TW201812339A - Epicentral distance estimating device, epicentral distance estimating method, and computer-readable recording medium - Google Patents
Epicentral distance estimating device, epicentral distance estimating method, and computer-readable recording medium Download PDFInfo
- Publication number
- TW201812339A TW201812339A TW106122623A TW106122623A TW201812339A TW 201812339 A TW201812339 A TW 201812339A TW 106122623 A TW106122623 A TW 106122623A TW 106122623 A TW106122623 A TW 106122623A TW 201812339 A TW201812339 A TW 201812339A
- Authority
- TW
- Taiwan
- Prior art keywords
- waveform data
- learning
- data
- epicenter distance
- learning model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 60
- 238000012545 processing Methods 0.000 claims abstract description 84
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 238000007781 pre-processing Methods 0.000 claims description 24
- 238000013528 artificial neural network Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 description 21
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本發明係關於在地震發生時推定震央距離所用的震央距離推定裝置及震央距離推定方法,也關於記錄實現前述方法所用的程式之電腦可讀取之記錄媒體。The present invention relates to an epicenter distance estimation device and an epicenter distance estimation method for estimating an epicenter distance when an earthquake occurs, and also to a computer-readable recording medium that records a program used to implement the foregoing method.
在地震發生時,為了推定各地的震度及主要震動的到達時刻,必須迅速確定震央距離。通常,震央距離的深度會由在複數地點的震度計所檢測的震度而確定。In the event of an earthquake, in order to estimate the magnitude of the earthquake and the time of arrival of the main shock, the epicenter distance must be quickly determined. In general, the depth of the epicenter distance is determined by the magnitude detected by the seismometer at multiple locations.
然而,震源的位置在海底或者在震度計的設置密度較低的地域的話,為了取得由複數個震度計所測定的震度,必須耗費過多時間,導致無法及時確定震央距離。因此,近年來,開發出僅使用單一震度計所測定的震度以確定震央距離的技術。However, if the location of the earthquake source is on the sea floor or in an area where the density of the seismometer is relatively low, it takes too much time in order to obtain the magnitude measured by multiple seismometers, and the epicenter distance cannot be determined in time. Therefore, in recent years, a technique for determining the epicenter distance using only the magnitude measured by a single seismometer has been developed.
作為這種技術,已知有利用「地震到達時的地震波形資料之上升強度係愈靠近震源的地震則愈強,震源愈遠的地震則愈平緩」,而推定震央距離的技術(例如參考專利文獻1)。As such a technique, a technique that estimates the epicenter distance by using "the intensity of the seismic waveform data at the time of the arrival of the earthquake is closer to the epicenter, and the farther the earthquake is, the more gentle" is known. Literature 1).
具體而言,在專利文獻1所揭示的技術,將從地震計所得的時間數列資料之絶對値設為y(t),將時間設為t,將地震計檢測到地震的時間設為t=0,由地震計所取得的地震初動部分之波形形狀藉由下述數學式1所示的函數擬合。在下述數學式1,A為與初動部分的最大振幅相關的參數,B為與地震波形的初動振幅之時間變化相關的參數。尚且,實際上,在擬合過程中,必須仰賴人的經驗與直覺,以便將複雜的個別地點屬性反映在影響因素及方式不明的參數A及B。Specifically, in the technique disclosed in Patent Document 1, the absolute value of the time series data obtained from the seismometer is set to y (t), the time is set to t, and the time when the seismometer detects an earthquake is set to t = 0, the waveform shape of the initial motion portion of the earthquake obtained by the seismometer is fitted by a function shown in the following mathematical formula 1. In the following mathematical formula 1, A is a parameter related to the maximum amplitude of the initial motion part, and B is a parameter related to the time variation of the initial motion amplitude of the seismic waveform. Moreover, in fact, in the fitting process, human experience and intuition must be relied on in order to reflect the complex individual location attributes in the influencing factors and the parameters A and B of unknown methods.
【數學式1】 [Mathematical formula 1]
然後,在專利文獻1所揭示的技術,藉由最小平方法求得參數A及B。其中,可知雖然參數B與震央距離之間具有相互關係,但此一相互關係不會受到地震規模影響。因此,若預先將參數B與震央距離之間的關係予以公式化,則藉由從地震初動部分的波形形狀,利用數學式1算出參數B,即可確定震央距離。若依照專利文獻1所揭示的技術,則可從地震初動部分的波形形狀,迅速確定震央距離。 [先前技術文獻] [專利文獻]Then, in the technique disclosed in Patent Document 1, parameters A and B are obtained by a least square method. It can be seen that although there is a correlation between the parameter B and the epicenter distance, this correlation will not be affected by the magnitude of the earthquake. Therefore, if the relationship between the parameter B and the epicenter distance is formulated in advance, the epicenter distance can be determined by calculating the parameter B using Mathematical Formula 1 from the waveform shape of the initial motion portion of the earthquake. According to the technique disclosed in Patent Document 1, the epicenter distance can be quickly determined from the waveform shape of the initial motion portion of the earthquake. [Prior Art Literature] [Patent Literature]
[專利文獻1]日本特開2002-277557號公報[Patent Document 1] Japanese Patent Laid-Open No. 2002-277557
[發明所欲解決的課題] 然而,專利文獻1所揭示的技術在某些狀況下會發生無法算出係數A及B的情形,而也有可靠性不足的問題。另外,專利文獻1所揭示的技術也有不易將算出震央距離所需的時間縮短的問題。[Problems to be Solved by the Invention] However, in the technique disclosed in Patent Document 1, in some cases, the coefficients A and B cannot be calculated, and there is also a problem of insufficient reliability. In addition, the technique disclosed in Patent Document 1 has a problem that it is not easy to shorten the time required to calculate the epicenter distance.
本發明的目的之一例提供可解決上述問題,並且穩定地算出震央距離,並且可使算出時間縮短之震央距離推定裝置、震央距離推定方法及電腦可讀取之記錄媒體。 [用於解決課題的手段]An object of the present invention is to provide an epicenter distance estimation device, an epicenter distance estimation method, and a computer-readable recording medium that can solve the above-mentioned problems and stably calculate the epicenter distance and shorten the calculation time. [Means for solving problems]
為了達成上述目的,本發明的一型態之震央距離推定裝置的特徵為:具備: 地震資訊取得部,其取得已發生的地震之波形資料;及 推定處理部,其對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。In order to achieve the above object, a type of epicenter distance estimation device of the present invention is characterized by having: an earthquake information acquisition unit that acquires waveform data of an earthquake that has occurred; and an estimation processing unit that learns waveform data of an earthquake and The learning model obtained from the relationship between the epicenter distances applies the previously obtained waveform data to estimate the epicenter distances.
另外,為了達成上述目的,本發明的一型態之震央距離推定方法的特徵為:具有以下步驟: (a)取得已發生的地震之波形資料的步驟; (b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。In addition, in order to achieve the above-mentioned object, a method of estimating the epicenter distance of the present invention is characterized by having the following steps: (a) a step of obtaining waveform data of an earthquake that has occurred; (b) learning waveform data of an earthquake and The learning model obtained from the relationship between the epicenter distances applies the previously obtained waveform data to estimate the epicenter distances.
此外,為了達成上述目的,本發明的一型態之電腦可讀取之記錄媒體的特徵為:記錄一程式,該程式包含在電腦中執行以下步驟的命令: (a)取得已發生的地震之波形資料的步驟; (b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 [發明效果]In addition, in order to achieve the above-mentioned object, a type of computer-readable recording medium of the present invention is characterized in that a program is recorded, and the program includes a command for executing the following steps in the computer: (a) obtaining the earthquake Steps of waveform data; (b) For the learning model obtained by studying the relationship between the waveform data of the earthquake and the epicenter distance, the previously obtained waveform data is applied to estimate the epicenter distance. [Inventive effect]
如以上所述,若依照本發明,則可穩定地算出震央距離,並且可使算出時間縮短。As described above, according to the present invention, the epicenter distance can be calculated stably, and the calculation time can be shortened.
(實施型態1) 以下,針對本發明的實施形態1之震央距離推定裝置、震央距離推定方法及程式,參考圖1~圖5來説明。(Embodiment Mode 1) Hereinafter, the epicenter distance estimation device, the epicenter distance estimation method, and the program according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5.
[裝置構成] 首先,使用圖1說明本實施形態1的震央距離推定裝置之概略構成。圖1為表示本發明的實施型態1之震央距離推定裝置的概略構成之方塊圖。[Apparatus configuration] First, a schematic configuration of the epicenter distance estimation apparatus according to the first embodiment will be described with reference to FIG. 1. FIG. 1 is a block diagram showing a schematic configuration of an epicenter distance estimation device according to a first embodiment of the present invention.
如圖1所示,本實施型態1的震央距離推定裝置10為從地震發生時所量測的波形資料推定震央距離所用的裝置。如圖1所示,震央距離推定裝置10具備地震資料取得部11及推定處理部12。As shown in FIG. 1, the epicenter distance estimation device 10 of the first embodiment of the present embodiment is a device for estimating the epicenter distance from waveform data measured when an earthquake occurs. As shown in FIG. 1, the epicenter distance estimation device 10 includes a seismic data acquisition unit 11 and an estimation processing unit 12.
地震資料取得部11會取得已發生的地震之波形資料。推定處理部12會對學習模型套用藉由地震資料取得部11所取得的波形資料,而推定震央距離。學習模型係預先藉由學習地震的波形資料與震央距離之間的關係而得到。The seismic data acquisition unit 11 acquires waveform data of an earthquake that has occurred. The estimation processing unit 12 applies waveform data obtained by the seismic data acquisition unit 11 to the learning model to estimate the epicenter distance. The learning model is obtained in advance by learning the relationship between the waveform data of the earthquake and the epicenter distance.
如此一來,本實施型態1係與以往的技術不同,不必使波形資料擬合到函數即可推定震央距離,因此可穩定地算出震央距離。另外,在本實施型態1,不需要利用最小平方法進行計算處理,故可使算出時間縮短。In this way, the first embodiment is different from the conventional technology in that the epicenter distance can be estimated without fitting the waveform data to a function, so the epicenter distance can be calculated stably. In addition, in the first aspect of the present embodiment, it is not necessary to perform the calculation process by using the least square method, so the calculation time can be shortened.
接著,使用圖2,更具體說明本實施型態1的震央距離推定裝置之構成。圖2為具體表示本發明的實施型態1之震央距離推定裝置的構成之方塊圖。Next, the configuration of the epicenter distance estimation device according to the first embodiment of the present invention will be described in more detail with reference to FIG. 2. FIG. 2 is a block diagram specifically showing the configuration of the epicenter distance estimation device according to the first embodiment of the present invention.
