+

TW200915257A - Full framebuffer for electronic paper displays - Google Patents

Full framebuffer for electronic paper displays Download PDF

Info

Publication number
TW200915257A
TW200915257A TW097122470A TW97122470A TW200915257A TW 200915257 A TW200915257 A TW 200915257A TW 097122470 A TW097122470 A TW 097122470A TW 97122470 A TW97122470 A TW 97122470A TW 200915257 A TW200915257 A TW 200915257A
Authority
TW
Taiwan
Prior art keywords
pixel
display
state
image
waveform
Prior art date
Application number
TW097122470A
Other languages
Chinese (zh)
Other versions
TWI397879B (en
Inventor
John Barrus
guo-tong Feng
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of TW200915257A publication Critical patent/TW200915257A/en
Application granted granted Critical
Publication of TWI397879B publication Critical patent/TWI397879B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/04Partial updating of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A system and a method are disclosed for updating a bi-stable display includes a framebuffer for storing waveforms for each pixel individually. The system includes determining a current state of a pixel of the bi-stable display; determining a desired state of the pixel of the bi-stable display; and updating the pixel by applying a determined control signal to the pixel to drive the pixel from the current state to the final state. Updating each pixel occurs independently of the other pixels of the bi-stable display.

Description

200915257 九、發明說明 【發明所屬之技術領域】 本發明大致關係於電子紙顯示器的領域。更明確地說 ’本發明有關於更新電子紙顯示器。 【先前技術】 近年來,已經有幾項技術被引入以提供在顯示器中, 可以更新之紙張的部份特性。此類型顯示器的紙張的部份 想要特性想要以完成的包含:低功率消耗、可撓性、寬視 角、低成本、質輕、高解析度、高對比及室內室外可讀性 。因爲這些顯示器想要模擬紙張的特性,所以,這些顯示 器在本案中被稱爲電子紙顯示器(EPD )。此類型顯示器 的其他名稱包含:紙狀顯示器、零電顯示器、e-紙、雙穩 態及電泳顯示器。 EPS對陰極射線管(CRT )顯示器或液晶顯示器( LCD )的比較顯露通常EPD需要較少電力及具有較高空間 解析度;但具有較慢更新率、較低準確度灰階控制、及較 低色解析度的缺點。很多電子紙顯示器現在只爲灰階裝置 ' 。雖然經常透過加入濾色鏡,而取得彩色裝置,但濾色鏡 • 傾向於降低空間解析度及對比。 電子紙顯示器典型是反射而不是透射。因此,它們能 使用環境光,而不需要在裝置中之發光源。這允許EPD在 未使用電力下,仍可維持一影像。它們有時稱爲“雙態”’ 因爲黑或白像素可以被連續顯示及只有由一狀態變化至另 -4- 200915257 一狀態需要電力。然而’部份裝置係穩定於多狀態, ,支援多數灰階,而沒有電力消耗。 電子紙顯不器係藉由施加一波形或一陣列的値至 素’而不像典型LCD爲施加單一値。部份用以驅動 器的控制器係被架構爲如同索引式彩色映圖顯示器。 電子紙顯示器的框緩衝器包含一波形的索引,以更新 素,而不是該波形本身。 雖然電子紙顯示器有很多優點,但有一問題爲當 於傳統CRT或LCD顯示器,多數EPD技術需要—相 時間以更新該影像。典型LCD花用5毫秒以改變至 値,支援每秒多達兩百框的圖框率(可完成的框率係 地爲顯示器驅動器電子以修改在該顯示器中的所有像 能力所限制)。相反地,很多電子紙顯示器,例如E 顯示器,花用約三百至一百毫秒的時間,以將一像素 白改變至黑。雖然此更新時間通常係足夠用於電子書 之翻頁,但對於互動式應用,例如光筆追蹤、使用者 、及視訊顯示可能造成問題。 一種稱爲微膠囊電泳(MEP)顯示器的EPD類型 幾百計的粒子通過黏性流體’以更新單一像素。當未 電場時,該黏性流體限制了粒子的移動’並使得EPD 有電力下維持一影像的特性。當施加有電場時,該流 限制了粒子的活動’並造成相對於其他類型之顯示器 示器很慢更新的情形。 當顯示一視訊或動畫時,各像素應理想上爲有該 因此 一像 顯示 這些 該像 相較 當長 正確 典型 素的 墨水 値由 所需 界面 移動 施加 能沒 體也 ,顯 視訊 -5- 200915257 框持續時間的想要反射率,即,直到下一要求反射率被接 收爲止。然而,每一顯示器在該特定反射率要求與反射率 完成間展現部份延遲。如果一視訊係每秒以1 0框進行及 改變一像素所需的時間爲1 0毫秒,則該像素將顯示正確 反射率90毫秒及該作用將爲想要的。如果花用1 00毫秒 以改變該像素,則將該像素改變至另一反射率的時間,如 同該像素完成前一框的正確反射率地需要時間。最後,花 用兩百毫秒使該像素改變,該像素將永遠不會有正確反射 率,除了當該像素係已經很接近正確反射率之外,即,慢 變影像。 再者,在現行電子紙顯示器中,所有像素必須同時更 新。爲了改變整個顯示器,先前顯示變化必須完成。用以 更新顯示的波形係根據先前値,並且,如果更新被中斷, 則該値爲未知。 因此’吾人高度想要生產一電子紙顯示器,其能克服 現fr電子紙顯不器的更新速度及對比偈限,因而,允許雙 穩態顯示器的更快及更“即時”狀更新。 【發明內容】 本發明所揭示之用以更新雙穩態顯示器的系統(及方 法)包含一框緩衝器,用以個別儲存每一像素的波形。該 系統包含:決定該雙穩態顯示器的一像素的現行狀態;決 定該雙穩態顯示器的像素的想要狀態;及藉由施加一預定 控制信號至該像素’以將該像素由該現行狀態驅動至該最 -6 - 200915257 終狀態,以更新該像素。更新每一像素,無關於該雙穩態 顯示器的其他像素。 於說明書中所述之特性與優點並非完成包圍,很多其 他特性及優點係爲熟習於本技藝者參考附圖、說明書及申 請專利範圍後所知。再者’應注意的是,於說明書中所用 之語言係針對可讀性及結構性目的而特別選用,並可能可 以不必選擇來限制所揭示之標的。 【實施方式】 本案所揭示之實施例具有其他優點與特性,這些係可 以由以下之詳細說明、隨附之申請專利範圍、及附圖加以 了解。 各圖所示之本發明各實施例只是作顯示目的。熟習於 本技藝者可以由以下討論了解,以下所述之結構及方法的 其他實施例可以在不脫離本案之原理下加以完成。 圖式及以下說明係有關於例示目的的較佳實施例。應 注意的是,由以下說明可知,於此所述之結構與方法的其 他實施例可以被認爲是未脫離本發明原理所用之其他變化 〇 現將參考幾實施例加以說明,其例子被顯示在圖中。 應注意的是’類似或相似元件符號係用於這些圖中並用以 表示相同或類似功能。圖式所示的爲揭示目的之系統(或 方法)的實施例。熟習於本技藝者可以由以下說明了解, 於此所示之結構與方法的其他實施例可以不脫離本發明的 -7- 200915257 原理下加以完成。 於此所用之“一實施例”、“實施例”或“部份實施例,,表 示有關於包含在至少一實施例中的該實施例所述之一特定 元件、特性、結構或特徵。說明書中各部份所出現的“在 —實施例中”,並不必然表示同一實施例。 部份實施例可能使用“耦接”及“連接”與其衍生的表示 法加以描述。應了解的是,這些名詞並不是用以表示彼此 爲同義詞。例如’部份實施例中,可能使用“連接,,來表示 兩或更多元件之彼此直接實體或電接觸。在另一例子中, 部份實施例可能使用“耦接”表示兩或更多元件係間接實體 或電接觸。然而,“耦接”可能表示雨或更多元件並不是直 接接觸,但仍彼此合作或互動。該等實施例並未限定於本 文中。 於此所用,“包含”、“包括”、“具有”或其衍生係想要 作非限定涵蓋。例如,包含一列元件之程序、方法、物件 或設備並不必然限定於該等元件,它們也可能包含並未列 出之元件或此等程序、方法、物件或設備所固有的元件。 再者,除非特別說明,否則“或”表示爲包含性而非排他性 。例如,條件A或B係爲以下之任一所滿足:A爲真(或 有)及B爲假(或無);A爲假(或無)及B爲真(或有 ),及A及B均爲真(或有)。 另外,“一”的使用係描述於此實施例中所述之元件或 元素。這只是爲方便起見,並用於本發明之一般感覺。本 說明應被讀取爲包含一或至少一及單數也可包含多數,除 -8- 200915257 非明顯表示爲單數。 將參考幾個實施例的細節,該等實施例係示於附圖中 。應注意的是,類似或相同元件符號可以用以表示類似或 相同功能。圖式只描述例示目的之系統(或方法)實施例 。熟習於本技藝者可以由以下說明了解,於此所述之結構 及方法所可以在不脫離本案之原理下加以完成。 裝置槪述 圖1顯示依據部份實施例之例示電子紙顯示器1〇〇的 —部份剖面圖。電子紙顯示器100的元件係被包夾於頂透 明電極1 02與低背板1 1 6之間。頂透明電極1 〇2係爲一透 明材料薄層。頂透明電極102允許看到電子紙顯示器100 的微膠囊1 1 8。 直接在頂透明電極下的是微膠囊層120。在一實 施例中,微膠囊層120包含緊密包圍的微膠囊118’其具 有透明流體108及部份黑粒子及白粒子1 1〇。在部份 實施例中,微膠囊118包含帶正電白粒子110及帶負電黑 粒子112。在其他實施例中’則微膠囊包含帶正電黑 粒子112及帶負電白粒子〗1〇。在其他例子中,微膠囊 1 1 8可以包含一極性之色粒子及相反極性的不同顏色粒子 。在部份實施例中,頂透明電極1 02包含例如氧化銦錫之 透明導電材料。 在微膠囊層120下的是下電極層114°下電極層114 係爲電極網,用以驅動微膠囊1 1 8至一想要光學狀態。電 -9- 200915257 極網係連接至顯示電路,其藉由施加一電壓至特定電極’ 而“導通”及“關閉”電子紙顯示器的特定像素。施加負電荷 至電極驅逐帶負電粒子112至微膠囊118的頂部,強迫帶 正電粒子110至底部,並使得像素有黑外表。逆轉該電壓 具有相反作用-帶正電白粒子112被強迫至表面,使得像 素具有白外表。在EPD中之像素的反射率(亮度)係隨著 所施加電壓改變。像素之反射率變化量係取決於電壓量及 其所施加之時間長度,當零電壓時,則保持像素的反射率 不變。 層120的電泳微膠囊可以被個別地作動至一想要光學 狀態,例如黑或白或灰。在部份實施例中,光學狀態可以 爲任一其他所規定的顏色。在層114中之每一像素可以有 關於包含有微膠囊層120的一或多數微膠囊118。每一微 膠囊1 1 8包含多數細粒子1 1 〇及1 1 2,其係被懸置於透明 流體1 〇 8中。在部份實施例中,多數細粒子丨i 0及丨i 2係 被懸置於透明液體聚合物中。 下電極層114係被安排在背板ι16的頂部。在一實施 例中,電極層114與背面板層116整合在—起。背板n6 係爲塑膠或陶瓷襯墊層。在其他實施例中,背板116爲金 屬或一陣列襯墊層。電極層〗丨4包含一陣列之可定址像素 電極及支援電子。 系統與方法槪要 第2圖顯示依據部份實施例之電子紙顯示系統的方塊 -10- 200915257 圖。有關於想要影像或新輸入影像202之資料係被提供入 系統200 。 在部份實施例中’系統2 0 0包含光學影像緩衝器,例 如想要影像緩衝器2 0 4及現行影像緩衝器2 〇 6。在部份實 施例中,想要影像資料(新輸入影像202 )被送並儲存於 光學想要影像緩衝器204中’其包含有關於想要影像的資 #1。一選用光現行影像緩衝器206儲存至少一現行影,以 決定如何改變顯示器以顯示新想要影像。在一實施例中, 現行影像緩衝器2 0 6係被親接以由想要影像緩衝器2 〇 4接 收現行影像,一旦顯示器被更新,就顯示現行想要影像。 在一實施例中’現行影像緩衝器206被自動更新爲被施加 至每一像素的波形。 系統200也包含一框緩衝器208,其係足夠大以使得 每一像素直接儲存波形’而不必使每一像素儲存表示該波 形的索引。例如,框緩衝器2 0 8可以爲每一像素儲存三十 二位元對。一位元對可以表示三個個別可能電壓,即+ 1 5 、-15及零電壓(電壓未改變)。換句話說,“01”可以表 示+ 1 5,“ 1 0 ”表示-1 5,及“ 0 〇 ”或“ 1 1 ”表示零(無改變)。 各個位元對係被施加持續2 0毫秒框,及三十二位元對( 或六十四位元)將留下空間給3 2x20毫秒(ms )或六百四 十m s的任意波形。如果想要更長波形,則可以增加位元 對數量。因此,用於具有三十二位元對波形的6 4 0 X 4 8 0像 素螢幕的框緩衝器將需要約2.46百萬位元組的記憶體。 藉由個別追蹤每一像素的波形,可以對整個顯示器作 -11 - 200915257 完整控制,而在任何時間開始更新個別像素,因此,降低 觀察延遲。在部份實施例中,一影像更新可以藉由將所有 像素波形位元對塡入正確波形,然後,通過每一像素的各 個位元對。通過位元對與更新像素的程序也將清除全框緩 衝器。到達結束時,該影像將再次藉由以新波形寫入予以 修改的各個像素的位元對而加以更新。 有若干方式,使用位元對的全框緩衝器208,以控制 顯示器。在一實施例中,如上所述,整個顯示係被藉由以 適當値塡入每一位元對而同時更新,以產生各個像素的正 確波形。例如,用於上左像素的三十二位元對,如果該像 素保持不變,則該位元對被塡入“〇〇”,表示在影像更新時 ,沒有電壓應被施加至該像素。或者,如果一特定波形予 以施加至像素,則一連串之“ 〇 〇 ”、“ 0 1 ”、“ 1 0 ”及“ 1 1 ”將被 放置在三十二位元對中,以表示適當0、-15及+15伏波形 ,其中各個位元對表示持續施加三十毫秒的電壓。波形或 値順序將被設計以在波形結束時,將像素由一反射率値改 變至另一反射率値。 波形係被顯示控制器2 1 4所以20毫秒增量施加至實 體媒體216中。在每一增量後,顯示控制器重置剛使用以 施加一電壓至該像素的位元對回到“00”,使得當該顯示控 制器下一次通過該全框緩衝器到達該位元對時,並不會再 次修改該像素。 三十二位元對表示32x20毫秒或640毫秒的最大波形 。在一實施例中,我們想要同時改變所有像素。各個像素 -12- 200915257 之波形可以載入,使得該像素之第一電壓改變對應於在該 框緩衝器208中之第一位元對;第二電壓改變對應於該第 二位元對;等等。該顯示控制器214藉由存取每一像素的 第一位元對及設定該等電壓至對應於第一位元對中之値, 而使用來自該全框緩衝器208的値。在20毫秒後,顯示 控制器變化該等電壓以對應於儲存於各個像素之第二位元 對中之値。這一直持續直到儲存任一像素的最長波形結束 〇 以此方式控制顯示器的缺點在於該像素並未獨立地修 改或改變。在另一實施例中之另一方法爲藉由維持由零開 始連續加1的索引値,而循環通過該等位元對,直到其到 達31然後回到零爲止。在部份實施例中,增量在每當顯 示控制器存取對應於每一像素之索引値的位元對時每20 毫秒發生一次’並施加一電壓至對應於儲存在該像素的該 索引的該位元對的該像素中。 如果所有像素的所有位元對均被設定爲“00”,則—零 電壓被維持在所有像素,使得沒有任何像素被更新。當想 要影像2 0 2被單一像素所改變時,用於該像素的位元對被 修改。然而’不同於在索引0儲存具有第一波形位元對的 波形’該第一波形位元對係被儲存在予以爲顯示控制器所 存取之下一索引値。例如,如果現行索引値爲5,則該波 形之第一位兀對將被儲存在用於該像素的索引6中,及下 —波形値被儲存在下一位元對中。如果索引現在爲3 1,則 下一波形値應被儲存在該像素的索引零。 -13- 200915257 這允許顯示像素被獨立更新,而不管在該顯示器中之 任意其他像素的現行狀態。如果顯示器頂爲更新的中間, 則可以藉由由索引+ 1位元對開始寫入正確波形,由底半 部開始更新。任一像素變化可以在未來640毫秒中的任意 時間開始,藉由在位元對框緩衝器中的足夠前方寫入。 在另一實施例中,吾人想要改變在各種時間的像素。 例如,吾人想要在開始時間T改變左上像素及在時間 Τ + Δ T開始改變其右方。如果Δ T爲6 0毫秒,則波形値可 以寫入位元對索引+3,其中,3等於60毫秒除以20毫秒 〇 在一實施例中,即使在波形中間,吾人仍想要改變像 素的想要最終値。例如’如果將一像素由黑改變爲白使用 4 0 0毫秒’波形可能包含2 0位元對的“ 〇 1 ”,表示+ 1 5伏應 被施加至該像素4 0 0毫秒。如果在2 0 0毫秒點中決定該像 素應爲黑’則將想要轉換剩餘位元對爲“丨〇,,,表示_丨5伏 應被施加持續200毫秒,以驅動該像素回到黑。在現行系 統中’顯示驅動器等待’直到像素被—路驅動爲白,然後 ’施加“白至黑”波形,表示總經過時間爲8 0 〇毫秒,包含 由“黑到白”的變化及由“白至黑’’的變化。 在一實施例中,現行影像緩衝器2 0 6係動態地更新, 以根據實體媒體如何改變的模擬’來表示顯示器現行狀態 。例如,在每一位元對被施加至實體媒體2丨6後,一小變 化被記錄在現丫了影像緩衝器2 0 6中。在任何時間,對預要 影像緩衝器204作變化’於現行影像緩衝器2〇6與想要影 200915257 像緩衝器204間之差可以被計算及校正波形可以被寫入至 該位元對。 動態更新該現行影像緩衝器需要根據所施加電壓,模 擬實體媒體發生什麼。實體媒體對電壓脈衝的反應之簡單 模式可以作成爲顯示控制器或外部處理器的一部份。在一 實施例中,實體媒體反應的模型或模擬可以爲線性模型, 其中施加20毫秒的電壓一直根據所施加電壓的符號,以 負或正方向’改變實體媒體的反射率某些數量。 在一實施例中,實體媒體的反射率變化係爲現行反射 率的函數。在一實施例中,模型也表示該反射率變化較該 模型所假設爲多或爲少的一誤差値或或然率。在一實施例 中,當波形被施加至一像素時,該誤差累積並且該誤差儲 存用於該像素的誤差緩衝器213中。該誤差爲計算反射率 値與該實際反射率値間之差並只可以被估計。一模擬模組 211藉由取用來自想要影像緩衝器204、現行影像緩衝器 206、全框緩衝器208及索引209,來計算誤差値,並輸出 誤差至該誤差緩衝器213。誤差緩衝器213包含足夠儲存 ’以記住各個像素的累積誤差。誤差大小係在每一像素被 驅動至一新反射率値,及如果誤差太大,則像素係藉由在 將之送至新反射率値之前,將其驅動至白或黑,而重置像 素,以最小化於實際反射率値與計算反射率値間之差, 熟習於電子紙顯示器者可以了解,因爲一像素係被驅 動至白或黑’所以,反射率變化係遠小於該像素係至中間 灰階。一種降低一像素誤差的方法爲將之驅動至黑或白, -15- 200915257 使之置於已知狀態。因爲一給定像素的誤差累積,所以, 將有可能藉由在將之驅動至最終値前,將之驅動至黑或白 ,而重置該像素的誤差値。 在一實施例中,一組用於一像素的位元對將包含一波 形,表示該像素在下640毫秒中如何驅動,以將之移動至 儲存於該想要影像緩衝器204中之該像素的想要値。