TW201818052A - Cloud optimization system for automatic color correction - Google Patents
Cloud optimization system for automatic color correction Download PDFInfo
- Publication number
- TW201818052A TW201818052A TW105135586A TW105135586A TW201818052A TW 201818052 A TW201818052 A TW 201818052A TW 105135586 A TW105135586 A TW 105135586A TW 105135586 A TW105135586 A TW 105135586A TW 201818052 A TW201818052 A TW 201818052A
- Authority
- TW
- Taiwan
- Prior art keywords
- color
- block
- automatic
- values
- concentration
- Prior art date
Links
- 238000012937 correction Methods 0.000 title claims abstract description 54
- 238000005457 optimization Methods 0.000 title claims abstract description 25
- 238000012360 testing method Methods 0.000 claims abstract description 35
- 230000003595 spectral effect Effects 0.000 claims abstract description 27
- 238000007689 inspection Methods 0.000 claims abstract description 22
- 238000007639 printing Methods 0.000 claims abstract description 19
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 235000013405 beer Nutrition 0.000 claims description 9
- 241000575946 Ione Species 0.000 claims description 4
- LTXREWYXXSTFRX-QGZVFWFLSA-N Linagliptin Chemical compound N=1C=2N(C)C(=O)N(CC=3N=C4C=CC=CC4=C(C)N=3)C(=O)C=2N(CC#CC)C=1N1CCC[C@@H](N)C1 LTXREWYXXSTFRX-QGZVFWFLSA-N 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
Abstract
Description
本發明是有關於一種自動校色雲端優化系統,特別是有關於使用九色塊來校色之自動校色雲端優化系統。The invention relates to an automatic color correction cloud optimization system, in particular to an automatic color correction cloud optimization system using nine color blocks for color correction.
按,習知印刷機於出售前會進行色彩校正,例如藉由如廠商X-rite所銷售之X-rite Ione分光光度儀及X-rite免費數據量測軟體ColorPort來取得列印圖樣之光譜數據,然後評斷是否符合國際ISO 12647-2標準。國際標準 ISO 12647是由國際標準化組織(International Organization for Standardization)針對網目調分色片、樣張和印刷成品的加工過程控制之標準,而ISO 12647-2是其中針對平版印刷的部分,它描述如何監控平版印刷過程中,分色、打樣及印刷等製程,並針對顏色量度條件、紙張質量、紙張容差、油墨的質量及疊印後的數值、分色菲林及鋅版要求、四色網點擴大值設立標準。因此,比對項目甚多,校正人員無法清楚得知未符合國際ISO 12647-2標準之印刷機應往哪一項目進行校正,校正過程非常繁複,缺乏效率。According to the conventional printing machine, the color correction is performed before the sale, for example, the X-rite Ione spectrophotometer sold by the manufacturer X-rite and the X-rite free data measuring software ColorPort are used to obtain the spectral data of the printed pattern. And then judge whether it meets the international ISO 12647-2 standard. The international standard ISO 12647 is the standard for process control of color separation, proof and printed products for the mesh by the International Organization for Standardization, and ISO 12647-2 is the part for lithography, which describes how to monitor In the process of lithographic printing, processes such as color separation, proofing and printing, and setting standards for color measurement conditions, paper quality, paper tolerance, ink quality and post-overprint values, color separation film and zinc plate requirements, and four-color dot gain value . Therefore, there are many comparison items, and the calibration personnel cannot clearly know which project the printing machine that does not comply with the international ISO 12647-2 standard should be corrected. The calibration process is very complicated and inefficient.
因此,如何讓校正人員能清楚印刷機之校正方向,使校正人員方便理解之數據意義,並且能迅速地做出相對應的處理,以利達到ISO 12647-2的標準需求。Therefore, how to enable the corrector to understand the direction of correction of the printing press, so that the corrector can easily understand the meaning of the data, and can quickly make the corresponding processing to meet the standard requirements of ISO 12647-2.