如圖2所示,在本實施型態1,震央距離推定裝置10會經由網絡而連接到地震檢測裝置20及地震活動等綜合監視系統30。其中,地震檢測裝置20係具備地震計,當藉由地震計檢測地震波時,檢測到的地震波之波形資料會被傳送到震央距離推定裝置10。在本實施型態1,地震檢測裝置20為地震資料取得部11之波形資料的取得來源。As shown in FIG. 2, in the first embodiment, the epicenter distance estimation device 10 is connected to an integrated monitoring system 30 such as an earthquake detection device 20 and an earthquake activity via a network. Among them, the seismic detection device 20 is provided with a seismometer, and when the seismic wave is detected by the seismometer, the waveform data of the detected seismic wave is transmitted to the epicenter distance estimation device 10. In the first embodiment, the seismic detection device 20 is the acquisition source of the waveform data of the seismic data acquisition unit 11.
另外,在圖2之例,雖然僅例示單一地震檢測裝置20,但連接有震央距離推定裝置10的地震檢測裝置20之數量並未特別限定。然而,作為地震資料取得部11之取得來源的地震檢測裝置20可為在這之中的任1個。In the example of FIG. 2, although only a single seismic detection device 20 is exemplified, the number of seismic detection devices 20 to which the epicenter distance estimation device 10 is connected is not particularly limited. However, the seismic detection device 20 as the acquisition source of the seismic data acquisition unit 11 may be any one of them.
地震活動等綜合監視系統30在日本為氣象廳所保有的系統,當地震發生時,該系統會算出氣象廳地震規模,再基於已算出的氣象廳地震規模,預測海嘯高度。此外,地震活動等綜合監視系統30會將已算出的氣象廳地震規模及已預測的海嘯高度以緊急地震速報的方式傳達給各種媒體。The integrated monitoring system 30 such as seismic activity is a system maintained by the Meteorological Agency in Japan. When an earthquake occurs, the system calculates the magnitude of the meteorological agency's earthquake, and then estimates the tsunami height based on the calculated magnitude of the meteorological agency's earthquake. In addition, the integrated monitoring system 30 such as an earthquake activity transmits the calculated meteorological agency earthquake scale and predicted tsunami height to various media in the form of an emergency earthquake alert.
另外,在本實施型態1,震央距離推定裝置10會將已推定的震央距離輸入到地震活動等綜合監視系統30。因此,地震活動等綜合監視系統30會使用由震央距離推定裝置10所推定的震央距離,而算出氣象廳地震規模及預測海嘯高度。In addition, in the first embodiment, the epicenter distance estimation device 10 inputs the estimated epicenter distance to a comprehensive monitoring system 30 such as seismic activity. Therefore, the integrated monitoring system 30 such as seismic activity uses the epicenter distance estimated by the epicenter distance estimation device 10 to calculate the magnitude of the meteorological agency earthquake and the predicted tsunami height.
另外,如圖2所示,在本實施型態1,震央距離推定裝置10除了上述的地震資料取得部11及推定處理部12,更具備學習資料取得部13、學習部14及儲存部15。尚且,圖2表示震央距離推定裝置10的一例,學習資料取得部13、學習部14及儲存部15可位在震央距離推定裝置10以外的裝置。As shown in FIG. 2, in the first embodiment, the epicenter distance estimation device 10 includes a learning data acquisition unit 13, a learning unit 14, and a storage unit 15 in addition to the above-mentioned seismic data acquisition unit 11 and estimation processing unit 12. In addition, FIG. 2 shows an example of the epicenter distance estimation device 10. The learning data acquisition unit 13, the learning unit 14, and the storage unit 15 may be located in a device other than the epicenter distance estimation device 10.
學習資料取得部13會取得在後述的學習部14之學習中成為輸入資料的波形資料、及同樣在學習時作為正解資料的震央距離,並予以輸入到學習部14。尚且,輸入資料及正解資料的取得來源並未特別限定於此。The learning material acquisition unit 13 acquires the waveform data which becomes input data during the learning of the learning unit 14 described later, and the epicenter distance, which is also a positive solution data during learning, and inputs them to the learning unit 14. Moreover, the source of input data and correct solution data is not particularly limited to this.
學習部14將地震的波形資料作為輸入資料,將地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型16。另外,學習部14將已產生的學習模型16儲存在儲存部15。The learning unit 14 uses the waveform data of the earthquake as input data, uses the epicenter distance of the earthquake as positive solution data, learns the relationship between the waveform data and the epicenter distance, and then generates a learning model 16 representing the learning result. In addition, the learning unit 14 stores the generated learning model 16 in the storage unit 15.
圖3為表示本實施型態1中用於學習的輸入資料及正解資料的一例之圖。在圖3表示震央距離不同的複數個波形資料。圖3所示的各波形資料為過去所觀測的地震之波形資料。另外,對應各波形資料的震央距離為正解資料。學習部14將圖3所示的各波形資料作為輸入資料,將震央距離作為正解資料,而進行學習。FIG. 3 is a diagram showing an example of input data and positive solution data for learning in the first embodiment of the present invention. A plurality of waveform data with different epicenter distances are shown in FIG. 3. Each waveform data shown in FIG. 3 is waveform data of earthquakes observed in the past. In addition, the epicenter distance corresponding to each waveform data is the positive solution data. The learning unit 14 uses the waveform data shown in FIG. 3 as input data, and uses the epicenter distance as the positive solution data for learning.
另外,在本實施型態1,作為正解資料,可使用氣象廳公佈的資料。氣象廳公佈的資料包含各觀測點的震央距離及震源要素,這些資料係氣象廳利用一元化系統所計算的檢測値(http://www.data.jma.go.jp/svd/eqev/data/bulletin/ deck.html)而求得。此外,在本實施型態1,用於學習的輸入資料及正確資料由震度為設定値(例如震度4)以上的地震所計算者為佳。In addition, in the first embodiment, as the forward solution data, data published by the Meteorological Agency can be used. The data published by the Meteorological Agency includes the epicenter distance and source factors of each observation point. These data are the detections calculated by the Meteorological Agency using a unified system (http://www.data.jma.go.jp/svd/eqev/data/ bulletin / deck.html). In addition, in the first embodiment, the input data and correct data used for learning are preferably calculated by an earthquake whose magnitude is greater than or equal to 値 (eg, magnitude 4).
另外,在本實施型態1,學習部14例如可藉由機械學習而建構神經網路,然後將神經網路設成學習模型16。具體而言,學習部14在具備輸入層、中間層及輸出層的階層型神經網路中,使用輸入資料與正解資料,藉由調整相鄰之層的節點間的耦合之値,而產生學習模型。In addition, in the first embodiment, the learning unit 14 may construct a neural network through mechanical learning, and then set the neural network as the learning model 16. Specifically, the learning unit 14 generates learning by using input data and positive solution data in a hierarchical neural network including an input layer, an intermediate layer, and an output layer, and adjusting the coupling between nodes in adjacent layers. model.
另外,在本實施型態1,學習部14進行的「學習」係指所謂的「機械學習」。此外,學習部14進行的「學習」並不限於使用上述的神經網路之深層學習,可為使用邏輯回歸的學習、使用支援向量機的學習、使用決策樹的學習及異種混合學習等。In addition, in the first embodiment, the “learning” performed by the learning unit 14 means a so-called “mechanical learning”. In addition, the "learning" performed by the learning unit 14 is not limited to deep learning using the neural network described above, and may be learning using logistic regression, learning using a support vector machine, learning using a decision tree, and heterogeneous hybrid learning.
地震資料取得部11在本實施型態1從單一地震檢測裝置20接收已發生的地震之波形資料。另外,地震資料取得部11將已接收的波形資料傳送到推定處理部12。The seismic data acquisition unit 11 receives waveform data of an earthquake that has occurred from a single seismic detection device 20 in the first embodiment. The seismic data acquisition unit 11 transmits the received waveform data to the estimation processing unit 12.
推定處理部12在本實施型態1存取儲存部15,取得學習模型16,再對已取得的學習模型16套用從學習資料取得部13傳送的波形資料,藉此推定震央距離。The estimation processing unit 12 accesses the storage unit 15 in the first embodiment, acquires the learning model 16, and applies the waveform data transmitted from the learning data acquisition unit 13 to the acquired learning model 16 to estimate the epicenter distance.
另外,在本實施型態1,學習部14還可另外使用地震的震源之深度作為正解資料,以便學習波形資料、震央距離及震源的深度之間的關係,而產生學習模型16。此時,推定處理部12除了可推定震央距離,還可推定震源的深度。In addition, in the first embodiment, the learning unit 14 may further use the depth of the earthquake source as the positive solution data, so as to learn the relationship between the waveform data, the epicenter distance, and the depth of the earthquake source to generate a learning model 16. At this time, the estimation processing unit 12 can estimate the depth of the seismic source in addition to the epicenter distance.
此外,在本實施型態1,學習部14除了可將波形資料作為輸入資料,還可將已取得波形資料的地點之地點資料作為輸入資料使用。此時,學習部14會學習波形資料及地點資料、與震央距離(或震央距離及震源的深度)之間的關係,而產生學習模型16。In addition, in the first embodiment, in addition to the waveform data as the input data, the learning unit 14 can also use the location data of the location where the waveform data has been obtained as the input data. At this time, the learning unit 14 learns the relationship between the waveform data and location data, and the epicenter distance (or the epicenter distance and the depth of the epicenter), and generates a learning model 16.
在此,已取得波形資料的地點係指已觀測到作為波形資料之來源的地震波之地點。另外,作為地點資料,例如可舉出表層地盤增幅率、表示板塊的狀態之資料、表示已觀測到地震波的地點附近所存在的火山之資料、地殻厚度、岩石圈厚度等。如此一來,若使用波形資料與地點資料這兩者作為輸入資料而產生學習模型16,則可提升推定處理的精確度。Here, the place where the waveform data has been obtained refers to a place where a seismic wave has been observed as a source of the waveform data. In addition, as the location data, for example, the surface area increase rate, the data indicating the state of the plate, the data indicating the volcano existing near the place where the seismic wave was observed, the thickness of the crust, and the thickness of the lithosphere. In this way, if the learning model 16 is generated using both waveform data and location data as input data, the accuracy of the estimation processing can be improved.