當該 顯示控制器214施加所要求電壓値至像素時的各個20毫 秒後’現行影像緩衝器2 1 6被更新,以表示該現行狀態, 以及該誤差緩衝器213被更新,以反映像素中之可能累積 誤差。如果決定該誤差已經被累積足夠使當一波形被寫入 用於該像素時該影像失真,則可以以一方式寫入波形,使 得該像素係被驅動回黑或白,以在到達想要影像緩衝器 2 06中之最終狀態要求前,免除該誤差。換句話說,一特 定像素在全框緩衝器中所選或寫入之波形係取決於該像素 的現行狀態、該像素的想要狀態及該像素的累積誤差。如 果根據先前波形,累積誤差爲低,則將使用一直接波形, 其直接移動該像素至新値。如果該誤差已經大量累積,則 將使用一間接波形,以在安置最終反射率値之前,移動該 像素至白或黑。 對於如同CRT或LCD之傳統顯示器,輸入影像可以 被用以選擇驅動該顯示器的電壓,及同一電壓可以連續施 加至每一像素,直到提供新輸入影像爲止。然而,當顯示 器中,正確電壓的施加係取決於現行狀態。例如,如果前 一影像與想要影像一樣,則不必施加電壓。然而,如果前 -16- 200915257 一影像與想要影像不同’則一電壓需要根據現行影像的狀 態、完成想要影像的想要狀態、及到達想要狀態的時間量 加以施加。例如,如果前一影像爲黑及想要影像爲白,則 可施加相同時間長度的正電壓,以完成白影像,及如果前 一影像爲白及想要影像爲黑,則可以施加一負電壓,以完 成想要的黑影像。因此,圖4之顯示控制器2〗4使用在想 要影像緩衝器204中的資訊及現行影像緩衝器2〇6,以選 擇一波形’以將該像素由該現行狀態轉移至該想要狀態。 在部份實施例中,用以完成多狀態的想要波形可以藉 由連接用以離開啓始狀態至中間狀態的波形至用以由該中 間狀態至最終狀態的波形。因爲如此每個轉移將有多數波 形,所以,其可能有用於令硬體能儲存更多波形。在部份 實施例中’能儲存1 6位準之任一至1 6灰階位準之另一的 波形的硬體需要256波形。如果影像被限定爲4位準,則 只需要16波形’而不必使用中間位準,因此,每一轉移 儲存有1 6不同波形。 以現行硬體,並沒有方式可以直接由實體媒體2 1 6讀 取現行反射率値;因此,它們的値可以使用該實體媒體 2 1 6的經驗資料或模型及如前所使用之已知先前電壓加以 評估。換句話說,用於實體媒體216的更新程序係爲開路 控制系統。因此,有可能取得波形/像素互動的一相當正 確模型,但對於所有狀況並不必然正確。在期待反射率値 與實際反射率値間可能存在有誤差或差異。這些誤差或差 異可能藉由將像素驅動“上軌”而加以校正,或換句話說, -17- 200915257 使一像素飽和至黑或飽和至白。這置該像素於已知狀態。 在部份實施例中,由已知狀態中,在期待反射率與實際反 射率間之差異已經被最小化。這表示,藉由偶發推動像素 至純白或純黑狀態,可有利於該模型與實際反射率同步。 在部份實施例中,有一誤差緩衝器213,其追蹤該可能誤 差的估計,並且,當對於單一像素誤差太高時,在設定至 最終反射率値前,該像素可以直接驅動爲黑或白。 在部份實施例中,顯示器所在之環境,特別是照明, 及人們如何透過實體媒體2 1 6觀看該影像,決定了最終顯 示影像222。通常,顯示器係想要使一使用者及肉眼視覺 系統對於所看到之影像品質扮演一重要角色。因此,在想 要反射率與實際反射率間之少量差異的部份假影可能較未 能爲肉眼所看到之影像中之大變化更令人厭。部份實施例 係被設計以產生與想要反射率影像有更大的差異,但較好 看的影像。半色調影像係爲此一例。 上述系統係爲一框緩衝器,其個別儲存用於每一像素 的波形。藉由個別追蹤每一像素的波形,可以對整個顯示 器提供完整控制。個別像素更新可以在任何時間開始,並 可以降低所看到之延遲。 在其他實施例中,此更新雙穩態顯示器的方法可以完 成更佳的光筆追蹤、視訊顯示、動畫顯示,並且,提供電 子紙顯示器更快的使用者介面。 圖3顯示依據部份實施例之電子紙顯示系統的修改方 塊圖。該用以更新電子紙顯示器的系統實施例包含:一場 -18- 200915257 可規劃閘陣列(FPGA ) 302,其可以規劃以接受—新輸入 影像202及追蹤現行影像緩衝器206、一全框緩衝器208 、誤差緩衝器213及在隨機存取記憶體(RAM) 304中之 索引209 ’並直接驅動顯示控制器。所有用於實體媒體的 反應之模擬與誤差累積的計算可能發生於FPGA302中。 圖4顯示用以依據部份實施例之更新一雙穩態顯示器 的方法400的高階流程圖。方法400係被個別執行每一像 素,這允許個別像素更新在任一時間開始。換句話說,每 —像素可以彼此獨立地以下述方法400更新。於步驟402 ,一像素寫入要求被接收。像素的現行狀態係在步驟406 檢測。 隨後,在步驟408決定是否現行狀態等於要求狀態。 如果現行狀態等於要求狀態(步驟408-是),則不採取行 動。換句話說,不改變像素,因此’狀態保持相同,因爲 現行狀態等於所要求狀態。如果現行狀態並不等於所要求 狀態(步驟408-否),則在步驟顯示控制器決定予以 施加至該像素的控制信號,以完成想要的狀態。一旦決定 控制信號或波形,則在步驟4 1 4 ’適當値係被寫入至該像 素的位元對。 於讀取本案時,熟習於本技藝者可以透過本案揭示原 理,了解用以更新雙穩態顯示器上之影像的系統與程序的 其他替代結構及功能設計。因此’雖然特定實施例與應用 已經顯示與描述,但應了解的是’所揭示實施例並不限於 於此所揭示之精確結構與元件。爲熟習於本技藝者所知之 -19- 200915257 各種修正、改變及變化可以在本案所揭示之方法及設備的 配置、操作及細節可以在不脫離隨附申請專利範圍所界定 的精神與範圍下完成。 本案係根據申請於2007年6月15日之美國專利申請 6 0/94 4 ’415 及申請於 2008 年 3 月 31 日之 12/〇59,441 號案’該等內容係倂入作爲參考。 【圖式簡單說明】 圖1顯示依據部份實施例之例示電子紙顯示器的一部 份的剖面圖; 圖2顯示依據部份實施例之電子紙顯示器的方塊圖; 圖3顯示依據部份實施例之電子紙顯示器的修改方塊 圖;及 圖4顯示依據部份實施例之用以更新雙穩態顯示器的 方法的高階流程圖。 【主要元件符號說明】 1〇〇 :電子紙顯示器 102 :頂透明電極 108 :透明流體 11 0 :帶正電白粒子 1 1 2 :帶負電黑粒子 1 14 :下電極層 1 1 6 :底背板 -20- 200915257 1 18 :微膠囊 120 :微膠囊層 2 00 :電子紙顯示器 202 :新輸入影像 204 :想要影像緩衝器 206 :現行影像緩衝器 208 :全框緩衝器 209 :索引 2 1 1 :模擬模組 2 1 3 :誤差緩衝器 2 1 4 :顯示控制器 2 1 6 :實體媒體 222 :想要顯示影像 3 02 :場可規劃閘陣列 304 :隨機存取記憶體200915257 IX. Description of the Invention [Technical Field of the Invention] The present invention is generally related to the field of electronic paper displays. More specifically, the present invention relates to updating an electronic paper display. [Prior Art] In recent years, several techniques have been introduced to provide partial characteristics of paper that can be updated in a display. The paper portion of this type of display wants features to be completed: low power consumption, flexibility, wide viewing angle, low cost, light weight, high resolution, high contrast, and indoor and outdoor readability. Because these displays are intended to simulate the characteristics of paper, these displays are referred to herein as electronic paper displays (EPDs). Other names for this type of display include: paper displays, zero-light displays, e-paper, bistable, and electrophoretic displays. A comparison of EPS on cathode ray tube (CRT) displays or liquid crystal displays (LCDs) usually shows that EPD requires less power and has higher spatial resolution; however, it has a slower update rate, lower accuracy grayscale control, and lower The disadvantage of color resolution. Many electronic paper displays are now only grayscale devices'. Although color devices are often obtained by adding color filters, color filters tend to reduce spatial resolution and contrast. Electronic paper displays are typically reflective rather than transmissive. Therefore, they can use ambient light without the need for a source of illumination in the device. This allows the EPD to maintain an image while not using power. They are sometimes referred to as "two-state" because black or white pixels can be displayed continuously and only from one state to another - 200915257 A state requires power. However, some devices are stable in multiple states, supporting most gray levels without power consumption. Electronic paper displays do not apply a single 値 by applying a waveform or an array of 値 値. Some of the controllers used for the drives are structured like indexed color map displays. The frame buffer of the electronic paper display contains an index of the waveform to update the element, not the waveform itself. While electronic paper displays have many advantages, one problem is that with conventional CRT or LCD displays, most EPD techniques require phase time to update the image. A typical LCD takes 5 milliseconds to change to 値, supporting a frame rate of up to two hundred frames per second (the frame rate that can be achieved is limited by the display driver electronics to modify all image capabilities in the display). Conversely, many electronic paper displays, such as E-displays, take about three to one hundred milliseconds to change a pixel white to black. While this update time is usually sufficient for page flipping of e-books, it can cause problems for interactive applications such as light pen tracking, users, and video displays. An EPD type called a microcapsule electrophoresis (MEP) display. Hundreds of particles pass through a viscous fluid' to update a single pixel. When there is no electric field, the viscous fluid limits the movement of the particles and allows the EPD to maintain the characteristics of an image under power. When an electric field is applied, the flow limits the activity of the particles&apos; and causes a slow update relative to other types of displays. When displaying a video or animation, each pixel should ideally have such an image that the image is longer than the correct one. The ink is applied by the desired interface, and the video is applied. 5-6200915257 The desired reflectance of the frame duration, that is, until the next required reflectance is received. However, each display exhibits a partial delay between this particular reflectance requirement and the completion of the reflectance. If a video system takes 10 frames per second and the time required to change a pixel is 10 milliseconds, then the pixel will display the correct reflectivity of 90 milliseconds and the effect will be desired. If it takes one hundred milliseconds to change the pixel, then changing the pixel to another reflectance time requires time as the pixel completes the correct reflectivity of the previous frame. Finally, it takes two hundred milliseconds to change the pixel, which will never have the correct reflectivity, except when the pixel is already close to the correct reflectivity, i.e., slowly changing the image. Furthermore, in current electronic paper displays, all pixels must be updated at the same time. In order to change the entire display, the previous display changes must be completed. The waveform used to update the display is based on the previous 値, and if the update is interrupted, the 値 is unknown. Therefore, it is highly desirable for us to produce an electronic paper display that overcomes the update speed and contrast limitations of the fr electronic paper display, thereby allowing faster and more "instant" updates of the bi-stable display. SUMMARY OF THE INVENTION A system (and method) for updating a bi-stable display disclosed herein includes a frame buffer for individually storing waveforms for each pixel. The system includes: determining a current state of a pixel of the bi-stable display; determining a desired state of a pixel of the bi-stable display; and applying a predetermined control signal to the pixel to pass the pixel from the current state Drive to the most -6 - 200915257 final state to update the pixel. Update each pixel, regardless of the other pixels of the bistable display. The features and advantages described in the specification are not intended to be inclusive, and many other features and advantages are known to those skilled in the art in the <RTIgt; Further, it should be noted that the language