有鑑於上述習知技術之問題,本發明之其中之一目的在於提供一種自動校色雲端優化系統,以期透過印製自定之九色塊導表利用分光光度儀採以單點測量透過ColorPort逐一收集各色塊之數據,較佳的可以使用自製之輔助導版將受檢測之九色塊固定後,使用分光光度儀以色帶測量透過ColorPort一次收集九色塊之數據,將收集之數據保存為CGATS(Committee for Graphic Arts Technologies Standards)格式,較佳的可使用任何可測量並保存成符合 CGATS格式之軟體或分光光度儀,將CGATS格式之數據上傳至自動校色雲端平台,來分析特定檢驗色塊之色差值及網點擴大值,並顯示予校正人員,讓校正人員能清楚印刷機之校正方向,使校正人員方便理解之數據意義,並且能迅速地做出相對應的處理,以利達到國際色彩檢驗的標準需求。In view of the above problems of the prior art, one of the objects of the present invention is to provide an automatic color correction cloud optimization system, which uses a spectrophotometer to print a single point measurement through a ColorPort one by one by printing a custom nine color block guide. Collect the data of each color block. It is better to use the self-made auxiliary guide plate to fix the nine color blocks to be detected. Then use the spectrophotometer to measure the data of the nine color blocks through the ColorPort and measure the collected data. CGATS (Committee for Graphic Arts Technologies Standards) format, preferably using any software or spectrophotometer that can be measured and saved in CGATS format, upload data in CGATS format to the automatic color correction cloud platform to analyze specific test colors The color difference of the block and the dot gain value, and display to the calibration personnel, so that the calibration personnel can clearly understand the correction direction of the printing machine, so that the calibration personnel can easily understand the meaning of the data, and can quickly make corresponding processing to achieve Standard requirements for international color inspection.
緣是,為達上述目的,本發明提出一種自動校色雲端優化系統,其包含:任何可以測量出符合 CGATS(Committee for Graphic Arts Technologies Standards)格式的分光光度儀(如:x-rite, Datacolor與Barbieri公司之分光光度儀),取得複數個檢驗色塊之光譜值;自動校色雲端平台,接收分光光度儀所傳輸之複數個檢驗色塊之光譜值,並換算複數個檢驗色塊之光譜值為複數個濃度值、複數個色差值及複數個網點擴大值,藉由複數個色差值及複數個網點擴大值,判斷複數個檢驗色塊是否符合檢驗標準;以及顯示器,顯示自動校色雲端平台所傳輸之複數個濃度值、複數個色差值及複數個網點擴大值,以供使用者對列印出複數個檢驗色塊之印刷機進行校正。Therefore, in order to achieve the above object, the present invention provides an automatic color correction cloud optimization system, which comprises: any spectrophotometer capable of measuring a CGATS (Committee for Graphic Arts Technologies Standards) format (eg, x-rite, Datacolor and Barbieri's spectrophotometer) obtains the spectral values of a plurality of test patches; the automatic color correction cloud platform receives the spectral values of the plurality of test patches transmitted by the spectrophotometer, and converts the spectral values of the plurality of test patches. For a plurality of density values, a plurality of color difference values, and a plurality of dot gain values, determining whether the plurality of test patches meet the inspection standard by using a plurality of color difference values and a plurality of dot gain values; and displaying an automatic color correction The plurality of density values, the plurality of color difference values, and the plurality of dot gain values transmitted by the cloud platform are provided for the user to correct the printing machine that prints the plurality of test color blocks.
較佳地,複數個檢驗色塊可包含青色滿版色塊、品紅色滿版色塊、黃色滿版色塊、黑色滿版色塊、濃度50%之青色色塊、濃度50%之品紅色色塊、濃度50%之黃色色塊、濃度50%之黑色色塊及三色灰(C50, M40, Y40)色塊。Preferably, the plurality of test patches may include a cyan full color block, a magenta full color block, a yellow full color block, a black full color block, a cyan color block having a concentration of 50%, and a magenta color concentration of 50%. Color block, 50% yellow color block, 50% black color block and three-color gray (C50, M40, Y40) color block.
較佳地,自動校色雲端平台可藉由青色滿版色塊、品紅色滿版色塊、黃色滿版色塊及黑色滿版色塊之光譜值取得複數個濃度值及複數個色差值。Preferably, the automatic color correction cloud platform can obtain a plurality of density values and a plurality of color difference values by using spectral values of the cyan full color block, the magenta full color block, the yellow full color block, and the black full color block. .
較佳地,自動校色雲端平台可藉由比爾定律(Beer's law)預測青色滿版色塊、品紅色滿版色塊、黃色滿版色塊及黑色滿版色塊之最佳濃度與最低色差值。Preferably, the automatic color correction cloud platform can predict the optimal concentration and the lowest color of the cyan full color block, the magenta full color block, the yellow full color block and the black full color block by Beer's law. Difference.