使用地點資料作為學習的輸入資料時,地震資料取得部11除了取得已發生的地震之波形資料,還會取得已取得此波形資料的地點之地點資料,也就是設置有地震檢測裝置20的地點之地點資料。When using location data as input data for learning, in addition to acquiring waveform data of an earthquake that has occurred, the seismic data acquisition unit 11 will also acquire location data of the location where the waveform data has been obtained, that is, the location of the location where the seismic detection device 20 is installed. Location information.
另外,地點資料可預先儲存在各個地震檢測裝置20的儲存部15,在這個態様,每當地震資料取得部11取得波形資料,就會從儲存部15取得對應的地點資料。另外,地點資料可從地震檢測裝置20連同波形資料共同被傳送,在這個態様,地震資料取得部11會連同波形資料取得地點資料。In addition, the location data may be stored in advance in the storage unit 15 of each seismic detection device 20. In this state, whenever the seismic data acquisition unit 11 acquires waveform data, the corresponding location data is acquired from the storage unit 15. In addition, the location data may be transmitted from the seismic detection device 20 together with the waveform data. In this state, the seismic data acquisition unit 11 will obtain the location data together with the waveform data.
此外,使用地點資料作為學習的輸入資料時,推定處理部12會對藉由學習部14而產生的學習模型16套用已取得的波形資料及地點資料,而推定震央距離(或震央距離及震源的深度)。In addition, when using location data as input data for learning, the estimation processing unit 12 applies the acquired waveform data and location data to the learning model 16 generated by the learning unit 14, and estimates the epicenter distance (or the epicenter distance and the source of the epicenter). depth).
尚且,在本實施型態1,輸入資料及正解資料並不限定於上述的範例。可使用波形資料及地點資料以外的資料作為輸入資料。另外,可使用震央距離及震源的深度以外的資料作為正解資料。Moreover, in the first embodiment, the input data and the positive solution data are not limited to the above examples. Data other than waveform data and location data can be used as input data. In addition, data other than the epicenter distance and the focal depth can be used as the positive solution data.
[裝置動作] 接著,針對本實施型態1的震央距離推定裝置10之動作使用圖4及圖5進行説明。在以下的説明會適當參考圖1~圖3。另外,在本實施型態1,藉由使震央距離推定裝置10動作,而實施震央距離推定方法。因此,本實施型態1的震央距離推定方法之説明會取代以下的震央距離推定裝置10之動作説明。[Device Operation] Next, the operation of the epicenter distance estimation device 10 according to the first embodiment will be described with reference to FIGS. 4 and 5. In the following description, FIGS. 1 to 3 will be appropriately referred to. In addition, in the first embodiment, the epicenter distance estimation device 10 is operated to implement the epicenter distance estimation method. Therefore, the description of the epicenter distance estimation method in the first embodiment will replace the following description of the operation of the epicenter distance estimation device 10.
在本實施型態1,震央距離推定裝置10主要執行學習處理及推定處理。首先,說明學習處理。圖4為表示本發明的實施型態1之震央距離推定裝置的學習處理執行時之動作的流程圖。In the first embodiment, the epicenter distance estimation device 10 mainly performs learning processing and estimation processing. First, the learning process will be described. FIG. 4 is a flowchart showing an operation when the learning process of the epicenter distance estimation device according to the first embodiment of the present invention is executed.
如圖4所示,首先,學習資料取得部13取得輸入資料及正解資料(步驟A1)。具體而言,在步驟A1,學習資料取得部13除了將波形資料作為輸入資料,更取得地點資料作為輸入資料,除了將震央距離作為正解資料,更取得震源的深度作為正解資料。As shown in FIG. 4, first, the learning material acquisition unit 13 obtains input data and correct solution data (step A1). Specifically, in step A1, in addition to the waveform data as the input data, the learning data acquisition unit 13 also acquires the location data as the input data, in addition to the epicenter distance as the positive solution data, and the depth of the seismic source as the positive solution data.
接著,學習部14會判斷學習模型16是否已經存在(步驟A2)。具體而言,學習部14判斷在儲存部15是否儲存學習模型16。Next, the learning unit 14 determines whether the learning model 16 already exists (step A2). Specifically, the learning unit 14 determines whether or not the learning model 16 is stored in the storage unit 15.
步驟A2的判定之結果為學習模型16尚未存在時,學習部14會學習波形資料及地點資料、與震央距離及震源的深度之間的關係,然後新產生表示學習結果的學習模型16(步驟A3)。If the result of the determination in step A2 is that the learning model 16 does not yet exist, the learning unit 14 learns the relationship between the waveform data and location data, the epicenter distance and the depth of the epicenter, and then newly generates a learning model 16 representing the learning result (step A3 ).
具體而言,在步驟A3,學習部14會藉由學習而建構神經網路,並予以作為學習模型16。另外,學習部14會將已作成的學習模型16儲存於儲存部15。Specifically, in step A3, the learning unit 14 constructs a neural network through learning and uses it as a learning model 16. The learning unit 14 stores the created learning model 16 in the storage unit 15.
另外,步驟A2的判定之結果為學習模型16已經存在時,學習部14會使用在步驟A1所取得的輸入資料與正解資料,以便更新既有的學習模型16(步驟A4)。具體而言,學習部14會使用在步驟A1所取得的輸入資料與正解資料,而更新節點間的耦合之値。In addition, when the result of the determination in step A2 is that the learning model 16 already exists, the learning unit 14 uses the input data and positive solution data obtained in step A1 to update the existing learning model 16 (step A4). Specifically, the learning unit 14 uses the input data and the positive solution data obtained in step A1 to update the coupling between the nodes.
藉由執行步驟A1~A4,可作成或更新學習模型。然後,使用已作成或更新的學習模型來執行推定處理。圖5為表示本發明的實施型態1之震央距離推定裝置的推定處理執行時之動作的流程圖。By executing steps A1 to A4, a learning model can be created or updated. Then, the estimation process is executed using the created or updated learning model. FIG. 5 is a flowchart showing an operation when the estimation process of the epicenter distance estimation device according to the first embodiment of the present invention is executed.
如圖5,首先,從地震檢測裝置20傳送已發生的地震之波形資料的話,地震資料取得部11會接收已傳送的波形資料(步驟B1)。As shown in FIG. 5, first, when waveform data of an earthquake that has occurred is transmitted from the seismic detection device 20, the seismic data acquisition unit 11 receives the transmitted waveform data (step B1).
接著,地震資料取得部11會從儲存部15取得設置有已傳送波形資料的地震檢測裝置20之地點的地點資料(步驟B2)。尚且,地點資料連同波形資料被傳送時,地震資料取得部11會接收已傳送的地點資料。Next, the seismic data acquisition section 11 acquires, from the storage section 15, the location data of the place where the seismic detection device 20 of the transmitted waveform data is installed (step B2). When the location data and the waveform data are transmitted, the seismic data acquisition unit 11 receives the transmitted location data.
接著,推定處理部12會將在步驟B1所接收的波形資料與在步驟B2所取得的地點資料套用到藉由圖4所示的學習處理而作成或更新的學習模型16,而推定震央距離及震源的深度(步驟B3)。Next, the estimation processing unit 12 applies the waveform data received in step B1 and the location data acquired in step B2 to the learning model 16 created or updated by the learning processing shown in FIG. 4, and estimates the epicenter distance and The depth of the source (step B3).
藉由執行步驟B1~B3,基於從單一地震檢測裝置20取得的波形資料,而推定震央距離及震源的深度。By performing steps B1 to B3, the epicenter distance and the focal depth are estimated based on the waveform data obtained from the single seismic detection device 20.
[實施型態1的效果] 如以上所述,若依照本實施型態1,不必使波形資料擬合到函數,即可從單一波形資料推定震央距離及震源的深度。另外,推定處理係藉由學習模型16而進行,故震央距離及震源的深度可穩定地在短時間內算出。[Effects of Implementation Mode 1] As described above, according to the implementation mode 1, it is possible to estimate the epicenter distance and the focal depth from a single waveform data without fitting the waveform data to a function. In addition, since the estimation process is performed by the learning model 16, the epicenter distance and the depth of the epicenter can be stably calculated in a short time.
換言之,在本實施型態1,與專利文獻1所揭示之以往的方式不同,不必藉由人工操作將複雜的個別地點屬性反映在影響因素及方式不明的參數之作業。若依照本實施型態1,可僅藉由客觀的波形資料與機械學習而取得達到可利用之精確度的資料。本實施型態1的震央距離推定裝置10可導入到多個地點及多個地域。In other words, in the first embodiment, unlike the conventional method disclosed in Patent Document 1, it is not necessary to manually perform the operation of reflecting complex individual site attributes on influencing factors and unknown parameters. According to the first embodiment, data that can be used to obtain the available accuracy can be obtained only by objective waveform data and mechanical learning. The epicenter distance estimation device 10 according to the first embodiment can be introduced into multiple locations and multiple regions.
另外,如上述,在本實施型態,也可藉由單一波形資料而推定震源的深度,而上述專利文獻1所揭示的技術則無法推定震源的深度。使用上述專利文獻1所揭示的技術時,為了測定震源的深度,必須使用複數個地震計的測定結果。In addition, as described above, in this embodiment, the depth of the source can also be estimated from a single waveform data, but the technology disclosed in the above Patent Document 1 cannot estimate the depth of the source. When the technique disclosed in the aforementioned Patent Document 1 is used, in order to measure the depth of the seismic source, the measurement results of a plurality of seismometers must be used.
[變形例1] 接著,說明本實施型態1的變形例。首先,在變形例1,學習部14會對被設定的波形量各者而產生學習模型16。具體而言,波形量會以從地震發生時所經過的時間而顯示。因此,學習部14會從由學習資料取得部13所取得的波形資料,在每個設定經過時間,切割出僅為經過時間分量的波形資料,再將切割出的波形資料作為輸入資料,然後進行學習而產生學習模型16。藉此,學習模型16會對波形量各者而產生。[Modification 1] Next, a modification of the first embodiment will be described. First, in Modification 1, the learning unit 14 generates a learning model 16 for each of the set waveform amounts. Specifically, the waveform amount is displayed in the time elapsed since the earthquake occurred. Therefore, the learning unit 14 cuts the waveform data of only the elapsed time component from the waveform data obtained by the learning data acquisition unit 13 at each set elapsed time, and then uses the cut waveform data as input data, and then performs Learning results in learning models 16. Thereby, the learning model 16 is generated for each waveform amount.
