrostatic bonding: such as the thin layer of sub-dots 122 and the thin layer of quantum dots 123, their individual The sub-pixel crystal 1221 and the quantum dot crystal 1231 are electrostatically charged by the surface of the quantum dot crystal 1221, and the adjacent quantum dot thin layer 122 is formed by electrostatic interaction of the quantum dot crystals 1221 and 1231. Heap between the thin layer 123 of quantum dots: abutting. In this way, a thin layer of quantum dots with different electrostatic charges is layered one after another, stacked by electrostatic bonding, and the number and thickness of the plurality of quantum dot thin layers 120 are controlled by stacking and stacking quantum dots. Forming a thin layer of quantum dots of the layer-by-Layer Self-Assembly. Furthermore, the quantum dot corpus callus for illuminating X-rays on the thin layer of the quantum dot of the present invention is a spherical granular nanocrystal (nan〇crySfal), which may comprise a semiconductor quantum dot crystal having germanium, preferably. CdTe quantum dot crystals are selected 'but may also contain suitable semiconductor materials such as MgS, MgSe, MgTe,
CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、 ZnS、ZnSe、ZnTe、CdS、CdSe、、HgS、HgSe 及 HgTe 等 II-VI 族的化合物;亦或’如 GaAs、GaP、GaAs-P、GaSb、 InAs、InP、InSb、AlAs、A1P、AlGaAs、InGaAs 及 AlSb 等III-V族的化合物。而本發明的基板電極,係為能供x 光射線穿透之導電基板,可為玻璃基板、矽基板、氧化鋁 (AUO3)基板、及砷化鎵(GaAs)基板,較佳係使用可透 光之銦錫氧化物(ΙΤ0)基板。 接下來,應用本發明方法之步驟流程,詳細說明本發 8 1376035 明利用里子點薄層之x光感測方法。配合參照第二圖,#、 為本發明之利用量子點薄層之x光感測方法之步驟流^ 圖。如圖所示,本發明之X光感測方法,首先,提供^ 2射線200能穿透之一基板電極110(步驟300)。接著, 藉由化學反應’形成複數個靜電配位基111於該基板電極 H0,面(步驟310)。然後,提供複數個表面帶一第—電 性之里子點晶體丨211,並與該些靜電配位基m 鍵結,形成-層帶第-電性之一量子點薄層121於該3 = 110上(步驟32〇),其中帶第_電性之量子點晶體 12γ,係與該些靜電配位基⑴靜電鍵結。待步驟32〇中 =子點薄層121形成之後,即透過靜電鍵結的自主成型 二耘的方式,反覆形成複數層量子點薄層120並覆於該美 二電極110上(步驟330)。在步驟33",待形成至二“ =層數η的量子點薄層12禮,接著形成—金屬電極⑽ =㈣最上層的該量子點_ 12η之上(步驟34〇)。然 < ’提供-電位差於該金屬電極13〇與該基板電極之 ,(步驟350)。接著,照、射一 χ光射線2G()於該些量子點 :層121〜12η以產生一光電流(步驟36〇)。然後,量測 &金屬電極130與該基板電極j i〇之間的電流,以偵測出 2電位差之下㈣光電流(讀_,再透過計算該光 ^的大小以判_ X光射線則的強弱(步驟期,最 2束本流程,以達成本發明之利用量子點薄層之χ光感 :方法。其中該些量子點晶體的尺寸小至奈米等級,因其 是子文到量子褐限效應(Quantum—c〇nf inement Ef的 9 1376035 影響,除了會使原本連續的能帶結構變為分裂的能階結構 之外,也會使原來的間接能隙變為接近直接能隙的能帶結 構’使得其最低能量狀態密度大為增加,因此,受X光光 子的衝擊會產生數個電子,即使得載體或帶電體倍增,亦 =產生倍增的電子或空穴(carrlerMultlpllcatlon)的現 象’而會產生光電流。 mjCompounds of Group II-VI such as CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, HgS, HgSe and HgTe; or 'such as GaAs, GaP, Compounds of Group III-V such as GaAs-P, GaSb, InAs, InP, InSb, AlAs, AlP, AlGaAs, InGaAs, and AlSb. The substrate electrode of the present invention is a conductive substrate capable of penetrating x-ray rays, and may be a glass substrate, a germanium substrate, an aluminum oxide (AUO3) substrate, or a gallium arsenide (GaAs) substrate, and is preferably permeable. Indium tin oxide (ΙΤ0) substrate. Next, the step flow of the method of the present invention is applied, and the x-ray sensing method using the thin layer of the neutron point is described in detail. Referring to the second figure, #, is the flow chart of the x-ray sensing method using the thin layer of quantum dots of the present invention. As shown in the figure, in the X-ray sensing method of the present invention, first, the 2 ray 200 is provided to penetrate one of the substrate electrodes 110 (step 300). Next, a plurality of electrostatic ligands 111 