201203636 六、發明說明: 【發明所屬之技術領域】 本發明關於一種具有散熱結構(或熱沉降結構(Heat sinking structure))之發光二極體裝置,以及使用該發光二極 體裝置的照明裝置。 【先前技術】 發光二極體(LED,Light emitting diode)為一種兩個終 端的二極體元件,其中包括化合物半導體材料,像是 GaAs、AlGaAs、GaN、InGaN、AlGalnP 或類似者。LED 在當施加電力至陰極終端與陽極終端時可放射出具有根據 電子與電洞之重新組合所產生光能之可見光。 可放射白光的白光LED可經由紅光LED、綠光LED 與藍光LED的三色組合或藉由結合黃色螢光粉於藍光LED 來實施。白光LED的出現已經將LED的應用領域由電子 產品的指示器延伸到曰常用品、廣告看板或其類似者,且 目前因為LED晶片具有高效率,它們用於取代一般的照明 用光源,像是路燈、汽車頭燈、日光燈或類似者。 為了取代數十到數百瓦的一般用照明,已經開發出增 加個別LED元件之輸出技術。需要一種高輸出LED元件 用來提供用於釋放或散逸由LED晶片所產生熱量之設計。 對於改善個別LED元件輸出的研究正在進行中,藉以降低 用於LCD電視之LED背光單元的LED元件數目。當改善 LED元件的輸出時,LED晶片之溫度一定會增加並會負面 201203636 地二曰該LED &件之效率與壽命。不像其它的光源,例如 光燈白”,、燈/包(或輝光燈)或其類似者,該LED轉換大 70/。或80/。的輪人功率成為熱能’所以可有效地釋放熱 月b的技術非*重要。特別是該led晶片由於熱量造成的溫 度增加,係直接_在短期内發光效率的劣化,且在長期 下降低该晶片的壽命,所以降低該LED晶片溫度1〇。〇可加 倍該LED晶片的壽命。 在 封裝中,熱量傳輸非常依賴熱傳導現象。為了 平順地執行熱傳導’每種材料的導熱性必須要高,且個別 材料之間的接觸表面上的熱阻抗必須要低,才能達到有效 的熱量釋放。熱阻抗定義成根據由外部來源施加的電力所 產生之熱量所增加的溫度與初始溫度之間的溫度差,該溫 度差再除以所施加的電力所得到的數值。高熱阻抗代表 L E D晶片與周遭溫度之_溫度纽高,且由該L E D晶片 產生的熱量無法適當地釋放。因此,高輸出LED封裝技術 之發展,藉由設計使用具有高導祕並可有效地釋放熱量 之材料的封裝結構,而著重在降域阻抗。同時,其藉由 最適化安裝該LED晶片的封裝程序而著重在降低熱阻抗。 為了釋放LED封裝的熱量,通常使用一種將該等led 封裝焊接在高價的金屬印刷電路板(pCB , pHnted咖此 board)或熱襯板之方法。在此例中,由該等led封裝所產 生的熱量經由該金屬PCB釋放。 在金屬PCB的結構當中’樹脂層、銅箱層、焊料阻抗 層被堆叠在减板上。由該LED晶片產生的熱量沿著該 201203636 led封裝的封裝體的熱傳輪路徑,及該焊料層、該銅落層、 該樹脂層與該金屬PCB的紹基板來釋放,且在此例中,該 樹月曰層具有低的熱料性,造成在該熱料流動巾熱釋放 之瓶頸現象。 當該等LED封裝以陣列型式被安裝在該金屬pcB上 時’僅利用該金屬PCB的熱釋放效應具有較低的熱釋放效 果:所以散鮮可安裝在該金屬PCB的下方表面上以釋放201203636 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode device having a heat dissipation structure (or a heat sinking structure), and an illumination device using the same. [Prior Art] A light emitting diode (LED) is a two-terminal diode element including a compound semiconductor material such as GaAs, AlGaAs, GaN, InGaN, AlGalnP or the like. The LED emits visible light having light energy generated by recombination of electrons and holes when power is applied to the cathode terminal and the anode terminal. A white LED that emits white light can be implemented by a three-color combination of a red LED, a green LED, and a blue LED, or by combining yellow phosphor with a blue LED. The advent of white LEDs has extended the field of LED applications from electronic product indicators to general-purpose products, advertising billboards or the like, and because LED chips are currently highly efficient, they are used to replace general lighting sources, such as Street lights, car headlights, fluorescent lights or the like. In order to replace the general illumination of tens to hundreds of watts, an output technique for increasing individual LED elements has been developed. There is a need for a high output LED component for providing a design for releasing or dissipating heat generated by the LED wafer. Research on improving the output of individual LED elements is underway to reduce the number of LED elements for LED backlight units for LCD televisions. When the output of the LED component is improved, the temperature of the LED chip will increase and will negatively affect the efficiency and lifetime of the LED & Unlike other light sources, such as light whites, lights/packages (or glow lamps) or the like, the LEDs convert large 70/. or 80/. wheel power into heat' so it can effectively release heat The technology of the month b is not important. In particular, the temperature increase of the led wafer due to heat is directly degraded in the short-term, and the lifetime of the wafer is lowered in the long term, so the temperature of the LED wafer is lowered by one. 〇 can double the life of the LED chip. In the package, heat transfer is very dependent on heat conduction. In order to perform heat conduction smoothly, 'the thermal conductivity of each material must be high, and the thermal impedance on the contact surface between individual materials must be Low to achieve effective heat release. Thermal impedance is defined as the temperature difference between the temperature increased by the heat generated by the externally applied power and the initial temperature, which is divided by the applied power. The high thermal impedance represents the temperature of the LED chip and the ambient temperature, and the heat generated by the LED chip cannot be properly released. Therefore, the high output LED seal The development of the technology is focused on lowering the impedance by designing a package structure that uses materials with high guiding properties and can effectively release heat. At the same time, it focuses on optimizing the packaging process for mounting the LED chip. Thermal impedance. In order to release the heat of the LED package, a method of soldering the LED package to a high-priced metal printed circuit board (pCB, pHnted board) or a thermal liner is generally used. In this example, by the led The heat generated by the package is released via the metal PCB. In the structure of the metal PCB, the 'resin layer, the copper box layer, and the solder resist layer are stacked on the minus plate. The heat generated by the LED chip is along the package of the 201203636 led package. a heat transfer path of the body, and the solder layer, the copper falling layer, the resin layer and the substrate of the metal PCB are released, and in this case, the tree layer has a low thermal property, resulting in The bottleneck phenomenon of heat release of the hot material flow towel. When the LED packages are mounted on the metal pcB in an array pattern, the heat release effect using only the metal PCB has a lower heat release effect: Freshly mountable on the lower surface of the metal PCB to release
熱量,且在此例中,熱油脂或其類似者可施加於該金屬pCB 與該散熱ϋ之間’藉以移除該金屬pcB與該散熱器之間的 空氣層U ’在此例中,該熱油脂的熱傳導率係低到大 約2到3 W/mK而阻礙了熱流動。 【發明内容】 因此’本發明之目的在於提供一種led裝置,其能夠 實施用独低成本增進LED效率並延長壽命的—種熱釋放 結構,以及一種使用該LED裝置的照明裝置。 在本發明-㈣樣中,—種LED裝置包括··封裝體, 其包括安裝在該封裝射之LED ;第—電極,其連接至該 LED的陽極;第二電極,其連接至該led的陰極;第一導 線’其連接至該第一電極;第二導後,其 極;底部熱傳遞金屬層,其形成錢封裝義^上了及 金屬板,其連結至該底部熱傳遞金屬層。 在本發明另一種態樣中,一種咖震置包括:封裝體, 其包括有安裝在韻裝體巾之LED;第_電極其連接至 201203636 該LED的陽極;第二電極,其連接至該LED的陰極;第 一導線,其連接至該第一電極,卓一導線,其連接至該第 二電極;金屬填充劑,其透過穿過該封裝體的介層孔填入; 及金屬板,其連結至該金屬填充劑。 該底部熱傳遞金屬層β透過坏接、Ag環氧樹脂、奈米 級金屬糊與共晶連結中任何一種方式來連結至該金屬板。 該第一電極與該第二電極可與該金屬板的上表面隔 • 離。 該金屬板可僅包括金屬而不具有樹脂層。 在本發明一種態樣中,一種照明袈置包括:金屬板, 其分別連結有一個或多個LED封裝’該等金屬板不具有樹 脂層;及發電器,用於驅動該等LED封|。 該等金屬板設置成以輻射狀地環繞該發電器,藉以形 成來自該發電器產生之熱量的自然對流流動通路。 在本發明另一種態樣中,一種照明裝置包括:金屬板, 其分別連結有一個或多個LED封裝,該等金屬板不具有樹 月曰層’集中區塊’其具有斜面用於集中來自該等led封| 的光線;發電器,用於驅動該等led封巢;及外部導線’ 用於電性連接該發電器與該等LED封裳。 【實施方式】 在根據本發明的具體實施例的LED敦置中’可用於 接的金屬被覆在LED封I之封裝體的底部之1份或整 底部之上,且該㈣封細底部直接焊接至-低價的金屬 201203636 要㈣層’藉以經由該焊接層與該金屬板釋 ㈣生的熱量’藉此增加熱釋放效率。此 == 反(或散熱器)包括不具有樹脂層的金屬板,或 具有政熱結構但不具有樹脂層的低價金屬。 :有,金屬表面用來允許焊接的銅板、銅合金板或 為金屬板。為了焊接所被覆的金屬在該led封裝 與該金屬板上,該焊料可包含96.5%的錫(Sn)、3% 的銀(Ag)與0.5%的銅(Cu)。 本發明中’該LED封I可藉由使用黏著劑(或連結劑 或其類似物)或像是熱傳導率大約職UAg環氧樹脂、 共晶鍵結方法、奈統金屬_接法或其龍方式的焊接 方法,來連接至該鋪金屬板,而不需要_層。 因為該LED封裝的底部被禪接至該金屬板或經由薄樹 脂層連結至該金屬板’陽極電極與陰㈣極形成在該咖 封裝的上方部上,或折彎至該金屬板的上方側,藉以防止 該LED職經由該金屬板造成f極的糾。該金屬板可做 為接地’且在此例中’該LED封裝的底部金屬層可連接至 該陽極電極或該陰極電極。 知接至該金屬板的LED封裝經由外部導線可由外部電 源知:供電力,或經由具有電路圖案與其所連接的外部導線Heat, and in this case, a thermal grease or the like can be applied between the metal pCB and the heat sink to thereby remove the air layer U' between the metal pcB and the heat sink. In this example, The thermal conductivity of thermal grease is as low as about 2 to 3 W/mK, which hinders heat flow. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a LED device capable of implementing a heat release structure that enhances LED efficiency and prolongs life with a low cost, and an illumination device using the LED device. In the fourth aspect of the invention, the LED device comprises: a package comprising: an LED mounted on the package; a first electrode connected to the anode of the LED; and a second electrode connected to the led a cathode; a first wire 'connected to the first electrode; a second lead followed by a pole; a bottom heat transfer metal layer that forms a metal package and is bonded to the bottom heat transfer metal layer. In another aspect of the present invention, a coffee shake comprises: a package comprising an LED mounted on the body towel; a first electrode connected to the anode of the 201203636 LED; and a second electrode connected to the LED a cathode of the LED; a first lead connected to the first electrode, a lead wire connected to the second electrode; a metal filler filled through a via hole passing through the package; and a metal plate, It is bonded to the metal filler. The bottom heat transfer metal layer β is bonded to the metal plate by any of a bad connection, an Ag epoxy resin, a nano-grade metal paste, and a eutectic connection. The first electrode and the second electrode are separable from an upper surface of the metal plate. The metal plate may include only a metal without a resin layer. In one aspect of the invention, an illumination device includes: a metal plate coupled to one or more LED packages respectively; the metal plates do not have a resin layer; and a generator for driving the LED packages. The metal plates are arranged to radially