較佳地,顯示器可進一步顯示最佳濃度與最低色差值。Preferably, the display further displays the optimal density and the lowest color difference.
較佳地,自動校色雲端平台可藉由濃度50%之青色色塊、濃度50%之品紅色色塊、濃度50%之黃色色塊及濃度50%之黑色色塊之光譜值取得複數個網點擴大值。Preferably, the automatic color correction cloud platform can obtain a plurality of spectral values of a 50% cyan color block, a 50% magenta color block, a 50% yellow color block, and a 50% black color block. The dot gain value.
較佳地,三色灰色塊,可用以調整濃度50%之青色色塊、濃度50%之品紅色色塊及濃度50%之黃色色塊之複數個網點擴大值。Preferably, the three-color gray block can be used to adjust a plurality of dot gain values of 50% cyan color block, 50% magenta color block, and 50% yellow color block.
較佳地,三色灰色塊,可由濃度50%之青色色塊、濃度40%之品紅色色塊及濃度40%之黃色色塊混色而成。Preferably, the three-color gray block is formed by mixing a cyan color block having a concentration of 50%, a magenta color block having a concentration of 40%, and a yellow color block having a concentration of 40%.
較佳地,檢驗標準之色差值可小於5。Preferably, the color difference value of the inspection standard may be less than 5.
較佳地,檢驗標準之網點擴大值可小於4。Preferably, the dot gain of the inspection standard may be less than four.
承上所述,依據本發明其可具有一或多個下述優點:As stated above, it may have one or more of the following advantages in accordance with the present invention:
1. 本發明藉由分光光度儀及自動校色雲端平台來分析取得校正人員方便理解之色差值及網點擴大值,以解決習知分析數據過多且不易理解之缺點。1. The invention analyzes and obtains the color difference value and the dot gain value which are easily understood by the calibration personnel by using the spectrophotometer and the automatic color calibration cloud platform, so as to solve the disadvantage that the conventional analysis data is too much and difficult to understand.
2. 本發明藉由顯示器讓校正人員能清楚印刷機之校正方向及最佳濃度與最低色差值,並且能迅速地做出相對應的處理,以利達到國際色彩檢驗的標準需求。2. The invention allows the calibration personnel to clearly understand the correction direction of the printing machine and the optimum density and the lowest color difference by the display, and can quickly make corresponding processing to meet the standard requirements of international color inspection.
本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。The advantages and features of the present invention, as well as the technical methods of the present invention, are described in more detail with reference to the exemplary embodiments and the accompanying drawings. The embodiments of the present invention are to be construed as being limited by the scope of the present invention, and the invention The scope of the patent application is defined.
本發明下述一或多個實施方式係揭露一種自動校色雲端優化系統。藉由下述實施方式所揭露之自動校色雲端優化系統,可藉由分光光度儀及自動校色雲端平台來分析取得校正人員方便理解之色差值及網點擴大值,以解決習知分析數據過多且不易理解之缺點,另外可藉由顯示器讓校正人員能清楚印刷機之校正方向及最佳濃度與最低色差值,並且能迅速地做出相對應的處理,以利達到國際色彩檢驗的標準需求。One or more embodiments of the present invention disclose an automatic color correction cloud optimization system. The automatic color correction cloud optimization system disclosed in the following embodiments can analyze the color difference value and the dot gain value which are easily understood by the calibration personnel by using the spectrophotometer and the automatic color calibration cloud platform to solve the conventional analysis data. Excessive and incomprehensible shortcomings, the display can be used by the monitor to clarify the correcting direction of the printing press and the optimum density and the lowest color difference, and can quickly make corresponding processing to achieve international color inspection. Standard requirements.