are formed on the substrate electrode H0 by a chemical reaction to form a surface (step 310). Then, a plurality of surfaces are provided with a first-electron neutron dot crystal 丨211, and are bonded to the electrostatic ligands m to form a layer-first photo-electrode thin layer 121 of the quantum dots. 110 (step 32A), wherein the quantum dot crystal 12γ having the first conductivity is electrostatically bonded to the electrostatic ligands (1). After the formation of the sub-point thin layer 121 in step 32, the multi-layer quantum dot thin layer 120 is overlaid and overlaid on the second electrode 110 (step 330). In step 33 ", a thin layer of quantum dots to be formed to two "=layer number η, then formed - the metal electrode (10) = (four) above the quantum layer _ 12η of the uppermost layer (step 34 〇). However < ' Providing a potential difference between the metal electrode 13A and the substrate electrode (step 350). Next, irradiating a ray beam 2G() to the quantum dots: layers 121~12n to generate a photocurrent (step 36) 〇). Then, measure the current between the metal electrode 130 and the substrate electrode ji〇 to detect the photocurrent (4) below the potential difference (read _, and then calculate the size of the light ^ to judge _ X The intensity of the light ray (step, the last two bundles of this process, to achieve the luminosity of the thin layer of quantum dots of the present invention: the method, wherein the size of the quantum dot crystal is as small as the nanometer level, because it is a child The influence of the quantum brown limit effect (Quantum-c〇nf inement Ef 9 1376035, in addition to the original continuous band structure into a split energy structure, will also make the original indirect energy gap close to direct The energy band structure of the energy gap makes the density of the lowest energy state increase greatly, so By the impact of X-ray photons, several electrons are generated, that is, the carrier or the charged body is multiplied, and the phenomenon of multiplying electrons or holes (carrlerMultlpllcatlon) is generated, and photocurrent is generated. mj
;^驟330巾尺巴言一細邵流程A之量 1=層:Γ成型製程。配合參照第三圖,係為本發明 2讀層自主成錄aye卜by_Layerself士se 薄細部Ϊ程圖。如圖所示,當步謂中帶 後,^之/里子點薄層121形成於基板電極110上之 第-電層帶第二電性之—量子點薄層122於帶 :層122係由複數個帶第二電性之量 乂里子, 成,且與帶第一電性 版1221組 結。於步驟二子點晶體⑵透過靜電鍵 形成另-^ 第二電性之量子點薄層⑵形成後,再 該量子點帶第二電性之 二量子點薄層的層數(=:接;是==達, ®子點薄層】川夕丨疋古凡成该複數層 到所需之量子程。若於步驟咖中,6達 程尚未達到所需之量= Ϊ層120之自主成型製 依序進行步驟331及的特:層數,則繼續反覆 驟332,以为別形成帶相異靜電電 1376035 ::的夏子點薄層’即帶第二電性“ 126..·,與帶第—電性 之里子點缚層J22、J24、 使該些量子點薄 】:點•層⑶、125、127.·.,並 ,成特互鍵結 错此,將-層接1帶著 ^層⑽。; ^ 330 330 towel feet bar a fine Shao process A amount 1 = layer: Γ molding process. Referring to the third figure, it is the second aspect of the present invention. The second reading layer is autonomously recorded by ayeb by_Layerself. As shown in the figure, when the step is said to be in the middle, the thin layer 121 of the / zizi point is formed on the substrate electrode 110, and the second layer of the second layer is formed by the second layer of the quantum dots. A plurality of entanglements with a second electrical quantity are formed and assembled with the first electrical version 1221. After the second sub-crystal (2) forms a thin layer (2) of the second electrical quantum dot through the electrostatic bond, the quantum dot has the second electrical quantum layer