surround the generator to form a natural convective flow path from the heat generated by the generator. In another aspect of the present invention, a lighting device includes: a metal plate coupled to one or more LED packages respectively, the metal plates having no sapphire layer 'concentrated block' having slopes for concentration from The light of the led seals; the generator for driving the LED enclosures; and the external conductors 'for electrically connecting the generators to the LEDs. [Embodiment] In the LED singularity according to the embodiment of the present invention, the metal that can be used for bonding is coated on the bottom of the package of the LED package I or the entire bottom, and the (4) sealed bottom is directly soldered. To the low-priced metal 201203636, the (four) layer 'by means of the solder layer and the metal plate to release the heat generated by the 'four' to increase the heat release efficiency. This == anti (or heat sink) includes a metal plate having no resin layer, or a low-priced metal having a political heat structure but no resin layer. : Yes, the metal surface is used to allow welding of copper, copper alloy sheets or metal sheets. In order to solder the coated metal on the led package and the metal plate, the solder may comprise 96.5% tin (Sn), 3% silver (Ag) and 0.5% copper (Cu). In the present invention, the LED package I can be obtained by using an adhesive (or a bonding agent or the like) or a thermal conductivity of about UAg epoxy resin, a eutectic bonding method, a Natto metal-joining method or a dragon thereof. A method of welding is used to connect to the metal sheet without the need for a layer. Because the bottom of the LED package is spliced to the metal plate or connected to the metal plate via a thin resin layer, the anode electrode and the female (four) electrode are formed on the upper portion of the coffee package, or are bent to the upper side of the metal plate. In order to prevent the LED job from causing the f pole to correct through the metal plate. The metal plate can be used as a grounding 'and in this case' the bottom metal layer of the LED package can be connected to the anode electrode or the cathode electrode. The LED package connected to the metal plate can be known by an external power source via an external wire: power supply, or via an external wire connected thereto with a circuit pattern
的 FR4(P方燃組成物 4(Flame Retardant composition 4))PCB 由外部電源提供電力。 LED封裝可實施成LTCC(低溫共燒陶究,L〇wThe FR4 (Flame Retardant composition 4) PCB is powered by an external power source. LED package can be implemented as LTCC (low temperature co-fired ceramics, L〇w
Temperature Co-fired Ceramic)式的 LED 封裝,或 HTCC(高 201203636 溫共燒陶究,High Temperature Co-fired Ceramic)式的 LED 封裝。在此處’應用在HTCC式LED封裝中的封裝體使用 高陶瓷,例如礬土(A1203)做為主要成分,且不包括低熔點 玻璃,所以其在大約在15〇〇°c或更高的溫度下燒製,並具 有相較於LTCC封裝體為高的熱傳導性。在應用於LTcc 式LED封裝的封裝體中,低熔熔點玻璃被包含在電磁功能 性陶瓷中,所以其燒製溫度可低到大約1〇〇〇t>c或更低。 以下將參照附屬圖式詳細說明本發明之示例性具體實 施例。在整份說明書中,類似的參考編號代表類似的組件。 在說月本發明時,如果對於—相關已知的功能或結構之詳 、、’解釋被視為會不必要地轉移本發明之要旨時,這種解釋 、▲ 仁仍可由本發明所屬技術領域中具有通常知識 者所瞭解。 φ ^ 日請說明中所使用的元件名稱係考量說明書中說 稱。' 選擇,並可不同於實際產品中該等組件的名 請參照、g 1 ^ 100^0.圖,根據本發明第一具體實施例的LED封 ί-電極以…晶片丨卜内部導線”、 17、底部一電極16、樹脂層14、上方熱傳遞金屬層 ==層19與金屬填充劑18。 成。在封敦體20 ^月曰或LTCC或HTCC式陶竟材料製 層17形成在該二上表面上形成一凹陷。上方熱傳遞金屬 熱傳遞金屬^㈤底部,且咖晶片11被焊接在上方 <上。LED晶片u透過Ag環氧樹脂、 201203636 覆晶連結法、共晶連結法及奈米級金屬糊焊接法中任何一 種方式被連結在上方熱傳遞金屬層17之上。 上方熱傳遞金屬層Π形成在第一電極15與第二電極 16之間’並與電極15、μ隔開。封裝體20中定義凹陷的 内側壁包括有斜面用來增進光線反射效率。 第一電極15與第二電極16形成在該等斜面上,意即 形成在封裝體20的該等上方部上。第一電極15可透過内 部導線12連接至LED晶片11的陽極。第二電極16可透 過内部導線13連接至LED晶片11的陰極。電極15、16 分別與金屬板60的上表面隔開。 樹脂層14埋設在封裝體20之上方處的凹陷中用以覆 蓋LED晶片11、上方熱傳遞金屬層17、内部導線12、π 或其類似者’藉以保護該等元件防止來自實體撞擊或氧氣 或濕氣的滲透。樹脂層14可具有曲面來做為透鏡。 穿透該上表面上的凹陷與該下方表面而形成的一個或 多個介層孔係填入金屬填充劑18。金屬填充劑18可以包括 鎳(Ni)、銀(Ag)、鎢(W)及鉬(Mo)等金屬其中之一。金屬填 充劑18連接上方熱傳遞金屬層17與底部熱傳遞金屬層19。 上方熱傳遞金屬層17與底部熱傳遞金屬層19之結構 當中錄(Ni)、銅(Cu)、銀(Ag)、錫(Sn)、金(Au)等金屬層中 任一者被分別電鐘在銅(Cu)、銀(Ag)、鎢(W)與鉬(Mo)中任 一者之上。底部熱傳遞金屬層19可以包括形成有鎳層的 鋁。金(Au)、銀(Ag)與銅(Cu)中一或多種可堆疊在該鎳層之 上。上方熱傳遞金屬層17可連接至LED晶片η的接地終 201203636 端。 底部熱傳遞金屬層19 <透過焊接、Ag環氧樹脂、奈 米級金屬糊與共晶連結中任何一種方式來連結至低價金屬 板60,而不具有樹脂層。當金屬粉末的粒子被降低到奈米 級時,像是奈米級金屬糊,該等粒子即使在低溫下亦可被 燒結,而允許其在低溫下使用,且該熱傳導性可藉由該等 奈来粒子之微細金屬粒子結構來改善。 LED晶片π所產生的熱直沿者熱釋放路徑被釋放,其 中包括LED晶片11、上方熱傳遞金屬層I?、金屬填充劑 18與底部熱傳遞金屬層19。 LED封裝100經由連接至封裝體2〇之上方末端處的電 極15之外部導線53與電極16之外部導線54,由外部電源 提供驅動f力。同時,當減LED縣丨⑽㈣或並聯連 接時’相鄰的LED封裝100經由連接至職體2〇之上方 末端處的電極15之外部導線53與雜16之外部導線Μ 所連接。如果外部導線53、外卹道治, 、 卜導線54經由封裝體20的 接至錄&魏16’其係材能接觸到金屬 板6〇而於LED晶片U的陰極與陽極產生短路。 第2圖為根據本發明第_ 罘—具體實施例的LED裝置之截 ifij 圚。 裝ιοί V。第2圖根據本發明第二具體實施例的LED封 ::包括封裝體28、LED晶片21、内部導線32、33、 第一電極25、第二電極26、榭# a ^ a ^ 樹月旨層24、及底部熱傳遞金屬 層27 〇 201203636 封裝體28可由樹脂或LTCC或HTCC式陶瓷材料製 成。一凹陷形成在封裝體28的上方表面之上。第一電極25 與第二電極26形成在該凹陷的底部上,且LED晶片21形 成在第二電極26上。定義該凹陷的封裝體20之内側壁包 括斜面來增進光線反射效率。第一電極25與第二電極26 被加長至封裝體28的斜面與上方表面。第一電極25可經 由内部導線22連接至LED晶片21的陽極,第二電極26 可經由内部導線13連接至LED晶片21的陰極。第二電極 26延伸至LED晶片21下方。樹脂層24埋設在封裝體μ 之上方處的凹陷中用以覆蓋LED晶片21、内部導線22、 23或其類似者,藉 氣或濕氣的滲透。 以保護該等元件防止來自實體撞擊或氧 不同於第1圖之具體實施例,在第2圖的具體實施例 中,封裝體28之上方部上並未形成有一上方熱傳遞金屬 層,且未形成穿透過封裝體28的介層孔。 底部熱傳遞金屬層27可以選擇性地具有一種結構,其 中錄⑽、銅(Cu)、銀(Ag)、锡(Sn)、金(Au)等金屬声中任 -者被魏在銅(〇〇、銀(Ag)、鶴(w)與糾M。)中任二 上。底部熱傳遞金屬層27可以包括形成有鎳層的銘 ㈣、銀(Ag)與銅(Cu)中—或多種可堆疊在該鎳層 部熱傳遞金屬層27可經由焊接、Ag環 底 屬糊與共晶連結中任何一種方 ,’丁、未級金 而不具有·S a Λ來4結至㈣金屬板6〇, 屬板6〇可連接至接地電源。 裝100紅由連接至位於封裝體Μ之上方末端處 12 201203636 的電極25的外部導線53、電極26的外部導線54,由外部 電源提供驅動電力。同時,當複數LED封裝100串聯或並 聯連接時,相鄰的LED封裝100經由連接至位在封裝體28 的上方末端處的電極25的外部導線53、電極26的外部導 線54連接。 LED晶片21所產生的熱量沿著LED晶片21、陰極電 極26、封裝體28與底部熱傳遞金屬層27的熱釋放路徑而 被釋放。底部熱傳遞金屬層27形成在封裝體28的下方表 面上,藉以增加LED封裝100的熱釋放效率。 第3圖為根據本發明第三具體實施例的LED裝置之截 面圖。 請參照第3圖,LED封裝100包括封裝體38、LED晶 片31、内部導線32、33、第一電極35、第二電極36、樹 脂層34、上方熱傳遞金屬層40、底部熱傳遞金屬層37與 金屬填充劑3 9。 封裝體38可由樹脂或LTCC或HTCC式陶瓷材料製 成。一凹陷形成在封裝體20的上方表面上。第一電極35、 第二電極36與上方熱傳遞金屬層40形成在該凹陷的底部 上。LED晶片31形成在上方熱傳遞金屬層40上。上方熱 傳遞金屬層40形成在第一電極35與第二電極36之間,並 與第一電極35、第二電極36隔離。封裝體38中定義該凹 陷的内側壁係包括有斜面,用以增進光線反射效率。Temperature Co-fired Ceramic) LED package, or HTCC (High Temperature Co-fired Ceramic) LED package. Here, the package used in the HTCC-type LED package uses high ceramics such as alumina (A1203) as a main component, and does not include low-melting glass, so it is at about 15 ° C or higher. It is fired at a temperature and has a high thermal conductivity compared to the LTCC package. In the package applied to the LTcc type LED package, the low-melting-point glass is contained in the electromagnetic functional ceramic, so the firing temperature can be as low as about 1 〇〇〇 t > c or lower. Exemplary embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Like reference numerals refer to like components throughout the specification. In the case of the present invention, if the detailed description of the related functions or structures is considered to unnecessarily transfer the gist of the present invention, such an explanation may still be made by the technical field to which the present invention pertains. It is known to those with ordinary knowledge. The name of the component used in the description of φ ^ Day is stated in the specification. 'Selection, and may be different from the names of the components in the actual product, please refer to, g 1 ^ 100^0. The LED sealing electrode according to the first embodiment of the present invention is ... 17. A bottom electrode 16, a resin layer 14, an upper heat transfer metal layer == layer 19 and a metal filler 18. Formed in the seal body 20 ^ 曰 or LTCC or HTCC type ceramic material layer 17 is formed in the A recess is formed on the upper surface of the upper surface. The upper heat transfer metal heat transfer metal (5) bottom, and the coffee wafer 11 is soldered on the upper side. The LED chip u passes through the Ag epoxy resin, 201203636 flip chip bonding method, eutectic connection method And any one of the nano-sized metal paste bonding methods is bonded over the upper heat transfer metal layer 17. The upper heat transfer metal layer is formed between the first electrode 15 and the second electrode 16 and is connected to the electrodes 15, The inner side wall defining the recess in the package body 20 includes a sloped surface for enhancing light reflection efficiency. The first electrode 15 and the second electrode 16 are formed on the inclined surfaces, that is, formed on the upper portion of the package body 20. The first electrode 15 can be connected through the internal wire 12 The second electrode 16 is connected to the cathode of the LED wafer 11. The electrodes 15, 16 are respectively spaced apart from the upper surface of the metal plate 60. The resin layer 14 is buried above the package 20. The depressions are used to cover the LED wafer 11, the upper heat transfer metal layer 17, the inner conductors 12, π or the like to protect the elements from physical impact or oxygen or moisture infiltration. The resin layer 14 may have The curved surface is used as a lens. One or more via holes formed through the recess on the upper surface and the lower surface are filled with a metal filler 18. The metal filler 18 may include nickel (Ni), silver (Ag) One of metal such as tungsten (W) and molybdenum (Mo). The