used in the specification is specifically selected for readability and structural purposes, and may not be selected to limit the disclosed subject matter. [Embodiment] The embodiments disclosed in the present invention have other advantages and features, which can be understood from the following detailed description, the accompanying claims, and the accompanying drawings. The various embodiments of the invention shown in the figures are for illustrative purposes only. Other embodiments of the structures and methods described below can be made without departing from the principles of the present invention. The drawings and the following description are by way of illustration of preferred embodiments. It is to be understood that the other embodiments of the structures and methods described herein may be considered as other modifications of the embodiments of the invention. In the picture. It should be noted that the same or similar element symbols are used in the drawings and are used to indicate the same or similar functions. The drawings show embodiments of systems (or methods) that disclose the purpose. It will be apparent to those skilled in the art from this disclosure that other embodiments of the structures and methods illustrated herein can be practiced without departing from the principles of the invention. The "an embodiment", "an embodiment" or "partial embodiment" as used herein refers to a particular element, characteristic, structure, or characteristic described in connection with the embodiment included in at least one embodiment. The appearances of the various embodiments are not necessarily referring to the same embodiment. Some embodiments may be described using "coupled" and "connected" and their derived representations. It should be understood that These nouns are not intended to indicate synonyms for each other. For example, in some embodiments, "connected," may be used to mean that two or more elements are in direct physical or electrical contact with each other. In another example, some embodiments may use "coupled" to mean that two or more elements are indirect entities or electrical contacts. However, "coupling" may mean that rain or more components are not in direct contact, but still cooperate or interact with each other. These embodiments are not limited to this text. As used herein, "including", "comprising", "having" or its derivatives are intended to be inclusive. For example, a program, method, article, or device that comprises a list of elements is not necessarily limited to such elements, and they may also include elements that are not listed or elements that are inherent to such procedures, methods, articles, or devices. Furthermore, unless stated otherwise, "or" is meant to be inclusive rather than exclusive. For example, Condition A or B is satisfied by either: A is true (or has) and B is false (or none); A is false (or none) and B is true (or), and A and B is true (or have). In addition, the use of "a" or "an" is used to describe the elements or elements recited in the embodiments. This is for convenience only and is used in the general sense of the invention. This description should be read as including one or at least one and a singular or a majority, except -8- 200915257 is not explicitly indicated as a singular. Reference will be made to the details of several embodiments, which are illustrated in the accompanying drawings. It should be noted that similar or identical component symbols may be used to indicate similar or identical functions. The drawings depict only system (or method) embodiments for the purposes of illustration. It is apparent to those skilled in the art that the structures and methods described herein can be practiced without departing from the principles of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a partial cross-sectional view of an electronic paper display 1 依据 according to some embodiments. The components of the electronic paper display 100 are sandwiched between a top transparent electrode 102 and a low back plate 1 16 . The top transparent electrode 1 〇 2 is a thin layer of transparent material. The top transparent electrode 102 allows the microcapsules 1 18 of the electronic paper display 100 to be seen. Directly below the top transparent electrode is a microcapsule layer 120. In one embodiment, the microcapsule layer 120 comprises closely enclosed microcapsules 118&apos; having a transparent fluid 108 and a portion of black and white particles. In some embodiments, the microcapsules 118 comprise positively charged white particles 110 and negatively charged black particles 112. In other embodiments, the microcapsules comprise positively charged black particles 112 and negatively charged white particles. In other examples, the microcapsules 1 18 may comprise a polar color particle and a differently colored particle of opposite polarity. In some embodiments, the top transparent electrode 102 comprises a transparent conductive material such as indium tin oxide. Below the microcapsule layer 120 is a lower electrode layer 114. The lower electrode layer 114 is an electrode mesh for driving the microcapsules 1 18 to a desired optical state. The -9-200915257 pole network is connected to a display circuit that "turns on" and "turns off" a particular pixel of the electronic paper display by applying a voltage to a particular electrode '. A negative charge is applied to the electrode to drive the negatively charged particles 112 to the top of the microcapsules 118, forcing the positively charged particles 110 to the bottom and causing the pixels to have a black appearance. Reversing the voltage has the opposite effect - positively charged white particles 112 are forced to the surface such that the pixels have a white appearance. The reflectance (brightness) of a pixel in an EPD changes with the applied voltage. The amount of change in reflectance of a pixel depends on the amount of voltage and the length of time it is applied. When zero voltage is applied, the reflectivity of the pixel is kept constant. The electrophoretic microcapsules of layer 120 can be individually actuated to a desired optical state, such as black or white or gray. In some embodiments, the optical state can be any other specified color. Each pixel in layer 114 may have one or more microcapsules 118 containing microcapsule layer 120. Each of the microcapsules 1 18 contains a plurality of fine particles 1 1 〇 and 1 1 2 which are suspended in a transparent fluid 1 〇 8. In some embodiments, a plurality of fine particles 丨i 0 and 丨i 2 are suspended in a transparent liquid polymer. The lower electrode layer 114 is arranged on the top of the backing plate ι16. In one embodiment, electrode layer 114 is integrated with backing layer 116. The back plate n6 is a plastic or ceramic backing layer. In other embodiments, the backing plate 116 is a metal or an array of liner layers. The electrode layer 丨4 includes an array of addressable pixel electrodes and supporting electrons. System and Method Summary Figure 2 shows a block -10-200915257 of an electronic paper display system in accordance with some embodiments. Information about the desired image or new input image 202 is provided to system 200. In some embodiments, system 2000 includes an optical image buffer, such as image buffer 2 0 4 and current image buffer 2 〇 6. In some embodiments, the desired image data (new input image 202) is sent and stored in the optical desired image buffer 204, which contains the capital #1 for the desired image. A light current image buffer 206 is selected to store at least one current image to determine how to change the display to display the new desired image. In one embodiment, the current image buffer 206 is affixed to receive the current image from the desired image buffer 2 , 4 and, once the display is updated, displays the current desired image. In one embodiment, the current image buffer 206 is automatically updated to the waveform applied to each pixel. System 200 also includes a frame buffer 208 that is large enough to cause each pixel to store waveforms directly without having to store each pixel an index representing the waveform. For example, the box buffer 208 can store thirty-two bit pairs for each pixel. A single pair can represent three individual possible voltages, namely + 1 5 , -15 and zero voltage (voltage is unchanged). In other words, "01" can mean + 1 5, "1 0 " means -1 5, and "0 〇" or "1 1 " means zero (no change). Each bit pair is applied for a duration of 20 ms, and a pair of thirty-two bits (or sixty-four bits) will leave room for an arbitrary waveform of 3 2 x 20 milliseconds (ms) or 640 m s. If you want a longer