of the quantum layer (=: connected; ==Da, ® sub-dot thin layer] Chuan Xiyu Gu Fan into the complex layer to the required quantum process. If in the step coffee, 6 Dacheng has not yet reached the required amount = Ϊ layer 120 of the independent molding system Steps 331 and the number of layers are sequentially performed, and then the step 332 is continued, so that the thin layer of the Xia Zi point with the different electrostatic electricity 1736035 :: is formed with the second electrical property 126..·, with the strip - Electrical lining layer J22, J24, make these quantum dots thin]: point • layer (3), 125, 127.., and, the special mutual bond is wrong, this will be connected to 1 with ^ Layer (10).
過靜電鍵結而自行相互鍵社堆何的好點薄層,透 形成量子點薄層,而控制“2 ’同%亦可藉由反覆 為,自主成型的量層數及厚度,而成 測方述’本發明之量子點薄層之x光感測元件及感 點薄席:要:! ί過靜電鍵結的自主成型製程所形成量子 的方=除了成間易地控制量子點薄層形成的層數及厚度 =式:更能將量子點薄層形成於任—非平面的結構上。After the electrostatic bonding, the thin layer of the self-bonding layer is formed by itself, and the thin layer of the quantum dot is formed, and the control "2' and % can also be measured by the repeated layer, the number of layers and the thickness of the self-forming layer. The invention relates to the x-ray sensing element of the quantum dot thin layer of the invention and the thin point of the sensing point: to: ί The quantum form formed by the independent molding process of the electrostatic bonding = the thin layer of the quantum dot is controlled in addition to the inter-generation The number of layers and thickness formed = formula: a thin layer of quantum dots can be formed on any non-planar structure.
=用體的量子侷限效應’使得量子點晶體在X 切線的照射下產生光電流,再藉由偵測出光電流的大 、’以判斷出該X光射線的強弱’而可作為感測χ光之功 用。 、雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第一圖,係為本發明之量子點薄層之X光感測元件之較佳 實施例示意圖。 1376035 苐二圖,係為本發明 步驟流程圖。 旬用畺子點薄層之χ光感測方法之 自主成型之量子點薄層 第三圖,係為本發明之形成複數層 之細部流程圖。 【主要元件符號說明】 : X光感測元件 ]1 0 :基板電極 • 111 :靜電配位基 120 :複數層量子點薄層 1 21〜12 η :量子點薄層 121】〜12η]:量子點晶體 ]3 0 .金屬電極 ]40 :偵測單元 200 : X光射線 步驟300〜380 :方法步驟 12= quantum confinement effect of the body' causes the quantum dot crystal to generate photocurrent under the illumination of the X tangent, and can be used as the sensing dimming by detecting the large photocurrent, 'to determine the strength of the X-ray ray' Its function. The present invention has been described above in terms of a preferred embodiment, and is not intended to limit the invention, and various modifications and changes may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic view of a preferred embodiment of an X-ray sensing element of a thin layer of quantum dots of the present invention. 1376035 The second figure is a flow chart of the steps of the present invention. A self-formed quantum dot thin layer using a thin layer of tantalum light sensing method. The third figure is a detailed flow chart for forming a plurality of layers of the present invention. [Main component symbol description] : X-ray sensing device] 1 0 : substrate electrode • 111 : electrostatic ligand 120 : plural quantum dot thin layer 1 21~12 η : quantum dot thin layer 121]~12η]: quantum Dot crystal] 3 0 . metal electrode ] 40 : detection unit 200 : X-ray step 300 to 380 : method step 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97151556A TWI376035B (en) | 2008-12-31 | 2008-12-31 | X-ray photodetector of quantum dots thin film and photodetecting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97151556A TWI376035B (en) | 2008-12-31 | 2008-12-31 | X-ray photodetector of quantum dots thin film and photodetecting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201025628A TW201025628A (en) | 2010-07-01 |