另外,在變形例1,推定處理部12會算出已發生的地震之波形資料的波形量,再基於已算出的波形量,而從產生的複數個學習模型16之中,選擇欲使用的學習模型。然後,推定處理部12對已選擇的學習模型16套用已發生的地震之波形資料,而推定震央距離(或震央距離及震源的深度)。In addition, in Modification 1, the estimation processing unit 12 calculates the waveform amount of the waveform data of the earthquake that has occurred, and then selects the learning model to be used from among the plurality of generated learning models 16 based on the calculated waveform amount. . Then, the estimation processing unit 12 applies the waveform data of the earthquake that has occurred to the selected learning model 16 and estimates the epicenter distance (or the epicenter distance and the depth of the epicenter).
一般而言,緊急地震速報所用的震央距離及震源深度之推定即使在波形資料的波形量較小時也可進行。因此,藉由地震資料取得部11而取得的波形資料未必為一定,可能會有學習模型的產生所使用的波形資料之波形量與已發生的地震之波形資料的波形量不一致,使得推定精確度降低。然而,若依照本變形例1,則會配合已發生的地震之波形資料的波形量來選擇學習模型16,因而可避開上述的推定精確度降低的問題。In general, the estimation of the epicenter distance and focal depth used in emergency earthquake breaking news can be performed even when the amount of waveform data is small. Therefore, the waveform data obtained by the seismic data acquisition unit 11 is not necessarily constant, and the waveform amount of the waveform data used in the generation of the learning model may not be consistent with the waveform amount of the waveform data of the earthquake that has occurred, making the estimated accuracy reduce. However, according to the first modification, the learning model 16 is selected in accordance with the waveform amount of the waveform data of the earthquake that has occurred, so that the above-mentioned problem of reduced estimation accuracy can be avoided.
[變形例2] 在變形例2,學習部14對成為輸入資料的波形資料之觀測點各者,而產生學習模型16。具體而言,學習部14僅使用在地震檢測裝置各者(地震計各者)所取得的波形資料,而產生學習模型16。[Modification 2] In Modification 2, the learning unit 14 generates a learning model 16 for each of the observation points of the waveform data that becomes the input data. Specifically, the learning unit 14 generates a learning model 16 using only the waveform data obtained by each of the seismic detection devices (each of the seismometers).
另外,在變形例2,推定處理部12確認已發生的地震之波形資料的觀測點(也就是作為波形資料的送訊來源之地震檢測裝置20),再基於已確認的觀測點,從所產生的複數個學習模型16之中,選擇欲使用的學習模型。然後,推定處理部12會對已選擇的學習模型16套用已發生的地震之波形資料,而推定震央距離(或震央距離及震源的深度)。In addition, in Modification 2, the estimation processing unit 12 confirms the observation points of the waveform data of the earthquake that has occurred (that is, the seismic detection device 20 as the transmission source of the waveform data), and based on the confirmed observation points, Among the plurality of learning models 16, a learning model to be used is selected. Then, the estimation processing unit 12 applies the waveform data of the earthquake that has occurred to the selected learning model 16 and estimates the epicenter distance (or the epicenter distance and the depth of the epicenter).
若依照變形例2,則即使不使用觀測點各者的特性(也就是地點資料)進行學習,也可進行符合觀測點的特性之推定處理。尚且,在無法充分確保輸入資料的觀測點,難以進行完整的學習,導致難以對這樣的觀測點產生學習模型。According to Modification Example 2, even if learning without using the characteristics of each observation point (that is, location data), it is possible to perform estimation processing that matches the characteristics of the observation point. Moreover, it is difficult to perform complete learning at observation points that cannot sufficiently ensure input data, which makes it difficult to generate a learning model for such observation points.
[變形例3] 在變形例3,學習部14對成為輸入資料的波形資料之觀測點的地盤特性各者,而產生學習模型16。具體而言,例如配合地盤增幅率等地盤特性(地點資料的値),將觀測點(地震檢測裝置20)歸類為不同群組。此時,學習部14對各個群組僅使用該群組內所得到的波形資料,而產生學習模型16。[Modification 3] In Modification 3, the learning unit 14 generates a learning model 16 for each of the site characteristics of the observation points of the waveform data that becomes the input data. Specifically, for example, the observation points (earthquake detection device 20) are classified into different groups in accordance with site characteristics (such as location data 値) such as the site increase rate. At this time, the learning unit 14 uses only the waveform data obtained in the group for each group to generate a learning model 16.
另外,在變形例3,推定處理部12確認已發生的地震之波形資料的觀測點之地盤特性,再基於已確認的地盤特性,從已產生的複數個學習模型16之中,選擇欲使用的學習模型。然後,推定處理部12會對已選擇的學習模型16,套用已發生的地震之波形資料,而推定震央距離(或震央距離及震源的深度)。In addition, in Modification 3, the estimation processing unit 12 confirms the site characteristics of the observation points of the waveform data of the earthquake that has occurred, and then selects the one to be used from among the plurality of learning models 16 based on the confirmed site characteristics. Learning model. Then, the estimation processing unit 12 applies the waveform data of the earthquake that has occurred to the selected learning model 16 and estimates the epicenter distance (or the epicenter distance and the depth of the epicenter).
若依照變形例3,即使存在未完整獲得輸入資料的觀測點,也可不必進行使用地點資料的學習,即進行符合觀測點的特性之推定處理。According to Modification 3, even if there are observation points for which input data is not completely obtained, it is not necessary to perform learning of the use site data, that is, to perform estimation processing that matches the characteristics of the observation points.
[程式] 本實施型態1的程式可為在電腦中執行圖4所示的步驟A1~A4、圖5所示的步驟B1~B3之程式。藉由將該程式安裝到電腦執行,可實現本實施型態1的震央距離推定裝置10與震央距離推定方法。此時,電腦的CPU(Central Processing Unit)可發揮地震資料取得部11、推定處理部12、學習資料取得部13及學習部14的功能而進行處理。[Program] The program of the implementation mode 1 may be a program that executes steps A1 to A4 shown in FIG. 4 and steps B1 to B3 shown in FIG. 5 in a computer. By installing this program on a computer and executing it, the epicenter distance estimation device 10 and the epicenter distance estimation method of the first embodiment can be realized. At this time, the CPU (Central Processing Unit) of the computer can perform the functions of the seismic data acquisition unit 11, the estimated processing unit 12, the learning data acquisition unit 13, and the learning unit 14.
另外,本實施型態12的程式可由複數台電腦所建構的電腦系統執行。此時,各部電腦可分別發揮地震資料取得部11、推定處理部12、學習資料取得部13及學習部14任一者的功能。另外,儲存部15可被設置在與執行本實施型態的程式之電腦不同的電腦上。In addition, the program of the embodiment 12 can be executed by a computer system constructed by a plurality of computers. At this time, each of the computers can function as one of the seismic data acquisition unit 11, the estimation processing unit 12, the learning data acquisition unit 13, and the learning unit 14. In addition, the storage unit 15 may be provided on a computer different from a computer that executes the program of the embodiment.
(實施型態2) 接著,針對本發明的實施型態2之震央距離推定裝置、震央距離推定方法及程式,參考圖6~圖8來説明。(Embodiment Mode 2) Next, the epicenter distance estimation device, the epicenter distance estimation method, and the program according to Embodiment 2 of the present invention will be described with reference to FIGS. 6 to 8.
[裝置構成] 首先,使用圖6說明本實施型態2的震央距離推定裝置之構成。圖6為具體表示本發明的實施型態2之震央距離推定裝置的構成之方塊圖。[Device Configuration] First, the configuration of the epicenter distance estimation device according to the second embodiment of the present invention will be described with reference to FIG. 6. FIG. 6 is a block diagram specifically showing the configuration of the epicenter distance estimation device according to the second embodiment of the present invention.
如圖6所示,本實施型態2的震央距離推定裝置40會具備波形前處理部41,在這一點上,與圖1及圖2所示的實施型態1之震央距離推定裝置10不同。以下,主要說明與實施型態1的相異點。As shown in FIG. 6, the epicenter distance estimation device 40 according to the second embodiment is provided with a waveform pre-processing unit 41. This point is different from the epicenter distance estimation device 10 according to the first embodiment shown in FIGS. 1 and 2. . The differences from the first embodiment will be mainly described below.
波形前處理部41對在學習部14作為輸入資料所使用的波形資料、及在地震資料取得部11所取得的波形資料執行前處理。作為前處理,可舉出影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理。The waveform pre-processing unit 41 performs pre-processing on the waveform data used as input data in the learning unit 14 and the waveform data obtained by the seismic data acquisition unit 11. Examples of the pre-processing include image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing.
具體而言,影像轉換處理為將波形資料變換成以圖表顯示的影像之影像資料的處理。一般認為,若依照影像轉換處理,則學習部14會基於影像資料而執行學習,使得學習處理變容易。Specifically, the image conversion process is a process of converting waveform data into image data of an image displayed in a chart. It is generally considered that if the image conversion process is performed, the learning unit 14 performs learning based on the image data, making the learning process easier.
另外,包絡線轉換處理為使波形資料的波形變平滑的處理。若執行包絡線處理,則容易確認地震波的上升特性,因而會產生反映了地震波的上升特性之學習模型16。The envelope conversion processing is processing for smoothing the waveform of the waveform data. When the envelope processing is performed, it is easy to confirm the rising characteristics of the seismic wave, and a learning model 16 reflecting the rising characteristics of the seismic wave is generated.
帶通轉換處理為突顯特定周期的波形之處理。若依照帶通轉換處理,則地震波的特徴會突顯,因而會產生反映了地震波的特徴之學習模型16。Bandpass conversion processing is processing that highlights a waveform of a specific period. If the processing is performed in accordance with the bandpass conversion, the characteristics of the seismic wave will be highlighted, and a learning model 16 reflecting the characteristics of the seismic wave will be generated.
另外,微分轉換處理為將波形資料微分,然後轉換成加速度資料的處理。進行微分轉換處理時,也容易確認地震波的上升特性,因而會產生反映了地震波的上升特性之學習模型16。In addition, the differential conversion process is a process in which waveform data is differentiated and then converted into acceleration data. When the differential conversion process is performed, it is easy to confirm the rising characteristics of the seismic wave, and a learning model 16 reflecting the rising characteristics of the seismic wave is generated.
此外,傅立葉轉換處理為求得波形資料之頻率分布的處理。若依照傅立葉變換,則波形資料各者的周期差異會突顯,因而會產生反映了地震波的周期之學習模型16。The Fourier transform process is a process of obtaining the frequency distribution of the waveform data. If the Fourier transform is followed, the period difference of each waveform data will be prominent, so a learning model 16 that reflects the period of the seismic wave will be generated.
波形前處理部41可執行影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理中任一者或任兩者以上。The waveform pre-processing section 41 may perform any one or more of image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing.