waveform, you can increase the number of bit pairs. Therefore, a frame buffer for a 6 4 0 X 4 8 pixel screen with a 32-bit pair waveform would require approximately 2.46 million bytes of memory. By individually tracking the waveform of each pixel, the entire display can be fully controlled from -11 to 200915257, and individual pixels can be updated at any time, thus reducing the observation delay. In some embodiments, an image update can be performed by puncturing all pixel waveform bit pairs into the correct waveform and then through each bit pair of each pixel. The full frame buffer will also be cleared by the program of bit pairs and updated pixels. At the end of the arrival, the image will again be updated by writing the bit pairs of the individual pixels modified with the new waveform. There are several ways to use the full frame buffer 208 of the bit pair to control the display. In one embodiment, as described above, the entire display is simultaneously updated by appropriately interpolating each bit pair to produce the correct waveform for each pixel. For example, a thirty-two bit pair for the upper left pixel, if the pixel remains unchanged, the bit pair is "〇〇", indicating that no voltage should be applied to the pixel when the image is updated. Alternatively, if a particular waveform is applied to the pixel, a series of "〇〇", "0 1", "1 0 ", and "1 1 " will be placed in the 32-bit pair to indicate the appropriate 0. -15 and +15 volt waveforms, where each bit pair represents a voltage that is continuously applied for thirty milliseconds. The waveform or 値 sequence will be designed to change the pixel from one reflectivity to another at the end of the waveform. The waveform is applied to the controller 2 1 4 so that it is applied to the physical medium 216 in 20 millisecond increments. After each increment, the display controller resets the bit pair just used to apply a voltage to the pixel back to "00" so that the next time the display controller reaches the bit pair through the full frame buffer When the pixel is not modified again. The thirty-two bit pair represents the maximum waveform of 32x20 milliseconds or 640 milliseconds. In an embodiment, we want to change all pixels at the same time. The waveform of each pixel -12-200915257 can be loaded such that the first voltage change of the pixel corresponds to the first bit pair in the frame buffer 208; the second voltage change corresponds to the second bit pair; Wait. The display controller 214 uses the 来自 from the full frame buffer 208 by accessing the first bit pair of each pixel and setting the voltages to correspond to the 第一 in the first bit pair. After 20 milliseconds, the display controller changes the voltages to correspond to the second bit pairs stored in the respective pixels. This continues until the longest waveform that stores any pixel ends 〇 The disadvantage of controlling the display in this way is that the pixel is not modified or changed independently. Another method in another embodiment is to cycle through the bit pairs by maintaining an index of one consecutively incremented by zero until it reaches 31 and then returns to zero. In some embodiments, the increment occurs every 20 milliseconds each time the display controller accesses the bit pair corresponding to the index of each pixel' and applies a voltage to the index corresponding to the pixel stored in the pixel. The bit of the pair is in the pixel. If all bit pairs of all pixels are set to "00", then - zero voltage is maintained at all pixels so that no pixels are updated. When it is desired that the image 2 0 2 is changed by a single pixel, the bit pair for that pixel is modified. However, 'different from storing a waveform having a first waveform bit pair at index 0', the first waveform bit pair is stored under an index that is accessed by the display controller. For example, if the current index 値 is 5, the first pair of the waveform will be stored in index 6 for that pixel, and the lower-waveform 储存 will be stored in the next bit pair. If the index is now 3 1, then the next waveform 値 should be stored in the index zero of that pixel. -13- 200915257 This allows the display pixels to be updated independently, regardless of the current state of any other pixels in the display. If the top of the display is in the middle of the update, the correct waveform can be written by the index + 1 bit pair, starting with the bottom half. Any pixel change can begin at any time in the next 640 milliseconds by writing in front of the bit-wise enough buffer in the block buffer. In another embodiment, we want to change the pixels at various times. For example, we want to change the upper left pixel at start time T and start changing its right side at time Τ + Δ T . If Δ T is 60 milliseconds, the waveform 値 can be written to the bit pair index +3, where 3 is equal to 60 milliseconds divided by 20 milliseconds. In one embodiment, even in the middle of the waveform, we still want to change the pixel. I want to be embarrassed. For example, 'If a pixel is changed from black to white, use the 400 milliseconds' waveform may contain "〇 1" of a 20-bit pair, indicating that + 15 volts should be applied to the pixel for 4 0 0 milliseconds. If it is determined that the pixel should be black at the 200 ms point, then the remaining bit pair will be converted to "丨〇,,, indicating that _丨5 volts should be applied for 200 ms to drive the pixel back to black. In the current system, 'display driver waits' until the pixel is driven white, then 'apply' white to black waveform, indicating that the total elapsed time is 80 〇 milliseconds, including the change from "black to white" "White to black" changes. In one embodiment, the current image buffer 206 is dynamically updated to indicate the current state of the display based on the simulation 'how the physical media changes. For example, after each bit pair is applied to the physical medium 2丨6, a small change is recorded in the existing image buffer 206. At any time, the pre-image buffer 204 is changed. The difference between the current image buffer 2〇6 and the desired image 200915257 image buffer 204 can be calculated and the corrected waveform can be written to the bit pair. Dynamically updating the current image buffer requires modeling what happens to the physical media based on the applied voltage. A simple mode of physical media response to voltage pulses can be used as part of the display controller or external processor. In one embodiment, the model or simulation of the physical media response may be a linear model in which a voltage of 20 milliseconds is applied, varying the amount of reflectivity of the physical medium in a negative or positive direction, depending on the sign of the applied voltage. In one embodiment, the change in reflectivity of the physical medium is a function of the current reflectivity. In one embodiment, the model also represents an error or likelihood that the reflectance change is greater or less than the model assumes. In one embodiment, when a waveform is applied to a pixel, the error accumulates and the error is stored in the error buffer 213 for the pixel. This error is the difference between the calculated reflectance 値 and the actual reflectance and can only be estimated. An analog module 211 calculates the error 藉 by taking the desired image buffer 204, the current image buffer 206, the full frame buffer 208, and the index 209, and outputs an error to the error buffer 213. The error buffer 213 contains enough storage ' to remember the accumulated error of each pixel. The error is driven at each pixel to a new reflectivity 値, and if the error is too large, the pixel is reset by driving it to white or black before sending it to the new reflectivity 値To minimize the difference between the actual reflectance and the calculated reflectance, those familiar with electronic paper displays can understand that because a pixel is driven to white or black', the reflectance change is much smaller than that of the pixel. Middle gray level. One way to reduce one pixel error is to drive it to black or white, -15-200915257 to put it in a known state. Because the error of a given pixel accumulates, it will be possible to reset the error 该 of the pixel by driving it to black or white before driving it to the final frame. In one embodiment, a set of bit pairs for a pixel will contain a waveform indicating how the pixel is driven in the next 640 milliseconds to move it to the pixel stored in the desired image buffer 204. I want to be jealous. When the display controller 214 applies the required voltage to the pixel for each 20 milliseconds, the current image buffer 2 16 is updated