TWI376035B true TWI376035B (en) | 2012-11-01 |
Family
ID=44852665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97151556A TWI376035B (en) | 2008-12-31 | 2008-12-31 | X-ray photodetector of quantum dots thin film and photodetecting method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI376035B (en) |
-
2008
- 2008-12-31 TW TW97151556A patent/TWI376035B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201025628A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density | |
Kholmicheva et al. | Energy transfer in quantum dot solids | |
Sun et al. | Recent advances in two‐dimensional heterostructures: From band alignment engineering to advanced optoelectronic applications | |
Sun et al. | Vertically segregated hybrid blends for photovoltaic devices with improved efficiency | |
Büchele et al. | X-ray imaging with scintillator-sensitized hybrid organic photodetectors | |
EP3101695B1 (en) | Device for direct x-ray detection | |
KR101111215B1 (en) | Electromagnetic radiation converter and a battery | |
Li et al. | Are inorganic lead halide perovskite nanocrystals promising scintillators? | |
JP2002531958A (en) | Organic solar cells or light emitting diodes | |
JP2011526071A (en) | Photodetector and manufacturing method thereof | |
Nagaura et al. | Universal electrochemical synthesis of mesoporous chalcogenide semiconductors: Mesoporous CdSe and CdTe thin films for optoelectronic applications | |
US7196333B1 (en) | Radiation detector using a composite material and method for making same | |
Ghods et al. | Plasmonic enhancement of photocurrent generation in two-dimensional heterostructure of WSe2/MoS2 | |
Jin et al. | Precise control of the oxidation state of PbS quantum dots using rapid thermal annealing for infrared photodetectors | |
TW202017219A (en) | Semiconductor structure, optoelectronic device, photodetector and spectrometer | |
Jin et al. | Solution‐Processed Perovskite/Metal‐Oxide Hybrid X‐Ray Detector and Array with Decoupled Electronic and Ionic Transport Pathways | |
Park et al. | Plasmonic nanoparticles on graphene absorber for broadband high responsivity 2D/3D photodiode | |
Mukherjee et al. | Vertical architecture solution-processed quantum dot photodetectors with amorphous selenium hole transport layer | |
Hao et al. | Position‐Sensitive Array Photodetector Based on Comb‐Like CdS Nanostructure with Cone‐Shape Branches | |
TWI376035B (en) | X-ray photodetector of quantum dots thin film and photodetecting method thereof | |
Xiang et al. | Flexible indirect x-ray detector enabled by organic photodiode and CsPbBr3 perovskite quantum dot scintillator | |
US11875908B2 (en) | Electrode with radioisotope and phosphor composite layer for hybrid radioisotope batteries and radioluminescent surfaces | |
EP3571726B1 (en) | Plasmonic metamaterial structure and method for its preparation | |
Lee et al. | Gap‐Mode Plasmon‐Induced Photovoltaic Effect in a Vertical Multilayer Graphene Homojunction | |
Ng et al. | Direct electronic property imaging of a nanocrystal-based photovoltaic device by electron beam-induced current via scanning electron microscopy |