metal filler 18 connects the upper heat transfer metal layer 17 and the bottom heat transfer metal layer 19. The upper heat transfer metal layer 17 and the bottom heat transfer metal layer 19 In the structure, any of the metal layers such as (Ni), copper (Cu), silver (Ag), tin (Sn), and gold (Au) are respectively electrically clocked in copper (Cu), silver (Ag), and tungsten ( W) and any of molybdenum (Mo). The bottom heat transfer metal layer 19 may include aluminum formed with a nickel layer. One or more of (Au), silver (Ag), and copper (Cu) may be stacked on the nickel layer. The upper heat transfer metal layer 17 may be connected to the ground end 201203636 end of the LED wafer n. The bottom heat transfer metal layer 19 <bonding to the low-valent metal plate 60 by any one of welding, Ag epoxy resin, nano-grade metal paste, and eutectic bonding without a resin layer. When the particles of the metal powder are lowered to the nanometer level Like nano-grade metal pastes, the particles can be sintered even at low temperatures, allowing them to be used at low temperatures, and the thermal conductivity can be improved by the fine metal particle structure of the nanoparticles. The hot straight edge heat release path generated by the LED wafer π is released, including the LED wafer 11, the upper heat transfer metal layer I, the metal filler 18, and the bottom heat transfer metal layer 19. The LED package 100 is supplied with an external power source via an external conductor 53 connected to the electrode 15 at the upper end of the package 2, and an external conductor 54 of the electrode 16. Meanwhile, when the LEDs are replaced (10) or connected in parallel, the adjacent LED packages 100 are connected to the external wires 杂 of the electrodes 16 via the external wires 53 connected to the electrodes 15 at the upper end of the body 2〇. If the outer lead 53 and the outer lead are treated, the lead wire 54 is connected to the metal plate 6 via the package 20 and the sheath can be short-circuited to the cathode and the anode of the LED chip U. Fig. 2 is a cross-sectional view of an LED device according to a first embodiment of the present invention. Load ιοί V. 2 is a diagram showing an LED package according to a second embodiment of the present invention: including a package body 28, an LED chip 21, internal leads 32, 33, a first electrode 25, a second electrode 26, and a #a ^ a ^ Layer 24, and bottom heat transfer metal layer 27 〇 201203636 Package 28 may be made of resin or LTCC or HTCC type ceramic material. A recess is formed over the upper surface of the package 28. The first electrode 25 and the second electrode 26 are formed on the bottom of the recess, and the LED wafer 21 is formed on the second electrode 26. The inner sidewall of the package 20 defining the recess includes a bevel to enhance light reflection efficiency. The first electrode 25 and the second electrode 26 are elongated to the sloped surface and the upper surface of the package 28. The first electrode 25 can be connected to the anode of the LED wafer 21 via the internal wire 22, and the second electrode 26 can be connected to the cathode of the LED chip 21 via the internal wire 13. The second electrode 26 extends below the LED wafer 21. The resin layer 24 is buried in a recess at a position above the package μ to cover the LED wafer 21, the internal wires 22, 23 or the like, by gas or moisture permeation. In order to protect the elements from physical impact or oxygen from the specific embodiment of Figure 1, in the embodiment of Figure 2, an upper heat transfer metal layer is not formed on the upper portion of the package 28, and A via hole penetrating through the package 28 is formed. The bottom heat transfer metal layer 27 may selectively have a structure in which any of the metal sounds such as (10), copper (Cu), silver (Ag), tin (Sn), gold (Au), etc. 〇, silver (Ag), crane (w) and correct M.) The bottom heat transfer metal layer 27 may include an indium (four), a silver (Ag), and a copper (Cu) formed with a nickel layer - or a plurality of heat stackable metal layers 27 may be stacked on the nickel layer portion via the solder, Ag ring bottom paste Any one of the eutectic connections, 'd, ungrade gold, not · S a Λ 4 knots to (iv) metal plate 6 〇, the plate 6 〇 can be connected to the grounding power supply. The package 100 is supplied with electric power from an external power source by an external lead 53 connected to an electrode 25 located at an upper end of the package body 12 201203636, and an external lead 54 of the electrode 26. Meanwhile, when the plurality of LED packages 100 are connected in series or in parallel, the adjacent LED packages 100 are connected via the external wires 53 connected to the electrodes 25 located at the upper end of the package 28, and the external wires 54 of the electrodes 26. The heat generated by the LED wafer 21 is released along the heat release paths of the LED wafer 21, the cathode electrode 26, the package 28, and the bottom heat transfer metal layer 27. A bottom heat transfer metal layer 27 is formed on the lower surface of the package 28 to increase the heat release efficiency of the LED package 100. Fig. 3 is a cross-sectional view showing an LED device in accordance with a third embodiment of the present invention. Referring to FIG. 3, the LED package 100 includes a package body 38, an LED chip 31, internal leads 32, 33, a first electrode 35, a second electrode 36, a resin layer 34, an upper heat transfer metal layer 40, and a bottom heat transfer metal layer. 37 with metal filler 3 9 . The package 38 may be made of a resin or a LTCC or HTCC type ceramic material. A recess is formed on the upper surface of the package 20. The first electrode 35, the second electrode 36 and the upper heat transfer metal layer 40 are formed on the bottom of the recess. The LED wafer 31 is formed on the upper heat transfer metal layer 40. The upper heat transfer metal layer 40 is formed between the first electrode 35 and the second electrode 36 and is isolated from the first electrode 35 and the second electrode 36. The inner sidewall defining the recess in the package 38 includes a bevel to enhance light reflection efficiency.
第一電極35與第二電極36被加長至封裝體38的斜面 與上方表面。第一電極35可經由内部導線32連接至LED 13 201203636 晶片31的陽極’第二電極36可經由内部導線33連接炱 LED晶片31的陰極。第一電極35、第二電極36分別與金 屬板60的上方表面隔離。 樹脂層34埋設在封裝體38之上方處的凹陷中用以覆 蓋LED晶片31、内部導線32、33或其類似者,藉以保護 該等元件防止實體撞擊或氧氣或濕氣的滲透。 在封裝體28中’穿透過該上方表面與該下方表面上的 凹陷係形成單一介層孔,並填入金屬填充劑39。單一金屬 填充劑39的金屬可以包括銅(Cu)、鎳(Ni)、銀(Ag)、鎢(w) 及鉬(Mo)等金屬其中之一。單一金屬填充劑%連接上方熱 傳遞金屬層40與底部熱傳遞金屬層37。上方熱傳遞金屬層 40與底部熱傳遞金屬層37之每一者可選擇性地具有一種 結構,其中鎳(Ni)、銅(Cu)、銀(Ag)、錫(Sn)、金(Au)等金 屬層中任一者被電鍍在銅(Cu)、銀(Ag)、鎢(W)與鉬(Mo)中 任-者之上。底賴傳遞金屬層37可以包括形成有鎳層的 鋁。金(Au)、銀(Ag)與鋼(Cu)中一或多種可堆疊在該鎳層之 上。底部熱傳遞金屬層37可經由焊接、Ag環氧樹脂與奈 米級金屬糊中任何-種方法來連結至低價金屬板6〇,而不 具有樹脂層。金屬板60可連接至接地電源。 LED封裝1〇〇經由連接至位於封裝體%之上方末端處 的電極35的外部導線53、電極%的外部導線%,由外部 電源提供驅動電力。同時,告递赵 祕田複數LED封裝100串聯或並 聯連接時’相鄰的led封梦】nn作丄土 了裒1〇0經由連接至位在封裝體38 的上方末端處的第一電極35沾认如措丄 电® Μ的外部導線53、第二電極36 201203636 的外部導線54連接。 LED晶片31所產生的熱量沿著包括㈣晶片31、上 方熱傳遞金屬層4G、單-金屬填充劑%與底部熱傳遞金屬 層37的熱釋放路徑而被釋放。 金屬板60可由任一個鋼板、銅合金板或電鍍有銅 (㈤、銀(Ag)、金(Au)與鎳㈣當中任—種金屬的紹板所製 成,藉以允許底部熱傳遞金屬層19、27、37分別盘第i圖 至第4圖所示的金屬板6〇焊接結合。此係由於銅㈣、銀 (Ag)、金(AU)可與錄⑽之表面焊接,而雖⑽否。像是 銅(Cu)、銀(Ag)、金(Au)與錦⑽等金屬可透過無電式電鍵 電鍍在鋁上。 第4圖為以串聯或並聯電路型式之線路連接的封 裝100之組態示例。 請參照第4圖,為了執行—LED陣列,—或多個FR4 PCB 61與複數LED封裝ιοο被連結在低價金屬板6〇上, 而不具有樹脂層。FR4 PCB 61藉由螺絲或黏著劑連結在金 屬板60上。LED封裝loo藉由焊接、Ag環氧樹脂、奈米 級金屬糊與共晶連結中任一種方式被連結至金屬板的。用 於串聯或並聯連接led封褒⑽的電路形成在剛腦61 之上LED封裝1〇〇經由外部導線53、54被連接至形成在 FR4 PCB 61上的終端61a、61b。FR4 pCB 61經由連接器 與繞線連接至外部電源(未示出),藉以由該外部電源提供 LED封裝1〇〇的驅動電力。The first electrode 35 and the second electrode 36 are elongated to the inclined surface and the upper surface of the package 38. The first electrode 35 can be connected to the LED 13 via an internal lead 32. 