[裝置動作] 接著,針對本實施型態2的震央距離推定裝置40之動作利用圖7及圖8進行説明。在以下的説明,適當參考圖1~圖6。另外,在本實施型態2,藉由使震央距離推定裝置40動作,而實施震央距離推定方法。因此,本實施型態2的震央距離推定方法之説明取代以下的震央距離推定裝置40之動作説明。[Device Operation] Next, the operation of the epicenter distance estimation device 40 according to the second embodiment will be described with reference to FIGS. 7 and 8. In the following description, FIGS. 1 to 6 are appropriately referred to. In addition, in the second embodiment, the epicenter distance estimation device 40 is operated to implement the epicenter distance estimation method. Therefore, the description of the epicenter distance estimation method according to the second embodiment replaces the following description of the operation of the epicenter distance estimation device 40.
首先,說明學習處理。圖7為表示本發明的實施型態2之震央距離推定裝置的學習處理執行時之動作的流程圖。First, the learning process will be described. FIG. 7 is a flowchart showing the operation of the epicenter distance estimation device according to the second embodiment of the present invention when learning processing is executed.
如圖7所示,首先,學習資料取得部13取得輸入資料及正解資料(步驟A11)。另外,學習資料取得部13將已取得的資料輸入到波形前處理部41。As shown in FIG. 7, first, the learning material obtaining unit 13 obtains input data and correct solution data (step A11). The learning material acquisition unit 13 inputs the acquired data to the waveform pre-processing unit 41.
接著,波形前處理部41對在步驟A11所取得的輸入資料所包含的波形資料執行前處理(步驟A12)。然後,波形前處理部41將前處理後的波形資料、除此以外的輸入資料(地點資料)與正解資料輸入到學習部14。Next, the waveform pre-processing unit 41 performs pre-processing on the waveform data included in the input data obtained in step A11 (step A12). Then, the waveform pre-processing unit 41 inputs the pre-processed waveform data, other input data (location data), and correct solution data to the learning unit 14.
接著,學習部14會判斷學習模型16是否已存在(步驟A13)。Next, the learning unit 14 determines whether the learning model 16 already exists (step A13).
步驟A13的判定之結果在學習模型16尚未存在時,學習部14會學習波形資料及地點資料、與震央距離及震源的深度之間的關係,然後新產生表示學習結果的學習模型16(步驟A14)。As a result of the determination of step A13, when the learning model 16 does not yet exist, the learning unit 14 learns the relationship between the waveform data and location data, the distance between the epicenter and the depth of the epicenter, and then newly generates a learning model 16 representing the learning result (step A14 ).
另外,步驟A13的判定之結果在學習模型16已經存在時,學習部14會使用輸入資料與正解資料,而更新既有的學習模型16(步驟A15)。In addition, when the result of the determination in step A13 is that the learning model 16 already exists, the learning unit 14 uses the input data and the positive solution data to update the existing learning model 16 (step A15).
藉由執行步驟A11~A15,而更新或作成學習模型16。之後,使用已作成或更新的學習模型16,而執行推定處理。圖8為表示本發明的實施型態2之震央距離推定裝置的學習處理執行時之動作的流程圖。By performing steps A11 to A15, the learning model 16 is updated or created. After that, the learning model 16 that has been created or updated is used to perform the estimation process. FIG. 8 is a flowchart showing an operation when the learning process of the epicenter distance estimation device according to the second embodiment of the present invention is executed.
如圖8所示,首先,從地震檢測裝置20傳送已發生的地震之波形資料的話,地震資料取得部11會接收已傳送的波形資料(步驟B11)。As shown in FIG. 8, first, when waveform data of an earthquake that has occurred is transmitted from the seismic detection device 20, the seismic data acquisition unit 11 receives the transmitted waveform data (step B11).
接著,地震資料取得部11從儲存部15取得設置有已傳送波形資料的地震檢測裝置20之地點的地點資料(步驟B12)。尚且,地點資料連同波形資料被傳送時,地震資料取得部11會接收已傳送的地點資料。Next, the seismic data acquisition unit 11 acquires, from the storage unit 15, the location data of the place where the seismic detection device 20 of the transmitted waveform data is installed (step B12). When the location data and the waveform data are transmitted, the seismic data acquisition unit 11 receives the transmitted location data.
接著,波形前處理部41對在步驟B11接收的波形資料執行前處理(步驟B13)。然後,波形前處理部41將前處理後的波形資料與地點資料輸入到推定處理部12。Next, the waveform pre-processing section 41 performs pre-processing on the waveform data received in step B11 (step B13). Then, the waveform pre-processing section 41 inputs the pre-processed waveform data and location data to the estimation processing section 12.
接著,推定處理部12將在步驟B13進行前處理後的波形資料與在步驟B12所取得的地點資料,套用到藉由圖7所示的學習處理所作成或更新的學習模型16,而推定震央距離及震源的深度(步驟B14)。Next, the estimation processing unit 12 applies the waveform data preprocessed in step B13 and the location data obtained in step B12 to the learning model 16 created or updated by the learning processing shown in FIG. 7 to estimate the epicenter Distance and depth of the source (step B14).
藉由執行步驟B11~B14,本實施型態2也與實施型態1相同,基於從單一地震檢測裝置20所取得的波形資料,而推定震央距離及震源的深度。By performing steps B11 to B14, the second embodiment is also the same as the first embodiment, and based on the waveform data obtained from the single seismic detection device 20, the epicenter distance and the depth of the source are estimated.
[實施型態2的效果] 如以上所述,在本實施型態2,藉由波形前處理部41所進行的前處理,對用於學習的波形資料抑制雜訊並且突顯特徴。因此,若依照本實施型態2,則學習模型的精確度會提升,結果,可提升推定精確度。[Effects of Implementation Mode 2] As described above, in the implementation mode 2, the preprocessing performed by the waveform preprocessing unit 41 suppresses noise and highlights features of the waveform data used for learning. Therefore, according to the second embodiment, the accuracy of the learning model is improved, and as a result, the estimation accuracy can be improved.
(物理構成) 在此,藉由執行實施型態1及2的程式,針對實現震央距離推定裝置的電腦使用圖9進行説明。圖9為表示實現本發明的實施型態1及2之震央距離推定裝置的電腦之一例的方塊圖。(Physical Configuration) Here, a computer implementing the epicenter distance estimation device will be described using FIG. 9 by executing the programs of the implementation modes 1 and 2. FIG. 9 is a block diagram showing an example of a computer that implements the epicenter distance estimation device according to the first and second embodiments of the present invention.
如圖9所示,電腦110具備CPU111、主記憶體112、儲存裝置113、輸入介面114、顯示控制器115、資料讀取器/寫入器116及通訊介面117。以上各部經由匯流排121以可互相傳送資料的方式連接。As shown in FIG. 9, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. The above units are connected via a bus 121 in such a manner that data can be transmitted to each other.
CPU111被收納在儲存裝置113,將本實施型態的程式(編碼)在主記憶體112展開,然後以既定順序執行這些程式,藉此實施各種演算。主記憶體112一般而言為DRAM(Dynamic Random Access Memory)等揮發性的儲存裝置。另外,本實施型態的程式以被收納在電腦可讀取的記錄媒體120之狀態而提供。尚且,本實施型態的程式可為在經由通訊介面117而連接的網路上所流通的程式。The CPU 111 is stored in the storage device 113, and the programs (encoding) of this embodiment are developed in the main memory 112, and then these programs are executed in a predetermined order to perform various calculations. The main memory 112 is generally a volatile storage device such as DRAM (Dynamic Random Access Memory). The program according to this embodiment is provided in a state of being stored in a computer-readable recording medium 120. In addition, the program in this embodiment may be a program circulating on a network connected through the communication interface 117.
另外,作為儲存裝置113的具體例,除了硬碟之外,還可舉出快閃記憶體等半導體儲存裝置。輸入介面114作為中介而協助CPU111、鍵盤及滑鼠等輸入機器118之間的資料傳送。顯示控制器115係與顯示裝置119連接,並且控制顯示裝置119的顯示。In addition, as a specific example of the storage device 113, in addition to a hard disk, a semiconductor storage device such as a flash memory may be mentioned. The input interface 114 serves as an intermediary to assist data transfer between the input device 118 such as the CPU 111, the keyboard, and the mouse. The display controller 115 is connected to the display device 119 and controls the display of the display device 119.
資料讀取器/寫入器116作為中介協助CPU111與記錄媒體120之間的資料傳送,而從記錄媒體120讀取程式及將電腦110的處理結果寫入記錄媒體120。通訊介面117作為中介協助CPU111與其他電腦之間的資料傳送。The data reader / writer 116 serves as an intermediary to assist the data transfer between the CPU 111 and the recording medium 120, and reads programs from the recording medium 120 and writes the processing results of the computer 110 into the recording medium 120. The communication interface 117 acts as an intermediary to assist the data transfer between the CPU 111 and other computers.
另外,作為記錄媒體120的具體例,可舉出CF(Compact Flash(註冊商標))及SD(Secure Digital)等汎用半導體記錄裝置、軟碟機(Flexible Disk)等磁記錄媒體或CD-ROM(Compact Disk Read Only Memory)等光學記錄媒體。Specific examples of the recording medium 120 include general-purpose semiconductor recording devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disks, and CD-ROM ( Compact Disk Read Only Memory).
另外,本實施型態1及2的震央距離推定裝置10及40不僅可藉由已安裝程式的電腦來實現,還可藉由使用對應於各部的硬碟來實現。此外,震央距離推定裝置10及40也可構成為一部分由程式實現,而其餘的部分由硬碟實現。In addition, the epicenter distance estimation devices 10 and 40 of the embodiments 1 and 2 can be implemented not only by a computer having a program installed, but also by using a hard disk corresponding to each unit. In addition, the epicenter distance estimation devices 10 and 40 may be configured to be partially implemented by a program, and the remaining portions may be implemented by a hard disk.
上述的實施型態之一部分或全部可由以下所記載的(付記1)~(付記15)表現,但不限於以下的記載。Part or all of the above-mentioned embodiments can be expressed by (Appendix 1) to (Appendix 15) described below, but are not limited to the following description.
(備註1) 一種震央距離推定裝置,其特徵為:具備: 地震資訊取得部,其取得已發生的地震之波形資料;及 推定處理部,其對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。(Remark 1) An epicenter distance estimation device, comprising: an earthquake information acquisition unit that acquires waveform data of an earthquake that has occurred; and an estimation processing unit that learns the relationship between the waveform data of the learned earthquake and the epicenter distance The obtained learning model applies the previously obtained waveform data to estimate the epicenter distance.