to indicate the current state, and the error buffer 213 is updated to reflect the pixel. Possible accumulation of errors. If it is determined that the error has been accumulated enough that the image is distorted when a waveform is written for the pixel, the waveform can be written in such a way that the pixel is driven back to black or white to reach the desired image. This error is exempted before the final state requirement in buffer 206. In other words, the waveform selected or written by a particular pixel in the full frame buffer depends on the current state of the pixel, the desired state of the pixel, and the cumulative error of the pixel. If the cumulative error is low based on the previous waveform, a direct waveform will be used that moves the pixel directly to the new frame. If the error has accumulated in large amounts, an indirect waveform will be used to move the pixel to white or black before placing the final reflectance 値. For a conventional display such as a CRT or LCD, the input image can be used to select the voltage that drives the display, and the same voltage can be applied continuously to each pixel until a new input image is provided. However, in the display, the application of the correct voltage depends on the current state. For example, if the previous image is the same as the desired image, then no voltage is required. However, if the first -16-200915257 image is different from the desired image, then a voltage needs to be applied according to the state of the current image, the desired state of the desired image, and the amount of time to reach the desired state. For example, if the previous image is black and the desired image is white, a positive voltage of the same length of time can be applied to complete the white image, and if the previous image is white and the desired image is black, a negative voltage can be applied. To complete the desired black image. Therefore, the display controller 2 of FIG. 4 uses the information in the desired image buffer 204 and the current image buffer 2〇6 to select a waveform 'to transfer the pixel from the current state to the desired state. . In some embodiments, the desired waveform used to complete the multi-state can be connected to the waveform used to transition from the on-state to the intermediate state to the waveform from the intermediate state to the final state. Because each transfer will have a majority of waveforms, it may be used to allow the hardware to store more waveforms. In some embodiments, a hardware capable of storing a waveform of any one of 16 bits to the other of the 16 gray levels requires 256 waveforms. If the image is limited to 4 levels, only 16 waveforms are needed instead of the intermediate level, so each transfer stores 16 different waveforms. With current hardware, there is no way to read the current reflectivity 直接 directly from the physical media 2 1 6; therefore, their 値 can use the empirical data or model of the physical media 2 1 6 and the previously known previously used The voltage is evaluated. In other words, the update procedure for physical media 216 is an open circuit control system. Therefore, it is possible to obtain a fairly accurate model of waveform/pixel interaction, but this is not necessarily true for all situations. There may be errors or differences between the expected reflectance 値 and the actual reflectance. These errors or differences may be corrected by driving the pixel "upper track" or, in other words, -17-200915257 to saturate a pixel to black or to white. This sets the pixel to a known state. In some embodiments, the difference between the expected reflectance and the actual reflectance has been minimized by the known state. This means that by accidentally pushing the pixel to a pure white or pure black state, the model can be synchronized with the actual reflectivity. In some embodiments, there is an error buffer 213 that tracks the estimate of the possible error and, when the error for a single pixel is too high, the pixel can be directly driven to black or white before being set to the final reflectance 値. In some embodiments, the environment in which the display is located, particularly illumination, and how people view the image through the physical media 2 16 determines the final display image 222. Often, displays are intended to enable a user and visual vision system to play an important role in the quality of the image being viewed. Therefore, some artifacts that are expected to have a small difference between the reflectance and the actual reflectance may be more annoying than the large variations in the image seen by the naked eye. Some embodiments are designed to produce a larger, but better looking, image than the desired reflectance image. Halftone images are an example of this. The above system is a frame buffer that individually stores the waveform for each pixel. By individually tracking the waveform of each pixel, complete control of the entire display is provided. Individual pixel updates can start at any time and can reduce the latency seen. In other embodiments, this method of updating the bi-stable display can achieve better stylus tracking, video display, animated display, and provide a faster user interface for the electronic paper display. Figure 3 shows a modified block diagram of an electronic paper display system in accordance with some embodiments. The system embodiment for updating an electronic paper display includes: a field -18-200915257 programmable gate array (FPGA) 302 that can be programmed to accept - a new input image 202 and a tracking current image buffer 206, a full frame buffer 208, error buffer 213 and index 209' in random access memory (RAM) 304 and directly drive the display controller. All calculations of the simulation and error accumulation for the reaction of the physical media may occur in the FPGA 302. 4 shows a high level flow diagram of a method 400 for updating a bi-stable display in accordance with some embodiments. Method 400 is performed individually for each pixel, which allows individual pixel updates to begin at any one time. In other words, each pixel can be updated independently of each other in the method 400 described below. At step 402, a pixel write request is received. The current state of the pixel is detected at step 406. Subsequently, at step 408 it is determined if the current status is equal to the required status. If the current status is equal to the required status (step 408-Yes), no action is taken. In other words, the pixels are not changed, so the 'state remains the same because the current state is equal to the desired state. If the current state is not equal to the desired state (step 408-NO), then at step the display controller determines the control signal to be applied to the pixel to complete the desired state. Once the control signal or waveform is determined, the bit pair that is written to the pixel is appropriately applied in step 4 1 4 '. In reading this case, those skilled in the art can use the present disclosure to understand other alternative structures and functional designs for systems and programs for updating images on a bi-stable display. Accordingly, while the particular embodiments and applications have been shown and described, it is understood that the disclosed embodiments are not limited to the precise structures and elements disclosed herein. -19-200915257 </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; carry out. This is based on the application of U.S. Patent Application No. 60/94 4 '415, filed on Jun. 15, 2007, and the filing date of Serial No. 12/59,441, filed on March 31, 2008. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a portion of an electronic paper display according to some embodiments; FIG. 2 is a block diagram of an electronic paper display according to some embodiments; A modified block diagram of an electronic paper display; and FIG. 4 shows a high level flow diagram of a method for updating a bi-stable display in accordance with some embodiments. [Description of main component symbols] 1〇〇: electronic paper display 102: top transparent electrode 108: transparent fluid 11 0 : positively charged white particles 1 1 2 : negatively charged black particles 1 14 : lower electrode layer 1 1 6 : bottom back Board-20- 200915257 1 18 : Microcapsule 120 : Microcapsule layer 2 00 : Electronic paper display 202 : New input image 204 : Wanted image buffer 206 : Current image buffer 208 : Full frame buffer 209 : Index 2 1 1 : Analog module 2 1 3 : Error buffer 2 1 4 : Display controller 2 1 6 : Physical media 222 : Want to display image 3 02 : Field programmable gate array 304 : Random access memory

Claims (1)

200915257 十、申請專利範圍 1· 一種更新在一雙穩態顯示器的影像之方法,包含 決定該雙穩態顯示器的一像素的現行狀態; 決定該雙穩態顯示器的該像素的想要狀態; 藉由施加一預定控制信號至該像素,更新該像素,以 將該像素由該現行狀態驅動至該最終狀態;其中該發生於 各個像素的更新係無關於該雙穩態顯示器的其他像素。 2·如申請專利範圍第1項所述之方法,更包含: 決定一控制信號,用以將該像素由該現行狀態驅動至 該想要狀態。 3 ·如申請專利範圍第1項所述之方法,更包含: 儲存用於各個像素的多數波形於一框緩衝器中。 4 ·如申請專利範圍第1項所述之方法,更包含: 儲存各個像素的累積誤差量。 5 . —種更新在雙穩態顯示器中之影像的系統,包含 決定該雙穩態顯τρς器的一像素的現行狀態的手段; 決定該雙穩態顯示器的該像素的想要狀態的手段;及 藉由施加一預定控制信號至該像素,以更新該像素的 手段,以將該像素由該現行狀態驅動至該最終狀態;其中 該發生於各個像素的更新係無關於該雙穩態顯示器的其他 像素。 6.如申請專利範圍第s項所述之系統,更包含·· -22- 200915257 決定用以將該像素由該現行狀態驅動至該想要狀態的 控制信號之手段。 7 _如申請專利範圍第5項所述之系統,更包含: 儲存每一像素的多數波形於一框緩衝器的手段。 8 _如申請專利範圍第5項所述之系統,更包含: 儲存每一像素的累積誤差量的手段。 9. 一種更新雙穩態顯示器的影像之設備,包含: 決定該雙穩態顯示器的一像素的現行狀態的模組; 決定該雙穩態顯示器的該像素的想要狀態的模組;及 藉由施加一決定控制信號至該像素,而更新該像素的 模組,以將該像素由該現行狀態驅動至該最終狀態;其中 該發生於各個像素的更新係無關於該雙穩態顯示器的其他 像素。 10. 如申請專利範圍第9項所述之方法,更包含: 決定一用以將該像素由該現行狀態驅動至該想要狀態 的控制信號之模組。 1 1 ·如申請專利範圍第9項所述之方法,更包含: 一框緩衝器,用以儲存用於每一像素的多數波形。 1 2.如申請專利範圍第9項所述之方法,更包含: 一誤差緩衝器,用以儲存每一像素的累積誤差量。 -23-200915257 X. Patent Application Scope 1 A method for updating an image of a bi-stable display, comprising determining an active state of a pixel of the bi-stable display; determining a desired state of the pixel of the bi-stable display; The pixel is updated by applying a predetermined control signal to the pixel to drive the pixel from the current state to the final state; wherein the update occurring in each pixel is independent of other pixels of the bi-stable display. 2. The method of claim 1, further comprising: determining a control signal for driving the pixel from the current state to the desired state. 3. The method of claim 1, further comprising: storing a plurality of waveforms for each pixel in a frame buffer. 4. The method of claim 1, further comprising: storing the cumulative error amount of each pixel. 5. A system for updating an image in a bi-stable display, comprising means for determining a current state of a pixel of the bistable display; and means for determining a desired state of the pixel of the bi-stable display; And a means for updating the pixel by applying a predetermined control signal to the pixel to drive the pixel from the current state to the final state; wherein the updating of each pixel is independent of the bi-stable display Other pixels. 6. The system of claim s, further comprising: -22-200915257 determining means for driving the pixel from the current state to a desired state. 7 _ The system of claim 5, further comprising: means for storing a plurality of waveforms of each pixel in a frame buffer. 8 _ The system of claim 5, further comprising: means for storing the cumulative error amount per pixel. 9. An apparatus for updating an image of a bi-stable display, comprising: a module that determines an active state of a pixel of the bi-stable display; a module that determines a desired state of the pixel of the bi-stable display; Updating a module of the pixel by applying a decision control signal to the pixel to drive the pixel from the current state to the final state; wherein the update occurring in each pixel is independent of the other of the bi-stable display Pixel. 10. The method of claim 9, further comprising: determining a module for controlling the pixel to be driven by the current state to the desired state. 1 1 The method of claim 9, further comprising: a frame buffer for storing a plurality of waveforms for each pixel. 1 2. The method of claim 9, further comprising: an error buffer for storing a cumulative error amount for each pixel. -twenty three-
TW097122470A 2007-06-15 2008-06-13 Full framebuffer for electronic paper displays TWI397879B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94441507P 2007-06-15 2007-06-15
US12/059,441 US8279232B2 (en) 2007-06-15 2008-03-31 Full framebuffer for electronic paper displays

Publications (2)

Publication Number Publication Date
TW200915257A true TW200915257A (en) 2009-04-01
TWI397879B TWI397879B (en) 2013-06-01

Family

ID=40129807

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097122470A TWI397879B (en) 2007-06-15 2008-06-13 Full framebuffer for electronic paper displays

Country Status (6)

Country Link
US (2) US8279232B2 (en)
EP (1) EP2054763B1 (en)
JP (1) JP4958970B2 (en)
ES (1) ES2533615T3 (en)
TW (1) TWI397879B (en)
WO (1) WO2008153211A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419112B (en) * 2010-10-12 2013-12-11 Ite Tech Inc Driving device for bistable photoelectric display and driving method thereof
TWI424404B (en) * 2010-11-16 2014-01-21 Chunghwa Picture Tubes Ltd Driving system for display and method of the same
TWI514367B (en) * 2012-10-02 2015-12-21 Nvidia Corp System, method, and computer program product for modifying a pixel value as a function of a display duration estimate

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416197B2 (en) * 2007-06-15 2013-04-09 Ricoh Co., Ltd Pen tracking and low latency display updates on electronic paper displays
KR101085701B1 (en) * 2009-01-07 2011-11-22 삼성전자주식회사 EPD driving method and apparatus
US8237733B2 (en) * 2009-03-31 2012-08-07 Ricoh Co., Ltd. Page transition on electronic paper display
US9024862B2 (en) * 2009-07-02 2015-05-05 Ricoh Co., Ltd. Dynamic creation of waveform palette
US8587597B2 (en) * 2009-10-06 2013-11-19 Ricoh Co., Ltd. Page transitions on electronic paper displays
US20110090234A1 (en) * 2009-10-19 2011-04-21 Barnes & Noble, Inc. Apparatus and method for control of multiple displays from a single virtual frame buffer
JP5556201B2 (en) * 2010-02-01 2014-07-23 セイコーエプソン株式会社 Display device
JP5640451B2 (en) 2010-05-13 2014-12-17 セイコーエプソン株式会社 Display device control method, display device, and display device control device
JP5786292B2 (en) 2010-08-18 2015-09-30 セイコーエプソン株式会社 Control device, display device, and control method of display device
JP5640552B2 (en) * 2010-08-23 2014-12-17 セイコーエプソン株式会社 Control device, display device, and control method of display device
US8723889B2 (en) * 2011-01-25 2014-05-13 Freescale Semiconductor, Inc. Method and apparatus for processing temporal and spatial overlapping updates for an electronic display
CN103403615A (en) * 2011-02-08 2013-11-20 精工爱普生株式会社 Automatic waveform linking in an electrophoretic display controller
JP2012198406A (en) 2011-03-22 2012-10-18 Seiko Epson Corp Driving method, controller, display device and electronic apparatus
TWI560664B (en) * 2011-04-12 2016-12-01 Au Optronics Corp Bistable display panel and data driving circuit thereof
US8902204B2 (en) * 2011-10-27 2014-12-02 Ricoh Co., Ltd. Bounding box based control method for electronic paper devices
CN107393482A (en) * 2013-07-31 2017-11-24 伊英克公司 Method for driving electro-optic displays
JP2015158624A (en) * 2014-02-25 2015-09-03 セイコーエプソン株式会社 Control device, display device, control method and program
TWI774044B (en) * 2020-08-20 2022-08-11 元太科技工業股份有限公司 Image signal input method
US11500367B2 (en) * 2020-09-23 2022-11-15 Rockwell Automation Technologies, Inc. Display for self-powered industrial automation component
US11380273B2 (en) * 2020-11-06 2022-07-05 Amazon Technologies, Inc. Hardware-leveraged interface display effects
US11587532B2 (en) * 2020-11-11 2023-02-21 Amazon Technologies, Inc. Content presentation on display screens
EP4086639A1 (en) * 2021-05-07 2022-11-09 Tyco Electronics UK Ltd Electrical indicator and method for displaying an electrical value using a digital display

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510148A (en) * 1975-04-17 1978-05-10 Secr Defence Digital scan converters
US4367465A (en) * 1980-04-04 1983-01-04 Hewlett-Packard Company Graphics light pen and method for raster scan CRT
DE3787660T2 (en) * 1986-02-17 1994-02-17 Canon Kk Control unit.
ES2040258T3 (en) * 1986-09-20 1993-10-16 Thorn Emi Plc DISPLAY DEVICE.
JPH02136915A (en) 1988-11-17 1990-05-25 Fuji Xerox Co Ltd Input/output device for picture information
KR910008438B1 (en) * 1989-03-31 1991-10-15 삼성전관 주식회사 Driving method for plasma display panel
JP2847331B2 (en) * 1991-04-23 1999-01-20 キヤノン株式会社 Liquid crystal display
US5605406A (en) * 1992-08-24 1997-02-25 Bowen; James H. Computer input devices with light activated switches and light emitter protection
US5509085A (en) * 1992-10-07 1996-04-16 Seiko Epson Corporation Image processor and printing apparatus which perform binary coding of color components
US5815134A (en) * 1994-05-16 1998-09-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device and driving method thereof
US6147671A (en) * 1994-09-13 2000-11-14 Intel Corporation Temporally dissolved dithering
FR2740894B1 (en) * 1995-11-08 1998-01-23 Centre Nat Rech Scient IMPROVED DISPLAY DEVICE BASED ON LIQUID CRYSTALS AND WITH BISTABLE EFFECT
US5754156A (en) * 1996-09-19 1998-05-19 Vivid Semiconductor, Inc. LCD driver IC with pixel inversion operation
US5963714A (en) * 1996-11-15 1999-10-05 Seiko Epson Corporation Multicolor and mixed-mode halftoning
JP4073514B2 (en) * 1997-02-27 2008-04-09 シチズンホールディングス株式会社 Liquid crystal display
GB2326263A (en) * 1997-06-12 1998-12-16 Sharp Kk Diffractive spatial light modulator and display
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6313454B1 (en) * 1999-07-02 2001-11-06 Donnelly Corporation Rain sensor
US7075502B1 (en) * 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6285774B1 (en) * 1998-06-08 2001-09-04 Digital Video Express, L.P. System and methodology for tracing to a source of unauthorized copying of prerecorded proprietary material, such as movies
US7456808B1 (en) * 1999-04-26 2008-11-25 Imaging Systems Technology Images on a display
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7119772B2 (en) * 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6563957B1 (en) * 1999-05-07 2003-05-13 Hewlett-Packard Company Tone dependent error diffusion
US7372594B1 (en) * 1999-09-30 2008-05-13 Canon Kabushiki Kaisha Image processing apparatus and method, and storage medium
US6441867B1 (en) * 1999-10-22 2002-08-27 Sharp Laboratories Of America, Incorporated Bit-depth extension of digital displays using noise
US6809724B1 (en) * 2000-01-18 2004-10-26 Seiko Epson Corporation Display apparatus and portable information processing apparatus
US6791716B1 (en) * 2000-02-18 2004-09-14 Eastmas Kodak Company Color image reproduction of scenes with preferential color mapping
JP3667242B2 (en) * 2000-04-13 2005-07-06 キヤノン株式会社 Electrophoretic display method and electrophoretic display device
US6901164B2 (en) * 2000-04-14 2005-05-31 Trusight Ltd. Method for automated high speed improvement of digital color images
US6721458B1 (en) * 2000-04-14 2004-04-13 Seiko Epson Corporation Artifact reduction using adaptive nonlinear filters
US6850217B2 (en) * 2000-04-27 2005-02-01 Manning Ventures, Inc. Operating method for active matrix addressed bistable reflective cholesteric displays
CA2347181A1 (en) * 2000-06-13 2001-12-13 Eastman Kodak Company Plurality of picture appearance choices from a color photographic recording material intended for scanning
US7034814B2 (en) * 2001-07-13 2006-04-25 Apple Computer, Inc. Methods and apparatuses using control indicators for data processing systems
US20030063575A1 (en) * 2001-09-28 2003-04-03 Fuji Photo Film Co., Ltd. Order processing apparatus, order processing system and image photographing device
CN102789764B (en) 2001-11-20 2015-05-27 伊英克公司 Methods for driving bistable electro-optic displays
US7952557B2 (en) * 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) * 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US6696232B2 (en) * 2001-12-20 2004-02-24 Eastman Kodak Company Color negative element intended for scanning
JP2003256134A (en) 2002-02-28 2003-09-10 Kokuyo Co Ltd Write type display device
AU2003218506A1 (en) * 2002-04-05 2003-10-27 Flarion Technologies, Inc. Phase sequences for timing and access signals
JP3919613B2 (en) * 2002-06-28 2007-05-30 キヤノン株式会社 Image processing apparatus and method, computer program, and computer-readable storage medium
KR20050049526A (en) 2002-10-10 2005-05-25 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic display panel
KR20050092779A (en) * 2003-01-23 2005-09-22 코닌클리케 필립스 일렉트로닉스 엔.브이. Driving a bi-stable matrix display device
JP4079793B2 (en) * 2003-02-07 2008-04-23 三洋電機株式会社 Display method, display device, and data writing circuit usable for the same
US20080135412A1 (en) * 2003-06-27 2008-06-12 Koninklijke Philips Electronics N.V. Adaptable Ultrasound Positioning System For an Electronic Brush
AU2003903344A0 (en) 2003-06-30 2003-07-17 Furnace Engineering Pty Ltd High temperature process
FR2857147A1 (en) 2003-07-01 2005-01-07 Thomson Licensing Sa METHOD FOR PROCESSING A SEQUENCE OF VIDEO IMAGES IN A LIQUID CRYSTAL DISPLAY PANEL
US20060164405A1 (en) * 2003-07-11 2006-07-27 Guofu Zhou Driving scheme for a bi-stable display with improved greyscale accuracy
WO2005008623A1 (en) * 2003-07-17 2005-01-27 Koninklijke Philips Electronics N.V. Elecrophoretic or bi-stable display device and driving method therefor
US7142723B2 (en) * 2003-07-18 2006-11-28 Microsoft Corporation System and process for generating high dynamic range images from multiple exposures of a moving scene
WO2005012993A1 (en) * 2003-07-31 2005-02-10 Sanyo Electric Co., Ltd. Electrochromic display
JP2007505340A (en) * 2003-09-08 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Driving an electrophoretic display using a blanking frame
EP1665213A1 (en) * 2003-09-08 2006-06-07 Koninklijke Philips Electronics N.V. Driving method for an electrophoretic display with accurate greyscale and minimized average power consumption
US7623113B2 (en) 2003-09-12 2009-11-24 Koninklijke Philips Electronics N.V. Method of compensating temperature dependence of driving schemes for electrophoretic displays
US20070057906A1 (en) * 2003-09-22 2007-03-15 Koninklijke Philips Electronics N.V. Bi-stable display with reduced memory requirement
WO2005031689A1 (en) * 2003-09-29 2005-04-07 Koninklijke Philips Electronics, N.V. A bi-stable display with accurate greyscale and natural image update
EP1671305A1 (en) 2003-09-30 2006-06-21 Koninklijke Philips Electronics N.V. Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states
US20070002009A1 (en) * 2003-10-07 2007-01-04 Pasch Nicholas F Micro-electromechanical display backplane and improvements thereof
US20050116924A1 (en) * 2003-10-07 2005-06-02 Rolltronics Corporation Micro-electromechanical switching backplane
US8928562B2 (en) * 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
EP1697786A4 (en) 2003-11-26 2008-09-24 E Ink Corp Electro-optic displays with reduce remnant voltage
CN1914661A (en) 2004-02-02 2007-02-14 皇家飞利浦电子股份有限公司 Electrophoretic display panel
TW200539103A (en) 2004-02-11 2005-12-01 Koninkl Philips Electronics Nv Electrophoretic display with reduced image retention using rail-stabilized driving
EP1721306A1 (en) 2004-02-24 2006-11-15 Koninklijke Philips Electronics N.V. Electrophoretic display device
WO2005093705A1 (en) 2004-03-22 2005-10-06 Koninklijke Philips Electronics N.V. “rail-stabilized” (reference state) driving method with image memory for electrophoretic display
TW200601217A (en) 2004-03-30 2006-01-01 Koninkl Philips Electronics Nv An electrophoretic display with reduced cross talk
TW200603058A (en) * 2004-03-31 2006-01-16 Koninkl Philips Electronics Nv Electrophoretic display activation for multiple windows
TW200625223A (en) * 2004-04-13 2006-07-16 Koninkl Philips Electronics Nv Electrophoretic display with rapid drawing mode waveform
US8731054B2 (en) * 2004-05-04 2014-05-20 Qualcomm Incorporated Method and apparatus for weighted prediction in predictive frames
TWI266228B (en) * 2004-05-07 2006-11-11 Realtek Semiconductor Corp Dynamic image display device and its method
KR20070046085A (en) 2004-07-27 2007-05-02 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic Display Devices with Improved Scrolling
US7920135B2 (en) * 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US7586484B2 (en) * 2004-09-27 2009-09-08 Idc, Llc Controller and driver features for bi-stable display
US20070085819A1 (en) 2004-10-14 2007-04-19 Koninklijke Philips Electronics, N.V. Look-up tables with graylevel transition waveforms for bi-stable display
US7890310B2 (en) * 2004-11-17 2011-02-15 The Mathworks, Inc. Method for analysis of control systems
US20080243344A1 (en) * 2004-12-20 2008-10-02 Caterpillar Inc. Vibration management system
JP4748440B2 (en) 2005-03-03 2011-08-17 セイコーエプソン株式会社 Electrophoretic display device and electronic apparatus
TWI260568B (en) * 2005-07-15 2006-08-21 Au Optronics Corp Driving system and method for liquid crystal display
TWI284885B (en) * 2005-10-03 2007-08-01 Ind Tech Res Inst Gray-scale driving method for a bistable chiral nematic liquid crystal display
US8874477B2 (en) * 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method
JP4911942B2 (en) 2005-10-06 2012-04-04 株式会社リコー Electrophoretic particle purification method, particle dispersion using the same, and image display medium / device
US20070140351A1 (en) * 2005-12-15 2007-06-21 Hsieh-Chang Ho Interpolation unit for performing half pixel motion estimation and method thereof
CN101427297B (en) 2006-02-22 2011-06-08 株式会社普利司通 Information equipment
JP4862437B2 (en) 2006-03-06 2012-01-25 富士ゼロックス株式会社 Handwriting system
WO2007135594A1 (en) 2006-05-16 2007-11-29 Koninklijke Philips Electronics N.V. Electrophoretic display devices
US8107155B2 (en) * 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
WO2008048692A2 (en) * 2006-10-21 2008-04-24 Mrttologic Instruments, Inc. Electronic sign
US8041291B2 (en) * 2006-11-03 2011-10-18 Apple Inc. Delivering content to mobile electronic communications devices
TWI357057B (en) * 2006-11-14 2012-01-21 Mstar Semiconductor Inc Method for displaying and processing video data an
US8913000B2 (en) 2007-06-15 2014-12-16 Ricoh Co., Ltd. Video playback on electronic paper displays
US8319766B2 (en) 2007-06-15 2012-11-27 Ricoh Co., Ltd. Spatially masked update for electronic paper displays
US8355018B2 (en) 2007-06-15 2013-01-15 Ricoh Co., Ltd. Independent pixel waveforms for updating electronic paper displays
US8203547B2 (en) 2007-06-15 2012-06-19 Ricoh Co. Ltd Video playback on electronic paper displays
US8416197B2 (en) 2007-06-15 2013-04-09 Ricoh Co., Ltd Pen tracking and low latency display updates on electronic paper displays
CN102834857B (en) * 2010-04-09 2016-03-02 伊英克公司 Method for driving electro-optic display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419112B (en) * 2010-10-12 2013-12-11 Ite Tech Inc Driving device for bistable photoelectric display and driving method thereof
TWI424404B (en) * 2010-11-16 2014-01-21 Chunghwa Picture Tubes Ltd Driving system for display and method of the same
TWI514367B (en) * 2012-10-02 2015-12-21 Nvidia Corp System, method, and computer program product for modifying a pixel value as a function of a display duration estimate

Also Published As

Publication number Publication date
TWI397879B (en) 2013-06-01
EP2054763A1 (en) 2009-05-06
US20130021356A1 (en) 2013-01-24
US8466927B2 (en) 2013-06-18
JP2010520490A (en) 2010-06-10
EP2054763A4 (en) 2010-11-03
EP2054763B1 (en) 2015-03-11
JP4958970B2 (en) 2012-06-20
ES2533615T3 (en) 2015-04-13
WO2008153211A1 (en) 2008-12-18
US8279232B2 (en) 2012-10-02
US20080309674A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
TWI397879B (en) Full framebuffer for electronic paper displays
JP6284564B2 (en) Method for driving an electro-optic display
CN105580067B (en) Method for driving an electro-optic display
KR101214877B1 (en) Methods for driving electro-optic displays
TWI400674B (en) Pen tracking and low latency display updates on electronic paper displays
CN101542385B (en) Full framebuffer for electronic paper displays
JP2013531804A (en) Method for driving an electro-optic display
JP2015111307A (en) Method for driving electro-optic display
US12085829B2 (en) Methods for driving electro-optic displays

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载