第1圖為本發明一實施方式之自動校色雲端優化系統方塊圖。請參考第1圖及第2圖,自動校色雲端優化系統包含:分光光度儀1、自動校色雲端平台2及顯示器3。分光光度儀1,如X-rite Ione分光光度儀及X-rite數據量測軟體ColorPort,用以掃描取得複數個檢驗色塊4之光譜值,其中複數個檢驗色塊4是經由待校正之印刷機所列印,而複數個檢驗色塊4可包含青色滿版色塊、品紅色滿版色塊、黃色滿版色塊、黑色滿版色塊、濃度50%之青色色塊、濃度50%之品紅色色塊、濃度50%之黃色色塊、濃度50%之黑色色塊及三色灰色塊(由濃度50%之青色色塊、濃度40%之品紅色色塊及濃度40%之黃色色塊所混合而成),此九色塊是依照德國FOGRA 印藝技術研究協會與G7國際色彩檢驗標準而制定。自動校色雲端平台2用以接收分光光度儀1所傳輸之複數個檢驗色塊4之光譜值,並利用PHP軟體將ColorPort數據量測軟體所取得的複數個檢驗色塊4之光譜值帶進習知換算公式,來將光譜值換算為複數個濃度值、複數個色差值及複數個網點擴大值(TVI),而自動校色雲端平台2藉由複數個色差值及複數個網點擴大值,判斷複數個檢驗色塊是否符合檢驗標準,例如G7與FOGRA的檢驗標準之色差值為小於5及網點擴大值為小於4。顯示器3用以顯示自動校色雲端平台2所傳輸之複數個濃度值、複數個色差值及複數個網點擴大值(如第3圖及第4圖),以供使用者對列印出複數個檢驗色塊4之印刷機進行校正,例如第3圖所示之顯示器3其呈現黃色滿版色塊(代號為Y)的檢測結果32,及濃度值與色差值之關係圖31,其中量測線所對應的量測濃度為1及色差為3.01,及警示線讓使用者得知黃色滿版色塊之色差值是否小於5以符合檢驗標準,而第4圖所示之顯示器3其呈現濃度50%之青色色塊(代號為C50)、濃度50%之品紅色色塊(代號為M50)、濃度50%之黃色色塊(代號為Y50)及濃度50%之黑色色塊(代號為K50)的檢測結果42,及各色塊之網點擴大值(TVI)圖表41,其中警示線讓使用者得知各色塊之網點擴大值(TVI)是否小於4以符合檢驗標準。FIG. 1 is a block diagram of an automatic color correction cloud optimization system according to an embodiment of the present invention. Please refer to Figure 1 and Figure 2. The automatic color correction cloud optimization system includes: spectrophotometer 1, automatic color correction cloud platform 2 and display 3. A spectrophotometer 1, such as an X-rite Ione spectrophotometer and an X-rite data measuring software ColorPort, for scanning to obtain spectral values of a plurality of test patches 4, wherein the plurality of test patches 4 are printed via the calibration to be corrected The machine prints, and the plurality of test color blocks 4 may include a cyan full color block, a magenta full color block, a yellow full color block, a black full color block, a cyan color block having a concentration of 50%, and a concentration of 50%. The product is a red color block, a 50% yellow color block, a black color block with a concentration of 50%, and a three-color gray block (a cyan color block with a concentration of 50%, a magenta color block with a concentration of 40%, and a yellow color with a concentration of 40%). The color blocks are mixed according to the German FOGRA Graphic Technology Research Association and the G7 International Color Inspection Standard. The automatic color correction cloud platform 2 is configured to receive the spectral values of the plurality of test color blocks 4 transmitted by the spectrophotometer 1, and bring the spectral values of the plurality of test color blocks 4 obtained by the ColorPort data measurement software into the PHP software. The conventional conversion formula is used to convert the spectral value into a plurality of concentration values, a plurality of color difference values, and a plurality of dot gain values (TVI), and the automatic color correction cloud platform 2 is expanded by a plurality of color difference values and a plurality of network dots. The value is used to determine whether the plurality of test patches meet the test criteria. For example, the color difference between the G7 and FOGRA test standards is less than 5 and the dot gain is less than 4. The display 3 is configured to display a plurality of density values, a plurality of color difference values, and a plurality of dot gain values (such as FIG. 3 and FIG. 4) transmitted by the automatic color correction cloud platform 2, so that the user prints the plural number The printing machine of the inspection color block 4 performs correction, for example, the display 3 shown in FIG. 3 exhibits a detection result 32 of a yellow full-color color block (code Y), and a relationship between the density value and the color difference value FIG. 31, wherein The measuring line corresponds to a measuring density of 1 and a color difference of 3.01, and the warning line allows the user to know whether the color difference of the yellow full-color color block is less than 5 to meet the inspection standard, and the display 3 shown in FIG. It presents a cyan color block (code C50) with a concentration of 50%, a magenta color block (code M50) with a concentration of 50%, a yellow color block with a concentration of 50% (code Y50), and a black color block with a concentration of 50% ( The detection result 42 of code K50) and the dot gain value (TVI) chart 41 of each color block, wherein the warning line allows the user to know whether the dot gain value (TVI) of each color block is less than 4 to meet the inspection standard.