201203636 The anode of the wafer 31 The second electrode 36 can be connected to the cathode of the LED wafer 31 via the internal lead 33. The first electrode 35 and the second electrode 36 are separated from the upper surface of the metal plate 60, respectively. The resin layer 34 is embedded in a recess at a position above the package 38 for covering the LED wafer 31, the internal wires 32, 33 or the like to protect the elements from physical impact or penetration of oxygen or moisture. A single via hole is formed in the package 28 through the upper surface and the recess on the lower surface, and a metal filler 39 is filled. The metal of the single metal filler 39 may include one of metals such as copper (Cu), nickel (Ni), silver (Ag), tungsten (w), and molybdenum (Mo). The single metal filler % connects the upper heat transfer metal layer 40 to the bottom heat transfer metal layer 37. Each of the upper heat transfer metal layer 40 and the bottom heat transfer metal layer 37 may selectively have a structure in which nickel (Ni), copper (Cu), silver (Ag), tin (Sn), gold (Au) Any of the other metal layers is plated on any of copper (Cu), silver (Ag), tungsten (W), and molybdenum (Mo). The bottom transfer metal layer 37 may include aluminum formed with a nickel layer. One or more of gold (Au), silver (Ag), and steel (Cu) may be stacked on the nickel layer. The bottom heat transfer metal layer 37 can be bonded to the low-priced metal sheet 6 经由 without any resin layer by any of a method of soldering, Ag epoxy resin and nano-grade metal paste. The metal plate 60 can be connected to a grounded power source. The LED package 1 is supplied with driving power from an external power source via an external wire 53 connected to the electrode 35 at the upper end of the package body %, and an external wire % of the electrode %. At the same time, when the Zhao Mitian complex LED package 100 is connected in series or in parallel, the "adjacent LED seal" is used as the first electrode 35 connected to the upper end of the package 38. The external lead 53 of the second electrode 36 201203636 is connected to the external lead 53 of the second electrode 36. The heat generated by the LED wafer 31 is released along the heat release path including the (four) wafer 31, the upper heat transfer metal layer 4G, the single-metal filler %, and the bottom heat transfer metal layer 37. The metal plate 60 may be made of any steel plate, copper alloy plate or plated with any of copper ((5), silver (Ag), gold (Au) and nickel (4)), thereby allowing the bottom heat transfer metal layer 19 27, 37 respectively, the metal plate 6〇 shown in the figure i to the figure 4 is welded and welded. This is because the copper (four), silver (Ag), gold (AU) can be welded to the surface of the record (10), and although (10) no Metals such as copper (Cu), silver (Ag), gold (Au), and brocade (10) can be electroplated on aluminum through electroless keys. Figure 4 is a set of packages 100 connected in series or parallel circuit type. For example, please refer to Figure 4, in order to execute - LED array, - or multiple FR4 PCB 61 and complex LED package ιοο are connected to the low-cost metal plate 6〇 without resin layer. FR4 PCB 61 by screws Or an adhesive is attached to the metal plate 60. The LED package loo is bonded to the metal plate by any one of soldering, Ag epoxy resin, nano-grade metal paste and eutectic bonding. The circuit of 褒(10) is formed on the rigid brain 61. The LED package 1 is connected to the FR4 PCB via the external wires 53, 54. Terminals 61a, 61b on 61. FR4 pCB 61 is connected to an external power source (not shown) via a connector and a winding, whereby the driving power of the LED package 1 is supplied from the external power source.
在本發明之個別具體實施例中,LED封裝的LED 201203636 晶片可經由如第5圖所示的金屬填充劑们被連接至齊納二 極體42。在第5圖中,參考編號41代表安裝在該咖晶 片中的LED。LED 41與齊納二極體42透過金屬填充劑 並聯連接,且LED4!的陰極連接至㈣二極體㈣陽極。 在如第6圖所示的LED封|刚中,金屬填充劑“ 填入封裝體5G的介層孔中並具有—暴露之末端,該金屬填 充劑43透過前述的連結方法連結至金屬板6〇。 、 在如第6圖所示的LED封襞1〇〇中,電極& 46係 伸出至封裝體50的下方末端。在此情況下,如果咖封 裝1〇〇被連結至此種金屬板60,LED封裳1〇〇之電極 仏將會接觸至金屬板6〇,使得LED41㈣納二極體42 的陽極與陰極短路。因此’為了防止陽極與陰極的短路, 較佳地是將電極45、46接古,並,、,也人η , 46誕冋’藉以與金屬板60隔離,如 弟7圖所不。 為了施加外部電力至咖封裝⑽或連接該咖 裝至不同的咖,LED_議之雜45、46可 接55至外部導線53、54。 為了可靠地將電極45、46與金屬板60絕緣’ LE 裝100之電極45、46的連結部份與外部導線53、 有絕緣帶或絕緣管(或熱縮管)56,如第9圖所示 2 墊或絕緣片62可連結至金屬板6〇,如第1〇圖所示。/ 情况中,絕緣塾或絕緣片62必須附加於咖封 下方表面與金屬板6G之間除了已被連結的表面部ς 部分表面。絕緣塾或絕緣片62可僅被附加至金屬板⑼面 201203636 向電極45、46與導線53、54之連結的部份。絕緣墊或絕 緣片62可以反射片作為實施範例,用來增加照明效率。 在如第11圖所示的LED封裝1〇〇中,複數LED封震 100不能夠被連結至單一金屬板6〇。此係因為當如第u圖 所示的第一LED封裝與第二LED封裝被連結至單一金屬 板60時,LED 41與齊納二極體42有可能經由金屬填充劑 43與金屬板60而形成短路。因此,在如第丨丨圖所示的 封裝100中’LED封裝1〇〇必須以如第12圖所示的一對一 的方式被連結至隔離的金屬板60。在第12圖中,參考編號 70代表支撐在其上分別連結有LED封裝1〇〇的金屬板6〇 且與金屬板60電氣隔離的絕緣框板。較佳地是,絕緣框板 70由電氣絕緣體且具有高導熱性的材料所製成。LED封裝 1〇〇經由外部導線53、54串聯或並聯地連接。第13圖為第 12圖中串聯連接的LED封裝之等效電路圖。 LED封裝結構中LED41與齊納二極體42並未經由金 屬填充劑43在單—金屬板⑼上連結在—起,如帛14圖所 不。此係因為複數LED封裝1〇〇可被連結至金屬板60,而 不會有短路的問題。 第15圖所示為根據本發明第五具體實施例的LED巢 置之截面圖。 明參照第15圖’根據本發明第五示例性具體實施例的 ^ED封裝100包括封㈣82、安裝在封裝體82上的LED 曰曰片76、連結至封裴體82的反射器74、連結至反射器74 的透鏡72、經由内部導線78&、7訃連接至led晶片76的 17 201203636 第一電極80a與第二電極80b,形成在封裝體82之下方表 面上的底部熱傳遞金屬層86,及形成在底部熱傳遞金屬層 86上之電鍍層88a、88b。 封裝體82可由樹脂或LTCC或HTCC式陶瓷材料製 成。當封裝體82以例如礬土(A1203)陶瓷的HTCC式之陶 瓷材料製成時’封裝體82並未包含低炫點玻璃。封裝體μ 與底部熱傳遞金屬層86可於l,500t或更高的燒製溫度下 被同時地燒結在一起。底部熱傳遞金屬層86可選擇性地由 前述咼熔點金屬所製成’其可隨著封裴體82 —起同時地燒 製。 LED晶片76之極與陰極分別經由内部導線78a、78b 連接至第一電極80a與第二電極80b。内部導線78a、78b 可選擇性地以金(Au)導線所形成。穿過封裝體82的第一電 極80a與第二電極80b可經由形成在封裝體82中的介層孔 81自封裝體82的下方部突出。第一電極8〇a與第二電極 80b可選擇性地以前述高熔點金屬製成,其可在高溫下與封 裝體82同時燒製。 反射器74可形成為金屬環’或為在其上被覆有金屬(例 如銀(Ag)或其類似者)的圓柱結構’藉以允許自led晶片 76放射出的光線被集中至透鏡72。反射器74反射由LED 晶片76入射的光線朝向透鏡72以達最少的光線損失。透 鏡72集中自LED晶片76與反射器74入射的光線。 底部熱傳遞金屬層86可以選擇性地具有一種結構,其 中鎳(Ni)、銅(Cu)、銀(Ag)、錫(Sn)、金(au)等金屬層中任 201203636 一者被電鍍在銅(Cu)、銀(Ag)、鎢(W)與鉬(Mo)中任一者之 上。封裝體82、電極80a、80b與底部熱傳遞金屬層86可 於1,500°C或更高的燒製溫度下被同時地燒製。在此情況 中’電極80a、80b與底部熱傳遞金屬層86可選擇性地以 鎢(W)、鉬(Mo)或其類似者製成,其可在高溫下同時與封裝 體82燒製。 電鍍層88a、88b以及可被焊接的金屬被電鍍在底部熱 傳遞金屬層86上。電鍍層88a、88b可以包括單一電鍍層 或複數電鍍層。當電鍍層88a、88b實施成複數電鍍層時, 主要電鍍層88a可為鎳(Ni)’或電鍍在底部熱傳遞金屬層 86上之銅(Cu)上所電鍍的鎳(Ni)(意即於底部熱傳遞金屬層 86上電鍍有銅(cu)之後再於底部熱傳遞金屬層86上電鍍鎳 (Ni))。次要電鑛層ggb為焊接金屬,且其可例如為銀(Ag)、 金(Au)、鋼(cu)與錫(Sn)或其合金之一或多種。 LED封裝1〇〇可經由如第16圖所示之焊接、Ag環氧 樹脂、奈米級金屬糊與共晶連結中的任何一種方式連結至 低價金屬板60,而不具有樹脂層。金屬板6〇可為銅板、銅 合金板與具有表面電鍍來允許焊接之鋁板中任何一種。金 屬板60可連接至接地電源,以作為接地之用。 第Π圖所示為根據本發明第六具體實施例之LED封 裝100。在第17圖之LED封裝100中,電極8〇a、8〇b中 任者可直接連接至LED晶片76,而不需要通過内部導線。 虽如第15圖或第17圖所示的LED封襞1 〇〇直接連結 至金屬板60時,自㈣封褒1〇〇之下方部伸出的末端部 19 201203636 84a、84b可能接觸到金屬板60。然後,LED封裝100之陽 極與陰極可能短路。因此,如第16圖、第18圖與第19圖 所不’為了防止短路’絕緣材料63被印刷在金屬板6〇面 向LED封裝100之電極的末端部84a、84b之部份上。絕 緣材料63可根據印刷垾料阻抗(SR,s〇lderresist)或光阻抗 (PR ’ Photo resist)的方法來形成在金屬板6〇上。 用於焊接LED封裝1〇〇至金屬板6〇的焊料64僅印刷 在金屬板60面向電錄層88a、88b之部份上。在此狀況中, 焊料64可為包含大約96 5%的錫伽)、3〇/。的銀㈤)與〇 的銅(Cu)之金屬。 絕緣材料63可被圖案化成具有棒狀的形狀,如第18 圖所示,或是四邊形(或多邊形)軌跡的形狀,如第19圖所 示,或圓形(或橢圓形)軌跡。焊料64可被圖案化成具有多 種形狀’例如圓形、多邊形平板或其類似者,如第18圖及 第19圖所示。 根據刖述之連結方法,一或多個LED封裝1〇〇可被連 結至金屬板60。當複數LED封裝⑽連結至金屬板6〇, 且該等LED封裝串聯或並聯連接時,外部導線54可 被連接至㈣封裝剛之個別封裝體上方末端處的電極 80a、80b,藉以防止該等陰極與陽極之短路。外部導線53、 54串聯或並聯連接至料相鄰LED料之電極撕、論, 並連接至連結金屬板60的FR4PCB,如第4圖所示。 LED晶476所產生的熱量經由封裝體82、底料傳 遞金屬層86、電锻層88a、88b及電極咖、而被傳遞 201203636 至金屬板60,並經由金屬板6〇釋放。底部熱傳遞金屬層 86與電鍍層88a、88b可使用於第1圖、第2圖、第3圖及 第5圖到第9圖之LED封裝1〇〇中。 在前述的具體實施例中,封裝體82的主要成分可由 A1203、MgO、BeO、AIN、SiC及其類似者當中選出,而 不具有玻璃粉末。在此情況中,因為封裝體82的材料不具 有玻璃,其具有高導熱性,並可在高溫下燒結。因為封裝 體82具有相當高的導熱性,介層孔與填入在前述之第i 圖、第3圖及第15圖到第17圖之具體實施例中該等封裝 體内的介層孔巾的金騎可省略。例如,該介層孔與填入 在如第15 ®與第17 ®所示之介層孔中的金屬可被省略, 如第20圖及第21圖所示。 在則述的具體實施例中,當封裝體2〇、28、38、5〇、 82由HTCC式陶竟材料製成時,封裝體2〇、28、%、%、 2的層孔可填人H點金屬,例如鶴(w)、糾⑽或其 類似者,並可與該等封《體同時地燒結。 封裝2同的製&方去中,卩HTCC式陶竟材料所製成的 可28、38、5G、82可事先在高溫下燒結,介層孔 結的封裝體2。、28、38、5。、82中,然後填入 屬層的:屬:=:i: ’然後像是該底部熱傳遞金 在此情況中,為了=封装體2。、28、38、5〇、82上。 屬與該等封裝體的黏著強:在:等封裝體之介層孔中的金 暂0 i吉X各 又可加入5 Wt%或更少的玻璃 ;、該;1層孔的金屬巾。在形成該金屬層前事先燒 21 201203636 結該等封裝體的方法中,金屬層的材料可由Ag、Ni、Cu、 Au及其類似者當中選出。 如上所述,在本具體實施例中,因為不具有樹脂層的 低價金屬板被連結至LED封裝1〇〇的下方表面並鎳由該金 屬板釋放LED熱量,由於熱量造成該LED晶片之效率劣 化及壽命降低即可被防止,藉此改善可靠度。同時,在本 示例性具體實施例中,相較於相關的技術,大量的光線可 利用相同的功率消耗來取得,用於照明之光源所需要的 LED封裝與散熱器的數目可以減少,並可降低製造單位成 本’且產品的外型可小型化與薄型化。此外,因為使用該 低價金屬板與FR4 PCB,而非使用高價金屬pcB,照明產 品之光源的製造單位成本可進一步降低。 根據本具體實施例之LED封裝可被應用到在先前技術 中所述之任何照明用光源。下述之具體實施例為那些藉由 實施使用則述LED封裝1 〇〇的照明裝置。 第22圖為根據本發明第一具體實施例的[ED照明裝 置之截面圖。In a specific embodiment of the invention, the LED package 201203836 wafer of the LED package can be connected to the Zener diode 42 via a metal filler as shown in FIG. In Fig. 5, reference numeral 41 denotes an LED mounted in the coffee chip. The LED 41 is connected in parallel with the Zener diode 42 through a metal filler, and the cathode of the LED 4! is connected to the (four) diode (four) anode. In the LED package as shown in FIG. 6, the metal filler "fills into the via hole of the package 5G and has an exposed end, and the metal filler 43 is bonded to the metal plate 6 through the aforementioned bonding method.在。 In the LED package 1 shown in Fig. 6, the electrode & 46 is extended to the lower end of the package 50. In this case, if the coffee package is connected to the metal The electrode 60 of the board 60 and the LED package will contact the metal plate 6〇, so that the anode of the LED 41 (four) nanodiode 42 is short-circuited with the cathode. Therefore, in order to prevent short circuit between the anode and the cathode, it is preferable to electrode 45, 46 pick up the ancient, and,,, also people η, 46 birthday 冋 'to be isolated from the metal plate 60, such as the brother 7 map does not. In order to apply external power to the coffee package (10) or connect the coffee to a different coffee, The LED_discussion 45, 46 can be connected 55 to the external wires 53, 54. In order to reliably insulate the electrodes 45, 46 from the metal plate 60, the connecting portion of the electrodes 45, 46 of the LE assembly 100 and the external wires 53 have Insulating tape or insulating tube (or heat shrinkable tube) 56, as shown in Fig. 9, 2 pad or insulating sheet 62 can be joined to the metal plate 6 〇, as shown in Fig. 1 / In the case, the insulating tape or insulating sheet 62 must be attached between the lower surface of the coffee seal and the metal plate 6G except for the surface portion of the surface portion which has been joined. The insulating tape or the insulating sheet 62 It may be attached only to the portion where the metal plate (9) face 201203636 is connected to the electrodes 45, 46 and the wires 53, 54. The insulating pad or the insulating sheet 62 may be a reflective sheet as an embodiment for increasing the illumination efficiency. In the illustrated LED package, the plurality of LED seals 100 cannot be connected to a single metal plate 6〇 because the first LED package and the second LED package are connected to a single unit as shown in FIG. In the case of the metal plate 60, it is possible for the LED 41 and the Zener diode 42 to form a short circuit via the metal filler 43 and the metal plate 60. Therefore, in the package 100 as shown in the first drawing, the 'LED package 1 must be The metal plate 60 is joined to the isolated metal plate 60 in a one-to-one manner as shown in Fig. 12. In Fig. 12, reference numeral 70 denotes a metal plate 6 on which the LED package 1 连结 is respectively attached and supported An insulating frame plate electrically isolated from the metal plate 60. Preferably, the insulating frame The board 70 is made of an electrical insulator and has a material having high thermal conductivity. The LED package 1 is connected in series or in parallel via external wires 53, 54. Figure 13 is an equivalent circuit diagram of the LED package connected in series in Fig. 12. In the LED package structure, the LED 41 and the Zener diode 42 are not connected to each other via the metal filler 43 on the single-metal plate (9), as shown in Fig. 14. This is because the plurality of LED packages can be The problem is that it is bonded to the metal plate 60 without a short circuit. Fig. 15 is a cross-sectional view showing the LED nest according to the fifth embodiment of the present invention. Referring to Figure 15, a ED package 100 according to a fifth exemplary embodiment of the present invention includes a package (four) 82, an LED die 76 mounted on the package 82, a reflector 74 coupled to the package body 82, and a link. The lens 72 to the reflector 74, the first electrode 80a and the second electrode 80b connected to the led wafer 76 via the internal wires 78&, 7讣, form a bottom heat transfer metal layer 86 on the lower surface of the package 82. And plating layers 88a, 88b formed on the bottom heat transfer metal layer 86. The package 82 may be made of a resin or a LTCC or HTCC type ceramic material. When the package 82 is made of a HTCC-type ceramic material such as alumina (A1203) ceramic, the package 82 does not contain a low-spot glass. The package μ and the bottom heat transfer metal layer 86 can be simultaneously sintered together at a firing temperature of 1,500 t or higher. The bottom heat transfer metal layer 86 can be selectively made of the foregoing bismuth melting point metal 'which can be fired simultaneously with the sealing body 82. The poles and cathodes of the LED wafer 76 are connected to the first electrode 80a and the second electrode 80b via internal wires 78a, 78b, respectively. The inner leads 78a, 78b are selectively formed of gold (Au) wires. The first electrode 80a and the second electrode 80b passing through the package body 82 may protrude from the lower portion of the package body 82 via the via hole 81 formed in the package body 82. The first electrode 8a and the second electrode 80b are selectively made of the aforementioned high melting point metal, which can be fired simultaneously with the package body 82 at a high temperature. The reflector 74 may be formed as a metal ring' or a cylindrical structure on which a metal (e.g., silver (Ag) or the like) is coated to allow light emitted from the LED wafer 76 to be concentrated to the lens 72. Reflector 74 reflects the light incident by LED wafer 76 toward lens 72 for minimal light loss. The lens 72 concentrates the light incident from the LED wafer 76 and the reflector 74. The bottom heat transfer metal layer 86 may selectively have a structure in which a metal layer such as nickel (Ni), copper (Cu), silver (Ag), tin (Sn), gold (au) or the like is 201203636. Above any of copper (Cu), silver (Ag), tungsten (W), and molybdenum (Mo). The package body 82, the electrodes 80a, 80b and the bottom heat transfer metal layer 86 can be simultaneously fired at a firing temperature of 1,500 ° C or higher. In this case, the electrodes 80a, 80b and the bottom heat transfer metal layer 86 may be selectively made of tungsten (W), molybdenum (Mo) or the like, which may be simultaneously fired with the package 82 at a high temperature. The plating layers 88a, 88b and the metal that can be soldered are plated on the bottom heat transfer metal layer 86. The plating layers 88a, 88b may comprise a single plating layer or a plurality of plating layers. When the plating layers 88a, 88b are implemented as a plurality of plating layers, the main plating layer 88a may be nickel (Ni)' or nickel (Ni) electroplated on copper (Cu) plated on the bottom heat transfer metal layer 86 (ie, Nickel (Cu) is electroplated on the bottom heat transfer metal layer 86 and then on the bottom heat transfer metal layer 86. The secondary electric ore layer ggb is a weld metal, and it may be, for example, one or more of silver (Ag), gold (Au), steel (cu), and tin (Sn) or an alloy thereof. The LED package 1 can be bonded to the low-valent metal plate 60 via a soldering, Ag epoxy resin, nano-grade metal paste and eutectic bonding as shown in Fig. 16, without a resin layer. The metal plate 6 can be any of a copper plate, a copper alloy plate, and an aluminum plate having a surface plating to allow welding. The metal plate 60 can be connected to a grounded power source for grounding. The figure is shown in an LED package 100 in accordance with a sixth embodiment of the present invention. In the LED package 100 of Fig. 17, any of the electrodes 8A, 8B can be directly connected to the LED chip 76 without passing through the internal wires. Although the LED package 1 〇〇 shown in Fig. 15 or Fig. 17 is directly joined to the metal plate 60, the end portion 19 201203636 84a, 84b protruding from the lower portion of the (4) package 1 may contact the metal. Board 60. Then, the anode and cathode of the LED package 100 may be short-circuited. Therefore, as shown in Figs. 16, 18, and 19, the insulating material 63 is printed on the portion of the end portions 84a and 84b of the electrode of the LED package 100 in order to prevent the short circuit. The insulating material 63 may be formed on the metal plate 6 根据 according to a method of printing a resistive impedance (SR, s 〇 res resist) or a light impedance (PR ‘ Photo resist). The solder 64 for soldering the LED package 1 to the metal plate 6 is printed only on the portion of the metal plate 60 facing the electrographic layers 88a, 88b. In this case, the solder 64 may comprise about 96 5% of tin gamma, 3 〇 /. Silver (five)) with bismuth copper (Cu) metal. The insulating material 63 may be patterned to have a rod shape, as shown in Fig. 18, or a quadrilateral (or polygonal) trajectory shape, as shown in Fig. 19, or a circular (or elliptical) trajectory. Solder 64 can be patterned into a variety of shapes, such as circular, polygonal plates, or the like, as shown in Figures 18 and 19. One or more LED packages 1 can be connected to the metal plate 60 according to the connection method described. When the plurality of LED packages (10) are connected to the metal plates 6〇, and the LED packages are connected in series or in parallel, the external wires 54 can be connected to the electrodes 40a, 80b at the upper ends of the individual packages of the package (4), thereby preventing the cathodes Short circuit with the anode. The external wires 53, 54 are connected in series or in parallel to the electrode of the adjacent LED material, and are connected to the FR4 PCB of the bonding metal plate 60, as shown in FIG. The heat generated by the LED crystal 476 is transferred to the metal plate 60 through the package 82, the primer transfer metal layer 86, the wrought layer 88a, 88b, and the electrode coffee, and is released through the metal plate 6〇. The bottom heat transfer metal layer 86 and the plating layers 88a, 88b can be used in the LED packages 1 of Figs. 1, 2, 3, and 5 to 9. In the foregoing specific embodiment, the main component of the package 82 may be selected from among A1203, MgO, BeO, AIN, SiC, and the like without glass powder. In this case, since the material of the package 82 does not have glass, it has high thermal conductivity and can be sintered at a high temperature. Because the package body 82 has a relatively high thermal conductivity, the via hole and the via hole filled in the package in the specific embodiments of the aforementioned i, 3, and 15 to 17 are illustrated. The golden ride can be omitted. For example, the via holes and the metal filled in the via holes as shown in Figs. 15 ® and 17 ® can be omitted, as shown in Figs. 20 and 21. In the specific embodiment described, when the package 2〇, 28, 38, 5〇, 82 is made of HTCC type ceramic material, the layer holes of the package 2〇, 28, %, %, 2 can be filled. A human H-point metal, such as a crane (w), a correction (10) or the like, and can be sintered simultaneously with the seals. In the package 2, the HTCC-type ceramic material can be made of 28, 38, 5G, and 82, which can be sintered at a high temperature in advance, and the via-hole package 2 is formed. , 28, 38, 5. , 82, and then fill in the genus layer: genus: =: i: ‘and then like the bottom heat transfer gold. In this case, in order to = package 2. , 28, 38, 5, 82. The adhesion to the packages is strong: in the gold holes of the interposer holes of the package, a glass of 5 Wt% or less can be added to each of the holes of the package; In the method of forming the package before the formation of the metal layer, the material of the metal layer may be selected from Ag, Ni, Cu, Au and the like. As described above, in the present embodiment, since a low-priced metal plate having no resin layer is bonded to the lower surface of the LED package 1 and nickel is released from the metal plate by the heat of the LED, the efficiency of the LED chip is caused by heat. Deterioration and reduced life can be prevented, thereby improving reliability. In the meantime, in the exemplary embodiment, a large amount of light can be obtained by using the same power consumption compared to the related art, and the number of LED packages and heat sinks required for the light source for illumination can be reduced, and Reduce the manufacturing unit cost' and the size of the product can be miniaturized and thinned. In addition, because the low-cost metal plate and the FR4 PCB are used instead of the high-priced metal pcB, the manufacturing unit cost of the light source of the lighting product can be further reduced. The LED package according to the present embodiment can be applied to any of the illumination sources described in the prior art. The specific embodiments described below are those in which the LED package 1 is used by the implementation. Figure 22 is a cross-sectional view showing the [ED illumination device according to the first embodiment of the present invention.
請參照第22圖,根據本發明第一具體實施例的LED 照明裝置包括發電器202,及將Led封裝1〇〇與其連結的 複數金屬板60。 發電器202固定於基架201,藉以產生LED封裝1〇〇 之驅動電力。來自發電器202之電流經由外部導線(未示出) 供應至LED封裴100。LED封襞1〇〇可串聯連接於發電器 202的正極終端與負極終端之間。 22 201203636 一或多個LED封裝100根據前述之連結方法被連結至 金屬板60。金屬板60被折彎而允許LED封裝100面向下。 金屬板60的上方末端可被固定於基架201。金屬板6〇為低 價金屬板,在其中不具有樹脂層。因此,熱量經由該等金 屬板被釋放至外部,而不會有熱傳遞瓶頸現象。 如第23圖與第24圖所示’金屬板60設置成以輻射型 式壤繞發電器202’其狀態為各金屬板60分別與發電器202 有充分的間隔相隔離。由發電器202產生的熱量根據自然 對流流動沿著金屬板60之間的熱釋放路徑被釋放至外部。 因此’因為來自發電器202的熱量被釋出至自然對流流動, 發電器202的熱釋放結構可被最適化,且因為藉由來自發 電器202的熱量所造成的金屬板6〇之溫度升高被最小化, 即可防止經由金屬板60向後流動至LED封裝1〇〇的熱傳 遞。金屬板60可被製造成當由水平區段觀視時為平板狀, 如第23圖所示,或是該等金屬板6〇為彎曲形狀(或扭曲形 狀),如第24圖所示。 在第22圖與第23圖中,參考編號2〇3代表由絕緣材 =(例如塑膠)所製成的網格。網格2〇3可為一遮蔽形狀來覆 蓋金屬板60,因此其被固定至基架2〇1。網格2〇3排出來 自金屬板6G的溫度或發電器2G2所產生的熱量至外部,並 保護該LED照明裝置的内部組成。 如第22圖所示的LED照明裝置能夠改善發電器2〇2 與LED封裝1〇〇之熱釋放結構,但由於LED光線被直接 照射到使用者而可能造成熱點現象。熱點現象會增加使用 23 201203636 者的暈眩與疲勞,並會降低在設計室内照明環境時的自由 度。因此’為了解決熱點問題,根據本發明之LED照明裳 置可以具有間接照明結構來實施。 明參見第24圖到第27圖’根據本發明第二具體實施 例的LED照明裝置包括發電器202、在其上連結有lED封 裝的複數金屬板60 ’及反射器90。網格203具有遮蔽形狀 可覆蓋於金屬板60,因此其可被固定於基架2〇1。 根據前述之連結方法,一或多個LED封裝1〇〇分別被 連結至金屬板60。金屬板60被折彎使得LED封裝1〇〇之 光線放射表面面向反射器90。因此’ LED封裝1〇〇之每一 者的光線放射表面面向反射器9〇。如第23圖與第24圖所 示,金屬板60以輻射型式基於發電器202做設置,藉以引 致自然對流流動,而釋放由發電器202所產生的熱量。 反射器90選擇性地以金屬、金屬被覆塑膠與鏡面製 成,並可選擇性地具有如第25圖所示的拋物線形狀,如第 26圖所示的平板形狀,及如第27圖所示的凸起拋物線形 狀。反射器90之反射程度可根據反射器9〇的材料與表面 粗糙度處理方法來做調整。反射器9〇固定於金屬板6〇之 間,維持金屬板60之間的間隔,並反射來自LED封裝1〇〇 的光線,以執行間接照明。 第28圖為根據本發明第二具體實施例之LED照明裝 置的分解透視圖。第29圖為第28圖之LED照明裝置的截 面圖,其中組裝有LED封裴、金屬板與集中區塊。 請參見第28圖與第29圖,根據本發明第二示例性具 24 201203636 體實施例的LED照明裝置包括其連結有LED封裝100的 金屬板60 ’及設置在金屬板6〇上的集中區塊3〇〇。 集中區塊300可由塑膠或樹脂射出成型法所形成。允 許LED封裝1〇〇的透鏡可穿過其中的透鏡插入孔3〇1形成 在集中區塊300上,以暴露出LED封裝1〇〇之光線放射表 面,且可能形成斜面300a來集中LED光線。斜面30如可 具有如第28圖所示的平坦表面,或可為曲面。斜面3〇〇a 的角度根據該LED照明裝置之應用領域及使用目的可設定 在0°〜60。的範圍内。為了增加反射度(或反射性),具有高 反射度的金屬或材料可被覆在斜面300a上。集中區塊300 可經由螺絲或掛鉤而固定於外殼(第35圖中的4〇1),或可 經由螺絲或無螺絲固定方法來固定於金屬板60。對應於金 屬板6〇之數目的集中區塊300可被組裝在LED照明裝置 中。同時,複數集中區塊30〇可被整合成單一組件。 在如第28圖與第29圖所示的LED照明裝置中,該等 LED封震的光線放射表面與集中區塊300的斜面係面向 下’如第35圖所示。因此’如第28圖與第29圖所示的 咖照明裝置可用倒置的狀態被安裝在固定於該外殼(第 5圖^的4〇1)之集中區塊300 JL,所以其可藉由僅安裝在 集:區塊3GG上來組裝,而不需要螺絲固定或不需要使用 黏者劑。導線插入孔66可形成在金屬板60上,以允許外 部導線53、54弓I出至外部。 如第28圖、第29圖中所示的複數LED照明裝置可設 置成如第30圖到第35圖所示。如第30圖到$ 34圖所示’ 25 201203636 led封裝被組裝在㈣的平面上,並連接至該發電電 ,的正極終端(+)與負極終端㈠。由絕緣材料(像是塑膠)製 成的網格31〇可設置在金屬板60與後蓋(第35时的術 之間,格3H)防止LED封震刚、金屬板⑼與集中區塊 旦0戈到染’並允許來自LED封裝100與金屬板6〇的熱 置向外地傳送通過。 外部導、線53、54由接腳與連接器57連接。相鄰的LED 裝100由外部導線53、54連接,並連接至發電器(第35 圖中的403)或換流器,如第31圖所示。 ▲在如第30圖所示的LED照明裝置中,led封裝ι〇〇 °叹置成矩陣型式,如第31圖所示。在第31圖中,LED 封裝100被連結至一金屬板6〇。 第%圖為根據本發明第三具體實施例的LED照明裝 置之截面圖。 日π參照第32圖,根據本發明第三具體實施例的ιΕΕ) 照明裝置包括連結有LED封裝1()0的金屬板6〇,與設置在 金屬板60上的集中模組。 =LED封裳100經由外部導線53、54連接且亦連接在 該發電器(第35圖中的403)之正極終端與負極終端之間。 如第33圖所示,某個數目的LED封裝1〇〇可被連結 至單一金屬板60。如第33圖所示,共同連結至相同金屬板 6〇的LED封裝經由外部導線53、54串聯地連接,且連結 至不同金屬板60的最初與最後的LED封裝1〇〇可經由外 硝導線53、54並聯地連接至該發電器(第35圖中的4〇3)。 26 201203636 。如第34圖所示,某個數目的LED封裝1〇〇可被連結 至單金屬板60。如第34圖所示,連結至相鄰金屬板6〇 的LED封裝1〇〇經由外部導線兄、54串聯地連接,且連 結至最初與最後的金屬板60的LED封裝1〇〇可經由外部 導線53、54並聯地連接至該發電器(第%圖中的4〇3)。 第%圖所示為根據本發明第二與第三具體實施例之 LED照明裝置中發電器4〇3、外殼4〇1與後蓋4〇2之截面 圖。 明參照第35圖,根據本具體實施例的LED照明裝置 包括連結有LED封裝1〇〇的金屬板60、發電器4〇3、外殼 4(Π、後蓋402與透明窗404。 集中區塊300被固定於外殼401,使得斜面3〇〇a面向 下。連結至金屬板60的;LED封裝1〇〇之光線放射表面面 向透明窗404。發電器403被固定於後蓋402或外殼401。 後蓋402與外殼401可由金屬或塑膠製成。允許lED光線 穿過其中的透明窗404其可以包括擴散透鏡或聚光透鏡。 當已經到達其壽命終點或在該LED照明裝置中有缺陷 的LED模組被替換時,即使是家庭主婦亦可在沒有技術維 修者的協助之下簡易地替換該LED模組。例如,使用者可 將外殼401與後蓋402分開,將集中區塊3〇〇與外殼4〇1 分開,然後分開該等接腳與連接器57,藉此分開有問題的 LED 封裝 1〇〇。 在本發明的所有具體實施例中,該等LED封裝被連結 至該專低價金屬板,而不具有樹脂層。因此,即可防止由 27 201203636 於形成在該既有金屬PCB中的樹脂層之熱流動的瓶頸現 象,所以熱釋放效應可被最大化,且因為使用了低價金屬 板,而非高價金屬PCB,即可改善經濟致益。根據本發明 之具體實施例的LED裝置可應用至在先前技術中所述之任 何照明裝置。 在如第22圖到第27圖所示根據本發明之具體實施例 的LED照明裝置中,該等金屬板設置成輻射狀地環繞該發 電器’以引致由該發電器產生的熱量之自然對流流動。因 此,在該等LED照明裝置中該等LED封裝的照明效率與 壽命可被改善與拉長,因此可增進該發電器的可靠度。 在如第28圖到第35圖所示根據本發明之具體實施例 的LED照明裝置中,連結至該金屬板之LED封裝被製造 成可被簡易替換的模組結構,且該模組可連同該集中區塊 組裝以增進該等LED照明裝置的集中效果,並可簡易地替 換已經到達其壽命終點的LED封裝。 雖然具體實施例係參照其一些例示性具體實施例做說 明,必須瞭解到本發明所屬肋領域中具通f知識者應可 設計出許?其它的修改與具體實施例,其皆落在本發明之 原理的fell内。更具體而言,在本發明、該等圖式與附屬 申請專利範圍之料内,主要的組合設置之組件部份及/或 配置有多種可能的變化與修改。除了在該等組件部份及/或 配置中的變化歸改之外,本技鱗#人士亦 其它的佶用方式。 T W 4 π 28 201203636 【圖式簡單說明】 上述以及其它本發明的目的與特徵將可藉由以下結合 該等附屬圖式之較佳具體實施例的詳細說明而更為清楚地 瞭解,其中: 第1圖為根據本發明第一具體實施例的LED裝置之截 面圖。 第2圖為根據本發明第二具體實施例的LED裝置之截 面圖。 第3圖為根據本發明第三具體實施例的LED裝置之截 面圖。 第4圖為第1圖、第2圖與第3圖所示之LED裝置的 串聯或並聯電路組態之不例圖。 第5圖為根據本發明第四具體實施例之LED裝置之 LED與齊納二極體之示例的同等電路圖。 第6圖為根據本發明第四具體實施例的LED裝置中, 當LED封裝連結至金屬板時,該LED封裝之電極產生短 路之示例的截面圖。 第7圖為LED封裝之電極被提高,藉以防止如第6圖 中的短路之示例的截面圖。 第8圖為外部導線連接至第7圖中該LED封裝之示例 的截面圖。 第9圖為第8圖之LED封裝的電極與導線之連結部份 被覆絕緣帶或絕緣管之示例的截面圖。 第10圖為絕緣墊或絕緣片附加至第8圖之LED所連 29 训203636 結的金屬板之示例的截面圖。 第11圖為例示當第7圖之 一金屬板時所產味夕τρη 々 封裝一起破附加至單 第12 a缺_翻之等效電路圖。 隔開的金之咖封^ —對—时式連結至 第13圖At亥等LED封褒串聯連接之示例的截面圖。 路圖。4在第12®中串聯連接之咖封裝的同等電 第14圖為複數lej)封步志於 抑 示例的戴面®。 裝串财接在早-金屬板上之 置之::5圖圖為例示根據本發明第五具體實施例的 LED裝 且導Lrr為例示第15圖之led封裝被連結至金屬板, 且導t連接至該LED封裝之示_截面圖。 置之《φ7®51為例7F根據本發明第六具體實施觸LED裝 材料=為例示印刷在第16圖所示之金屬板上的絕緣 材H與焊料圖案之示例的平面圖。 絲細Γ圖為例示印刷在第16圖所示之金屬板上的絕緣 材枓圖案與焊料圖牵 第20 案另一示例的平面圖。 i 圖為例示根據本發明第七具體實施例的LED裝 面 1¾)。 晉21圖為例示根據本發明第八具體實施例的LED裝 罝Ί微面圖。 第22圖為根據本發明第一具體實施例的LED照明穿 30 201203636 置之截面圖。 第23圖與第24圖為沿著第22圖中線I-Ι所取出之發 電器與金屬板之配置的截面圖。 第25圖為根據本發明第二具體實施例的LED照明展 置之截面圖。 第26圖與第27圖為例示第圖中所示之反射器之其 它示例的垂直戴面圖。 第28圖為根據本發明第二具體實施例的 LED照明裝 置之分解透視圖。 第29圖為第28圖中組裝有LED封裝、金屬板、集中 區塊之LED照明裝置的截面圖。 第圖為第28圖與第29圖之LED封襄藉由外部導 線透過接腳與連接器連接之示例的截面圖。 第Γ拉圖為第28圖與第29圖之led縣設置成矩陣 塑式胜連接至發電H之賴的平面圖。 第%圖為根據本發明第三具體實施例的 LED照明裝 置之截面圖。 第33圖為第32圖之LED封展的導線連接之示例的平 面圖。 第34圖為第32圖之LED封㈣導線連接之另一示例 的平面圖。 第35圖為根據本發明第二與第三具體實施例之LED 照明裝置中的發電器(或換流器)、外殼與後蓋之截面圖。 31 201203636 【主要元件符號說明】 11 LED晶片 12、13 内部導線 14 樹脂層 15 第一電極 16 第二電極 17 上方熱傳遞金屬層 18 金屬填充劑 19 底部熱傳遞金屬層 20 封裝體 21 LED晶片 22 内部導線 23 内部導線 24 樹脂層 25 第一電極 26 第二電極 27 底部熱傳遞金屬層 28 封裝體 31 LED晶片 32、33 内部導線 34 樹脂層 35 第一電極 36 第二電極 37 底部熱傳遞金屬層 32 201203636 38 封裝體 39 金屬填充劑 40 上方熱傳遞金屬層 41 發光二極體 42 齊納二極體 43 金屬填充劑 45、46 電極 50 封裝體 53、54 外部導線 55 焊接 56 絕緣帶或絕緣管(或熱縮管) 57 連接器 60 金屬板 61 防燃組成物4印刷電路板(FR4 PCB) 61a 終端 61b 終端 62 絕緣墊或絕緣片 63 絕緣材料 64 焊料 66 導線插入孔 70 絕緣框板 72 透鏡 74 反射器 76 LED晶片 33 201203636 78a、78b 内部導線 80a 第一電極 80b 第二電極 81 介層孔 82 封裝體 84a ' 84b 末端部 86 底部熱傳遞金屬層 88a 主要電鍍層 88b 次要電鍍層 90 反射器 100 LED封裝 201 基架 202 發電器 203 網格 300 集中區塊 300a 斜面 301 透鏡插入孔 310 網格 401 外殼 402 後蓋 403 發電器 404 透明窗 600 金屬板 34Referring to Fig. 22, an LED lighting device according to a first embodiment of the present invention includes a power generator 202, and a plurality of metal plates 60 to which the Led package is connected. The generator 202 is fixed to the pedestal 201 to generate driving power of the LED package 1〇〇. Current from the generator 202 is supplied to the LED package 100 via an external wire (not shown). The LED package 1 can be connected in series between the positive terminal and the negative terminal of the generator 202. 22 201203636 One or more LED packages 100 are bonded to a metal plate 60 in accordance with the aforementioned joining method. The metal plate 60 is bent to allow the LED package 100 to face downward. The upper end of the metal plate 60 may be fixed to the base frame 201. The metal plate 6 is a low-priced metal plate and does not have a resin layer therein. Therefore, heat is released to the outside via the metal plates without a heat transfer bottleneck. As shown in Figs. 23 and 24, the metal plate 60 is disposed in a radiant type around the power generator 202' in a state in which the respective metal plates 60 are separated from the power generator 202 by a sufficient interval. The heat generated by the generator 202 is released to the outside according to the natural convection flow along the heat release path between the metal plates 60. Therefore, because the heat from the generator 202 is released to the natural convection flow, the heat release structure of the generator 202 can be optimized, and because the temperature of the metal plate 6 is increased by the heat from the generator 202. Minimized, heat transfer to the LED package 1 through the metal plate 60 can be prevented. The metal plate 60 can be made to have a flat shape when viewed from a horizontal section, as shown in Fig. 23, or the metal plates 6A are curved (or twisted) as shown in Fig. 24. In Figs. 22 and 23, reference numeral 2〇3 denotes a mesh made of insulating material = (for example, plastic). The mesh 2〇3 can cover the metal plate 60 in a shielding shape, so that it is fixed to the base frame 2〇1. The grid 2〇3 discharges the temperature from the metal plate 6G or the heat generated by the generator 2G2 to the outside, and protects the internal composition of the LED lighting device. The LED lighting device as shown in Fig. 22 can improve the heat release structure of the generator 2〇2 and the LED package, but may cause a hot spot phenomenon because the LED light is directly irradiated to the user. Hotspots increase the stun and fatigue of those who use 23 201203636 and reduce the freedom to design an indoor lighting environment. Therefore, in order to solve the hot spot problem, the LED lighting skirt according to the present invention can be implemented with an indirect lighting structure. Referring to Figures 24 through 27, the LED lighting device according to the second embodiment of the present invention includes a power generator 202, a plurality of metal plates 60' to which the lED package is attached, and a reflector 90. The mesh 203 has a shielding shape which can cover the metal plate 60 so that it can be fixed to the base frame 2〇1. According to the above-described joining method, one or more LED packages 1A are respectively joined to the metal plate 60. The metal plate 60 is bent such that the light radiating surface of the LED package 1 面向 faces the reflector 90. Therefore, the light-emitting surface of each of the LED packages 1 is facing the reflector 9A. As shown in Figs. 23 and 24, the metal plate 60 is disposed in a radiation pattern based on the generator 202, thereby causing natural convection flow to release heat generated by the generator 202. The reflector 90 is selectively made of metal, metal coated plastic and mirror, and optionally has a parabolic shape as shown in Fig. 25, as shown in Fig. 26, and as shown in Fig. 27. Raised parabolic shape. The degree of reflection of the reflector 90 can be adjusted according to the material and surface roughness treatment of the reflector 9. The reflector 9 is fixed between the metal plates 6〇, maintains the spacing between the metal plates 60, and reflects the light from the LED package 1〇〇 to perform indirect illumination. Figure 28 is an exploded perspective view of an LED lighting device in accordance with a second embodiment of the present invention. Figure 29 is a cross-sectional view of the LED lighting device of Figure 28, in which an LED package, a metal plate and a concentrated block are assembled. Referring to FIGS. 28 and 29, the LED lighting device of the second exemplary embodiment 24 201203636 according to the present invention includes a metal plate 60' to which the LED package 100 is coupled and a concentrated area disposed on the metal plate 6〇. Block 3〇〇. The concentrating block 300 can be formed by plastic or resin injection molding. A lens insertion hole 3〇1 through which the lens of the LED package is allowed to pass is formed on the concentrating block 300 to expose the light emitting surface of the LED package 1 and may form a slope 300a to concentrate the LED light. The slope 30 may have a flat surface as shown in Fig. 28, or may be a curved surface. The angle of the inclined surface 3〇〇a can be set from 0° to 60 depending on the application field of the LED lighting device and the purpose of use. In the range. In order to increase the reflectance (or reflectivity), a metal or material having a high reflectance may be coated on the slope 300a. The concentrating block 300 may be fixed to the outer casing (4〇1 in Fig. 35) via a screw or a hook, or may be fixed to the metal plate 60 via a screw or screwless fixing method. The concentrating block 300 corresponding to the number of metal plates 6 can be assembled in the LED lighting device. At the same time, the plurality of centralized blocks 30 can be integrated into a single component. In the LED lighting device as shown in Figs. 28 and 29, the light-emitting surface of the LED-encapsulated light and the slope of the concentrating block 300 face downward as shown in Fig. 35. Therefore, the coffee lighting device as shown in Figs. 28 and 29 can be mounted in the inverted block 300 JL fixed to the outer casing (4〇1 of Fig. 5), so that it can be used only by Mounted on the set: block 3GG for assembly without the need for screws or adhesives. A wire insertion hole 66 may be formed on the metal plate 60 to allow the outer wires 53, 54 to be taken out to the outside. The plurality of LED lighting devices as shown in Figs. 28 and 29 can be arranged as shown in Figs. 30 to 35. As shown in Figure 30 to Figure 34, the '25 201203636 led package is assembled on the plane of (4) and connected to the positive terminal (+) and the negative terminal (1) of the generator. A grid 31 made of an insulating material (such as plastic) can be placed between the metal plate 60 and the back cover (between the 35th, 3H) to prevent the LED from being sealed, the metal plate (9) and the concentrated area. 0 Ge to dyed 'and allows the heat from the LED package 100 and the metal plate 6 传送 to pass outward. The outer leads, wires 53, 54 are connected to the connector 57 by pins. Adjacent LED packages 100 are connected by external conductors 53, 54 and are connected to a generator (403 in Figure 35) or an inverter, as shown in Figure 31. ▲ In the LED lighting device as shown in Fig. 30, the LED package 〇〇 〇〇 叹 is placed in a matrix type, as shown in Fig. 31. In Fig. 31, the LED package 100 is bonded to a metal plate 6A. Figure 100 is a cross-sectional view of an LED lighting device in accordance with a third embodiment of the present invention. Day π Referring to Figure 32, an illuminating device according to a third embodiment of the present invention includes a metal plate 6A to which the LED package 1()0 is attached, and a concentrating module disposed on the metal plate 60. = LED sealing skirt 100 is connected via external wires 53, 54 and is also connected between the positive terminal and the negative terminal of the generator (403 in Fig. 35). As shown in Fig. 33, a certain number of LED packages 1 can be bonded to a single metal plate 60. As shown in FIG. 33, the LED packages commonly connected to the same metal plate 6〇 are connected in series via the external wires 53, 54 , and the first and last LED packages 1 连结 connected to the different metal plates 60 can pass through the outer nitrate wire. 53, 54 are connected in parallel to the generator (4〇3 in Fig. 35). 26 201203636. As shown in Fig. 34, a certain number of LED packages 1 can be bonded to the single metal plate 60. As shown in FIG. 34, the LED packages 1A connected to the adjacent metal plates 6A are connected in series via the external conductors, 54 and are connected to the LED packages of the first and last metal plates 60. The wires 53, 54 are connected in parallel to the generator (4〇3 in the % diagram). Fig. 10 is a cross-sectional view showing the power generator 4〇3, the outer casing 4〇1 and the rear cover 4〇2 in the LED lighting device according to the second and third embodiments of the present invention. Referring to FIG. 35, the LED lighting device according to the present embodiment includes a metal plate 60 to which an LED package 1 is connected, a power generator 4〇3, and a case 4 (a cymbal, a rear cover 402, and a transparent window 404. 300 is fixed to the outer casing 401 such that the slope 3a faces downward. The light-emitting surface of the LED package 1 is connected to the transparent window 404. The generator 403 is fixed to the rear cover 402 or the outer casing 401. The back cover 402 and the outer casing 401 may be made of metal or plastic. The transparent window 404 that allows lED light to pass therethrough may include a diffusing lens or a collecting lens. LEDs that have reached their end of life or are defective in the LED lighting device When the module is replaced, even the housewife can easily replace the LED module without the assistance of a technical repairer. For example, the user can separate the outer casing 401 from the rear cover 402, and the concentrated block 3〇〇 Separate from the housing 4〇1 and then separate the pins from the connector 57, thereby separating the problematic LED package 1〇〇. In all embodiments of the invention, the LED packages are linked to the low profile Price metal plate, not a resin layer. Therefore, it is possible to prevent the bottleneck phenomenon of the heat flow of the resin layer formed in the existing metal PCB by 27 201203636, so the heat release effect can be maximized, and because a low-priced metal plate is used instead of An economical benefit can be improved by a high-priced metal PCB. The LED device according to a specific embodiment of the present invention can be applied to any of the illumination devices described in the prior art. According to the present invention as shown in Figs. 22 to 27 In the LED lighting device of the specific embodiment, the metal plates are disposed to radially surround the power generator 'to cause natural convection flow of heat generated by the power generator. Therefore, the LED packages are in the LED lighting devices. The lighting efficiency and life can be improved and lengthened, thereby improving the reliability of the generator. In the LED lighting device according to the embodiment of the present invention as shown in Figs. 28 to 35, the metal is bonded to the metal. The LED package of the board is fabricated into a module structure that can be easily replaced, and the module can be assembled together with the concentrated block to enhance the concentrated effect of the LED lighting devices, and can be easily replaced. LED packages that have reached the end of their life. Although the specific embodiments are described with reference to some exemplary embodiments thereof, it must be understood that those skilled in the art to which the invention pertains should be able to design other modifications and specifics. The embodiments are all within the structure of the present invention. More specifically, in the materials of the present invention, the drawings and the scope of the appended claims, the components of the main combination are arranged and/or configured. There are many possible variations and modifications. In addition to the changes in the components and/or configurations of these components, this technique is also used in other ways. TW 4 π 28 201203636 [Simple description] And the other objects and features of the present invention will be more clearly understood from the following detailed description of the preferred embodiments. A cross-sectional view of the LED device. Fig. 2 is a cross-sectional view showing an LED device in accordance with a second embodiment of the present invention. Fig. 3 is a cross-sectional view showing an LED device in accordance with a third embodiment of the present invention. Fig. 4 is a diagram showing an example of a series or parallel circuit configuration of the LED device shown in Figs. 1, 2, and 3. Fig. 5 is an equivalent circuit diagram showing an example of an LED and a Zener diode of an LED device according to a fourth embodiment of the present invention. Fig. 6 is a cross-sectional view showing an example in which an electrode of the LED package generates a short circuit when the LED package is bonded to a metal plate in the LED device according to the fourth embodiment of the present invention. Fig. 7 is a cross-sectional view showing an example in which the electrode of the LED package is raised to prevent the short circuit as shown in Fig. 6. Fig. 8 is a cross-sectional view showing an example in which an external lead is connected to the LED package in Fig. 7. Fig. 9 is a cross-sectional view showing an example in which the connecting portion of the electrode and the wire of the LED package of Fig. 8 is covered with an insulating tape or an insulating tube. Fig. 10 is a cross-sectional view showing an example in which an insulating pad or an insulating sheet is attached to a metal plate of the 203636 junction of the LED of Fig. 8. Fig. 11 is an equivalent circuit diagram illustrating the case where the package of the metal plate of Fig. 7 is produced, and the package is attached to the single sheet 12a. The separated gold coffee seals are connected to the cross-sectional view of the example of the series connection of the LED seals of FIG. Road map. 4 In the 12th®, the equivalent power of the coffee package is connected in series. Figure 14 is the plural type of the face-to-face. The package is connected to the early-metal plate:: FIG. 5 is a diagram showing the LED package according to the fifth embodiment of the present invention and the LED package is connected to the metal plate, and the LED package is connected to the metal plate. t is connected to the cross-sectional view of the LED package. The "φ7®51 is taken as an example 7F. According to the sixth embodiment of the present invention, the LED package material is a plan view showing an example of the insulating material H and the solder pattern printed on the metal plate shown in Fig. 16. The wire pattern is a plan view illustrating another example of the insulating material 枓 pattern and the solder pattern printed on the metal plate shown in Fig. 16. i is a diagram illustrating an LED package 126 according to a seventh embodiment of the present invention. Fig. 21 is a diagram showing a micro-pattern of an LED device according to an eighth embodiment of the present invention. Figure 22 is a cross-sectional view of an LED illumination through 30 201203636 in accordance with a first embodiment of the present invention. Fig. 23 and Fig. 24 are sectional views showing the arrangement of the generator and the metal plate taken along the line I-Ι in Fig. 22. Figure 25 is a cross-sectional view showing an LED illumination display in accordance with a second embodiment of the present invention. Fig. 26 and Fig. 27 are vertical perspective views illustrating other examples of the reflector shown in the figure. Figure 28 is an exploded perspective view of an LED lighting device in accordance with a second embodiment of the present invention. Fig. 29 is a cross-sectional view showing the LED lighting device in which the LED package, the metal plate, and the concentrated block are assembled in Fig. 28. The figure is a cross-sectional view showing an example in which the LED package of Figs. 28 and 29 is connected to the connector through the external lead through the pin. Dijon is a plan view of the LED counties of the 28th and 29th maps connected to the power generation H. Figure 100 is a cross-sectional view of an LED illumination device in accordance with a third embodiment of the present invention. Fig. 33 is a plan view showing an example of the wire connection of the LED sealing of Fig. 32. Figure 34 is a plan view showing another example of the LED seal (four) wire connection of Figure 32. Figure 35 is a cross-sectional view showing a power generator (or inverter), an outer casing, and a rear cover in an LED lighting device according to second and third embodiments of the present invention. 31 201203636 [Description of main component symbols] 11 LED wafer 12, 13 Internal lead 14 Resin layer 15 First electrode 16 Second electrode 17 Upper heat transfer metal layer 18 Metal filler 19 Bottom heat transfer metal layer 20 Package 21 LED wafer 22 Inner wire 23 Internal wire 24 Resin layer 25 First electrode 26 Second electrode 27 Bottom heat transfer metal layer 28 Package 31 LED wafer 32, 33 Internal wire 34 Resin layer 35 First electrode 36 Second electrode 37 Bottom heat transfer metal layer 32 201203636 38 Package 39 Metal Filler 40 Upper Heat Transfer Metal Layer 41 Light Emitting Diode 42 Zener Diode 43 Metal Filler 45, 46 Electrode 50 Package 53, 54 External Conductor 55 Solder 56 Insulation Tape or Insulation Tube (or heat shrinkable tube) 57 Connector 60 Metal plate 61 Flameproof composition 4 Printed circuit board (FR4 PCB) 61a Terminal 61b Terminal 62 Insulation pad or insulating sheet 63 Insulation material 64 Solder 66 Wire insertion hole 70 Insulating frame plate 72 Lens 74 reflector 76 LED wafer 33 201203636 78a, 78b internal lead 80a first electrode 80b Second electrode 81 via hole 82 package body 84a ' 84b end portion 86 bottom heat transfer metal layer 88a main plating layer 88b secondary plating layer 90 reflector 100 LED package 201 base frame 202 generator 203 grid 300 concentrated block 300a Bevel 301 Lens Insert Hole 310 Grid 401 Housing 402 Back Cover 403 Generator 404 Transparent Window 600 Metal Plate 34