(備註2) 如備註1之震央距離推定裝置,其更具備學習部,該學習部將地震的波形資料作為輸入資料,並且將前述地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型, 前述推定處理部對藉由前述學習部而產生的學習模型,套用已取得的前述波形資料,而推定震央距離。(Note 2) If the epicenter distance estimation device of Note 1 further includes a learning section, the learning section takes the waveform data of the earthquake as input data, and uses the epicenter distance of the aforementioned earthquake as positive solution data, and learns the relationship between the waveform data and the epicenter distance Then, a learning model representing a learning result is generated, and the estimation processing unit applies the obtained waveform data to the learning model generated by the learning unit to estimate the epicenter distance.
(備註3) 如備註2之震央距離推定裝置,其中 前述學習部除了將前述波形資料作為輸入資料,還將已取得前述波形資料的地點之地點資料也作為輸入資料,而學習前述波形資料及前述地點資料與前述震央距離之間的關係,然後產生前述學習模型, 前述地震資訊取得部除了取得前述波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料, 前述推定處理部對前述學習模型除了套用前述波形資料,更套用已取得的前述地點資料,而推定前述震央距離。(Note 3) If the epicenter distance estimation device of Note 2 is used, in addition to the aforementioned waveform data as input data, the aforementioned learning unit also uses as input data the location data of the place where the aforementioned waveform data has been obtained, and learns the aforementioned waveform data and the aforementioned The relationship between the location data and the epicenter distance is then used to generate the aforementioned learning model. In addition to the waveform information, the seismic information acquisition unit obtains the location information of the location where the waveform data of the earthquake that has occurred has been obtained. The learning model not only applies the waveform data, but also applies the obtained location data to estimate the epicenter distance.
(備註4) 如備註2或3之震央距離推定裝置,其中 前述學習處理部更使用前述地震之震源的深度作為前述正解資料,而學習前述波形資料與前述震央距離及前述震源的深度之間的關係,然後產生前述學習模型, 前述推定處理部除了推定前述震央距離,更推定震源的深度。(Note 4) If the epicenter distance estimation device of note 2 or 3 is used, the aforementioned learning processing unit further uses the depth of the epicenter of the earthquake as the forward solution data, and learns the relationship between the waveform data and the epicenter distance and the depth of the epicenter. Then, the learning model is generated, and the estimation processing unit estimates the depth of the epicenter in addition to the epicenter distance.
(備註5) 如備註2至4中任一項之震央距離推定裝置,其中 前述學習處理部藉由學習而構築神經網路,並且將前述神經網路作為學習模型。(Note 5) The epicenter distance estimation device according to any one of notes 2 to 4, wherein the learning processing unit constructs a neural network by learning, and uses the neural network as a learning model.
(備註6) 如備註2至5中任一項之震央距離推定裝置,其中 前述學習部對成為輸入資料的波形資料之波形量各者,產生前述學習模型, 前述推定處理部會算出已取得的前述波形資料之波形量,再基於已算出的波形量,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 6) If the epicenter distance estimation device according to any one of notes 2 to 5, wherein the aforementioned learning unit generates the aforementioned learning model for each of the waveform amounts of the waveform data which becomes the input data, the aforementioned estimation processing unit will calculate the acquired Based on the calculated waveform amount, the waveform amount of the aforementioned waveform data is used to select the aforementioned learning model to be used from each of the aforementioned learning models that have been generated, and then apply the previously acquired waveform to the previously selected learning model Data, and the aforementioned epicenter distance is estimated.
(備註7) 如備註2至5中任一項之震央距離推定裝置,其中 前述學習部對成為輸入資料的波形資料之觀測點各者,產生前述學習模型, 前述推定處理部確認已取得的前述波形資料之觀測點,再基於已確認的觀測點,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 7) If the epicenter distance estimation device according to any one of notes 2 to 5, wherein the aforementioned learning unit generates the aforementioned learning model for each observation point of the waveform data which becomes the input data, the aforementioned estimation processing unit confirms that the previously acquired The observation points of the waveform data are based on the confirmed observation points, and from among the previously generated learning models, the learning model to be used is selected, and the previously obtained waveform data is applied to the selected learning model. , And the aforementioned epicenter distance is estimated.
(備註8) 如備註2至5中任一項之震央距離推定裝置,其中 前述學習部對成為輸入資料的波形資料之觀測點的地盤特性各者,產生前述學習模型, 前述推定處理部確認已取得的前述波形資料的觀測點之地盤特性,再基於已確認的地盤特性,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Remark 8) If the epicenter distance estimation device of any of Remarks 2 to 5, wherein the aforementioned learning section generates the aforementioned learning model for each of the site characteristics of the observation point of the waveform data which becomes the input data, the aforementioned estimation processing section confirms that The site characteristics of the observation points of the obtained waveform data are based on the confirmed site characteristics. From among the previously generated learning models, the aforementioned learning model to be used is selected, and the previously selected learning model is applied. The aforementioned waveform data has been obtained, and the aforementioned epicenter distance is estimated.
(備註9) 如備註1至8中任一項之震央距離推定裝置,其更具備波形前處理部,該波形前處理部對在前述學習部作為前述輸入資料所使用的波形資料,及在前述地震資訊取得部所取得的波形資料,執行前處理。(Note 9) If the epicenter distance estimation device according to any one of notes 1 to 8 further includes a waveform pre-processing section, the waveform pre-processing section applies waveform data used as the aforementioned input data in the aforementioned learning section, and The waveform data obtained by the seismic information acquisition department is pre-processed.
(備註10) 如備註9之震央距離推定裝置,其中 前述波形前處理部從影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理中執行至少1個處理,以作為前述前處理。(Note 10) As in the epicenter distance estimation device of Note 9, wherein the aforementioned waveform pre-processing section executes at least one processing from image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing as the The aforementioned pretreatment.
(備註11) 一種震央距離推定方法,其特徵為:具有以下步驟: (a)取得已發生的地震之波形資料的步驟; (b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。(Note 11) A method for estimating the epicenter distance, which is characterized by the following steps: (a) the step of obtaining the waveform data of an earthquake that has occurred; (b) the relationship between the waveform data of the earthquake and the epicenter distance is obtained The learning model is based on the previously obtained waveform data, and the epicenter distance is estimated.
(備註12) 如備註11之震央距離推定方法,其還具有以下步驟: (c)將地震的波形資料作為輸入資料,將前述地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型, 在前述(b)的步驟,對由前述(c)的步驟而產生的學習模型,套用已取得的前述波形資料,而推定震央距離。(Note 12) If the method for estimating the epicenter distance of Note 11 also has the following steps: (c) Using the waveform data of the earthquake as input data, using the epicenter distance of the aforementioned earthquake as the positive solution data, and learning the relationship between the waveform data and the epicenter distance Then, a learning model representing the learning result is generated. In the step (b), the learning model generated in the step (c) is applied with the obtained waveform data to estimate the epicenter distance.
(備註13) 如備註12之震央距離推定方法,其中: 在前述(c)的步驟,除了將前述波形資料作為輸入資料,還將已得到前述波形資料的地點之地點資料作為輸入資料,而學習前述波形資料及前述地點資料與前述震央距離之間的關係,然後產生前述學習模型, 在前述(a)的步驟,除了取得前述波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料, 在前述(b)的步驟,對前述學習模型,除了套用前述波形資料,更套用已取得的前述地點資料,而推定前述震央距離。(Note 13) If the method for estimating the epicenter distance of Note 12 is used, in the step (c) above, in addition to using the aforementioned waveform data as input data, the location data of the place where the aforementioned waveform data has been obtained as input data will be studied. The relationship between the aforementioned waveform data and the aforementioned location data and the epicenter distance, and then the aforementioned learning model is generated. In step (a), in addition to obtaining the aforementioned waveform data, the location of the location where the waveform data of the earthquake that has occurred has been obtained. For the location data, in step (b) above, in addition to applying the waveform data to the learning model, the obtained location data is also applied to estimate the epicenter distance.
(備註14) 如備註12或13之震央距離推定方法,其中: 在前述(c)的步驟,更使用前述地震的震源之深度作為前述正解資料,並且學習前述波形資料與前述震央距離及前述震源的深度之間的關係,然後產生前述學習模型, 在前述(b)的步驟,除了推定前述震央距離,更推定震源的深度。(Note 14) For the method for estimating the epicenter distance of Note 12 or 13, wherein: in the step (c), the depth of the epicenter of the earthquake is used as the positive solution data, and the waveform data and the distance between the epicenter and the epicenter are learned. Then, the aforementioned learning model is generated. In step (b), in addition to estimating the epicenter distance, the depth of the source is also estimated.
(備註15) 如備註12至14中任一項之震央距離推定方法,其中: 在前述(c)的步驟,藉由學習而建構神經網路,並且將前述神經網路作為學習模型。(Note 15) The epicenter distance estimation method according to any one of notes 12 to 14, wherein: in step (c) above, a neural network is constructed by learning, and the aforementioned neural network is used as a learning model.
(備註16) 如備註12至15中任一項之震央距離推定方法,其中: 在前述(c)的步驟,對成為輸入資料的波形資料之波形量各者,產生前述學習模型, 在前述(b)的步驟,算出已取得的前述波形資料之波形量,再基於已算出的波形量,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 16) The method for estimating the epicenter distance according to any one of notes 12 to 15, wherein: in the step (c) above, the aforementioned learning model is generated for each of the waveform amounts of the waveform data that becomes the input data, and in the aforementioned ( Step b), calculate the waveform amount of the previously obtained waveform data, and then select the learning model to be used from among the previously generated learning models based on the calculated waveform amount, and then select the previously selected previously described learning model. The learning model applies the previously obtained waveform data and estimates the epicenter distance.
(備註17) 如備註12至15中任一項之震央距離推定方法,其中: 在前述(c)的步驟,對成為輸入資料的波形資料之觀測點各者,產生前述學習模型, 在前述(b)的步驟,確認已取得的前述波形資料之觀測點,再基於已確認的觀測點,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 17) The method for estimating the epicenter distance according to any one of notes 12 to 15, wherein: in step (c) above, the aforementioned learning model is generated for each of the observation points of the waveform data that becomes the input data, and in the aforementioned ( Step b), confirm the observation points of the previously obtained waveform data, and then select the learning model to be used from among the previously generated learning models based on the confirmed observation points, and then select the previously described previously selected learning models. The learning model applies the previously obtained waveform data and estimates the epicenter distance.