第2圖為本發明一實施方式之自動校色雲端優化系統流程圖。請參考第2圖,首先步驟S1:待校正之印刷機列印複數個檢驗色塊4,而複數個檢驗色塊4可包含青色滿版色塊、品紅色滿版色塊、黃色滿版色塊、黑色滿版色塊、濃度50%之青色色塊、濃度50%之品紅色色塊、濃度50%之黃色色塊、濃度50%之黑色色塊及三色灰色塊(由濃度50%之青色色塊、濃度40%之品紅色色塊及濃度40%之黃色色塊所混合而成),此九色塊是依照德國FOGRA 印藝技術研究協會與G7國際色彩檢驗標準而制定。接著步驟S2:藉由X-rite Ione分光光度儀1掃描複數個檢驗色塊4,並由X-rite數據量測軟體ColorPort計算取得光譜值。步驟S3:自動校色雲端平台2接收分光光度儀1所傳輸之複數個檢驗色塊4之光譜值,並換算複數個檢驗色塊4之光譜值為複數個濃度值、複數個色差值及複數個網點擴大值,自動校色雲端平台2藉由複數個色差值及複數個網點擴大值,判斷複數個檢驗色塊是否符合檢驗標準。步驟S4:顯示器3顯示自動校色雲端平台2所傳輸之複數個濃度值、複數個色差值、複數個網點擴大值及是否符合檢驗標準,以供使用者對列印出複數個檢驗色塊4之印刷機進行校正,若符合檢驗標準,則進行步驟S5:結束印刷機校正,若未符合檢驗標準,則使用者對印刷機進行校正,校正完畢重新進行步驟S1直至印刷機列印出符合檢驗標準之複數個檢驗色塊4。FIG. 2 is a flow chart of an automatic color correction cloud optimization system according to an embodiment of the present invention. Referring to FIG. 2, first step S1: the printing machine to be corrected prints a plurality of inspection color blocks 4, and the plurality of inspection color blocks 4 may include a cyan full color block, a magenta full color block, and a yellow full color. Block, black full color block, 50% cyan color block, 50% magenta color block, 50% yellow color block, 50% black color block and three color gray block (by 50% concentration) The cyan block, 40% magenta color block and 40% yellow color block are mixed according to the German FOGRA Graphic Technology Research Association and G7 International Color Inspection Standard. Next, in step S2, a plurality of test patches 4 are scanned by the X-rite Ione spectrophotometer 1, and the spectral values are calculated by the X-rite data measurement software ColorPort. Step S3: The automatic color correction cloud platform 2 receives the spectral values of the plurality of test color blocks 4 transmitted by the spectrophotometer 1, and converts the spectral values of the plurality of test color blocks 4 into a plurality of density values, a plurality of color difference values, and The plurality of dot gain values are automatically determined by the plurality of color difference values and the plurality of dot gain values to determine whether the plurality of test patches meet the test criteria. Step S4: The display 3 displays a plurality of density values, a plurality of color difference values, a plurality of dot gain values, and whether the plurality of dot gain values are transmitted by the automatic color correction cloud platform 2, so that the user prints a plurality of test color blocks. The printing machine of 4 performs calibration. If the inspection standard is met, step S5 is performed: the printing machine calibration is finished. If the inspection standard is not met, the user corrects the printing machine, and after the calibration is completed, step S1 is performed again until the printing press prints out. A plurality of test patches 4 of the inspection standard.
另外,在本發明一實施方式中,自動校色雲端平台2藉由青色滿版色塊、品紅色滿版色塊、黃色滿版色塊及黑色滿版色塊之光譜值取得複數個濃度值及複數個色差值,而自動校色雲端平台2藉由比爾定律(Beer's law)預測青色滿版色塊、品紅色滿版色塊、黃色滿版色塊及黑色滿版色塊之最佳濃度與最低色差值,運用的概念如下,先取得一個油墨(Ex. Cyan)(光線穿過n杯啤酒)的光譜值,此光譜值可換算取得一Lab值,由此Lab值可得到與該油墨標準值(ISO 12647-2 Cyan: 55,-37,-50)的色差值;經由光譜值也可一併算出其濃度值,以 Beer’s Law方法,模擬出該油墨各種不同油墨厚度(濃度,啤酒杯數)的光譜值,併計算其Lab值與濃度值,由上述取得的Lab值與濃度值數列,可以很快的判定該油墨能否達成規範的色差值(色差值deltaE<5),也可一併預測出達成最低色差的濃度值。Beer–Lambert law理論為皮埃爾·布格(Pierre Bouguer)和約翰·海因里希·朗伯(Johann Heinrich Lambert)分別在1729年和1760年闡明了物質對光的吸收程度和吸收介質厚度之間的關係;1852年奧古斯特·比爾(August Beer)又提出光的吸收程度和吸光物質濃度也具有類似關係,兩者結合起來就得到有關光吸收的基本定律,布格-朗伯-比爾定律(Bouguer–Lambert–Beer law),簡稱比爾-朗伯定律(Beer–Lambert law)也可稱為比爾定律(Beer's law)。而顯示器3可進一步顯示最佳濃度與最低色差值,如第3圖所示之顯示器3其呈現黃色滿版色塊(代號為Y)的檢測結果32,及濃度值與色差值之關係圖31,除了量測線所對應的量測濃度為1及色差為3.01,及警示線讓使用者得知黃色滿版色塊之色差值是否小於5以符合檢驗標準外,還包括以Beer–Lambert law理論的特性所預測出之最佳線所對應的預測濃度為1.05及最佳色差為1.5。因此上述結果之數據顯示可提供使用者了解其濃度及色差的資料。In addition, in an embodiment of the present invention, the automatic color correction cloud platform 2 obtains a plurality of density values by spectral values of a cyan full color block, a magenta full color block, a yellow full color block, and a black full color block. And a plurality of color difference values, and the automatic color correction cloud platform 2 predicts the best of the cyan full color block, the magenta full color block, the yellow full color block and the black full color block by Beer's law. The difference between the concentration and the lowest color is as follows. First, obtain the spectral value of an ink (Ex. Cyan) (light passes through n cups of beer), and the spectral value can be converted to obtain a Lab value, whereby the Lab value can be obtained. The color difference value of the ink standard value (ISO 12647-2 Cyan: 55, -37, -50); the concentration value can also be calculated through the spectral value, and the different ink thicknesses of the ink are simulated by the Beer's Law method ( The spectral value of the concentration, the number of beer cups, and the Lab value and the concentration value are calculated. From the Lab value and the concentration value sequence obtained above, it can be quickly determined whether the ink can achieve the standard color difference value (color difference deltaE) <5), the concentration value at which the lowest chromatic aberration is achieved can also be predicted together. The Beer–Lambert law theory states that Pierre Bouguer and Johann Heinrich Lambert clarified the absorption of light and the thickness of the absorbing medium in 1729 and 1760, respectively. The relationship between them; in August 1852, August Beer also proposed a similar relationship between the degree of light absorption and the concentration of light-absorbing substances. The combination of the two gives the basic law of light absorption, Bouguer-Lambert -Bouguer–Lambert–Beer law, referred to as Beer–Lambert law, can also be called Beer's law. The display 3 can further display the optimal density and the lowest color difference value, as shown in FIG. 3, the display result 3 of the yellow full-color color block (code Y), and the relationship between the density value and the color difference value. In addition, the measurement density corresponding to the measurement line is 1 and the color difference is 3.01, and the warning line allows the user to know whether the color difference of the yellow full-color color block is less than 5 to meet the inspection standard, and includes Beer. The optimum line predicted by the characteristics of the –Lambert law theory corresponds to a predicted concentration of 1.05 and an optimum color difference of 1.5. Therefore, the data of the above results show that the user can know the data of the concentration and chromatic aberration.