(備註18) 如備註12至15中任一項之震央距離推定方法,其中: 在前述(c)的步驟,對成為輸入資料的波形資料之觀測點的地盤特性各者,產生前述學習模型, 在前述(b)的步驟,確認已取得的前述波形資料之觀測點的地盤特性,再基於已確認的地盤特性,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 18) If the epicenter distance estimation method according to any one of notes 12 to 15, wherein: in step (c) above, the aforementioned learning model is generated for each of the site characteristics of the observation points of the waveform data that becomes the input data, In the step (b) above, confirm the site characteristics of the observation points of the waveform data obtained, and then select the learning model to be used from each of the aforementioned learning models based on the confirmed site characteristics, Then, for the selected learning model, the obtained waveform data is applied to estimate the epicenter distance.
(備註19) 如備註11至18中任一項之震央距離推定方法,其還具有以下步驟: (d)在前述(c)的步驟,對作為前述輸入資料所使用的波形資料、及在前述(a)的步驟所取得的波形資料,執行前處理。(Note 19) If the method for estimating the epicenter distance of any of Notes 11 to 18, it further has the following steps: (d) in the step (c) above, the waveform data used as the aforementioned input data, and the aforementioned The waveform data obtained in step (a) is pre-processed.
(備註20) 在前述(d)的步驟,執行影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理之中至少1個處理,以作為前述前處理。(Note 20) In step (d) above, at least one of image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing is performed as the aforementioned pre-processing.
(備註21) 一種記錄程式的電腦可讀取之記錄媒體,其包含在電腦中執行以下步驟的命令: (a)取得已發生的地震之波形資料的步驟; (b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。(Note 21) A computer-readable recording medium for recording programs, which includes a command to perform the following steps in the computer: (a) the step of obtaining waveform data of an earthquake that has occurred; (b) the waveform data of learning earthquakes The learning model obtained from the relationship between the epicenter distance and the previously obtained waveform data is used to estimate the epicenter distance.
(備註22) 如備註21的電腦可讀取之記錄媒體,其在前述電腦中還執行以下步驟: (c)將地震的波形資料作為輸入資料,將前述地震的震央距離作為正解資料,並且學習波形資料與震央距離之間的關係,再產生表示學習結果的學習模型, 在前述(b)的步驟,對藉由前述(c)的步驟而產生的學習模型,套用已取得的前述波形資料,而推定震央距離。(Note 22) If the computer-readable recording medium of Note 21, it also performs the following steps in the aforementioned computer: (c) Using the waveform data of the earthquake as the input data, using the epicenter distance of the aforementioned earthquake as the positive solution data, and learning The relationship between the waveform data and the epicenter distance generates a learning model representing the learning result. In step (b) above, the previously obtained waveform data is applied to the learning model generated by step (c) above. The epicenter distance is estimated.
(備註23) 如備註22的電腦可讀取之記錄媒體,其中: 在前述(c)的步驟,除了將前述波形資料作為輸入資料,還將從前述波形資料所得到的地點之地點資料作為輸入資料,並且學習前述波形資料及前述地點資料與前述震央距離之間的關係,然後產生前述學習模型, 在前述(a)的步驟,除了取得前述波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料, 在前述(b)的步驟,對前述學習模型,除了套用前述波形資料,更套用已取得的前述地點資料,而推定前述震央距離。(Note 23) If the computer-readable recording medium of Note 22, wherein: in the step (c) above, in addition to using the aforementioned waveform data as input data, the location data of the location obtained from the aforementioned waveform data is used as input. Data, and learn the relationship between the aforementioned waveform data and the aforementioned location data and the epicenter distance, and then generate the aforementioned learning model. In step (a), in addition to obtaining the aforementioned waveform data, we also obtain the waveform of the earthquake that has occurred. For the location data of the location of the data, in step (b) above, in addition to applying the aforementioned waveform data to the aforementioned learning model, the previously acquired location data is also applied to estimate the epicenter distance.
(備註24) 如備註22或23的電腦可讀取之記錄媒體,其中: 在前述(c)的步驟,更使用前述地震的震源之深度作為前述正解資料,並且學習前述波形資料與前述震央距離及前述震源的深度之間的關係,然後產生前述學習模型, 在前述(b)的步驟,除了推定前述震央距離,更推定震源的深度。(Note 24) If the computer-readable recording medium of Note 22 or 23, wherein: in the step (c) above, the depth of the source of the earthquake is used as the positive solution data, and the distance between the waveform data and the epicenter is learned. And the relationship between the depth of the source, and then the aforementioned learning model is generated. In step (b), in addition to estimating the epicenter distance, the depth of the source is also estimated.
(備註25) 如備註22至24中任一項的電腦可讀取之記錄媒體,其中: 在前述(c)的步驟,藉由學習而建構神經網路,並且將前述神經網路作為學習模型。(Note 25) The computer-readable recording medium according to any one of Notes 22 to 24, wherein: in step (c) above, a neural network is constructed by learning, and the aforementioned neural network is used as a learning model .
(備註26) 如備註22至25中任一項的電腦可讀取之記錄媒體,其中: 在前述(c)的步驟,對成為輸入資料的波形資料之波形量各者,產生前述學習模型, 在前述(b)的步驟,算出已取得的前述波形資料之波形量,再基於已算出的波形量,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 26) If the computer-readable recording medium of any one of notes 22 to 25, wherein: in the step (c) above, the aforementioned learning model is generated for each of the waveform amounts of the waveform data that becomes the input data, In the step (b), the waveform amount of the obtained waveform data is calculated, and based on the calculated waveform amount, the learning model to be used is selected from each of the generated learning models, and then the existing learning model is used. The selected learning model applies the obtained waveform data to estimate the epicenter distance.
(備註27) 如備註22至25中任一項的電腦可讀取之記錄媒體,其中: 在前述(c)的步驟,對成為輸入資料的波形資料之觀測點各者,產生前述學習模型, 在前述(b)的步驟,確認已取得的前述波形資料之觀測點,再基於已確認的觀測點,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Note 27) The computer-readable recording medium of any one of Notes 22 to 25, wherein: in the step (c) above, the aforementioned learning model is generated for each of the observation points of the waveform data that becomes the input data, In step (b) above, the observation points of the waveform data obtained are confirmed, and based on the confirmed observation points, from among the generated learning models, the learning model to be used is selected, and The selected learning model applies the obtained waveform data to estimate the epicenter distance.
(備註28) 如備註22至25中任一項的電腦可讀取之記錄媒體,其中: 在前述(c)的步驟,對成為輸入資料的波形資料之觀測點的地盤特性各者,產生前述學習模型, 在前述(b)的步驟,確認已取得的前述波形資料之觀測點的地盤特性,再基於已確認的地盤特性,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。(Remark 28) The computer-readable recording medium of any one of Remarks 22 to 25, wherein: in step (c) above, for each of the site characteristics of the observation point of the waveform data that becomes the input data, the aforementioned In the learning model, in the step (b) above, confirm the site characteristics of the observation points of the waveform data that have been obtained, and then based on the confirmed site characteristics, select the aforementioned one to be used from each of the aforementioned learning models that have been generated. A learning model, and then applying the previously obtained waveform data to the selected learning model to estimate the epicenter distance.
(備註29) 如備註21至28中任一項的電腦可讀取之記錄媒體,其中在前述電腦還執行以下步驟: (d)在前述(c)的步驟,對成為前述輸入資料所使用的波形資料及對在前述(a)的步驟所取得的波形資料,執行前處理。(Remark 29) If the computer-readable recording medium of any one of Remarks 21 to 28, the following steps are also performed on the aforementioned computer: (d) In step (c) above, the data used for becoming the aforementioned input data is used. The waveform data and the waveform data obtained in the step (a) above are pre-processed.
(備註30) 如備註29中任一項的電腦可讀取之記錄媒體,其中: 在前述(d)的步驟,執行影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理之中至少1個處理,以作為前述前處理。(Note 30) The computer-readable recording medium according to any one of Note 29, wherein: in step (d) above, image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier are performed. At least one of the conversion processes is used as the aforementioned pre-processing.
以上,雖然參考實施型態而說明本申請案的發明,但本申請案的發明不限定於上述實施型態。可對本申請案的發明之構成或詳細內容,進行本申請案的發明之範疇內相關領域業者可理解的各種變更。As mentioned above, although the invention of this application was demonstrated with reference to embodiment, the invention of this application is not limited to the said embodiment. Various changes that can be understood by those skilled in the relevant field within the scope of the invention of this application can be made to the constitution or details of the invention of this application.
本申請案係根據2016年7月8日提出申請之日本出願特願2016-136310主張優先權,並將其全部揭示內容引用至此。 [產業上的可利用性]This application claims priority based on Japanese Voluntary Request No. 2016-136310 filed on July 8, 2016, and the entire disclosure thereof is incorporated herein by reference. [Industrial availability]
如以上所述,若依照本發明,則可穩定地算出震央距離,並且使算出時間縮短。本發明可用於在地震發生時必須盡早傳送地震相關資料的系統。As described above, according to the present invention, it is possible to stably calculate the epicenter distance and shorten the calculation time. The present invention can be applied to a system in which earthquake-related data must be transmitted as early as possible when an earthquake occurs.
10‧‧‧震央距離推定裝置(實施型態1)10‧‧‧ Epicenter distance estimation device (implementation type 1)
11‧‧‧地震資訊取得部11‧‧‧ Earthquake Information Acquisition Department
12‧‧‧推定處理部12‧‧‧ Presumed Processing Department
13‧‧‧學習資訊取得部13‧‧‧Learning Information Acquisition Department
14‧‧‧學習部14‧‧‧Learning Department
15‧‧‧儲存部15‧‧‧Storage Department
16‧‧‧學習模型16‧‧‧ learning model
20‧‧‧地震檢測裝置20‧‧‧earthquake detection device
30‧‧‧地震活動等綜合監視系統30‧‧‧Integrated surveillance system such as seismic activity
40‧‧‧震央距離推定裝置(實施型態2)40‧‧‧ Epicenter distance estimation device (implementation type 2)
41‧‧‧波形前處理部41‧‧‧Waveform preprocessing department
110‧‧‧電腦110‧‧‧Computer
111‧‧‧CPU111‧‧‧CPU
112‧‧‧主記憶體112‧‧‧Main memory
113‧‧‧儲存裝置113‧‧‧Storage device
114‧‧‧輸入介面114‧‧‧Input interface
115‧‧‧顯示控制器115‧‧‧Display Controller
116‧‧‧資料讀取器/寫入器116‧‧‧Data Reader / Writer
117‧‧‧通訊介面117‧‧‧ communication interface
118‧‧‧輸入機器118‧‧‧ input machine
119‧‧‧顯示裝置119‧‧‧display device
120‧‧‧記錄媒體120‧‧‧Recording Media
121‧‧‧匯流排121‧‧‧Bus
【圖1】圖1為表示本發明的實施型態1之震央距離推定裝置的概略構成之方塊圖。 【圖2】圖2為具體表示本發明的實施型態1之震央距離推定裝置的構成之方塊圖。 【圖3】圖3為表示本發明的實施型態1中用於學習的輸入資料及正解資料的一例之圖。 【圖4】圖4為表示本發明的實施型態1之震央距離推定裝置的學習處理執行時之動作的流程圖。 【圖5】圖5為表示本發明的實施型態1之震央距離推定裝置的推定處理執行時之動作的流程圖。 【圖6】圖6為具體表示本發明的實施型態2之震央距離推定裝置的構成之方塊圖。 【圖7】圖7為表示本發明的實施型態2之震央距離推定裝置的學習處理執行時之動作的流程圖。 【圖8】圖8為表示本發明的實施型態2之震央距離推定裝置的推定處理執行時之動作的流程圖。 【圖9】圖9為表示實現本發明的實施型態1及2之震央距離推定裝置的電腦之一例的方塊圖。[Fig. 1] Fig. 1 is a block diagram showing a schematic configuration of an epicenter distance estimation device according to a first embodiment of the present invention. [Fig. 2] Fig. 2 is a block diagram specifically showing a configuration of a epicenter distance estimation device according to Embodiment 1 of the present invention. FIG. 3 is a diagram showing an example of input data and positive solution data for learning in Embodiment 1 of the present invention. 4] FIG. 4 is a flowchart showing an operation when a learning process of the epicenter distance estimation device according to Embodiment 1 of the present invention is executed. 5] FIG. 5 is a flowchart showing an operation when an estimation process of the epicenter distance estimation device according to Embodiment 1 of the present invention is executed. [FIG. 6] FIG. 6 is a block diagram specifically showing a configuration of an epicenter distance estimation device according to a second embodiment of the present invention. [FIG. 7] FIG. 7 is a flowchart showing an operation when the learning process of the epicenter distance estimation device according to Embodiment 2 of the present invention is executed. [FIG. 8] FIG. 8 is a flowchart showing an operation when an estimation process of the epicenter distance estimation device according to Embodiment 2 of the present invention is executed. [FIG. 9] FIG. 9 is a block diagram showing an example of a computer that implements the epicenter distance estimation device according to the embodiments 1 and 2 of the present invention.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016136310 | 2016-07-08 | ||
JP2016-136310 | 2016-07-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201812339A true TW201812339A (en) | 2018-04-01 |
TWI687711B TWI687711B (en) | 2020-03-11 |
Family
ID=60912878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106122623A TWI687711B (en) | 2016-07-08 | 2017-07-06 | Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP6677300B2 (en) |
CN (1) | CN109416408B (en) |
PE (1) | PE20190303A1 (en) |
PH (1) | PH12018502661A1 (en) |
TW (1) | TWI687711B (en) |
WO (1) | WO2018008708A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI834735B (en) * | 2018-10-01 | 2024-03-11 | 日商東電設計股份有限公司 | Tsunami prediction apparatus, method, and recording medium |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7406828B2 (en) * | 2019-03-26 | 2023-12-28 | 国立研究開発法人海洋研究開発機構 | Earthquake estimation method, earthquake estimation program, and earthquake estimation device |
US11867858B2 (en) | 2019-08-20 | 2024-01-09 | Nec Corporation | Seismic observation device, seismic observation method, and recording medium |
JP7216359B2 (en) * | 2019-08-20 | 2023-02-01 | 日本電気株式会社 | Seismic Observation Device, Seismic Observation Method and Seismic Observation Program |
CN111538076B (en) * | 2020-05-13 | 2021-08-03 | 浙江大学 | A fast estimation method of earthquake magnitude based on deep learning feature fusion |
JP7512090B2 (en) * | 2020-06-04 | 2024-07-08 | 清水建設株式会社 | Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device |
JP7423427B2 (en) * | 2020-06-04 | 2024-01-29 | 清水建設株式会社 | Seismic motion evaluation model generation method, seismic motion evaluation model generation device, seismic motion evaluation method, and seismic motion evaluation device |
JP7471924B2 (en) * | 2020-06-04 | 2024-04-22 | 清水建設株式会社 | Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device |
JP7469703B2 (en) * | 2020-07-20 | 2024-04-17 | 日本電信電話株式会社 | Prediction method, learning method, prediction device, learning device, prediction program, and learning program |
JP7512139B2 (en) | 2020-09-14 | 2024-07-08 | 清水建設株式会社 | Earthquake motion evaluation model providing method and earthquake motion evaluation model providing device |
JP7512151B2 (en) | 2020-09-24 | 2024-07-08 | 清水建設株式会社 | Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device |
JP7499137B2 (en) | 2020-10-01 | 2024-06-13 | 清水建設株式会社 | Earthquake phenomena integrated evaluation model generation method, earthquake phenomena integrated evaluation model generation device, earthquake phenomena integrated evaluation method, and earthquake phenomena integrated evaluation device |
CN114371504B (en) * | 2022-01-11 | 2022-09-02 | 西南交通大学 | Earthquake epicenter position determination method, device, equipment and readable storage medium |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1164533A (en) * | 1997-08-21 | 1999-03-05 | Kajima Corp | Earthquake early detection system with self-learning function using neural network |
JP2000242497A (en) * | 1999-02-19 | 2000-09-08 | Fuji Electric Co Ltd | Fuzzy reasoning model construction support method and fuzzy reasoning method |
US20060059112A1 (en) * | 2004-08-25 | 2006-03-16 | Jie Cheng | Machine learning with robust estimation, bayesian classification and model stacking |
JP2006170739A (en) * | 2004-12-15 | 2006-06-29 | Kajima Corp | Earthquake disaster prevention system using earthquake early warning |
JP2007071707A (en) * | 2005-09-07 | 2007-03-22 | Taisei Corp | Prediction method of earthquake intensity using real-time earthquake information and disaster prevention system |
JP5591759B2 (en) * | 2011-05-12 | 2014-09-17 | 公益財団法人鉄道総合技術研究所 | Epicenter distance estimation method for single station processing |
US9465121B2 (en) * | 2011-08-19 | 2016-10-11 | National Applied Research Laboratories | System and method for on-site instant seismic analysis |
CN103782197B (en) * | 2011-08-19 | 2016-10-05 | 日本电气株式会社 | Estimation of Seismetic Magnitude equipment, Estimation of Seismetic Magnitude method and computer readable recording medium storing program for performing |
JP5638571B2 (en) * | 2012-06-25 | 2014-12-10 | 株式会社中電シーティーアイ | Method for creating simulated seismic wave, simulated seismic wave creating program, and computer-readable recording medium recording simulated seismic wave creating program |
TWI444648B (en) * | 2012-09-12 | 2014-07-11 | Nat Applied Res Laboratories | System and method for on-site instant earthquake analysis through artificial neural network |
CN105223614B (en) * | 2015-09-23 | 2017-06-23 | 中南大学 | A kind of signals and associated noises P ripple first arrival kurtosis pick-up methods based on DWT_STA/LTA |
-
2017
- 2017-07-05 WO PCT/JP2017/024735 patent/WO2018008708A1/en active Application Filing
- 2017-07-05 CN CN201780042233.XA patent/CN109416408B/en active Active
- 2017-07-05 JP JP2018526428A patent/JP6677300B2/en active Active
- 2017-07-05 PE PE2019000014A patent/PE20190303A1/en unknown
- 2017-07-06 TW TW106122623A patent/TWI687711B/en active
-
2018
- 2018-12-17 PH PH12018502661A patent/PH12018502661A1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI834735B (en) * | 2018-10-01 | 2024-03-11 | 日商東電設計股份有限公司 | Tsunami prediction apparatus, method, and recording medium |
Also Published As
Publication number | Publication date |
---|---|
TWI687711B (en) | 2020-03-11 |
CN109416408A (en) | 2019-03-01 |
CN109416408B (en) | 2021-04-06 |
JP6677300B2 (en) | 2020-04-08 |
PH12018502661A1 (en) | 2019-10-21 |
JPWO2018008708A1 (en) | 2019-04-11 |
PE20190303A1 (en) | 2019-02-28 |
WO2018008708A1 (en) | 2018-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI687711B (en) | Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium | |
US11551153B2 (en) | Localized learning from a global model | |
US20190147361A1 (en) | Learned model provision method and learned model provision device | |
JP2020091543A (en) | Learning device, processing device, neural network, learning method, and program | |
JP2016085704A (en) | Information processing system, information processing device, information processing method, and program | |
CN108875178B (en) | Sensor arrangement method for reducing structural modal identification uncertainty | |
JP2019159819A (en) | Annotation method, annotation device, annotation program, and identification system | |
US20220291409A1 (en) | Seismic observation device, seismic observation method, and recording medium | |
JP6729577B2 (en) | Signal detecting device, signal detecting method and program | |
JP2017215157A (en) | Information processing device, program, and fall prediction system | |
US10296844B2 (en) | Automatic discovery of message ordering invariants in heterogeneous logs | |
JP2024045515A (en) | Structure diagnosis system, structure diagnosis method, and structure diagnosis program | |
WO2016084326A1 (en) | Information processing system, information processing method, and recording medium | |
CN116522709A (en) | Sensor optimal arrangement method, device and medium based on two-dimensional effective independent method | |
US20190385590A1 (en) | Generating device, generating method, and non-transitory computer readable storage medium | |
JP2021071586A (en) | Sound extraction system and sound extraction method | |
JP7512096B2 (en) | Soundness assessment system and soundness assessment method | |
CN110309869A (en) | Stable recognition method and device for unknown scenes | |
CN113447111B (en) | Visual vibration amplification method, detection method and system based on morphological component analysis | |
JP7297240B2 (en) | User state estimation device | |
Mukhopadhyay et al. | Probabilistic structural health assessment with identified physical parameters from incomplete measurements | |
JP2021135603A (en) | Judgment device, model generator, judgment method and judgment program | |
Reed et al. | Stochastic identification of imperfections in a submerged shell structure | |
JP2014219315A (en) | Aftershock prediction apparatus, aftershock prediction method, and program | |
CN113297773B (en) | Uncertainty quantitative analysis method and device for structural damage identification |