另外,在本發明一實施方式中,自動校色雲端平台2藉由濃度50%之青色色塊、濃度50%之品紅色色塊、濃度50%之黃色色塊及濃度50%之黑色色塊之光譜值來取得複數個網點擴大值,而藉由三色灰色塊的數據列出階調,從數據上可以看出油墨的濃度多寡,另外會呈現出青色色塊、品紅色色塊、黃色色塊濃度多寡的示意圖,來用以調整濃度50%之青色色塊、濃度50%之品紅色色塊及濃度50%之黃色色塊之複數個網點擴大值,使網點擴大值更為正確。如第4圖所示之顯示器3其呈現濃度50%之青色色塊(代號為C50)、濃度50%之品紅色色塊(代號為M50)、濃度50%之黃色色塊(代號為Y50)及濃度50%之黑色色塊(代號為K50)的檢測結果42,及各色塊之網點擴大值(TVI)圖表41,其中警示線讓使用者得知各色塊之網點擴大值(TVI)是否小於4以符合檢驗標準,從圖表可以很清楚的知道濃度50%之黑色色塊(代號為K50)的網點擴大值(TVI)過大為5.56、而濃度50%之黃色色塊(代號為Y50) 的網點擴大不足,為負1.73。因此上述結果之數據顯示可提供使用者了解其網點擴大值的資料。In addition, in an embodiment of the present invention, the automatic color correction cloud platform 2 is composed of a cyan color block having a concentration of 50%, a magenta color block having a concentration of 50%, a yellow color block having a concentration of 50%, and a black color block having a concentration of 50%. The spectral value is used to obtain a plurality of dot gain values, and the data is listed by the data of the three-color gray block, and the density of the ink can be seen from the data, and the cyan block, magenta block, and yellow are displayed. The schematic diagram of the concentration of the color block is used to adjust the expansion value of the plurality of dot dots of the cyan color block of 50% concentration, the magenta color block of 50% concentration, and the yellow color block of the concentration of 50%, so that the dot gain value is more correct. The display 3 shown in Fig. 4 presents a cyan color block (code C50) with a concentration of 50%, a magenta color block (code M50) with a concentration of 50%, and a yellow color block (code Y50) with a concentration of 50%. And the detection result 42 of the black color block (code K50) with a concentration of 50%, and the dot gain value (TVI) chart 41 of each color block, wherein the warning line allows the user to know whether the dot gain value (TVI) of each color block is smaller than 4 In accordance with the inspection standard, it can be clearly seen from the chart that the 50% black color block (code K50) has a dot gain value (TVI) of 5.56 and a yellow color of 50% (code Y50). The network expansion was insufficient, which was negative 1.73. Therefore, the data of the above results shows that the user can provide information on the expanded value of the dot.
綜上所述,本發明藉由分光光度儀及自動校色雲端平台來分析取得校正人員方便理解之色差值及網點擴大值,以解決習知分析數據過多且不易理解之缺點。另外,本發明藉由顯示器讓校正人員能清楚印刷機之校正方向及最佳濃度與最低色差值,並且能迅速地做出相對應的處理,以利達到國際色彩檢驗的標準需求。In summary, the present invention analyzes and obtains the color difference value and the dot gain value which are easily understood by the calibration personnel by using the spectrophotometer and the automatic color calibration cloud platform, so as to solve the disadvantage that the conventional analysis data is too much and difficult to understand. In addition, the present invention allows the calibration personnel to clearly understand the correction direction of the printing machine and the optimum density and the lowest color difference by the display, and can quickly perform corresponding processing to meet the standard requirements of international color inspection.
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The embodiments described above are merely illustrative of the technical spirit and the features of the present invention, and the objects of the present invention can be understood by those skilled in the art, and the scope of the present invention cannot be limited thereto. That is, the equivalent variations or modifications made by the spirit of the present invention should still be included in the scope of the present invention.
1‧‧‧分光光度儀1‧‧ ‧ Spectrophotometer
2‧‧‧自動校色雲端平台2‧‧‧Automatic color cloud platform
3‧‧‧顯示器3‧‧‧ display
4‧‧‧檢驗色塊4‧‧‧Check color blocks
31‧‧‧濃度值與色差值之關係圖31‧‧‧Relationship between concentration value and color difference
32、42‧‧‧檢測結果32, 42‧‧‧ test results
41‧‧‧網點擴大值圖表41‧‧‧ outlet point expansion chart
S1~S5‧‧‧步驟S1~S5‧‧‧Steps
第1圖為本發明一實施方式之自動校色雲端優化系統方塊圖。FIG. 1 is a block diagram of an automatic color correction cloud optimization system according to an embodiment of the present invention.
第2圖為本發明一實施方式之自動校色雲端優化系統流程圖。FIG. 2 is a flow chart of an automatic color correction cloud optimization system according to an embodiment of the present invention.
第3圖為本發明一實施方式之自動校色雲端優化系統之顯示器的顯示示意圖。FIG. 3 is a schematic diagram showing the display of the display of the automatic color correction cloud optimization system according to an embodiment of the present invention.
第4圖為本發明一實施方式之自動校色雲端優化系統之顯示器的另一顯示示意圖。FIG. 4 is another schematic diagram of a display of an automatic color correction cloud optimization system according to an embodiment of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105135586A TWI645167B (en) | 2016-11-02 | 2016-11-02 | Cloud optimization system for automatic color correction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105135586A TWI645167B (en) | 2016-11-02 | 2016-11-02 | Cloud optimization system for automatic color correction |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201818052A true TW201818052A (en) | 2018-05-16 |
TWI645167B TWI645167B (en) | 2018-12-21 |
Family
ID=62949628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105135586A TWI645167B (en) | 2016-11-02 | 2016-11-02 | Cloud optimization system for automatic color correction |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI645167B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110737440A (en) * | 2019-10-22 | 2020-01-31 | 吉林工程技术师范学院 | programming method based on DaVinci nostalgic color system digital color correction plug-in |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI863230B (en) * | 2023-04-21 | 2024-11-21 | 興台彩色印刷股份有限公司 | Methods of compensation for outlets |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI267448B (en) * | 2004-11-10 | 2006-12-01 | Printing Technology Res Inst | Simulation of profile gives prediction of specific colors |
JP2007198884A (en) * | 2006-01-26 | 2007-08-09 | Hitachi High-Technologies Corp | Mass spectrometer and mass spectrometry method |
TWI377044B (en) * | 2009-11-06 | 2012-11-21 | Nat Univ Chung Cheng | Method for reconstructing color images |
TWM498929U (en) * | 2014-12-15 | 2015-04-11 | Kuang Lung Printing Factory Co Ltd | Cloud fast color correction service platform |
-
2016
- 2016-11-02 TW TW105135586A patent/TWI645167B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110737440A (en) * | 2019-10-22 | 2020-01-31 | 吉林工程技术师范学院 | programming method based on DaVinci nostalgic color system digital color correction plug-in |
CN110737440B (en) * | 2019-10-22 | 2023-03-14 | 吉林工程技术师范学院 | Programming method based on DaVinci nostalgic color series digital color correction plug-in |
Also Published As
Publication number | Publication date |
---|---|
TWI645167B (en) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6698860B2 (en) | Spectral color reproduction with six color output | |
CN106541702B (en) | A kind of printing quality correction system and method | |
US8045186B2 (en) | Image processing apparatus, image processing method, computer readable medium and data signal | |
US7307755B2 (en) | Method for correcting unadjusted printing data on the basis of colormetrically measured reference sheet | |
US9741132B2 (en) | Method for correcting deviations of measured image data | |
US7262880B2 (en) | Apparatus and method for creating color-calibration characteristic curves and/or process-calibration characteristic curves | |
US20120250095A1 (en) | Method and printing system for gray balance correction of a printing process, computer program product and computer program storage device | |
CN102221554A (en) | Presswork quality and flaw inspection method | |
CN102511050B (en) | Method for optimizing display profiles | |
TWI645167B (en) | Cloud optimization system for automatic color correction | |
US8749861B2 (en) | L*a*b* scanning using RGB-clear | |
US7724392B2 (en) | Methods and apparatus for calibrating digital imaging devices | |
US7433078B2 (en) | Methods and apparatus for calibrating a digital color imaging device that uses multi-hue colorants | |
CN100458423C (en) | Detecting method for color printing quality | |
US7630106B2 (en) | Methods and apparatus for determining colorant limits for calibrating digital imaging devices | |
GB2435572A (en) | Selecting a set of inks for colour process printing | |
JP7557829B2 (en) | Method for determining match factors for color matching of prints produced at a given target lightness - Patents.com | |
US7742204B2 (en) | Methods and apparatus for determining a total colorant limit for digital imaging devices | |
JP3935549B2 (en) | Color calibration method | |
JP5886462B1 (en) | How to dynamically calibrate the printing process | |
FI111140B (en) | Collection of quality data in an offset rotation printer | |
US9471858B2 (en) | Method for converting spectral characterization data | |
US20100079828A1 (en) | Method for optimizing display profiles to simulate the metameric effects of custom illumination | |
JP3935836B2 (en) | Print color tone measuring method, print color tone measuring device, and program thereof | |
JPH11132849A (en) | Method for correcting colorimetry value and colorimetery machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |