TW200837618A - Multi-touch auto scanning - Google Patents
Multi-touch auto scanning Download PDFInfo
- Publication number
- TW200837618A TW200837618A TW097100213A TW97100213A TW200837618A TW 200837618 A TW200837618 A TW 200837618A TW 097100213 A TW097100213 A TW 097100213A TW 97100213 A TW97100213 A TW 97100213A TW 200837618 A TW200837618 A TW 200837618A
- Authority
- TW
- Taiwan
- Prior art keywords
- panel
- scan
- touch
- automatic
- sensor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/325—Power saving in peripheral device
- G06F1/3262—Power saving in digitizer or tablet
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/0418—Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04104—Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Position Input By Displaying (AREA)
- Power Sources (AREA)
Abstract
Description
200837618 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於能夠在不活動週期期間停用各種組件 (例如系統時脈及處理器)之電子器件(例如觸控螢幕器 件)’特定言之係關於在不活動週期期間起始低電力自動 掃描模式之系統及方法。 【先前技術】 許多類型之輸入器件目前可用於在計算系統内實行操 作,例如按鈕或按鍵、滑鼠、執跡球、觸控面板、操縱 桿'觸控螢幕等等。特定言之,觸控螢幕由於其操作簡單 及通用〖生以及其下降之價格變得越來越普遍。觸控螢幕可 。括觸控面板’其可為具有觸敏表面之透明面板。觸控面 板可位於顯不螢幕前方’以便觸敏表面覆蓋顯示螢幕之可 ^視區域。觸㉟螢幕允許使用者可藉由以手指或觸控筆簡 單地觸控顯示螢幕作出選擇並移動游標。一般而言,觸押 螢幕:辨識顯示螢幕上之觸控及觸控位置,並且計算系: 可解澤觸控,之後根據觸控事件實行動作。 即使當多重物件接觸感測表面時 重接觸點之能力。因此,即接舍 、許多習知觸控面板技術之—限制係其僅能夠報告單 或觸控事件,卽#妾炙舌从从# _ j 1 ” 。即,其缺200837618 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to electronic devices (e.g., touch screen devices) capable of deactivating various components (e.g., system clocks and processors) during periods of inactivity. A system and method for initiating a low power automatic scan mode during an inactivity period. [Prior Art] Many types of input devices are currently available for operation within a computing system, such as buttons or buttons, a mouse, a trackball, a touch panel, a joystick 'touch screen, and the like. In particular, touch screens are becoming more common due to their ease of operation and the general cost of life and its decline. Touch screen can be. A touch panel can be a transparent panel having a touch-sensitive surface. The touch panel can be positioned in front of the screen so that the touch-sensitive surface covers the viewable area of the display screen. Touching the 35 screen allows the user to make selections and move the cursor by simply touching the display screen with a finger or stylus. In general, the touch screen: recognizes the touch and touch position on the display screen, and the calculation system: the touch can be interpreted, and then the action is performed according to the touch event. The ability to re-contact points when multiple objects touch the sensing surface. Therefore, that is, the choice of many conventional touch panel technologies - the limitation is that it can only report single or touch events, 卽 #妾炙舌 从 从 从 #_ j 1 ”.
般係藉由提供平均電阻或電容 时丨丁促伏η衣觸控點之值的方 128015.doc 200837618 值。 卜、,許夕觸控益件之一問題係其在主動掃描觸控螢幕 面板時消耗之電力數量。高電力消耗問題對於 ::寺別重要,因為主動掃描觸控感測器面板以及處理該等牛 :描可容易地消耗手持式器件之有限電源供應 在延長之時間週期中無觸控活動,該等掃描可係浪費。 停止f (即::::期間之電力消耗損失的-種可能補救係 :(即關閉)觸控面板或觸控面板器件。但如此做可具有 數個缺點,例如當再次 … 別係若不活動週二;面板時消耗更多電力(特 m非延長之時間週期),以及對於使用 不方便,因為必須等待觸控面板再次開啟。此外,使用 者可能忘記應關閉觸控面板, * ^ , ^ ^ 為件、、k績主動掃描觸控 面板’而不官使用者未輸入任何資料。 【發明内容】 本文揭示-種多重觸控之觸控系統。 統的一方面係關於在不 控之觸控糸 .^ 、 /週功期間停用觸控面板器件之 組件以節省電力。可停 攸态忏之 統時脈。 、’、i括觸控面板處理器及系 夕重觸控系統之另一方面係關於具 性地掃描觸控面板之自動掃描模式,而=期 器以針對觸控事件主動掃描觸控㈣了啟用多重觸控處理 多重觸控系統之另一方面係關於使用· 以在預定時間量已發生後 、一(smff)模式 後針對觸控事件掃描觸控面板。多 128015.doc 200837618 錢控系統亦可具有校準計時器,其自動啟用多重觸控處 理器及系統時脈以在不同預定時間量已發生後實行主 描及校準功能。 多重觸控系統之另-方面係關於在自動掃描模式期間測 量觸控面板感測器内之雜散電容。 【實施方式】Generally, by providing the average resistance or capacitance, the value of the touch point of the η clothes is 128015.doc 200837618. Bu, one of the problems with Xu Xi Touch Benefits is the amount of power it consumes when actively scanning the touch screen panel. The problem of high power consumption is::The temple is not important, because actively scanning the touch sensor panel and processing the cows: the limited power supply that can easily consume the handheld device has no touch activity during an extended period of time, Scanning can be wasted. Stop f (ie: loss of power consumption during the period:::: may be a remedy: (ie, turn off) the touch panel or touch panel device. But doing so can have several drawbacks, such as when again... Activity Tuesday; the panel consumes more power (special m non-extended time period), and is inconvenient to use, because it must wait for the touch panel to be turned on again. In addition, the user may forget to close the touch panel, * ^, ^ ^ Actively scan the touch panel for the piece, the performance, but the user does not input any data. [Disclosed] This article reveals a multi-touch touch system. One aspect of the system is about not controlling Touch 糸.^, / Zhou Gong during the time to disable the components of the touch panel device to save power. Can stop the state of the system., ', i including the touch panel processor and the system of the touch system On the other hand, it is about the automatic scanning mode of the scanning of the touch panel, and the sniper is actively scanning the touch for the touch event. (4) The other aspect of the multi-touch system is enabled. At the predetermined amount of time After the smff mode, the touch panel is scanned for touch events. More 128015.doc 200837618 The money control system can also have a calibration timer that automatically enables the multi-touch processor and system clock to be at different predetermined times. The main drawing and calibration functions are implemented after the occurrence. The other aspect of the multi-touch system is to measure the stray capacitance in the touch panel sensor during the automatic scanning mode.
CC
在以下較佳具體實施例之說明中,將會參考形成其一部 分的附圖’且其中藉由說明方式來顯示可實踐本發明之特 疋具體實施例。應明白,在不背離本發明之較佳具體實施 例之範疇的條件下,可使用其他具體實施例且可作出結構 變化。 多重觸控面板内之複數個觸控感測器可啟用計算系統以 感測多重觸控事件(手指或其他物件於大約相同時間在觸 敏表面上不同位置之觸控)並實行先前採用觸控感測器器 件不可用的額外功能。 儘管本文可就多重觸控面板内之電容觸控感測器說明某 些具體實施例,應瞭解本發明之具體實施例並不限於此, 而是可一般地施加於任何類型之多重觸控感測器技術之使 用,其可包括電阻觸控感測器、表面聲波觸控感測器、電 磁觸控感測器、近場成像觸控感測器等等。另外,儘管本 文可就具有列及行之觸控感測器正交陣列說明多重觸控面 板内之觸控感測器’應瞭解本發明之具體實施例並不限於 正父陣列,而是可一般地施加於按任何數目之維度及定向 配置的觸控感測器,包括對角線、同心圓、三維及隨機定 128015.doc 200837618 向0 一般而言,多重觸控面板能夠偵測同時或大約同時發生 之多重觸控(觸控事件或接觸點),並識別及追蹤其位置。 多重觸控面板之範例在申請人之共同待審美國申請案序號 1〇/842,862 中予以說明,其標題為”Multip〇int T〇uchs_,,:^ 2004年5月6曰申請,並且在2〇〇6年5月lla作為美國公開 申请案第2006/0097991號公開,其内容以提及方式併入本 文0 f'In the following description of the preferred embodiments, reference to the drawings Other embodiments may be utilized and structural changes may be made without departing from the scope of the preferred embodiments of the invention. A plurality of touch sensors in the multi-touch panel enable the computing system to sense multiple touch events (touch of fingers or other objects at different locations on the touch-sensitive surface at about the same time) and implement previous touch Additional features not available for sensor devices. Although specific embodiments are described herein with respect to capacitive touch sensors in a multi-touch panel, it should be understood that the specific embodiments of the present invention are not limited thereto, but can be generally applied to any type of multiple touch sense. The use of the detector technology may include a resistive touch sensor, a surface acoustic wave touch sensor, an electromagnetic touch sensor, a near field imaging touch sensor, and the like. In addition, although a touch sensor in a multi-touch panel can be described herein with respect to a row and row of touch sensor orthogonal arrays, it should be understood that the specific embodiment of the present invention is not limited to the positive parent array, but may be Generally applied to touch sensors in any number of dimensions and orientations, including diagonal, concentric, three-dimensional and random 128015.doc 200837618 to 0 In general, multiple touch panels can detect simultaneous or Multiple touches (touch events or touch points) occur at the same time and identify and track their position. An example of a multi-touch panel is described in the applicant's co-pending U.S. Application Serial No. 1/842,862, entitled "Multip〇int T〇uchs_,,:^ May 6, 2004 application, and at 2 〇〇 6 May lla is published as US Published Application No. 2006/0097991, the contents of which are incorporated herein by reference.
圖1說明依據一項具體實施例使用觸控感測器之計算系 統100。計算系統100可對應於計算器件,例如桌上型、膝 上型、平板型或手持式,包括個人數位助理(PDA)、數位 音樂及/或視訊播放器及行動電話。計算系統100亦可對應 於公用電腦系統’例如資訊亭、自動櫃員機(ATM)、銷售 點機器(POS)、工業機器、遊戲機、騎樓機、自動㈣ 機、航空電子機票終端機、餐廳訂位終端機、客戶服務 站、圖書館終端機、學習器件等等。 計算系統100可包括-或多個多重觸控面板處理器叱及 周邊裝置104,以及多重觸控子系統1G6。一或多個處理哭 1〇2可為ARM968處理器或具有相似功能性及能力之其他: 理器U ’在其他具體實施例中,可藉由專用邏輯,: 如狀怨機,代替實施多重觸控處理器功能性。周邊裝 1〇4可包括但^限於隨機存取記憶體(ram)或其他類型 記憶體或儲存器、監視計時器料。乡重觸控子系統1〇6 可包括但不限於-或多個類比通道⑽、通道掃插邏輯⑽ 128015.doc 10- 200837618 及驅動器邏輯114。通道掃描邏輯11 〇可存取ram 112,自 主地從類比通道讀取資料以及為類比通道提供控制。此控 制可包括將多重觸控面板124之行多工化至類比通道1〇8。 此外,通道掃描邏輯丨10可控制驅動器邏輯及刺激信號, 其係選擇性地施加於多重觸控面板124之列。某些具體實 施例中,可將多重觸控子系統106整合至單一特定應用積 體電路(ASIC)内。 驅動器邏輯114可提供多個多重觸控子系統輸出116並可 出現驅動較南電壓驅動器之專屬介面,其係由解碼器12 〇 及隨後位準偏移器及驅動器級丨丨8組成,儘管可在解碼器 功能前實行位準偏移功能。位準偏移器及驅動器118可提 供從低電壓位準(例如CMOS位準)至較高電壓位準之位準 偏移,從而提供用於雜訊減少目的之較佳訊號對雜訊 (S/N)比。解碼器120可將驅動介面信號解碼為1^個輸出之 一,而N係面板内最大列數目。解碼器12〇可用於減小在高 電壓驅動器與多重觸控面板124間需要的驅動線數目。各 多重觸控面板列輸入122可驅動多重觸控面板124内之一或 多列。某些具體實施例中,可將驅動器118及解碼器12〇整 合至單一 ASIC内。然而,在其他具體實施例中,可將驅動 器118及解碼器120整合至驅動器邏輯114内,在其他具體 實施例中,可將驅動器118及解碼器12〇完全消除。 多重觸控面板124在某些具體實施例中可包括電容感測 介質,其具有複數個列跡線或驅動線以及複數個行跡線或 感測線,儘管亦可使用其他感測介質。列及行跡線可由透 128015.doc -11 - 200837618 明導電介質形成,例如氧化銦錫(IT0)或氧化銻錫(AT〇), 儘管亦可使用其他透明及不透明材料,例如銅。某些具體 實施例中,可將列及行跡線形成於介電材料之相反側面 上,並可彼此垂直,儘管在其他具體實施例中其他非正交 方向亦可行。例如,極性座標系統中,感測線可為同心 圓,驅動線可為徑向延伸線(或反之亦然)。因此應瞭解, 、 本文所使用之術語”列”及"行”、,,第一維度”及”第二維度,, 或第一轴及’’第二軸’’希望不僅包含正交格柵,而且包含 具有第一及第二維度之其他幾何組態的交叉跡線(例如極 性座標配置之同中心及徑向線)。亦應注意,在其他具體 實施例中,可將列及行形成於基板之單一側面上,或者可 形成於藉由介電材料分離的兩個分離基板上。某些具體實 施例中,’I電材料可為透明的,例如玻璃,或者可由其他 材料形成,例如聚酯樹脂。可將額外介電覆蓋層放置於列 或行跡線上,以強化結構及保護整個裝配件免於損壞。 I 在跡線之’’父叉點’’,此處跡線經過彼此上方及下方(但彼 此無直接電性接觸),跡線本質上形成兩個電極(儘管亦可 係多於兩個跡線交叉)。列及行跡線之各交又點可代表電 容感測節點,並可視為圖像元件(像素)126,其在多重觸控 面板124係視為捕捉觸控之,,影像,,時可特別有用。(換言 之,在多重觸控子系統106已決定是否在多重觸控面板内 之各觸控感測器處感測觸控事件後,多重觸控面板内發生 觸控事件的觸控感測器之圖案可視為觸控之”影像,,(例如觸 控面板之手指的圖案)。)當將給定列保持在〇(:時,列與行 128015.doc -12- 200837618 :極間之電容在所有行上顯現為雜散電容 號刺激給定料,其顯現為互 d木用AC# 量變化偵測多會鎚狄;4 S1§可藉由對Csig測 " 卜重觸控面板附近或其上之手指或其他物件之 存在。多重觸控面板124之行 』物件之 〜」·%Η動多重觸控 之一或多個類比通道1〇8(本文亦 〃、、、 ,々、甘L 〒冉马事件偵測及解調變電 路)。某些具體實施例中,將各行 電 108。妙工 ^ 口至一專用類比通道 8然而,在其他具體實施例中,杆开γ丄 人至|^丨、# η 仃可經由類比開關耦 口至較J數目之類比通道1〇8。 計算系統100亦可包括主機處理器128,其用於從多重觸 控面板處理器Η)2接收輸出及根據輸出實行動作,盆可包 括但不限於移動物件,例如游標或指標,捲動或平移,調 整_設置,打開播案或文件,檢視選單,作出選擇,執 订才曰令,知作連接至主機器件之周邊器件,應答電話呼 叫’發出電話呼叫,終止電話呼叫,改變音量或音訊設 置儲存關於電活通信之資訊,例如地址、頻繁撥出號 Ο 碼、已接收呼叫、遺漏呼叫,登錄至電腦或電腦網路上, 允許經授權個體存取電腦或電腦網路之限制區域,載入與 使用者對電腦桌面之較佳配置相關聯的使用者設定檔,允 許存取、、罔頁内谷,啟動特定程式,加密或解碼訊息及/或 類似動作。主機處理器128亦可實行可與多重觸控面板處 理無關的額外功能,並可耦合至程式儲存器132及顯示器 件130 ’例如用於對器件之使用者提供使用者介面的 LCD顯示器。 圖2a說明示範性電容多重觸控面板2〇〇。圖仏指示定位 128015.doc -13 - 200837618 於列204及行206跡線之交又點的各像素2〇2存在雜散電容 Cstray(儘管出於簡化圖式之目的圖2中僅說明用於一行之 Cstray)。應注意,儘管圖2a說明實質上垂直的列2〇4及行 206,其不必如此對準,如上所述。圖以之範例中,對一 列施加AC刺激Vstim 214,而所有其他列係連接至dc。該 刺激導致電荷透過交又點處之互電容注入至行電極。此電 荷係Qsig=Csig X Vstm。各行206可選擇性地連接至一或多 個類比通道(參見圖1内之類比通道1〇8)。 圖2b係穩態(無觸控)狀況下之示範性像素2〇2的側視 圖。圖2b中,行206及列204跡線或藉由介電質21〇分離之 電極間的互電谷之電場線208的電場代表列與行電極間之 “號電容Csig ’並可停止將電荷從受刺激列注入至行電 極。由於Csig係參考虛擬接地,其亦構成雜散電容。例 如’行電極之總雜散電容可為給定行與所有列電極間之所 有仏號電谷Csig的總和。假定cSig(例如)係〇.75pF並且行 電極與十五個列電極交叉,該行電極上之總體雜散電容至 少係15 X 〇.75pF=11.25pF。但現實中,由於行電極至多重 觸控ASIC之跡線雜散電容或系統内之其他雜散電容,總體 雜散電容可能較大。 圖2c係動態(觸控)狀況下之示範性像素2〇2的側視圖。圖 2 c中’已將手指212放置於像素2 0 2附近。手指212係信號 頻率下之低阻抗物件,並經由主體電容Cb〇dy代表CA接地 ^ 口路t。主體對接地具有自我電容C |3〇CJy,其在其他方 面中與主體大小及幾何形狀成一函數關係。若手指212阻 128015.doc -14- 200837618 擔列與行電極間的某些電場線雇(退出介電質並通過列電 極上方之二氣的该等邊緣場),透過手指及主體内固有的 電合路‘將電场線分流至接地,因此,將穩態信號電容 Csig減小Csig 一 sense。換言之,組合之主體及手指電容用 以將CS1g減小數量(本文中其亦可稱為csig—s⑶π), 並且可當作對接地之分流或動態返回路徑,從而阻擋某些 電昜而產生減小之淨信號電容。像素處之信號電容變為 CSlg_ACsig,其中Csig代表靜態(無觸控)成分,而ACsig代 表動態(觸控)成分。應注意,由於手指、手掌或其他物件 無力阻擋所有電場,特別係整體保持於介電材料内之該等 電場,CSig-ACsig可始終非零。此外,應瞭解由於更用力 或更完全地將手指按壓至多重觸控面板上,手指可傾向於 變平,從而阻擋越來越地電場,因此ACsig係可變並代表 將手指按至面板上的完全程度(即從”無觸控”至,,完全觸控,, 之範圍)。 " 再次參考圖2a,如上所述,可將Vstim信號214施加於多 重觸控面板200内之一列,以便在出現手指、手掌或其他 物件時可偵測信號/電容變化。Vstim信號214可包括特定 頻率下之一或多個脈衝串列21 6,各脈衝串列包括若干脈 衝。儘管將脈衝串列216顯示為方波,亦可使用其他波 形,例如正弦波。可針對雜訊減少目的發送不同頻率下之 複數個脈衝串列216,以最小化任何雜訊來源之效廯。 Vstim信號2 14本質上經由信號電容Csig將電荷注入至兮 列,並可一次施加於多重觸控面板2〇〇之一列,同時將所 128015.doc • 15- 200837618 在其他具體實施例中, 兩個以上區段,而且將 歹J ’同時该區域内之所 有其他列保持於DC位準。然而, 可將多重觸控面板分割成兩個或 乂8^1!1信號214施加於各區段内之一 有其他列係保持於DC電壓下。Figure 1 illustrates a computing system 100 that uses a touch sensor in accordance with an embodiment. Computing system 100 may correspond to a computing device, such as a desktop, knee, tablet or handheld device, including a personal digital assistant (PDA), digital music and/or video player, and a mobile phone. The computing system 100 can also correspond to a public computer system such as a kiosk, an automated teller machine (ATM), a point-of-sale (POS) machine, an industrial machine, a game machine, an aircraft, an automatic (four) machine, an airline ticket terminal, a restaurant reservation. Terminals, customer service stations, library terminals, learning devices, etc. Computing system 100 can include - or multiple multi-touch panel processors and peripheral devices 104, as well as multiple touch subsystems 1G6. One or more processes crying 1.2 can be an ARM968 processor or other with similar functionality and capabilities: In other embodiments, dedicated logic can be used instead of implementing multiples. Touch processor functionality. The peripheral device 1 4 may include, but is limited to, a random access memory (ram) or other type of memory or memory, and a watch timer. The home touch system 1〇6 may include, but is not limited to, one or more analog channels (10), channel sweep logic (10) 128015.doc 10-200837618, and driver logic 114. The channel scan logic 11 can access the ram 112, autonomously reading data from the analog channel and providing control for the analog channel. This control may include multiplexing the rows of the multi-touch panel 124 to the analog channel 1〇8. In addition, channel scan logic 10 can control driver logic and stimulus signals that are selectively applied to multiple touch panels 124. In some embodiments, the multi-touch subsystem 106 can be integrated into a single application-specific integrated circuit (ASIC). The driver logic 114 can provide a plurality of multi-touch subsystem outputs 116 and can have a dedicated interface for driving the south voltage driver, which is comprised of the decoder 12 and subsequent level shifters and driver stages ,8, although The level shift function is implemented before the decoder function. The level shifter and driver 118 can provide a level shift from a low voltage level (eg, CMOS level) to a higher voltage level, thereby providing better signal to noise for noise reduction purposes (S /N) ratio. The decoder 120 can decode the drive interface signal into one of the output, and the maximum number of columns in the N-series panel. The decoder 12A can be used to reduce the number of drive lines required between the high voltage driver and the multi-touch panel 124. Each of the multiple touch panel column inputs 122 can drive one or more columns within the multi-touch panel 124. In some embodiments, driver 118 and decoder 12 can be integrated into a single ASIC. However, in other embodiments, driver 118 and decoder 120 may be integrated into driver logic 114, and in other embodiments, driver 118 and decoder 12 may be completely eliminated. Multiple touch panel 124 may, in some embodiments, include a capacitive sensing medium having a plurality of column traces or drive lines and a plurality of row traces or sense lines, although other sensing media may also be used. The columns and traces may be formed by a conductive medium such as indium tin oxide (IT0) or antimony tin oxide (AT〇), although other transparent and opaque materials such as copper may also be used. In some embodiments, the column and row traces can be formed on opposite sides of the dielectric material and can be perpendicular to each other, although other non-orthogonal directions can be used in other embodiments. For example, in a polar coordinate system, the sense lines can be concentric circles and the drive lines can be radially extended lines (or vice versa). Therefore, it should be understood that the terms "column" and "row", ", first dimension" and "second dimension", or the first axis and the 'second axis' are used in this document to include not only orthogonal lattices. a grid, and including cross traces of other geometric configurations having first and second dimensions (e.g., concentric and radial lines of a polar coordinate configuration). It should also be noted that in other embodiments, columns and rows may be used. Formed on a single side of the substrate, or may be formed on two separate substrates separated by a dielectric material. In some embodiments, the 'I electrical material may be transparent, such as glass, or may be formed of other materials, For example, polyester resin. Additional dielectric overlays can be placed on the column or row traces to reinforce the structure and protect the entire assembly from damage. I at the ''parent fork'' of the trace, where the traces pass each other Above and below (but without direct electrical contact with each other), the trace essentially forms two electrodes (although more than two traces can be crossed). The intersections of the column and row traces can represent capacitive sensing nodes. And It is particularly useful for the image component (pixel) 126 to be used to capture touch, image, and time in the multi-touch panel 124. (In other words, the multi-touch subsystem 106 has determined whether it is in multiple touch. After sensing the touch event at each touch sensor in the panel, the pattern of the touch sensor in which the touch event occurs in the multi-touch panel can be regarded as the “touch” image, (for example, the finger of the touch panel) The pattern).) When keeping the given column at 〇(:, column and row 128015.doc -12- 200837618: the capacitance between the poles appears as a stray capacitance number stimulus on all lines, which appears as Mutual d wood with AC# quantity change detection will be hammered; 4 S1§ can be measured by Csig" The presence or absence of a finger or other object near the touch panel. Multi-touch panel 124 trip 』Object~”·% 多重 one or more analog channels 1〇8 (this article also 〃,,,, 々, Gan L 〒冉 事件 event detection and demodulation circuit). In a specific embodiment, each row of electricity 108 is connected to a dedicated analog channel 8 however, in other In an embodiment, the lever γ 丄 至 丨 # # 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The multi-touch panel processor Η 2 receives the output and performs actions according to the output. The basin may include, but is not limited to, moving objects, such as cursors or indicators, scrolling or panning, adjusting _ settings, opening a broadcast or file, viewing a menu, making Select, order, connect to the peripheral device of the host device, answer the phone call 'send a phone call, terminate the phone call, change the volume or audio settings to store information about the live communication, such as address, frequent dialing number Weights, received calls, missed calls, login to a computer or computer network, allowing authorized individuals to access restricted areas of the computer or computer network, and loading users associated with the user's preferred configuration of the computer desktop Profiles allow access, page breaks, launch specific programs, encrypt or decode messages and/or similar actions. The host processor 128 can also perform additional functions that are independent of the multi-touch panel processing and can be coupled to the program storage 132 and the display device 130', e.g., for providing a user interface to the user of the device. Figure 2a illustrates an exemplary capacitive multiple touch panel 2〇〇. Figure 仏 indicates positioning 128015.doc -13 - 200837618 There is a stray capacitance Cstray for each pixel 2〇2 at the intersection of the column 204 and row 206 traces (although for the sake of simplicity of the diagram, only the One line of Cstray). It should be noted that although Figure 2a illustrates substantially vertical columns 2〇4 and rows 206, it need not be so aligned, as described above. In the example of the figure, an AC stimulus Vstim 214 is applied to one column, while all other columns are connected to dc. This stimuli causes charge to be injected into the row electrodes through the mutual capacitance at the point of intersection. This charge is Qsig = Csig X Vstm. Each row 206 can be selectively coupled to one or more analog channels (see analog channel 1 〇 8 in Figure 1). Figure 2b is a side elevational view of an exemplary pixel 2〇2 in a steady state (no touch) condition. In Figure 2b, the electric field lines 208 of the row 206 and column 204 traces or the mutual electric valley between the electrodes separated by the dielectric 21〇 represent the "number capacitance Csig" between the column and the row electrode and can stop charging. Injecting from the stimulated column to the row electrode. Since the Csig is referenced to the virtual ground, it also constitutes a stray capacitance. For example, the total stray capacitance of the row electrode can be all the sigma electric Csig between a given row and all column electrodes. Sum. Given that cSig is, for example, 〇75°F and the row electrode intersects fifteen column electrodes, the overall stray capacitance on the row electrode is at least 15 X 〇.75pF=11.25pF. However, in reality, due to the row electrode to The stray capacitance of the multi-touch ASIC or other stray capacitance in the system may have a larger overall stray capacitance. Figure 2c is a side view of an exemplary pixel 2〇2 in dynamic (touch) conditions. In c, 'the finger 212 has been placed near the pixel 2 0 2 . The finger 212 is a low-impedance object at the signal frequency, and represents the CA grounding path t through the main body capacitor Cb 〇 dy. The body has a self-capacitance C | 3 to the ground. 〇CJy, in other respects with the size of the subject and a few The shape is a functional relationship. If the finger 212 blocks 128015.doc -14- 200837618, some of the electric field lines between the row electrodes and the row electrodes (the exiting dielectrics and the fringe fields passing through the two electrodes above the column electrodes) pass through The inherent electrical path in the finger and the body divides the electric field line to ground, thus reducing the steady-state signal capacitance Csig to Csig-sense. In other words, the combined body and finger capacitance are used to reduce the CS1g amount (in this paper) It can also be called csig_s(3)π) and can be used as a shunt or dynamic return path to ground, thereby blocking some of the eMules and producing a reduced net signal capacitance. The signal capacitance at the pixel becomes CSlg_ACsig, where Csig stands for static (no touch) component, while ACsig stands for dynamic (touch) component. It should be noted that because the finger, palm or other object is unable to block all electric fields, especially the electric fields that are kept in the dielectric material as a whole, CSig-ACsig can Always non-zero. In addition, it should be understood that due to more force or more complete pressing of the finger onto the multi-touch panel, the finger may tend to flatten, thereby blocking the increasing electric field, This ACsig is variable and represents the full extent of pressing a finger onto the panel (ie from "no touch" to, full touch, range). " Referring again to Figure 2a, as described above, Vstim can be Signal 214 is applied to a column within multi-touch panel 200 to detect signal/capacitance changes in the presence of a finger, palm or other object. Vstim signal 214 may include one or more burst trains 21 6 at a particular frequency. Each pulse train includes a number of pulses. Although the pulse train 216 is shown as a square wave, other waveforms, such as sinusoids, may be used. A plurality of burst trains 216 at different frequencies can be sent for noise reduction purposes to minimize the effects of any noise sources. The Vstim signal 2 14 essentially injects charge into the array via the signal capacitance Csig and can be applied to one of the multiple touch panels 2 at a time, while at the same time being 128015.doc • 15- 200837618 in other embodiments, two More than one segment, and 歹J ' while all other columns in the region remain at the DC level. However, the multi-touch panel can be split into two or 乂8^1!1 signals 214 applied to one of the segments. Other columns remain at the DC voltage.
1 搞合至-行之各類比通道可提供—結果,其代表受刺激 之列與連接至該列之行間的互電容。明確而言,此互電容 係由信號電容Csig及由於手指、手f或其他主體部分或物 件而在該信號電容内感測的任何變化Csig sense組成。藉 由類比通道提供之該等行值可在刺激單—列時並聯地加: 提供丄或者可串聯地加以提供。若已獲得代表用於行之信 唬電容的所有I ’可刺激多重觸控面板2〇〇内之另一列, :將所有其他列保持於DC電壓,並可重複行信號電容測 置。最後,若已將Vstim施加於所有列,並已捕捉用於所 有列内之所有行的信號電容值(即已"掃描"整個多重觸控面 板7〇〇),則可針對整個多重觸控面板200獲得所有像素值 之’'快照”。最初可將此快照資料保存於多重觸控子系統 内稍後向外傳輸以便藉由計算系統内之其他器件解譯, 例如主機處理器。#由計算系統獲得、保存及解譯多重快 、夺可此偵測、追蹤多重觸控並用於實行其他功能。 圖3a s兄明示範性類比通道或事件偵測及解調變電路 或夕個類比通道300可出現於多重觸控子系統中。 來自多重館 ^ 獨控面板之一或多行可連接至各類比通道3〇〇。 各類比通道300可包括虛擬接地電荷放大器302、信號混波 ^ 偏移補償、整流器332、減法器334、及類比至 128015.doc -16- 200837618 數位轉換器(ADC)308。圖3a亦以虛線顯示穩態信號電容 Csig(當對多重觸控面板内之一列施加輸入刺激VsUm並且 未出現手指、手掌或其他物件時,可藉由連接至類比通道 300之多重觸控面板行促成穩態信號電容Csig),以及動態 信號電容Csig-ACsig(其可在出現手指、手掌或其他物件時 顯現)。 可將施加於多重觸控面板内之一列的VsUm作為方波叢 集產生,或者作為其他形式DC信號内之非DC發信,儘管 某些具體實施例中,代表Vstim之方波可在其他非Dc發信 之後及之前。若將Vstim施加於一列並且連接至類比通道 3〇〇之一行處出現信號電容,電荷放大器3〇2之輸出可係以1 Combine to - the various types of channels available - as a result, it represents the mutual capacitance between the stimulated column and the row connected to the column. Specifically, this mutual capacitance consists of the signal capacitance Csig and any variation Csig sense sensed within the signal capacitance due to fingers, hands f or other body parts or objects. The row values provided by the analog channel can be added in parallel when stimulating the single-column: either 丄 or can be provided in series. If all of the I's that represent the tantalum capacitor for the row are available, the other column within the multi-touch panel 2 can be stimulated: all other columns are held at the DC voltage and the signal capacitance measurement can be repeated. Finally, if Vstim has been applied to all columns and the signal capacitance values for all the rows in all columns have been captured (ie, "scan" the entire multi-touch panel 7〇〇), then for the entire multi-touch The control panel 200 obtains a ''snapshot' of all pixel values. This snapshot data can initially be saved in the multi-touch subsystem for later transmission for interpretation by other devices within the computing system, such as a host processor. The computing system acquires, saves, and interprets multiple fast, captures, detects, and tracks multiple touches and performs other functions. Figure 3a s brother's exemplary analog channel or event detection and demodulation circuit or eve The analog channel 300 can appear in the multi-touch subsystem. One or more rows from the multi-chamber control panel can be connected to various types of ratio channels 3. The various types of ratio channels 300 can include a virtual ground charge amplifier 302, a signal Mixing ^ offset compensation, rectifier 332, subtractor 334, and analog to 128015.doc -16- 200837618 digital converter (ADC) 308. Figure 3a also shows the steady state signal capacitance Csig in dotted lines (when facing multiple touch panels) Inside When a column of input stimuli VsUm is applied and no fingers, palms, or other objects are present, the steady-state signal capacitance Csig can be promoted by the multi-touch panel line connected to the analog channel 300, and the dynamic signal capacitance Csig-ACsig (which can appear Appears on a finger, palm or other object. The VsUm applied to one of the multiple touch panels can be generated as a square wave cluster, or as a non-DC signaling within other forms of DC signals, although in some embodiments, The square wave representing Vstim can be sent after and after other non-Dc transmissions. If Vstim is applied to a column and a signal capacitance appears at one of the lines of the analog channel 3, the output of the charge amplifier 3〇2 can be
Vref為中心之脈衝串列31〇,Vref在穩態狀況下之峰值至峰 值(P-P)振幅係Vstim之p-p振幅的一分數,該分數對應於電 荷放大器302之增益,其等於信號電容Csig與前置放大器 回授電容cfb之比率。例如,若Vstim包括18 v 脈衝及Vref is the center of the pulse train 31 〇, Vref is a fraction of the pp amplitude of the peak-to-peak (PP) amplitude system Vstim in steady state, which corresponds to the gain of the charge amplifier 302, which is equal to the signal capacitance Csig and the former Set the amplifier to feedback the ratio of the capacitance cfb. For example, if Vstim includes 18 v pulses and
電荷放大器之增益係〇·1,則電荷放大器之輸出可為V ρ-ρ脈衝。此輸出可在信號混波器3〇4内與解調變波 3 16混合。 由於刺激信號可為方波,使用正弦曲線解調變波形以移 除方波之諧波可較為有利。為減小混波器在給定刺激頻率 下之阻帶漣波,使用高斯(Gaussian)形正弦波可較為有 利。解調變波形可具有與刺激Vstim相同之頻率,並^從 查詢表合成’從巾啟用任何形狀之解調變波形的產生。^ 尚斯形正弦波外,可程式化任何波形以調諧混波器之濾波 128015.doc •17- 200837618 器特彳政。某些具體實施例中,Fstim 3The gain of the charge amplifier is 〇·1, and the output of the charge amplifier can be a V ρ-ρ pulse. This output can be mixed with the demodulated transforming wave 3 16 in the signal mixer 3〇4. Since the stimulus signal can be a square wave, it is advantageous to use a sinusoid to demodulate the waveform to remove the harmonics of the square wave. In order to reduce the stop-band chopping of the mixer at a given stimulation frequency, it is advantageous to use a Gaussian-shaped sine wave. The demodulated waveform can have the same frequency as the stimulus Vstim and can be synthesized from the lookup table to enable the generation of demodulated waveforms of any shape from the towel. ^ Outside the sine wave, you can program any waveform to tune the filter of the mixer. 128015.doc •17- 200837618 In some embodiments, Fstim 3
」精由選擇LUT 3 12内之不同數位波形或使用其他數位邏輯以不同方式產 生波形而進行頻率及振幅調諸。信號混波器取可藉由從 輸出減去Fstim 316解調變電荷放大器31〇之輸出,二提二The frequency and amplitude are adjusted by selecting different digital waveforms within the LUT 3 12 or using other digital logic to generate waveforms in different ways. The signal mixer can be demodulated by subtracting Fstim 316 from the output of the variable charge amplifier 31〇, two
較佳雜訊拒斥。信號混波器3G4可拒斥通頻帶外部之所有 頻率,其在一範例中可為Fstim周圍的大約+八3〇匕出。此 雜訊拒斥在具有許多雜訊來源之雜訊環境中可报有利,例 如802.H、藍芽等等’其全部具有可干擾敏感(飛法拉 (feme-farad)位準)類比通道3〇〇之某些特徵頻率。由於進入 信號混波器之信號頻率可具有相同頻率,信號混波器可視 為同步整流器,以便信號混波器之輸出本質上係整流波 形。 接著可將偏移補償306施加於信號混波器輸出314,其可 移除靜態Csig之效應,僅留下顯現為結果3242ACsig的效 應。可使用偏移混波器330實施偏移補償3〇6。可藉由使用 整流器332整流Fstim 316,並在偏移混波器33〇内將整流器 輸出336與來自數位至類比轉換器(Dac)32〇之類比電壓混 合’產生偏移補償輸出322。DAC 320可根據選擇以增加 類比通道300之動態範圍的數位值產生類比電壓。接著可 使用減法器334從信號混波器輸出3 14減去偏移補償輸出 322 ’其可與來自DAC 320之類比電壓成正比,從而產生 減法器輸出3 3 8,其可代表在已觸控受刺激列上之電容感 測器時發生的信號電容變化ΔCsig。接著將減法器輸出338 整合,然後可藉由ADC 308將其轉換為數位值。某些具體 128015.doc -18- 200837618 貝施例中’將積分器及ADC功能組合,且ADC 308可為積 分ADC ’例如Σ_ AADC,其可將若干連續數位值加總並平 均化’以產生結果324。 圖3b係類比通道之輸入處的電荷放大器(虛擬接地放大 器)3〇2 ’以及可由多重觸控面板(參見虛線)促成並藉由電 荷放大器看見的電容之更詳細圖示。如上所述,多重觸控 面板上之各像素處可存在固有雜散電容Cstray。虛擬接地 放大器302中,若+(非倒轉)輸入係連接至Vref,气倒轉)輸 入亦係驅動至Vref,並且建立0(:操作點。因此,無論出現 多少Csig,-輸入始終係驅動至Vref。由於虛擬接地放大器 3 02之特徵,儲存於(:8訌叮内之電荷(^价叮係恆定的,因為 電荷放大器將橫跨Cstray之電壓保持恆定。因此,無論將 夕夕雜政電谷Cstray新增至-輸入,進入Cstray之淨電荷始 終為零。因此,當將對應列保持於DC時輸入電荷Better noise rejection. Signal mixer 3G4 rejects all frequencies outside the passband, which in one example can be approximately +8 周围 around Fstim. This noise rejection is beneficial in noise environments with many sources of noise, such as 802.H, Bluetooth, etc., all of which have an interference-sensitive (feme-farad level) analog channel 3 Some characteristic frequencies of 〇〇. Since the signal frequencies entering the signal mixer can have the same frequency, the signal mixer can be considered a synchronous rectifier so that the output of the signal mixer is essentially a rectified waveform. Offset compensation 306 can then be applied to signal mixer output 314, which removes the effects of static Csig, leaving only the effect appearing as result 3242ACsig. Offset compensation 3〇6 can be implemented using offset mixer 330. The offset compensation output 322 can be generated by rectifying the Fstim 316 using a rectifier 332 and mixing the rectifier output 336 with an analog voltage from a digital to analog converter (Dac) 32 在 in the offset mixer 33A. The DAC 320 can generate an analog voltage based on the digital value selected to increase the dynamic range of the analog channel 300. A subtractor 334 can then be used to subtract the offset compensation output 322' from the signal mixer output 3 14 which can be proportional to the analog voltage from the DAC 320, thereby producing a subtractor output 3 3 8 which can represent the touch The change in signal capacitance ΔCsig that occurs when the capacitive sensor is stimulated. The subtractor output 338 is then integrated and then converted to a digital value by the ADC 308. Some specific 128015.doc -18- 200837618 in the example of the 'integrator and ADC function combination, and ADC 308 can be an integral ADC 'such as Σ_ AADC, which can sum and average several consecutive digits' to generate Results 324. Figure 3b is a more detailed illustration of the charge amplifier (virtual grounded amplifier) 3〇2' at the input of the analog channel and the capacitance that can be seen by the multi-touch panel (see dotted line) and seen by the charge amplifier. As described above, there may be an inherent stray capacitance Cstray at each pixel on the multi-touch panel. In the virtual grounding amplifier 302, if the + (non-inverted) input is connected to Vref, the gas reversed input is also driven to Vref, and 0 is established (: operating point. Therefore, no matter how many Csigs appear, the input is always driven to Vref Due to the characteristics of the virtual grounding amplifier 03, the charge stored in (8 讧叮 is constant, because the charge amplifier will keep the voltage across the Cstray constant. Therefore, no matter what the future will be Cstray adds to - input, the net charge into Cstray is always zero. Therefore, the input charge is held when the corresponding column is held at DC
Qsig—sense=(Csig-ACsig一sense)Vstim係零,並且當刺激對 應列時其與Csig及Vstim完全成一函數關係。任一情形 中,由於不存在橫跨Csig之電荷,拒斥雜散電容,並且其 本質上退出任何等式。因此,即使多重觸控面板上存在一 手,儘管Cstray可增加,輸出將不受Cstray變化影響。 虛擬接地放大器302之增益始終較小(例如〇1),並且等 於Csig(例如2 PF)與回授電容器Cfb(例如2〇 pF)之比率。可 調整回授電容器Cfb將電荷Qsig轉換為電壓v〇ut。因此, 虛擬接地放大器302之輸出Vout係等於-Csig/Cfb之比率乘 以參考Vref之Vstim之電壓。較高電壓Vstim脈衝所以可在 128015.doc -19- 200837618 更小脈衝具有藉由參考字 ^ 付3264別之振幅時顯現於虛擬 接地放大器302之輸出。然而,當出現手指時,可減小由 參考字符328識別之輸出振巾 山派恍,因為化唬電容減小 出於雜訊拒斥目的,可靈 夕 要在夕重不同頻率下驅動多重 觸控面板。由於雜訊通常存 無線器件在特疋頻率下(例如大多數 丰㈣. 集),改變掃描圖案可降低 對雜訊之对受性。因此,某些具體實施例中,可採用 複數個脈衝串列叢集刺激多重觸控面板之通道(例如列)。 出於頻率拒斥目的’脈衝串列之頻率可從—個變更至另一 個0 圖3c說明具有多重脈衝串列3術、、⑽之一示範 性刺激信號VStim ’其各具有-固定脈衝數目,作且有不 同頻率FSUm(例如 140 kHz、2〇〇 kHz、及 260 kHz)。關於 不同頻率下之多重脈衝串列,各頻率下可獲得不同社果。 因此’若特定頻率下出現靜態干擾,該頻率下之信號結果 /、自有/、他頻率之乜號獲得的結果相比可毁損。可消除 毁損結果並將剩餘結果用於計算最終結果,或者可使用全 部結果。 在一項具體實施例中,系統1〇〇包括自動掃描邏輯。自 動掃描邏輯可與多重觸控子系統⑽内之通道掃描邏輯11〇 分離地駐留於多重觸控子系統1〇6之通道掃描邏輯區塊ιι〇 内’或與多重觸控子系統1 〇6整個分離。 一般而言,自動掃描邏輯可自主地從類比通道108讀取 貝料並提供類比通道108之控制。此稱為,,自動掃描模式,,。 128015.doc -20- 200837618 因此,自動掃描邏輯使系統100掃描多重㈣面板i24,而 無需多重觸控處理器102之介入,同時停用—或多個系統 時脈。此使多重觸控系統100可節省電力或釋放組件(例如 處理器102),以在系統處於自㈣描模式時實行其他任 務。 例如由於使用者無法連續輸入資料至觸控面板IN, 可需要在預定時間量已發生而系統1〇〇未感測任何觸控事 件後起始自動掃描模式。藉由如此執行,系統1〇〇可在未 輸入資料時節省電力(由於啟用自動掃描模式),但一旦使 用者恢復輸入資料,則再次開啟電源。 圖4係自動掃描邏輯4〇〇之一項具體實施例的方塊圖。如 圖所示’自動掃描邏輯彻可包括自動掃描控制術,盆可 控制列位址及通道時序功能,以及其他功能。在一料體 1施例中’自動掃描控制·可包㈣位址狀態機及通道 時序狀態機,其用於控制掃描多重觸控面板124。如熟習 技術人士所明白的,自動掃描控制402之各種功能及組件 :道掃描邏輯110及驅動器邏輯114共享或重疊。 、v乡考圖4 ’可藉由振盪器彻計 及校準計時写4〇6。、、县w ^ 〇 ^盪器可為低頻率振盪器或高頻率振 盈器,然而出於雷力銘少広门 ^力即,原因,可需要低頻率振盪器。低 ,率振盪器可駐留於多重觸控子系統1〇6内,或可駐留於 夕重觸控子系統106外部。 :定時間量(稱為,,偵查時間”)後,偵查計時器4〇 抱序列。鹿、、主立 ^ …思’自動掃描模式可由兩個個別系統狀態組 128015.doc 200837618 成實示债一間隔,《中僅低頻率振盈器及偵查時間作 i掃4田序列,其中主動掃描多重觸控面板。兩個系 統狀態可形成自動掃描模式。 在員具體灵施例中,高頻率振蘯器42 1瞬間喚醒。高 頻率振盪器喚醒得越快,系統花費在主動掃描面板上的時間 越夕目於回頻率振盪器之進一步細節在申請人之同時申請 ^ ® t It t f 11/649,966 ^ t ^ ,Χ , # ^ ^,Aut〇maticQsig-sense=(Csig-ACsig-sense) Vstim is zero, and it is completely functional with Csig and Vstim when stimulating the corresponding column. In either case, since there is no charge across the Csig, the stray capacitance is rejected and essentially exits any equation. Therefore, even if there is a hand on the multi-touch panel, although Cstray can be increased, the output will not be affected by Cstray changes. The gain of the virtual ground amplifier 302 is always small (e.g., 〇1) and is equal to the ratio of Csig (e.g., 2 PF) to the feedback capacitor Cfb (e.g., 2 〇 pF). The feedback capacitor Cfb can be adjusted to convert the charge Qsig into a voltage v〇ut. Therefore, the output Vout of the virtual ground amplifier 302 is equal to the ratio of -Csig/Cfb multiplied by the voltage of Vstim of the reference Vref. The higher voltage Vstim pulse can therefore appear at the output of the virtual ground amplifier 302 when the smaller pulse has a magnitude of 3264 by reference word ^ 128015.doc -19- 200837618. However, when a finger appears, the output of the vibrating zone identified by the reference character 328 can be reduced, because the plutonium capacitance is reduced for the purpose of noise rejection, and the multi-touch can be driven at different frequencies at night. Control panel. Since the noise is usually stored at a special frequency (for example, most of the Feng (4).), changing the scanning pattern can reduce the compatibility of the noise. Thus, in some embodiments, a plurality of burst train clusters can be used to stimulate channels (e.g., columns) of the multi-touch panel. For frequency repelling purposes, the frequency of the burst column can be changed from one to another. Figure 3c illustrates the multi-burst train 3, (10) one of the exemplary stimulus signals VStim 'each has a fixed number of pulses, There are different frequencies of FSUm (eg 140 kHz, 2 〇〇 kHz, and 260 kHz). With regard to multiple pulse trains at different frequencies, different results can be obtained at each frequency. Therefore, if static interference occurs at a specific frequency, the signal result at this frequency /, the result of its own /, the frequency of the other frequency can be destroyed. The damage result can be eliminated and the remaining results used to calculate the final result, or all results can be used. In a specific embodiment, system 1 includes automatic scanning logic. The automatic scanning logic can reside in the channel scanning logic block ιι〇 of the multi-touch subsystem 1〇6 separately from the channel scanning logic 11〇 in the multi-touch subsystem (10) or with the multi-touch subsystem 1 〇 6 The whole separation. In general, the auto-scan logic can autonomously read the bunk from the analog channel 108 and provide control of the analog channel 108. This is called, automatic scan mode,. 128015.doc -20- 200837618 Thus, the auto-scanning logic causes system 100 to scan multiple (four) panels i24 without the intervention of multi-touch processor 102 while deactivating - or multiple system clocks. This allows the multi-touch system 100 to conserve power or release components (e.g., the processor 102) to perform other tasks while the system is in the (four) mode. For example, since the user cannot continuously input data to the touch panel IN, it may be necessary to start the automatic scanning mode after a predetermined amount of time has elapsed and the system 1 does not sense any touch event. By doing so, the system 1 can save power when no data is input (because the automatic scan mode is enabled), but once the user resumes inputting data, the power is turned on again. 4 is a block diagram of one embodiment of an automatic scan logic. As shown in the figure, 'Auto Scan Logic can include Auto Scan Control, the basin can control column address and channel timing functions, and other functions. In the embodiment of the first embodiment, the 'automatic scan control·packageable (four) address state machine and the channel timing state machine are used to control the scanning of the multi-touch panel 124. As will be appreciated by those skilled in the art, various functions and components of automatic scan control 402 are shared or overlapped by track scan logic 110 and driver logic 114. , v township test map 4 ' can be written by the oscillator and calibration timing 4〇6. The county w ^ 〇 荡 can be a low-frequency oscillator or a high-frequency oscillator. However, due to the lack of force, a low-frequency oscillator may be required. The low rate oscillator can reside within the multi-touch subsystem 1〇6 or can reside external to the daylight touch subsystem 106. : After a fixed amount of time (called,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, An interval, "only low-frequency vibrating device and detection time for i sweep 4 field sequence, which actively scans the multi-touch panel. Two system states can form an automatic scan mode. In the specific embodiment of the case, high frequency vibration The buffer 42 1 wakes up instantaneously. The faster the high frequency oscillator wakes up, the time the system spends on the active scanning panel. The more details of the frequency oscillator are applied at the same time as the applicant. ^ t t t t 11 11 / 649, 966 ^ t ^ ,Χ , # ^ ^,Aut〇matic
Fr=職cy Calibrati〇n”(律師檔案號碼MM4·2⑽ :B 〃方式併入本文。在一項具體實施例中,高頻率振盪 =21係快速啟動振,其允許在系統從較低電力管理 狀態:醒後快速鎖定,以掃描多重觸控面板。為減少喚 醒、知描多重觸控面板及回到較低電力狀態間的時間,振 盪信號在較短週期内變得穩定可較為有利,以便最小化系 4作用_ «而即省電力。許多晶體振I器可用數毫妙 純定2。然而,快速啟動振盈器電路可在數十微妙内穩 疋化:攸而使系統比(例如藉由較慢穩定化晶體振盈器驅 動之系統)更快地回到較低電力管理狀態。 一般而言,可藉由首先啟用自動掃描控制4〇2,然後將 處:态置於等待中斷狀態中,啟用自動掃描程序。時脈管 理為414接著停止高頻率振盪器421並起始搞查計時器 4〇4,其在谓查逾時後使時脈管理器414啟用高頻率振盪器 421 ’然後將請求傳送至通道掃描邏輯110,以實行一掃 描’但保持處理器不作用。通道掃描邏輯ιι〇接著獲得像 素位置上之多重觸控影像,其可透過程式化適當暫存器予 128015.doc -22- 200837618 :指定。可在減法器417内藉由儲存於基線副4i9内之 土線影像減去來自_比通道43G(其可為圖3a之類比通道 3〇〇)之夕;t觸控影像結果。接著可藉由比較器川比較經 ::之結果與臨限值。若最終值高於可程式化臨限值,則 -又疋中斷’並喚醒處理器。若最終值低於臨限值,則系 統保持在自動掃描模式中,直至校準_過期或 發生。Fr = job cy Calibrati〇n" (attorney profile number MM4·2(10): B 〃 mode is incorporated herein. In a specific embodiment, high frequency oscillation = 21 series fast start vibration, which allows for lower power management in the system Status: Quickly lock after waking up to scan multiple touch panels. To reduce the time between wake-up, multi-touch panel and back to lower power state, it is advantageous to stabilize the oscillating signal in a short period of time. Minimize the role of the system 4 _ «that is, save power. Many crystal oscillators can be used for a few milliseconds. However, the fast-start oscillator circuit can be stabilized within tens of microseconds: Faster return to lower power management state by slower stabilization of the crystal oscillator driven system. In general, by automatically enabling automatic scan control 4〇2, then placing the state on wait for interrupt In the state, the automatic scanning procedure is enabled. The clock management is 414 and then the high frequency oscillator 421 is stopped and the timer 4〇4 is started, which causes the clock manager 414 to enable the high frequency oscillator 421 after the timeout is exceeded. 'Then will pass the request To the channel scan logic 110 to perform a scan 'but keep the processor inactive. The channel scan logic ιι〇 then obtains the multi-touch image at the pixel location, which can be programmed to the appropriate register to 128015.doc -22- 200837618: Designation. In the subtractor 417, the image from the soil line image stored in the baseline sub 4i9 can be subtracted from the _ specific channel 43G (which can be the analog channel of FIG. 3a); t touch image result Then, by comparing the result of the comparison:: and the threshold. If the final value is higher than the programmable threshold, then - interrupt the 'and wake up the processor. If the final value is lower than the threshold , the system remains in automatic scan mode until calibration_expiration or occurrence.
相應地’自動掃㈣式允許在處理器不作料從多重觸 控面板124讀取多重觸控資料輸入。在一項具體實施例 中,每次伯查計時器404起始自動掃描序列時重設债查計 時:。偵查時間可在8毫秒至2秒之範圍内,例如5〇毫秒。 當自動掃描邏輯400在自動掃描模式中停留一延長之時 間里而觸控面板124上未偵測到任何超過臨限值之觸控事 件時’校準計時器4〇6可喚醒處理器在—項具體實施 例中,校準計時器406在預定時間量之過期後起始"校準" (”校準時間”)。,,校準”可包括喚醒高頻率振盪器並啟動系 統時脈及處理器102,以實行多重觸控面板1〇2之一掃描。 校準亦可包括校準功能,例如解決感測器面板124内之任 何漂移。在一項具體實施例中,校準時間大於偵查時間並 可在2秒至3〇〇秒之範圍内。 進一步參考圖4,比較器4 10比較經偏移補償結果與上述 臨限值。在一項具體實施例中,若超過臨限值,則在面板 124上偵測到之一或多個觸控事件已發生,其使系統1 退 出自動知描模式並進入主動掃描模式。可在逐個通道、逐 128015.doc -23 - 200837618 列基礎上完成臨限值與補償結果之比較。在一項具體實施 例中,可將臨限值程式化至臨限值暫存器内。 OR閘極412可係包括在校準計時器4〇6與比較器41〇之輸 出路後間。相應地,當超過校準計時器4〇6之校準時間或 比較器41〇之臨限值時,〇R閘極可出於重新啟用處理器 102及時脈之目的而起始傳送中斷信號至處理器1〇2及時脈 管理器414。Accordingly, the 'auto-sweep (four) type allows the multi-touch data input to be read from the multi-touch panel 124 without the processor being processed. In a specific embodiment, each time the check timer 404 initiates an automatic scan sequence, the debt check time is reset: The detection time can range from 8 milliseconds to 2 seconds, for example 5 milliseconds. When the automatic scanning logic 400 stays in the automatic scanning mode for an extended period of time and no touch event exceeding the threshold is detected on the touch panel 124, the calibration timer 4〇6 can wake up the processor in the item. In a particular embodiment, the calibration timer 406 initiates "calibration" ("calibration time") after a predetermined amount of time has expired. The calibration may include waking up the high frequency oscillator and activating the system clock and the processor 102 to perform one of the multiple touch panels 1 〇 2. The calibration may also include a calibration function, such as addressing the sensor panel 124. Any drift, in a specific embodiment, the calibration time is greater than the detection time and can range from 2 seconds to 3 seconds. Further referring to Figure 4, the comparator 4 10 compares the offset compensation result with the above threshold In a specific embodiment, if the threshold is exceeded, one or more touch events have been detected on the panel 124, which causes the system 1 to exit the automatic scanning mode and enter the active scanning mode. The comparison of the threshold and the compensation result is done on a channel-by-channel basis, 128015.doc -23 - 200837618. In one embodiment, the threshold can be stylized into a threshold register. The gate 412 can be included after the calibration timer 4〇6 and the output path of the comparator 41. Accordingly, when the calibration time of the calibration timer 4〇6 or the threshold of the comparator 41〇 is exceeded, 〇 R gate can be re-enabled for processing Objective of the start and clock 102 transmits an interrupt signal to the processor and clock manager 414 1〇2.
時脈管理器4M可控制系統1〇〇内之一或多個時脈。一般 而舌,當在給定時間不需要任何時脈時,時脈管理器々Μ 可停用該等時脈以節省電力,以及#需要任何停用之時脈 時’時脈管理器414可啟用該等時脈。在—項具體實施例 :’時脈管理器414可控制低頻率振盡器_、高頻率振盈 (未,’、、員示)及糸統時脈(未顯示),其計時處理器1 〇 2。 電力管理計時器416可係包括於自動掃描邏輯4〇〇内。電 力B理„十時器41 6至多計算至等於偵查時間減延遲時間的 -時間。延遲時間可係多重觸控系統1〇〇準備好實行掃 :,在實行掃描前"安排"高電壓驅動器118(即用以提供穩 疋電壓供應)所需之時間量。延遲時間可經由電力管理暫 存器調整,並可對於掃描之各通道108不同。 為防止由於環境雜訊而錯誤唤醒,可包括雜訊管理區塊 424。錯誤喚醒可導致處理器退出等待中斷狀態並主動掃 描面板。此外,重複錯誤觸發可導致系統之總體電力消耗 大幅增加。雜訊管理區塊424可有利地分辨超過臨限值係 由於(例如)手指觸控面板還是由於雜訊毀損掃描頻率之 128015.doc -24- 200837618 在一項具體實施例巾,自動掃描邏輯400可在多於_個 頻率I掃描’並將最終資料傳輸至雜訊管理區塊424。雜 孔计區塊427可根據為不同掃描頻率獲得之結果資料的 歷史计异雜訊位準,並使用雜訊位準RAM 425來保持雜訊 位準歷史及相關聯頻率。控制及決策邏輯428可比較在不 同頻率下為—列掃描獲得之ADC結果。例如,若用於掃描 頻率之ADC結果資料在特定視f内彼此循跡,則可能係觸 控狀況導致超過臨限值,因為觸控會影響用於所有掃描頻 率之結果值。然而,若毀損用於特定頻率之結果資料,則 在個別掃描頻率下之結果資料將可能不會循跡其他掃描頻 ' 之而和示係過度雜訊導致超過臨限值而非觸控狀況。 後一情形中,控制及決策邏輯428可產生拖延信號435,以 防止比較器410產生處理器中斷。若偵測一噪雜頻率通 道,可從頻率跳躍表格426及1〇區塊429移除該頻率。頻率 跳躍表格426可包含代表清淨頻率通道之資料,並可在工 廠杈準期間予以程式化。完成掃描後,1〇區塊429可傳送 °且新掃描頻率資料至通道時序邏輯11 0。頻率資料可決 疋用於下一通道時序序列之掃描頻率。根據雜訊環境週期 性地改變掃描頻率使自動掃描邏輯4〇〇更強固,其最終可 辅助電力降低。 為到達低電力狀態,各類比通道43〇内之電荷放大器(例 如電何放大器302)可經組態用以在雜散電容模式内運作。 在一項具體實施例中,通道掃描邏輯11〇可藉由傳送雜散 128015.doc -25- 200837618 電容模式起始信號至類比通道43〇來起始一雜散電容模 式。起始多重觸控面板器件内之雜散電容測量在申請人之 共同待審美國專利申請案第11/65〇,511號中詳細論述,標 題為”Analog Boundary Sc_ing 如―〇n 此叮 , 其整個内容以提及方式併入本文。 然而,在一項具體實施例中,使用雜散電容模式不會提 - 供觸控事件在面板124上發生的準確位置,因為雜散^容 p; 模式僅提供一或多個觸控事件在被掃描行之一上或附近發 纟的指示。另-方面,使用雜散電容模式可較為有利,因 為僅需要一次掃描來決定觸控事件是否發生於多重觸控面 板124上;與使用互電容模式可需要的複數個掃描相反。 相應地,使用較少掃描可顯著減小掃描面板124所消耗的 電力數量。例如,-項實施方案中,發現使用雜散電容模 式之掃描使用的電力數量與因出現於多重觸控系統内之洩 漏電流而耗散之電力數量大約相同。 圖5之流程圖中說明根據一項具體實施例之示範性自動 掃描程序500。熟習技術人士應明白,為清楚起見,此流 程圖中省略各種時序及記憶體儲存問題。 自動掃描程序5⑼始於步驟502中處於主動掃描模式之系 統100。此處,啟用處理器102,系統1〇〇主動掃描多重觸 控面板124。在仍處於主動掃描模式中時,程序5〇〇在步驟 504内決定一預定時間量内(例如在i ms至若干分鐘之範圍 内)觸控面板上是否已發生充分觸控事件。例如,可藉由 處理器102實行此決策。或者,一分離處理器或專用邏 128015.doc -26 - 200837618 輯’例如通道掃描邏輯m,可實行此任務。若發現已存 在充分觸控活動’則程序500返回步驟5〇2,系統1〇〇保持 在主動掃描模式中。另一方面,若決定不存在充分觸控活 動,則在步驟506中啟用自動掃描模式。 在員具體實施例中,藉由將自動掃描啟用信號傳送至 自動掃描控制4〇2之處理器102啟用自動掃描模式。另一且 體實施例中,藉由使處理器1G2在自動掃描暫存器(其係: 自=掃描控制4〇2監視)内設定—自動掃描啟用位元啟用自 動掃描模式。亦可使用啟用自動掃描模式之進一步變更, 如熟習技術人士所明白的。 當啟用自動掃描模式時,在步驟5〇8内停用(例如置於閒 莫式)處理器1G2 ’關閉系統時脈(步驟51()),並關閉高頻 革振盛器(步驟51〇)。步驟5〇8、51〇及512用於在不使用多 重觸控面板124時節省電力。在圖4所示之具體實施例中, 自動掃描邏輯4〇〇可經由時脈管理器414停用該等組件之一 或多者。 另外關於圖5,啟動及重設偵查計時器彻(步驟514), 以及校準計時㈣6(步驟516)。啟動及重設功能可由自動 ,描控制402予以起始。程序接著繼續至決策步驟 :’以決定是否已接收中斷信號’例如來自比較器⑽之 =,其指示已超過臨限值。若已接收㈣,則開啟在自 知描模式期間關閉的任何時脈’並啟用處理器叫步驟 2〇+)。程序500接著返回步驟5〇2内之主動掃描模式。 若未侦測到中斷,則程序500決定谓查計時器6〇4是否已 128015.doc -27- 200837618 超過偵查時間(步驟522)。若未超過偵查時間,則程序 返回步驟518。若超過偵查時間,則程序5〇〇決定校準計時 器406是否已超過校準時間(步驟52〇)。若超過校準時間, 則啟用時脈及處理器(步驟514),並啟用主動掃描模式(步 驟502) 〇 右未超過校準時間,則在步驟526内喚醒(即啟用)高頻 率振盪器,並獲得多重觸控面板124之影像(步驟Μ”。各 種實施方案可用於在步驟524内獲得影像,其係在下文詳 細論述。 在一項具體實施财,在停用處理器1〇2時完成步驟似 内獲得之影像。一旦在步驟528中已獲得一影像,程序5〇〇 決定是否超過可程式化臨限值(步驟53〇)。此可藉由比較接 收自ADC 308之偏移補償結果324(圖3a)與臨限值來完成。 若超過臨限值,則啟用時脈及處理器1〇2(步驟514),且程 序500返回主動掃描模式(步驟502)。若未超過臨限值,則 程序500返回步驟512(關閉高頻率時脈)。 另外關於步驟524,各種實施方案可用於獲得多重觸控 影像。例如,可獲得一影像,其測量互電容或雜散電容。 當測量互電容(其可稱為,,互電容模式,,)時,系統100偵測 多重觸控面板之各節點處的電容變化,如以上參考圖3b及 3c所述。相應地,為使用互電容模式獲得多重觸控面板 124之影像,通常掃描各列。替代具體實施例中,僅掃描 選擇列以節省能量。例%,每隔一列進行掃描,或掃描位 於多重觸控面板124之特定區域的列,例如多重觸控面板 128015.doc •28· 200837618 η::底部或中間區域。在其他具體實施例中,使用互 ,谷权式掃描多重觸控面板124之選擇框架。 可=”^代替或結合互電容模式使用測量雜散電容(其 =雜散電容模式")。測量多重觸控面板器件内之雜散 請人之共同待審美國專利申請案第嘴5U號 t..^,#^v,Anal〇g B〇undary scan^g 〇n :y apacitance”,其整個内容以提及方式併入本文。或 ::放電容模式可在一次掃描中測量多重觸124 之所有行的輸出。 電:Μ' Ο康本^明之-項具體實施例的自動掃描循環之 5广理設定播_。-個完整自動掃描循環可為,例如 式期間,使用極小電力1為僅低頻率時 脈4〇8、偵查計時器4〇4芬 時門德杳 十時器406作用。超過债查 期。此時間中,掃描夕圖 掃描活動週 之人 田夕觸控面板124,而無需處理器102 率時r :為自動掃描所需的低頻率時脈404、高頻 羊夺脈、自動掃描控制 查時間期間發生者更,二件供電。此造綱 A 夕的電力消耗,但低於處理器102及 肩脈作用的情形(例如主動掃描模式期間)。 另外關於圖6,若使用 面板124之-或多歹“ _ M式’料掃描多重觸控 掃γ — 項實施方案中,掃描48列,各列 抑描需要大約(M ms夹音— 要大約4.8 ms。若伟用 ’掃描每-列總共需 掃描。此掃描需要大約〇1貝1僅而要實灯_人 •—來實仃。因此,使用雜散電 128015.doc •29- 200837618 ms ’與此範例中之4 · 8 ms相反),並 為用於此範例中所述之互電容模式 由於雜散電容模式可的&、+ ^ 1=1…、法決定觸控多重觸控面板124 之準確位置,在一項且妒眘 ^ 、餸霄轭例中可使用混合模式。混合 模式可包括最初使用雜與+ ~ + 史用雜放電容模式以偵測多重觸控面板 124上之觸控事件,若俏 右偵劂到觸控事件,則使用互電容模The clock manager 4M can control one or more clocks in the system 1〇〇. In general, when the clock is not needed at a given time, the clock manager can disable the clocks to save power, and # when any deactivated clocks are needed, the clock manager 414 can Enable these clocks. In the specific embodiment: 'clock manager 414 can control low frequency oscillating device _, high frequency vibration (not, ',, member) and system clock (not shown), its timing processor 1 〇 2. The power management timer 416 can be included in the automatic scan logic. Power B „10 o'clock 41 6 to calculate to equal to the detection time minus the delay time — time. The delay time can be multi-touch system 1 〇〇 ready to implement the sweep: before the implementation of the scan " arrangement " high voltage The amount of time required for driver 118 (i.e., to provide a stable voltage supply) can be adjusted via the power management register and can be different for each channel 108 being scanned. To prevent false wake-up due to environmental noise, Including the noise management block 424. Wrong wake-up can cause the processor to exit the wait-for-interrupt state and actively scan the panel. In addition, repeated error triggering can result in a substantial increase in the overall power consumption of the system. The noise management block 424 can advantageously resolve more than The limit is due to, for example, a finger touch panel or a scan frequency due to noise corruption 128015.doc -24- 200837618 In a specific embodiment, the automatic scan logic 400 can scan at more than _ frequency I' and The final data is transmitted to the noise management block 424. The hole meter block 427 can calculate the historical noise level of the data obtained for different scanning frequencies, and The noise level history and associated frequency are maintained by the noise level RAM 425. The control and decision logic 428 can compare the ADC results obtained for the column scan at different frequencies. For example, if the ADC result data is used for the scan frequency. Tracking in a particular view f may cause the touch condition to exceed the threshold because touch will affect the resulting value for all scan frequencies. However, if the result data for a particular frequency is corrupted, then The result data at the scan frequency will likely not follow other scan frequencies' and the system excessive noise causes the threshold to be exceeded rather than the touch condition. In the latter case, the control and decision logic 428 can generate a stall signal 435. To prevent the processor 410 from generating a processor interrupt. If a noisy frequency channel is detected, the frequency can be removed from the frequency hopping table 426 and the 〇 block 429. The frequency hopping table 426 can contain information representative of the clear frequency channel. It can be programmed during the factory calibration period. After the scan is completed, the block 429 can transmit ° and the new scan frequency data to the channel timing logic 11 0. The frequency data can be used accordingly. The scanning frequency of the next channel timing sequence. Periodically changing the scanning frequency according to the noise environment makes the automatic scanning logic 4〇〇 stronger, which can finally assist the power reduction. To reach the low power state, all kinds of ratio channels are within 43〇 A charge amplifier (e.g., electrical amplifier 302) can be configured to operate in a stray capacitance mode. In one embodiment, the channel scan logic 11 can be transmitted by transmitting a spurious 128015.doc -25-200837618 capacitor The mode start signal to the analog channel 43 起始 to initiate a stray capacitance mode. The stray capacitance measurement in the initial multi-touch panel device is disclosed in the applicant's co-pending U.S. Patent Application Serial No. 11/65, No. 511 As discussed in detail, the title is "Analog Boundary Sc_ing", such as "〇n", the entire content of which is incorporated herein by reference. However, in one embodiment, the use of a stray capacitance mode does not provide an accurate location for the touch event to occur on the panel 124 because the spurious capacitance; the mode provides only one or more touch events. An indication of a beep on or near one of the scanned lines. On the other hand, it is advantageous to use a stray capacitance mode because only one scan is required to determine if a touch event occurs on the multi-touch panel 124; as opposed to the multiple scans that may be required to use the mutual capacitance mode. Accordingly, the use of fewer scans can significantly reduce the amount of power consumed by the scanning panel 124. For example, in the embodiment, it was found that the amount of power used for scanning using the stray capacitance mode is about the same as the amount of power dissipated due to leakage currents present in the multi-touch system. An exemplary automatic scanning procedure 500 in accordance with an embodiment is illustrated in the flow chart of FIG. Those skilled in the art will appreciate that various timing and memory storage issues are omitted from this flow diagram for clarity. The automatic scanning procedure 5 (9) begins with the system 100 in active scanning mode in step 502. Here, the processor 102 is enabled and the system 1 〇〇 actively scans the multi-touch panel 124. While still in the active scan mode, the program 5 determines in step 504 whether a sufficient touch event has occurred on the touch panel for a predetermined amount of time (e.g., within the range of i ms to several minutes). For example, this decision can be implemented by processor 102. Alternatively, a separate processor or dedicated logic, such as channel scan logic m, can perform this task. If it is found that there is already sufficient touch activity, then the process 500 returns to step 5〇2, and the system 1 remains in the active scan mode. On the other hand, if it is determined that there is no sufficient touch activity, the automatic scan mode is enabled in step 506. In a specific embodiment, the automatic scan mode is enabled by the processor 102 that transmits an automatic scan enable signal to the automatic scan control 4〇2. In another embodiment, the automatic scan mode is enabled by having the processor 1G2 set in the automatic scan register (which is: self-scan control 4〇2 monitoring). Further changes to the automatic scan mode can also be used, as will be appreciated by those skilled in the art. When the automatic scan mode is enabled, the processor 1G2' is deactivated (e.g., placed in the idle mode) in step 5〇8 (step 51()), and the high frequency leather vibrator is turned off (step 51). Steps 5, 8, and 512 are used to save power when the multi-touch panel 124 is not used. In the particular embodiment illustrated in FIG. 4, the auto-scan logic 408 may deactivate one or more of the components via the clock manager 414. Referring additionally to Figure 5, the detection timer is initiated and reset (step 514), and the calibration timing (4) 6 (step 516). The start and reset functions can be initiated by the Auto, Trace Control 402. The program then proceeds to the decision step: ' to determine if an interrupt signal has been received', such as from comparator (10), which indicates that the threshold has been exceeded. If it has been received (4), turn on any clock that is turned off during the self-study mode and enable the processor to call step 2〇+). The program 500 then returns to the active scan mode in step 5〇2. If no interrupt is detected, then routine 500 determines if the check timer 6〇4 has exceeded 128015.doc -27- 200837618 (step 522). If the investigation time has not been exceeded, the program returns to step 518. If the detection time is exceeded, then the program 5 determines if the calibration timer 406 has exceeded the calibration time (step 52A). If the calibration time is exceeded, the clock and processor are enabled (step 514), and the active scan mode is enabled (step 502). If the calibration time is not exceeded, the high frequency oscillator is awakened (ie enabled) in step 526 and obtained. An image of the multi-touch panel 124 (step Μ). Various embodiments may be used to obtain an image in step 524, which is discussed in detail below. In one implementation, the steps are completed when the processor 1〇2 is deactivated. The image obtained internally. Once an image has been obtained in step 528, the program 5 determines whether the programmable threshold is exceeded (step 53A). This can be done by comparing the offset compensation result 324 received from the ADC 308 ( Figure 3a) is completed with a threshold. If the threshold is exceeded, the clock and processor 1〇2 are enabled (step 514), and the routine 500 returns to the active scan mode (step 502). If the threshold is not exceeded, Program 500 then returns to step 512 (turning off the high frequency clock). Further, with respect to step 524, various embodiments may be used to obtain multiple touch images. For example, an image may be obtained that measures mutual capacitance or stray capacitance. In the case of a capacitor (which may be referred to as a mutual capacitance mode), the system 100 detects a change in capacitance at each node of the multi-touch panel as described above with reference to Figures 3b and 3c. Accordingly, in order to use a mutual capacitance mode The images of the multi-touch panel 124 are obtained, typically scanning the columns. Instead of the specific embodiment, only the selected columns are scanned to save energy. Example %, scanning every other column, or scanning a column located in a specific area of the multi-touch panel 124 For example, the multi-touch panel 128015.doc • 28· 200837618 η:: bottom or middle area. In other embodiments, the selection frame of the multi-touch panel 124 is scanned using the mutual, valley-type scanning. Use the mutual capacitance mode to measure the stray capacitance (which = stray capacitance mode "). Measure the spurious in the multi-touch panel device. The copending US patent application No. 5U t..^,# ^v,Anal〇g B〇undary scan^g 〇n :y apacitance", the entire contents of which are incorporated herein by reference. or:: discharge mode can measure the output of all rows of multiple touch 124 in one scan Electric: Μ' Ο康In the case of the automatic scanning cycle of the specific embodiment, the automatic scanning cycle can be, for example, a period of time, using a minimum power of 1 for a low frequency clock only 4〇8, a scout timer 4 〇 4 Fen Shi Men De 杳 杳 406 406. Over the debt check period. During this time, scan the eve map scan activity week people Tian Xi touch panel 124, without the need for processor 102 rate r: for automatic scanning The required low frequency clock 404, high frequency sheep pulse, automatic scanning control during the time of the investigation, and two pieces of power supply. This power consumption of A, but lower than the processor 102 and shoulder pulse ( For example during active scan mode). In addition, with respect to FIG. 6, if the panel 124 is used - or more than " _ M-type" material scanning multi-touch scanning γ - in the embodiment, scanning 48 columns, each column needs to be approximately (M ms pin-up - about 4.8 ms. If you use 'scan every column, you need to scan a total. This scan needs about 〇1 lb 1 and only the real _人• 。 。. Therefore, use stray power 128015.doc •29- 200837618 ms 'In contrast to the 4 · 8 ms in this example), and for the mutual capacitance mode described in this example, the touch multi-touch is determined by the &, + ^ 1=1... method of the stray capacitance mode. The exact position of the panel 124 can be used in a mixed mode, and the hybrid mode can include the initial use of the hybrid and + ~ + history of the capacitive mode to detect the multi-touch panel 124. The touch event, if the right touches the touch event, the mutual capacitance mode is used.
式以提供觸控事件發生之準確位置。 另外’在系統1 〇 〇之一項且辨杳 貝/、體實施例中,可需要觸控事 件以預定方式發生,以便超過臨 ^ 丨文I‘限值。例如,系統可需要 觸控事件同時或幾乎同時在拉中 j于隹特疋位置或以特定方式發生 (例如模擬撥號轉動動作;|。若去初 F; 右禾起過臣品限值,則自動掃描 模式可繼續,如程序500中所述(例如返回步驟512)。 在一項具體實施例中,自動掃描模式在單一頻帶下掃To provide an accurate location for touch events. In addition, in one of the systems 1 and the embodiment, the touch event may be required to occur in a predetermined manner so as to exceed the limit value. For example, the system may require touch events to occur at the same time or almost simultaneously in a particular location or in a specific manner (eg, analog dialing rotation; |. if the first F; The automatic scan mode can continue as described in routine 500 (e.g., returning to step 512). In one embodiment, the automatic scan mode sweeps in a single frequency band.
容模式可更快(需要〇.! 且使用更少電力(大約 中的電力之2%)。 描。此可節省電力。或者’自動掃描模式可在多重不同頻 率下掃描,如參考圖3c所述。 在-項具體實施例中,自動掃描邏輯包括雜訊管理區 塊。雜訊管理區塊防止在因為存在雜訊,但並非由於使用 者未觸控多重觸控螢幕,而超過臨限位準的情形中喚醒處 理器。藉由保持在自動掃描模式,電力得以節省。雜訊管 理區塊可針對數個通道採取雜訊位準之調查。若一通道具 有過度Csig讀數,則可能係該通道上之干擾源。若所有通 道之讀數相同,則可能係使用者觸控面板。根據雜訊位 準’雜訊管理區塊再提供頻率跳躍表格至通道掃描邏輯, 128015.doc -30- 200837618 其具有冑淨通道上至頻帛。雜m管理區塊,亦包括校準引 擎,以重新校準内部高頻率振蘯器,從而防止振盈器漂移 至雜訊通道内。 圖7說明一示範性行動(例如蜂巢式)電話736,其可包括 多重觸控面板724、顯示器件73〇、及圖i之計算系統1〇〇内 的其他計算系統區塊。圖7a之範例中,若一或多個多重觸 控感測器偵測到使用者之臉頰或耳朵,計算系統1 可決 定行動電話736正在舉起至使用者頭部,因此可將多重觸 控子系統106及多重觸控面板724之一些或全部與顯示器件 730—起斷電,以節省電力。 圖8說明一示範性數位音訊/視訊播放器,其可包括多重 觸控面板824、顯示器件830、及圖i之計算系統1〇〇内的其 他計算系統區塊。 雖然已就數個較佳具體實施例說明本發明,本發明之範 疇内存在更改、置換及等效物。例如,術語”電腦"不必意 味著任何特定種類之器件、硬體及/或軟體之組合’亦不 應視為限於多重用途或單一用途器件。此外,儘管本文已 關於觸控螢幕說明具體實施例,本發明之教導内容同樣可 施加於觸控墊或任何其他觸控表面類型之感測器。 例如,儘管本發明之具體實施例在本文主要係針對用於 觸控感測器面板來說明,近接感測器面板,其感測”懸停,, 事件或狀況,亦可用於產生藉由類比通道偵測之調變輸出 k號。近接感測器面板在申請人之共同待審美國申請案第 11/649,998 號中予以說明’標題為,,pr〇ximhy and Multi- 128015.doc •31 - 200837618 h Sensor Detection and Demodulation”,2007年 1 月 3 日 申請:其整體以提及方式併入本文。本文所使用之”觸控, 事件或狀況應視為包含”懸停”事件或狀況,並且可統稱為 另外觸控表面面板”應視為包含”近接感測器面 板丨、 另外,儘管本揭示内容主要係針對電容感測,應注意本 文所述之某些或全部特徵可施加於其他感測方法。亦應注 意二本發明之方法及裝置存在許多替代實施方式。因此以 附巾μ專利|&圍係解釋為包括本發明之真實精神與範 疇内的所有此類更改、置換、及等效物。 【圖式簡單說明】 /圖1說明根據本發明之一項具體實施例的一示範性計算 系統’其使用多重觸控面板輪入器件。 圖2a說明根據本發明之一項具體實施例的示範性電容多 重觸控面板。 圖2b係根據本發明之一項具體實施例的穩態(無觸控)狀 況下之示範性電容觸控感測器或像素的侧視圖。 圖2〇係根據本發明之一項具體實施例的動態(觸控)狀況 下之示範性電容觸控感測器或像素的側視圖。 、圖3a說明根據本發明之—項具體實施例的示範性類比通 道。 圖3b係根據本發明之一項具體實施例位於類比通道之輸 入的虛擬接地電荷放大器,以及藉由電容觸控感測器分配 且藉由電荷放大器看見的電容之詳細說明。 128015.doc -32- 200837618 圖3c說明根據本發明之一項具體實施例具有多重脈衝串 列之不範性Vstim信號,各脈衝串列具有固定脈衝數目, 各脈衝串列具有不同頻率Fstim。 圖4係說明根據本發明之一項具體實施例的自動掃描邏 輯之方塊圖。 圖5說明根據本發明之一項具體實施例藉由圖6之自動掃 描邏輯實施的自動掃描程序。Capacity mode is faster (requires 〇.! and uses less power (about 2% of the power in the middle). This saves power. Or 'auto scan mode can scan at multiple different frequencies, as described in Figure 3c In the specific embodiment, the automatic scanning logic includes a noise management block. The noise management block prevents the presence of noise, but the user does not touch the multi-touch screen, but exceeds the threshold. The processor is woken up in a quasi-case. Power is saved by maintaining the auto-scan mode. The noise management block can be used to investigate the noise level for several channels. If a channel has excessive Csig readings, it may be Interference source on the channel. If all channels have the same reading, it may be the user's touch panel. According to the noise level, the noise management block provides the frequency skip table to the channel scan logic, 128015.doc -30- 200837618 It has a clean channel up to frequency. The m management block also includes a calibration engine to recalibrate the internal high frequency oscillator to prevent the shaker from drifting into the noise channel. An exemplary action (e.g., cellular) telephone 736, which may include a multi-touch panel 724, display device 73A, and other computing system blocks within the computing system 1 of Figure i. In the example of Figure 7a, The one or more multi-touch sensors detect the user's cheeks or ears, and the computing system 1 can determine that the mobile phone 736 is being lifted to the user's head, so that the multi-touch subsystem 106 and the multi-touch can be Some or all of the panel 724 is powered down from the display device 730 to save power. Figure 8 illustrates an exemplary digital audio/video player that may include multiple touch panel 824, display device 830, and Figure i calculations. Other computing system blocks within the system 1. Although the invention has been described in terms of several preferred embodiments, there are variations, permutations, and equivalents within the scope of the invention. For example, the term "computer" does not necessarily mean The combination of any particular type of device, hardware and/or software shall not be considered limited to a multi-purpose or single-use device. Furthermore, although specific embodiments have been described herein with respect to touch screens, this is a The teachings can also be applied to touch pads or any other type of touch surface type of sensor. For example, although specific embodiments of the present invention are primarily described herein for use with touch sensor panels, proximity sensing The panel, which senses a hover, event or condition, can also be used to generate a modulated output k number by analog channel detection. Proximity sensor panel in Applicant's co-pending US application No. 11/ </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; As used herein, "touch, event or condition shall be considered to include a "hover" event or condition, and may be collectively referred to as another touch surface panel" as deemed to include a "near-sensing panel", in addition, although this disclosure The content is mainly for capacitive sensing, it should be noted that some or all of the features described herein can be applied to other sensing methods. It should also be noted that there are many alternative embodiments of the method and apparatus of the present invention. <RTI ID=0.0>""""""" A computing system that uses a multi-touch panel wheeled device. Figure 2a illustrates an exemplary capacitive multi-touch panel in accordance with an embodiment of the present invention. Figure 2b is a steady state in accordance with an embodiment of the present invention. Side view of an exemplary capacitive touch sensor or pixel in a (no touch) condition. Figure 2 is a dynamic (touch) condition in accordance with an embodiment of the present invention. A side view of a capacitive touch sensor or pixel. Figure 3a illustrates an exemplary analog channel in accordance with an embodiment of the present invention. Figure 3b is an input to an analog channel in accordance with an embodiment of the present invention. A detailed description of the virtual grounded charge amplifier, and the capacitance that is distributed by the capacitive touch sensor and seen by the charge amplifier. 128015.doc -32- 200837618 Figure 3c illustrates multiple pulses in accordance with an embodiment of the present invention The series of non-standard Vstim signals, each pulse train has a fixed number of pulses, and each pulse train has a different frequency Fstim. Figure 4 is a block diagram illustrating automatic scanning logic in accordance with an embodiment of the present invention. An automatic scanning procedure implemented by the automatic scanning logic of FIG. 6 in accordance with an embodiment of the present invention is illustrated.
圖ό說明根據本發明之一項具體實施例的”偵查模式,,電 力管理設定檔。 圖7說明根據本發明之一項具體實施例的一示範性行動 電°舌其可包括多重觸控面板、顯示器件、及其他計算系 統區塊。 圖8說明根據本發明之一項具體實施例的一示範性數位 音訊/視訊播放器,其可包括多重觸控面板、顯示器件、 及其他計算系統區塊。 【主要元件符號說明】 100 計算系統 102 多重觸控面板處理器 104 周邊裝置 106 多重觸控子系統 108 類比通道 110 通道掃描邏輯 112 RAM 114 驅動器邏輯 128015.doc •33- 200837618 116 多重觸控子系統輸出 118 驅動器級 120 解碼器 122 多重觸控面板列輸入 124 多重觸控面板 126 圖像元件 128 主機處理器 130 顯示器件 132 程式儲存器 200 電容多重觸控面板 202 像素 204 列 206 行 208 電場線 210 介電質 212 手指 214 AC刺激 216 脈衝串列 300 類比通道/事件偵測及解調變電路 302 虛擬接地電何放大 304 信號混波器 306 偏移補償 308 類比至數位轉換器 314 信號混波器輸出 128015.doc -34- 200837618 316 解調變波形 322 偏移補償輸出 324 結果 330 偏移混波器 330a 脈衝串列 330b 脈衝串列 330c 脈衝串列 332 整流器 334 減法器 336 整流器輸出 338 減法器輸出 400 自動掃描邏輯 402 自動掃描控制 404 偵查計時器 406 校準計數器 408 振盪器 410 比較器 412 OR閘極 414 時脈管理器 416 電力管理計時器 417 減法器 419 基線RAM 421 高頻率振盪器 424 雜訊管理區塊 128015.doc -35- 200837618 425 雜訊位準RAM 426 頻率跳躍表格 427 雜訊計算區塊 428 控制及決策邏輯 429 10區塊 430 類比通道 435 拖延信號 500 自動掃描程序 600 電力管理設定檔 604 偵查計時器 724 多重觸控面板 730 顯示器件 736 行動電話 824 多重觸控面板 830 顯示器件 128015.doc -36-Figure 1 illustrates an "investigation mode, power management profile" in accordance with an embodiment of the present invention. Figure 7 illustrates an exemplary mobile device that can include multiple touch panels in accordance with an embodiment of the present invention. , display device, and other computing system blocks. Figure 8 illustrates an exemplary digital audio/video player that can include multiple touch panels, display devices, and other computing system regions in accordance with an embodiment of the present invention. [Main component symbol description] 100 Computing system 102 Multi-touch panel processor 104 Peripheral device 106 Multiple touch subsystem 108 Analog channel 110 Channel scan logic 112 RAM 114 Driver logic 128015.doc •33- 200837618 116 Multi-touch Subsystem Output 118 Driver Level 120 Decoder 122 Multiple Touch Panel Column Input 124 Multi Touch Panel 126 Image Component 128 Host Processor 130 Display Device 132 Program Memory 200 Capacitive Multiple Touch Panel 202 Pixels 204 Columns 206 Lines 208 Electric Field Line 210 Dielectric 212 Finger 214 AC Stimulation 216 Pulse Train 300 Analog channel/event detection and demodulation circuit 302 Virtual grounding power amplifying 304 Signal mixer 306 Offset compensation 308 Analog to digital converter 314 Signal mixer output 128015.doc -34- 200837618 316 Demodulation Waveform 322 Offset Compensation Output 324 Result 330 Offset Mixer 330a Pulse Train Column 330b Pulse Train Column 330c Pulse Train 332 Rectifier 334 Subtractor 336 Rectifier Output 338 Subtractor Output 400 Auto Scan Logic 402 Auto Scan Control 404 Scout Timer 406 calibration counter 408 oscillator 410 comparator 412 OR gate 414 clock manager 416 power management timer 417 subtractor 419 baseline RAM 421 high frequency oscillator 424 noise management block 128015.doc -35- 200837618 425 noise Level RAM 426 Frequency Hopping Table 427 Noise Calculation Block 428 Control and Decision Logic 429 10 Block 430 Analog Channel 435 Delay Signal 500 Auto Scan Program 600 Power Management Profile 604 Scout Timer 724 Multi Touch Panel 730 Display Device 736 Mobile phone 824 multi-touch panel 830 display Device 128015.doc -36-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/650,040 US8125456B2 (en) | 2007-01-03 | 2007-01-03 | Multi-touch auto scanning |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200837618A true TW200837618A (en) | 2008-09-16 |
TWI347543B TWI347543B (en) | 2011-08-21 |
Family
ID=39052585
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097100213A TWI347543B (en) | 2007-01-03 | 2008-01-03 | Multi-touch auto scanning |
TW097200123U TWM341273U (en) | 2007-01-03 | 2008-01-03 | Multi-touch auto scanning |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097200123U TWM341273U (en) | 2007-01-03 | 2008-01-03 | Multi-touch auto scanning |
Country Status (10)
Country | Link |
---|---|
US (6) | US8125456B2 (en) |
EP (2) | EP3252582B1 (en) |
JP (4) | JP5786239B2 (en) |
KR (1) | KR101109346B1 (en) |
CN (2) | CN101583923B (en) |
AU (2) | AU2007342148B2 (en) |
DE (1) | DE202007018133U1 (en) |
HK (1) | HK1108274A2 (en) |
TW (2) | TWI347543B (en) |
WO (1) | WO2008085720A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8390303B2 (en) | 2009-08-12 | 2013-03-05 | Htc Corporation | Method for detecting pressure on touch sensing element and electronic device using the same |
TWI402737B (en) * | 2009-05-04 | 2013-07-21 | Mitac Int Corp | Multi - touch device and its method |
TWI406167B (en) * | 2010-08-20 | 2013-08-21 | Chunghwa Picture Tubes Ltd | Touch system with multi-touch detection functions and method for detecting multi-touch |
TWI411789B (en) * | 2009-10-27 | 2013-10-11 | Himax Tech Ltd | Capacitance touch contorl element |
TWI414989B (en) * | 2010-05-03 | 2013-11-11 | Raydium Semiconductor Corp | Contorl method applied to touch panel for determining touch detection manner employed by touch panel and control circuitry thereof |
TWI454022B (en) * | 2012-03-19 | 2014-09-21 | Htc Corp | Touch-controlled electronic device and method for reducing wireless signal interference to touch sensing function |
TWI459343B (en) * | 2009-02-02 | 2014-11-01 | Apple Inc | Liquid crystal display reordered inversion |
TWI474160B (en) * | 2011-03-07 | 2015-02-21 | Quanta Comp Inc | Computer system and operation method applicable thereto |
TWI487883B (en) * | 2012-07-19 | 2015-06-11 | Ind Tech Res Inst | Readout apparatus and driving method for sensor |
TWI497379B (en) * | 2010-03-29 | 2015-08-21 | Wacom Co Ltd | Pointer detection apparatus and detection sensor |
TWI502433B (en) * | 2013-07-08 | 2015-10-01 | Acer Inc | Electronic device for interacting with stylus and touch control method thereof |
TWI573050B (en) * | 2011-09-29 | 2017-03-01 | 日本顯示器股份有限公司 | Display, touch detection unit, driving method, and electronic unit having display |
Families Citing this family (233)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8094128B2 (en) * | 2007-01-03 | 2012-01-10 | Apple Inc. | Channel scan logic |
US8125456B2 (en) * | 2007-01-03 | 2012-02-28 | Apple Inc. | Multi-touch auto scanning |
US7812827B2 (en) | 2007-01-03 | 2010-10-12 | Apple Inc. | Simultaneous sensing arrangement |
US7986313B2 (en) * | 2007-01-03 | 2011-07-26 | Apple Inc. | Analog boundary scanning based on stray capacitance |
US8525799B1 (en) * | 2007-04-24 | 2013-09-03 | Cypress Semiconductor Conductor | Detecting multiple simultaneous touches on a touch-sensor device |
US8144126B2 (en) * | 2007-05-07 | 2012-03-27 | Cypress Semiconductor Corporation | Reducing sleep current in a capacitance sensing system |
US8253425B2 (en) * | 2007-05-08 | 2012-08-28 | Synaptics Incorporated | Production testing of a capacitive touch sensing device |
US9229549B1 (en) * | 2007-05-29 | 2016-01-05 | Cypress Semiconductor Corporation | Random scanning technique for secure transactions entered with capacitive sensor input device |
US8493331B2 (en) | 2007-06-13 | 2013-07-23 | Apple Inc. | Touch detection using multiple simultaneous frequencies |
KR20090030902A (en) * | 2007-09-21 | 2009-03-25 | 엘지전자 주식회사 | Input device of dishwasher and control method thereof, Input device of washing machine and control method thereof |
US8633915B2 (en) | 2007-10-04 | 2014-01-21 | Apple Inc. | Single-layer touch-sensitive display |
WO2009070814A2 (en) * | 2007-11-27 | 2009-06-04 | Frederick Johannes Bruwer | Capacitive sensing circuit with noise rejection |
US20090174676A1 (en) * | 2008-01-04 | 2009-07-09 | Apple Inc. | Motion component dominance factors for motion locking of touch sensor data |
US9372576B2 (en) * | 2008-01-04 | 2016-06-21 | Apple Inc. | Image jaggedness filter for determining whether to perform baseline calculations |
US10969917B2 (en) * | 2008-01-30 | 2021-04-06 | Apple Inc. | Auto scanning for multiple frequency stimulation multi-touch sensor panels |
US8154310B1 (en) * | 2008-02-27 | 2012-04-10 | Cypress Semiconductor Corporation | Capacitance sensor with sensor capacitance compensation |
US20160209963A1 (en) * | 2008-03-19 | 2016-07-21 | Egalax_Empia Technology Inc. | Touch processor and method |
US9329732B2 (en) * | 2008-03-19 | 2016-05-03 | Egalax—Empia Technology Inc. | Device and method for detecting touch screen |
US8619055B2 (en) * | 2008-04-14 | 2013-12-31 | Microsoft Corporation | Active matrix touch sensing |
US20090273577A1 (en) * | 2008-04-30 | 2009-11-05 | Apple Inc. | Moire-Free Touch Screen with Tilted or Curved ITO Pattern |
DE112009001503T5 (en) * | 2008-06-20 | 2011-04-28 | Mattel, Inc., El Segundo | Capacitive touchpad and toy containing it |
DE102008032451C5 (en) * | 2008-07-10 | 2017-10-19 | Rational Ag | Display method and cooking appliance therefor |
TW201007526A (en) * | 2008-08-13 | 2010-02-16 | Elan Microelectronics Corp | Signal processing method of multi-fingers touch apparatus having invisible physical button structure |
US20100060611A1 (en) * | 2008-09-05 | 2010-03-11 | Sony Ericsson Mobile Communication Ab | Touch display with switchable infrared illumination for touch position determination and methods thereof |
TWI484392B (en) * | 2008-09-23 | 2015-05-11 | Holtek Semiconductor Inc | Sensing device and method for touch panel |
JP2012503774A (en) * | 2008-09-24 | 2012-02-09 | スリーエム イノベイティブ プロパティズ カンパニー | Circuit and method for measuring mutual capacitance |
JP5324297B2 (en) * | 2009-04-15 | 2013-10-23 | 株式会社ジャパンディスプレイ | Coordinate input device and display device including the same |
US8330474B2 (en) * | 2008-10-15 | 2012-12-11 | Synaptics Incorporated | Sensor device and method with at surface object sensing and away from surface object sensing |
JP5087792B2 (en) * | 2008-10-31 | 2012-12-05 | 株式会社ワコム | Position detection device |
US8487639B1 (en) | 2008-11-21 | 2013-07-16 | Cypress Semiconductor Corporation | Receive demodulator for capacitive sensing |
US9075457B2 (en) * | 2008-12-12 | 2015-07-07 | Maxim Integrated Products, Inc. | System and method for interfacing applications processor to touchscreen display for reduced data transfer |
US10585493B2 (en) | 2008-12-12 | 2020-03-10 | Apple Inc. | Touch sensitive mechanical keyboard |
TWI376624B (en) * | 2008-12-23 | 2012-11-11 | Integrated Digital Tech Inc | Force-sensing modules for light sensitive screens |
KR101572071B1 (en) | 2009-01-06 | 2015-11-26 | 삼성전자주식회사 | Method and apparatus for on / off control of portable terminal display unit |
US8760412B2 (en) * | 2009-02-02 | 2014-06-24 | Apple Inc. | Dual configuration for display data lines |
US8922521B2 (en) | 2009-02-02 | 2014-12-30 | Apple Inc. | Switching circuitry for touch sensitive display |
TWI488095B (en) * | 2009-02-26 | 2015-06-11 | Genesys Logic Inc | Power down method and surface capacitive touch panel device using the same |
JP5439467B2 (en) * | 2009-02-27 | 2014-03-12 | 株式会社ジャパンディスプレイ | Display device, touch panel, and electronic device |
US20110157068A1 (en) * | 2009-12-31 | 2011-06-30 | Silicon Laboratories Inc. | Touch screen power-saving screen scanning algorithm |
US8866500B2 (en) * | 2009-03-26 | 2014-10-21 | Cypress Semiconductor Corporation | Multi-functional capacitance sensing circuit with a current conveyor |
US8982051B2 (en) * | 2009-03-30 | 2015-03-17 | Microsoft Technology Licensing, Llc | Detecting touch on a surface |
US9317140B2 (en) * | 2009-03-30 | 2016-04-19 | Microsoft Technology Licensing, Llc | Method of making a multi-touch input device for detecting touch on a curved surface |
US8593410B2 (en) | 2009-04-10 | 2013-11-26 | Apple Inc. | Touch sensor panel design |
JP5652966B2 (en) | 2009-05-13 | 2015-01-14 | シナプティクス インコーポレイテッド | Capacitance sensor device |
EP2435895A1 (en) | 2009-05-29 | 2012-04-04 | 3M Innovative Properties Company | High speed multi-touch touch device and controller therefor |
JP5396167B2 (en) * | 2009-06-18 | 2014-01-22 | 株式会社ワコム | Indicator detection apparatus and indicator detection method |
JP5295008B2 (en) * | 2009-06-18 | 2013-09-18 | 株式会社ワコム | Indicator detection device |
TWI399684B (en) * | 2009-06-18 | 2013-06-21 | Raydium Semiconductor Corp | Touch input device and touch detection circuit |
US8436822B2 (en) * | 2009-06-24 | 2013-05-07 | Himax Technologies Limited | Touch panel |
TWI528250B (en) * | 2009-06-25 | 2016-04-01 | Elan Microelectronics Corp | Object Detector and Method for Capacitive Touchpad |
US9606667B2 (en) | 2009-06-29 | 2017-03-28 | Japan Display Inc. | Method of driving touch panel, capacitance-type touch panel, and display apparatus with touch detection function |
JP5191452B2 (en) | 2009-06-29 | 2013-05-08 | 株式会社ジャパンディスプレイウェスト | Touch panel drive method, capacitive touch panel, and display device with touch detection function |
US8957874B2 (en) | 2009-06-29 | 2015-02-17 | Apple Inc. | Touch sensor panel design |
US20100328229A1 (en) * | 2009-06-30 | 2010-12-30 | Research In Motion Limited | Method and apparatus for providing tactile feedback |
JP5086394B2 (en) * | 2009-07-07 | 2012-11-28 | ローム株式会社 | Touch panel control circuit, control method, touch panel input device using them, and electronic device |
TWI450138B (en) * | 2009-07-15 | 2014-08-21 | Innolux Corp | Touch panel and method of multi-touch detection thereof |
TWI427518B (en) * | 2009-08-06 | 2014-02-21 | Raydium Semiconductor Corp | Touch sensing circuit and touch sensing method |
TWI393042B (en) * | 2009-08-11 | 2013-04-11 | Au Optronics Corp | Touch panel device having high touch sensitivity and touch positioning method thereof |
CN102473059B (en) | 2009-08-12 | 2015-06-24 | 瑟克公司 | Synchronous timed orthogonal measurement pattern for multi-touch sensing on touchpad |
TWI431520B (en) * | 2009-08-14 | 2014-03-21 | Elan Microelectronics Corp | Front - end signal detectors and methods for improving the anti - noise capability of capacitive touch panels |
KR100941927B1 (en) * | 2009-08-21 | 2010-02-18 | 이성호 | Method and device for detecting touch input |
US8334849B2 (en) | 2009-08-25 | 2012-12-18 | Pixart Imaging Inc. | Firmware methods and devices for a mutual capacitance touch sensing device |
TWI473490B (en) * | 2009-09-03 | 2015-02-11 | Htc Corp | Method for adjusting degree of event prompt, and mobile electronic device and computer program product using the same |
US9036650B2 (en) * | 2009-09-11 | 2015-05-19 | Apple Inc. | Automatic low noise frequency selection |
US8970506B2 (en) | 2009-09-11 | 2015-03-03 | Apple Inc. | Power management for touch controller |
CN102025822B (en) * | 2009-09-16 | 2017-05-31 | 宏达国际电子股份有限公司 | Method for adjusting event reminder level and its mobile electronic device |
US9753586B2 (en) * | 2009-10-08 | 2017-09-05 | 3M Innovative Properties Company | Multi-touch touch device with multiple drive frequencies and maximum likelihood estimation |
TWI423104B (en) * | 2009-10-09 | 2014-01-11 | Egalax Empia Technology Inc | Method and device for analyzing positions |
JP5407731B2 (en) | 2009-10-14 | 2014-02-05 | 日本電気株式会社 | Electronic device and program |
US8773366B2 (en) * | 2009-11-16 | 2014-07-08 | 3M Innovative Properties Company | Touch sensitive device using threshold voltage signal |
TWI456440B (en) * | 2009-12-07 | 2014-10-11 | Cando Corp | Touch panel driving device and method |
US8633916B2 (en) * | 2009-12-10 | 2014-01-21 | Apple, Inc. | Touch pad with force sensors and actuator feedback |
JP5295090B2 (en) * | 2009-12-18 | 2013-09-18 | 株式会社ワコム | Indicator detection device |
US8698015B2 (en) * | 2009-12-18 | 2014-04-15 | Intel Corporation | Compensating for multi-touch signal bias drift in touch panels |
US9298303B2 (en) | 2009-12-31 | 2016-03-29 | Google Technology Holdings LLC | Duty cycle modulation of periodic time-synchronous receivers for noise reduction |
GB2476671B (en) * | 2010-01-04 | 2014-11-26 | Plastic Logic Ltd | Touch-sensing systems |
US8411066B2 (en) | 2010-01-05 | 2013-04-02 | 3M Innovative Properties Company | High speed noise tolerant multi-touch touch device and controller therefor |
TWI434207B (en) * | 2010-03-25 | 2014-04-11 | Novatek Microelectronics Corp | Touch sensing system, electronic touch apparatus, and touch sensing method |
US8339286B2 (en) * | 2010-03-31 | 2012-12-25 | 3M Innovative Properties Company | Baseline update procedure for touch sensitive device |
CN101833121B (en) * | 2010-04-09 | 2011-08-10 | 深圳市汇顶科技有限公司 | Double-coupling detection circuit, rain sensor and rain identification method |
DE102011015806A1 (en) * | 2011-04-01 | 2012-10-04 | Ident Technology Ag | display device |
US9391607B2 (en) * | 2010-04-22 | 2016-07-12 | Qualcomm Technologies, Inc. | Use of random sampling technique to reduce finger-coupled noise |
US8493356B2 (en) | 2010-04-22 | 2013-07-23 | Maxim Integrated Products, Inc. | Noise cancellation technique for capacitive touchscreen controller using differential sensing |
US9203489B2 (en) | 2010-05-05 | 2015-12-01 | Google Technology Holdings LLC | Method and precoder information feedback in multi-antenna wireless communication systems |
KR20130088040A (en) | 2010-05-25 | 2013-08-07 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | High speed low power multi-touch touch device and controller therefor |
US20120013565A1 (en) * | 2010-07-16 | 2012-01-19 | Perceptive Pixel Inc. | Techniques for Locally Improving Signal to Noise in a Capacitive Touch Sensor |
JP5424494B2 (en) * | 2010-08-20 | 2014-02-26 | 株式会社ジャパンディスプレイ | Detection device, display device, and electronic device |
CN101976139B (en) * | 2010-08-30 | 2012-08-15 | 华映视讯(吴江)有限公司 | Touch panel with function of multi-touch detection and multi-touch detection method |
US20120056842A1 (en) * | 2010-09-02 | 2012-03-08 | Himax Technologies Limited | Sensing Apparatus for Touch Panel and Sensing Method Thereof |
US9823785B2 (en) | 2010-09-09 | 2017-11-21 | 3M Innovative Properties Company | Touch sensitive device with stylus support |
US10019119B2 (en) | 2010-09-09 | 2018-07-10 | 3M Innovative Properties Company | Touch sensitive device with stylus support |
US9389724B2 (en) | 2010-09-09 | 2016-07-12 | 3M Innovative Properties Company | Touch sensitive device with stylus support |
KR101698486B1 (en) * | 2010-11-15 | 2017-01-20 | (주)멜파스 | Method and apparatus for sensing touch input |
US20120127120A1 (en) * | 2010-11-22 | 2012-05-24 | Himax Technologies Limited | Touch device and touch position locating method thereof |
KR101735303B1 (en) * | 2010-12-13 | 2017-05-15 | 삼성전자 주식회사 | Operation Method For Touch Panel And Portable Device supporting the same |
KR20120067445A (en) * | 2010-12-16 | 2012-06-26 | 엘지전자 주식회사 | Mobile terminal and operation control method thereof |
TWI407349B (en) * | 2010-12-17 | 2013-09-01 | Au Optronics Corp | Method for determining scanning times of touch control signal in a touch panel |
WO2012108911A1 (en) | 2011-02-07 | 2012-08-16 | Cypress Semiconductor Corporation | Noise filtering devices, systems and methods for capacitance sensing devices |
TWI433451B (en) * | 2011-02-10 | 2014-04-01 | Raydium Semiconductor Corp | Touch sensing apparatus |
US8619240B2 (en) * | 2011-02-14 | 2013-12-31 | Fairchild Semiconductor Corporation | Adaptive response time acceleration |
US9235340B2 (en) * | 2011-02-18 | 2016-01-12 | Microsoft Technology Licensing, Llc | Modal touch input |
CN103392162B (en) | 2011-02-25 | 2016-08-24 | 高通技术公司 | Capacitive touch sense architecture |
US8860432B2 (en) | 2011-02-25 | 2014-10-14 | Maxim Integrated Products, Inc. | Background noise measurement and frequency selection in touch panel sensor systems |
US9086439B2 (en) | 2011-02-25 | 2015-07-21 | Maxim Integrated Products, Inc. | Circuits, devices and methods having pipelined capacitance sensing |
US9952720B2 (en) | 2011-03-29 | 2018-04-24 | Synaptics Incorporated | Capacitive touch screen interference detection and operation |
US9268441B2 (en) | 2011-04-05 | 2016-02-23 | Parade Technologies, Ltd. | Active integrator for a capacitive sense array |
US9564894B2 (en) | 2011-04-15 | 2017-02-07 | Synaptics Incorporated | Capacitive input device interference detection and operation |
CN102760015B (en) * | 2011-04-25 | 2015-03-04 | 富克科技有限公司 | Noise filtering method for capacitive touch panel |
US9857921B2 (en) | 2011-05-13 | 2018-01-02 | Synaptics Incorporated | Input signal correction architecture |
JP5772242B2 (en) * | 2011-06-03 | 2015-09-02 | ソニー株式会社 | Measuring apparatus, measuring method, program, and information processing apparatus |
CN102830860B (en) * | 2011-06-15 | 2016-05-04 | 奇景光电股份有限公司 | Touch sensing method and touch sensing device |
FR2976692B1 (en) * | 2011-06-17 | 2013-06-14 | Thales Sa | MULTILAYER TOUCH DEVICE WITH MULTI-FREQUENCY CAPACITIVE DETECTION |
US8487909B2 (en) | 2011-07-27 | 2013-07-16 | Cypress Semiconductor Corporation | Method and apparatus for parallel scanning and data processing for touch sense arrays |
TWI442280B (en) * | 2011-07-29 | 2014-06-21 | Acer Inc | Power saving method and touch display device |
CN102915137A (en) * | 2011-08-05 | 2013-02-06 | 宏碁股份有限公司 | Power saving method and touch display device |
US9785251B2 (en) | 2011-09-14 | 2017-10-10 | Apple Inc. | Actuation lock for a touch sensitive mechanical keyboard |
WO2013053106A1 (en) * | 2011-10-11 | 2013-04-18 | 中联重科股份有限公司 | Method and system for outputting key pressing signal |
DE112011105660T5 (en) * | 2011-10-25 | 2014-08-21 | Hewlett-Packard Development Company, L.P. | Touch detection of a drive carrier |
KR101328348B1 (en) | 2011-11-04 | 2013-11-11 | 삼성전기주식회사 | Touch sensing apparatus and operating method thereof |
US8581870B2 (en) * | 2011-12-06 | 2013-11-12 | Apple Inc. | Touch-sensitive button with two levels |
TWI465994B (en) | 2011-12-09 | 2014-12-21 | Nuvoton Technology Corp | Touch sensing method and touch sensing apparatus using charge distribution manner |
KR101431884B1 (en) * | 2011-12-21 | 2014-08-27 | 삼성전기주식회사 | Touch screen pannel |
US20130176273A1 (en) * | 2012-01-09 | 2013-07-11 | Broadcom Corporation | Fast touch detection in a mutual capacitive touch system |
US20130194197A1 (en) * | 2012-02-01 | 2013-08-01 | Ideacom Technology Inc. | Electronic Apparatus With Touch Panel and the Operating Method Therefor |
JP5770654B2 (en) * | 2012-02-16 | 2015-08-26 | シャープ株式会社 | Screen display device, control method thereof, program, and computer-readable recording medium |
US9939964B2 (en) * | 2012-02-23 | 2018-04-10 | Ncr Corporation | Frequency switching |
US9444452B2 (en) | 2012-02-24 | 2016-09-13 | Parade Technologies, Ltd. | Frequency hopping algorithm for capacitance sensing devices |
US9209802B1 (en) | 2012-02-24 | 2015-12-08 | Parade Technologies, Ltd. | Frequency selection with two frequency sets of multiple operating frequencies in a mutual capacitance sensing devices |
TWI452511B (en) * | 2012-03-03 | 2014-09-11 | Orise Technology Co Ltd | Low power switching mode driving and sensing method for capacitive touch system |
TWI447632B (en) * | 2012-03-09 | 2014-08-01 | Orise Technology Co Ltd | Driving frequency selection method for capacitive multi-touch system |
US9760151B1 (en) * | 2012-03-26 | 2017-09-12 | Amazon Technologies, Inc. | Detecting damage to an electronic device display |
TWI456455B (en) * | 2012-03-29 | 2014-10-11 | Acer Inc | Electronic device and method for operating touch panel thereof |
TWI463386B (en) * | 2012-04-03 | 2014-12-01 | Elan Microelectronics Corp | A method and an apparatus for improving noise interference of a capacitive touch device |
US20130265276A1 (en) * | 2012-04-09 | 2013-10-10 | Amazon Technologies, Inc. | Multiple touch sensing modes |
US9329723B2 (en) | 2012-04-16 | 2016-05-03 | Apple Inc. | Reconstruction of original touch image from differential touch image |
JP5708555B2 (en) * | 2012-04-25 | 2015-04-30 | コニカミノルタ株式会社 | Operation display device and operation display method program |
CN103389842B (en) * | 2012-05-07 | 2016-12-28 | 美法思株式会社 | Touch sensor chip, the touch-sensing device comprising touch sensor chip and the noise control method of touch pad |
US9465460B2 (en) * | 2012-05-24 | 2016-10-11 | Htc Corporation | Method for controlling display of electronic device and electronic device using the same |
KR101339570B1 (en) | 2012-05-30 | 2013-12-10 | 삼성전기주식회사 | Method and apparatus for sensing touch input |
CN103543888B (en) * | 2012-07-16 | 2016-09-07 | 联咏科技股份有限公司 | Capacitive touch device and sensing method thereof |
US9182432B2 (en) | 2012-07-18 | 2015-11-10 | Synaptics Incorporated | Capacitance measurement |
CN102830837B (en) * | 2012-07-19 | 2016-01-27 | 深圳市汇顶科技股份有限公司 | A kind of noise suppressing method, system and touch terminal for touching detection |
US9489067B2 (en) | 2012-08-17 | 2016-11-08 | Qualcomm Incorporated | Scalable touchscreen processing with realtime role negotiation among asymmetric processing cores |
TWI470496B (en) * | 2012-08-20 | 2015-01-21 | E Ink Holdings Inc | Method of sampling touch points for touch panel |
TWI488073B (en) * | 2012-09-07 | 2015-06-11 | Pixart Imaging Inc | Optical navigating device and computer readable media for performing optical navigating method |
US9785217B2 (en) | 2012-09-28 | 2017-10-10 | Synaptics Incorporated | System and method for low power input object detection and interaction |
TWI470521B (en) * | 2012-10-16 | 2015-01-21 | Mstar Semiconductor Inc | Self-capacitive touch control apparatus and control method thereof |
KR102050385B1 (en) * | 2012-10-30 | 2019-11-29 | 엘지디스플레이 주식회사 | Touch sensing system and method of reducing latency thereof |
US9813262B2 (en) | 2012-12-03 | 2017-11-07 | Google Technology Holdings LLC | Method and apparatus for selectively transmitting data using spatial diversity |
US9591508B2 (en) | 2012-12-20 | 2017-03-07 | Google Technology Holdings LLC | Methods and apparatus for transmitting data between different peer-to-peer communication groups |
US9979531B2 (en) | 2013-01-03 | 2018-05-22 | Google Technology Holdings LLC | Method and apparatus for tuning a communication device for multi band operation |
CN103970316B (en) * | 2013-01-28 | 2017-10-13 | 禾瑞亚科技股份有限公司 | Touch sensing device, system and touch sensing method |
US10229697B2 (en) | 2013-03-12 | 2019-03-12 | Google Technology Holdings LLC | Apparatus and method for beamforming to obtain voice and noise signals |
US8890841B2 (en) | 2013-03-13 | 2014-11-18 | 3M Innovative Properties Company | Capacitive-based touch apparatus and method therefor, with reduced interference |
JP5845204B2 (en) | 2013-03-29 | 2016-01-20 | 株式会社ジャパンディスプレイ | Electronic device and control method of electronic device |
CN103235673B (en) * | 2013-04-11 | 2016-05-11 | 深圳市天微电子股份有限公司 | Touch screen detection method and touch screen |
FR3004824B1 (en) * | 2013-04-19 | 2016-08-19 | Thales Sa | MULTI-LAYER TOUCHABLE DEVICE WITH MULTI-FREQUENCY CAPACITIVE DETECTION COMPRISING FAULT DETECTION MEANS |
EP2796948A1 (en) * | 2013-04-23 | 2014-10-29 | ETA SA Manufacture Horlogère Suisse | Method for managing operations of an electronic device |
TWI549043B (en) * | 2013-05-15 | 2016-09-11 | 友達光電股份有限公司 | Sensing circuit for touch panel and applied touch module, electronic apparatus and control method thereof |
CN104238836A (en) * | 2013-06-14 | 2014-12-24 | 群创光电股份有限公司 | Touch display device and driving and sensing method thereof |
US9652060B2 (en) * | 2013-06-28 | 2017-05-16 | Synaptics Incorporated | Low-latency touch feedback |
US9507472B2 (en) | 2013-07-10 | 2016-11-29 | Synaptics Incorporated | Hybrid capacitive baseline management |
US9886141B2 (en) | 2013-08-16 | 2018-02-06 | Apple Inc. | Mutual and self capacitance touch measurements in touch panel |
US9086749B2 (en) * | 2013-08-30 | 2015-07-21 | Qualcomm Incorporated | System and method for improved processing of touch sensor data |
US9823728B2 (en) | 2013-09-04 | 2017-11-21 | Nvidia Corporation | Method and system for reduced rate touch scanning on an electronic device |
US9386542B2 (en) | 2013-09-19 | 2016-07-05 | Google Technology Holdings, LLC | Method and apparatus for estimating transmit power of a wireless device |
US9274659B2 (en) | 2013-09-27 | 2016-03-01 | Synaptics Incorporated | Transcapacitive input object sensing |
US10013092B2 (en) | 2013-09-27 | 2018-07-03 | Sensel, Inc. | Tactile touch sensor system and method |
CN105934733B (en) * | 2013-09-27 | 2019-02-22 | 森赛尔股份有限公司 | Resistive touch sensor system and method |
US11221706B2 (en) | 2013-09-27 | 2022-01-11 | Sensel, Inc. | Tactile touch sensor system and method |
US9001082B1 (en) | 2013-09-27 | 2015-04-07 | Sensel, Inc. | Touch sensor detector system and method |
US9405415B2 (en) | 2013-10-01 | 2016-08-02 | Synaptics Incorporated | Targeted transcapacitance sensing for a matrix sensor |
US9881592B2 (en) | 2013-10-08 | 2018-01-30 | Nvidia Corporation | Hardware overlay assignment |
US10025412B2 (en) | 2013-10-16 | 2018-07-17 | Synaptics Incorporated | In-cell low power modes |
KR102133736B1 (en) * | 2013-11-14 | 2020-07-14 | 엘지디스플레이 주식회사 | Display device with integrated touch screen and method for driving the same |
US9507470B2 (en) * | 2013-12-16 | 2016-11-29 | Nvidia Corporation | Method and system for reduced power touch input detection on an electronic device using reduced scanning |
US9549290B2 (en) | 2013-12-19 | 2017-01-17 | Google Technology Holdings LLC | Method and apparatus for determining direction information for a wireless device |
US20150180493A1 (en) * | 2013-12-23 | 2015-06-25 | Yu-Ren Liu | Capacitor Sensor Circuit with Rectifier and Integrator |
JP2015125687A (en) * | 2013-12-27 | 2015-07-06 | シナプティクス・ディスプレイ・デバイス合同会社 | Touch detection device and semiconductor device |
CN103761018B (en) * | 2014-01-23 | 2020-10-30 | 苏州瀚瑞微电子有限公司 | Scanning method of capacitive touch screen |
KR102313098B1 (en) * | 2014-02-18 | 2021-10-14 | 케임브리지 터치 테크놀로지스 리미티드 | Dynamic switching of power modes for touch screens using force touch |
JP6172525B2 (en) * | 2014-02-19 | 2017-08-02 | 株式会社東海理化電機製作所 | Electrostatic touch switch device and noise detection method |
US10156940B2 (en) | 2014-03-11 | 2018-12-18 | Apple Inc. | Panel mismatch compensation for touch enabled displays |
US11093093B2 (en) | 2014-03-14 | 2021-08-17 | Synaptics Incorporated | Transcapacitive and absolute capacitive sensing profiles |
US9753570B2 (en) | 2014-03-14 | 2017-09-05 | Synaptics Incorporated | Combined capacitive sensing |
US9665217B2 (en) | 2014-04-28 | 2017-05-30 | Qualcomm Incorporated | Touch panel scan control |
US9491007B2 (en) | 2014-04-28 | 2016-11-08 | Google Technology Holdings LLC | Apparatus and method for antenna matching |
US9939969B2 (en) * | 2014-05-09 | 2018-04-10 | Marvell World Trade Ltd. | Systems and methods for capacitive touch detection |
WO2015178920A1 (en) | 2014-05-22 | 2015-11-26 | Onamp Research Llc | Panel bootstrapping architectures for in-cell self-capacitance |
US9478847B2 (en) | 2014-06-02 | 2016-10-25 | Google Technology Holdings LLC | Antenna system and method of assembly for a wearable electronic device |
US10289251B2 (en) | 2014-06-27 | 2019-05-14 | Apple Inc. | Reducing floating ground effects in pixelated self-capacitance touch screens |
US9880655B2 (en) | 2014-09-02 | 2018-01-30 | Apple Inc. | Method of disambiguating water from a finger touch on a touch sensor panel |
CN107077260B (en) | 2014-09-22 | 2020-05-12 | 苹果公司 | Touch controller and method for touch sensor panel |
US9857925B2 (en) | 2014-09-30 | 2018-01-02 | Synaptics Incorporated | Combining sensor electrodes in a matrix sensor |
KR102278506B1 (en) | 2014-10-01 | 2021-07-16 | 삼성디스플레이 주식회사 | Display device and driving method thereof |
TWI525517B (en) * | 2014-10-23 | 2016-03-11 | 瑞鼎科技股份有限公司 | Touch snesing circuit of capacitive touch panel |
EP3213173A4 (en) | 2014-10-27 | 2018-06-06 | Apple Inc. | Pixelated self-capacitance water rejection |
US10732771B2 (en) | 2014-11-12 | 2020-08-04 | Shenzhen GOODIX Technology Co., Ltd. | Fingerprint sensors having in-pixel optical sensors |
KR101859419B1 (en) * | 2014-12-26 | 2018-05-23 | 엘지디스플레이 주식회사 | Touch screen device and method for driving the same |
US10310670B2 (en) | 2015-01-16 | 2019-06-04 | Silead Inc. | System and method for capacitive sensing |
EP3224699B1 (en) | 2015-02-02 | 2018-10-03 | Apple Inc. | Flexible self-capacitance and mutual capacitance touch sensing system architecture |
US10488992B2 (en) | 2015-03-10 | 2019-11-26 | Apple Inc. | Multi-chip touch architecture for scalability |
US9778804B2 (en) * | 2015-06-04 | 2017-10-03 | Synaptics Incorporated | Calibrating charge mismatch in a baseline correction circuit |
KR101928319B1 (en) | 2015-06-18 | 2018-12-12 | 선전 구딕스 테크놀로지 컴퍼니, 리미티드 | Multifunction fingerprint sensor with photo sensing capability |
WO2017129126A1 (en) * | 2016-01-31 | 2017-08-03 | Shenzhen GOODIX Technology Co., Ltd. | Under-screen optical sensor module for on-screen fingerprint sensing |
KR101698967B1 (en) | 2015-07-03 | 2017-01-23 | 솔로몬 시스테크 리미티드 | Method of controlling touch panel |
TWI588696B (en) * | 2015-08-19 | 2017-06-21 | 遠翔科技股份有限公司 | Touch calibration system and method thereof |
US10365773B2 (en) | 2015-09-30 | 2019-07-30 | Apple Inc. | Flexible scan plan using coarse mutual capacitance and fully-guarded measurements |
EP3248141A4 (en) | 2015-11-02 | 2018-01-03 | Shenzhen Goodix Technology Co., Ltd. | Multifunction fingerprint sensor having optical sensing against fingerprint spoofing |
TWI638298B (en) * | 2015-12-31 | 2018-10-11 | 禾瑞亞科技股份有限公司 | Touch sensitive controlling method, touch sensitive processing system and electronic device |
US10928372B2 (en) * | 2016-01-29 | 2021-02-23 | Ams Sensors Uk Limited | Electronic device |
US10175741B2 (en) | 2016-03-03 | 2019-01-08 | Atmel Corporation | Touch sensor mode transitioning |
US10578507B2 (en) * | 2016-04-12 | 2020-03-03 | Pixart Imaging Inc. | Pressure measuring method and pressure measuring apparatus |
TWI638145B (en) * | 2016-06-27 | 2018-10-11 | 友達光電股份有限公司 | Sensing circuit and method for controlling sensing circuit |
US10061375B2 (en) | 2016-08-02 | 2018-08-28 | Atmel Corporation | Power mode configuration for touch sensors |
AU2017208277B2 (en) | 2016-09-06 | 2018-12-20 | Apple Inc. | Back of cover touch sensors |
US11137858B2 (en) | 2016-09-23 | 2021-10-05 | Apple Inc. | Location-based swing compensation for touch channel attenuation |
JP6911225B2 (en) * | 2016-10-21 | 2021-07-28 | 三菱電機株式会社 | Touch panel device |
KR102090508B1 (en) * | 2016-12-29 | 2020-03-19 | 선전 구딕스 테크놀로지 컴퍼니, 리미티드 | Touch system and its power circuit |
US10386965B2 (en) | 2017-04-20 | 2019-08-20 | Apple Inc. | Finger tracking in wet environment |
WO2019023878A1 (en) * | 2017-07-31 | 2019-02-07 | 深圳市汇顶科技股份有限公司 | Touch detection method and touch chip |
CN108900669B (en) * | 2018-06-26 | 2021-01-15 | 维沃移动通信有限公司 | Touch screen scanning method and mobile terminal |
CN109117020B (en) * | 2018-07-19 | 2022-09-20 | 北京集创北方科技股份有限公司 | Positioning method and device of touch position, storage medium and electronic device |
FR3087469B1 (en) | 2018-10-19 | 2020-09-25 | Continental Automotive France | DEVICE FOR DETECTION OF INTENT TO LOCK OR UNLOCK A MOTOR VEHICLE DOOR AND ASSOCIATED PROCESS |
US11061521B2 (en) | 2019-08-06 | 2021-07-13 | Synaptics Incorporated | System and method for generating corrected sensor data |
US11157109B1 (en) | 2019-09-06 | 2021-10-26 | Apple Inc. | Touch sensing with water rejection |
CN111221403B (en) * | 2019-12-27 | 2021-05-04 | 中国农业大学 | A SoC system and method for configurable sleep mode control |
US11093078B1 (en) * | 2020-03-20 | 2021-08-17 | Cypress Semiconductor Corporation | Always on low power capacitive matrix autonomous scan |
US11307712B2 (en) | 2020-04-07 | 2022-04-19 | Cypress Semiconductor Corporation | Systems, methods, and devices for capacitive sensing with sinusoidal demodulation |
US11662867B1 (en) | 2020-05-30 | 2023-05-30 | Apple Inc. | Hover detection on a touch sensor panel |
US11550434B2 (en) * | 2020-10-19 | 2023-01-10 | Synaptics Incorporated | Short-term noise suppression |
US11803273B2 (en) * | 2021-04-22 | 2023-10-31 | Pixart Imaging Inc. | Touch sensor, touch pad, method for identifying inadvertent touch event and computer device |
US11656678B1 (en) | 2022-01-31 | 2023-05-23 | Microsoft Technology Licensing, Llc | Scanning rate control for input components based on user presence detection |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63172325A (en) | 1987-01-10 | 1988-07-16 | Pioneer Electronic Corp | Touch panel controller |
JPH02272617A (en) * | 1989-04-14 | 1990-11-07 | Wacom Co Ltd | Position detector |
JPH03289715A (en) * | 1990-04-06 | 1991-12-19 | Mochida Pharmaceut Co Ltd | Capacity change detector and touch panel using same |
JPH0496816A (en) * | 1990-08-15 | 1992-03-30 | Ricoh Co Ltd | Touch panel control system |
JPH04308916A (en) * | 1991-04-06 | 1992-10-30 | Matsushita Electric Ind Co Ltd | Position detector |
US5483261A (en) | 1992-02-14 | 1996-01-09 | Itu Research, Inc. | Graphical input controller and method with rear screen image detection |
US5488204A (en) | 1992-06-08 | 1996-01-30 | Synaptics, Incorporated | Paintbrush stylus for capacitive touch sensor pad |
US5880411A (en) | 1992-06-08 | 1999-03-09 | Synaptics, Incorporated | Object position detector with edge motion feature and gesture recognition |
JP3133834B2 (en) * | 1992-08-19 | 2001-02-13 | キヤノン株式会社 | Coordinate input device and method |
US5548818A (en) | 1992-08-25 | 1996-08-20 | Rockwell International | Network acquisition mechanism for mobile RF data |
US5283559A (en) * | 1992-09-21 | 1994-02-01 | International Business Machines Corp. | Automatic calibration of a capacitive touch screen used with a fixed element flat screen display panel |
JPH06119090A (en) * | 1992-10-07 | 1994-04-28 | Hitachi Ltd | Power saving control method |
EP0626633B1 (en) * | 1993-05-28 | 2001-03-14 | Sun Microsystems, Inc. | Touch screen power control in a computer system |
JPH0720963A (en) * | 1993-07-02 | 1995-01-24 | Sharp Corp | Operation control circuit for clock oscillator |
EP0766168A3 (en) | 1995-09-28 | 1997-11-19 | Hewlett-Packard Company | Icons for dual orientation display devices |
US5825352A (en) | 1996-01-04 | 1998-10-20 | Logitech, Inc. | Multiple fingers contact sensing method for emulating mouse buttons and mouse operations on a touch sensor pad |
US5831593A (en) | 1996-01-16 | 1998-11-03 | International Business Machines Corporation | Low-power standby mode for a remote sensing device |
JP3281256B2 (en) * | 1996-04-24 | 2002-05-13 | シャープ株式会社 | Coordinate input device |
US5835079A (en) | 1996-06-13 | 1998-11-10 | International Business Machines Corporation | Virtual pointing device for touchscreens |
US6054979A (en) * | 1996-08-21 | 2000-04-25 | Compaq Computer Corporation | Current sensing touchpad for computers and the like |
JPH10111749A (en) * | 1996-10-08 | 1998-04-28 | Matsushita Electric Ind Co Ltd | Portable terminal equipment |
US20030107557A1 (en) | 1997-07-30 | 2003-06-12 | Gateway, Inc. | Control of unintended single-tap actuation of a computer touch pad pointing device |
JP3394187B2 (en) | 1997-08-08 | 2003-04-07 | シャープ株式会社 | Coordinate input device and display integrated type coordinate input device |
US6310610B1 (en) | 1997-12-04 | 2001-10-30 | Nortel Networks Limited | Intelligent touch display |
JPH11184630A (en) | 1997-12-22 | 1999-07-09 | Nec Corp | Liquid crystal display device provided with touch panel |
US7663607B2 (en) | 2004-05-06 | 2010-02-16 | Apple Inc. | Multipoint touchscreen |
US8479122B2 (en) | 2004-07-30 | 2013-07-02 | Apple Inc. | Gestures for touch sensitive input devices |
EP2256605B1 (en) | 1998-01-26 | 2017-12-06 | Apple Inc. | Method and apparatus for integrating manual input |
US6188391B1 (en) | 1998-07-09 | 2001-02-13 | Synaptics, Inc. | Two-layer capacitive touchpad and method of making same |
JP4542637B2 (en) | 1998-11-25 | 2010-09-15 | セイコーエプソン株式会社 | Portable information device and information storage medium |
TW524352U (en) | 1999-11-10 | 2003-03-11 | U Teh Internat Corp | Touch control device with pressure hand-written pen |
JP2001306255A (en) * | 2000-04-27 | 2001-11-02 | Mitsumi Electric Co Ltd | Touch panel sensor |
US6661239B1 (en) * | 2001-01-02 | 2003-12-09 | Irobot Corporation | Capacitive sensor systems and methods with increased resolution and automatic calibration |
CN1260637C (en) | 2001-01-22 | 2006-06-21 | 达方电子股份有限公司 | Detection device and wake-up unit of mouse touchpad |
JP3800984B2 (en) | 2001-05-21 | 2006-07-26 | ソニー株式会社 | User input device |
US6583676B2 (en) * | 2001-06-20 | 2003-06-24 | Apple Computer, Inc. | Proximity/touch detector and calibration circuit |
JP4540900B2 (en) * | 2001-09-14 | 2010-09-08 | シャープ株式会社 | Coordinate input device, coordinate input method |
JP2003173237A (en) | 2001-09-28 | 2003-06-20 | Ricoh Co Ltd | Information input-output system, program and storage medium |
US7254775B2 (en) | 2001-10-03 | 2007-08-07 | 3M Innovative Properties Company | Touch panel system and method for distinguishing multiple touch inputs |
US6977646B1 (en) * | 2001-11-30 | 2005-12-20 | 3M Innovative Properties Co. | Touch screen calibration system and method |
JP2003167677A (en) * | 2001-12-03 | 2003-06-13 | Sharp Corp | Touch panel input device and touch panel integrated display device |
US6690387B2 (en) | 2001-12-28 | 2004-02-10 | Koninklijke Philips Electronics N.V. | Touch-screen image scrolling system and method |
KR100638304B1 (en) | 2002-04-26 | 2006-10-26 | 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 | Driver circuit of EL display panel |
US7120259B1 (en) | 2002-05-31 | 2006-10-10 | Microsoft Corporation | Adaptive estimation and compensation of clock drift in acoustic echo cancellers |
US7023427B2 (en) | 2002-06-28 | 2006-04-04 | Microsoft Corporation | Method and system for detecting multiple touches on a touch-sensitive screen |
US11275405B2 (en) | 2005-03-04 | 2022-03-15 | Apple Inc. | Multi-functional hand-held device |
US6998545B2 (en) * | 2002-07-19 | 2006-02-14 | E.G.O. North America, Inc. | Touch and proximity sensor control systems and methods with improved signal and noise differentiation |
US6796507B2 (en) | 2002-09-27 | 2004-09-28 | Hewlett-Packard Development Company, L.P. | Apparatus and method for determining ingredients by label scanning |
US20040087840A1 (en) | 2002-10-31 | 2004-05-06 | Main David Roy | Multiple function birth assistance appliance |
JP4150662B2 (en) * | 2002-12-20 | 2008-09-17 | アルプス電気株式会社 | Driving method of input means having electrostatic sensor |
US20040185845A1 (en) | 2003-02-28 | 2004-09-23 | Microsoft Corporation | Access point to access point range extension |
US7116315B2 (en) | 2003-03-14 | 2006-10-03 | Tyco Electronics Corporation | Water tolerant touch sensor |
GB0313808D0 (en) * | 2003-06-14 | 2003-07-23 | Binstead Ronald P | Improvements in touch technology |
JP2005092341A (en) | 2003-09-12 | 2005-04-07 | Alps Electric Co Ltd | Radio type input device |
US7176902B2 (en) | 2003-10-10 | 2007-02-13 | 3M Innovative Properties Company | Wake-on-touch for vibration sensing touch input devices |
US7180477B2 (en) | 2003-11-12 | 2007-02-20 | Advanced Testing Technologies, Inc. | Portable automatic test instrument for video displays and generators |
US20050144524A1 (en) | 2003-12-04 | 2005-06-30 | International Business Machines Corporation | Digital reliability monitor having autonomic repair and notification capability |
CN2672701Y (en) | 2003-12-19 | 2005-01-19 | 联想(北京)有限公司 | Automatic switch device |
US7315300B2 (en) * | 2003-12-31 | 2008-01-01 | 3M Innovative Properties Company | Touch sensitive device employing impulse reconstruction |
US6856259B1 (en) | 2004-02-06 | 2005-02-15 | Elo Touchsystems, Inc. | Touch sensor system to detect multiple touch events |
CN100343868C (en) * | 2004-04-28 | 2007-10-17 | 英华达(上海)电子有限公司 | Method for avoiding power expenditure of palmtop computer |
US7714846B1 (en) | 2004-08-26 | 2010-05-11 | Wacom Co., Ltd. | Digital signal processed touchscreen system |
CN1324449C (en) | 2004-08-31 | 2007-07-04 | 义隆电子股份有限公司 | Power saving structure and power saving method of capacitive touch panel |
JP2006127101A (en) * | 2004-10-28 | 2006-05-18 | Hitachi Displays Ltd | Touch panel device and coordinate detection control method therefor |
GB2419950A (en) | 2004-11-09 | 2006-05-10 | Sharp Kk | Capacitance measuring apparatus for LCD touch screen |
WO2006132703A2 (en) | 2005-04-11 | 2006-12-14 | Bruce Hodge | Method and apparatus for determining and retrieving postitional information |
KR20060131542A (en) | 2005-06-16 | 2006-12-20 | 엘지전자 주식회사 | Touch Screen Power Save Device and Method |
KR101171185B1 (en) * | 2005-09-21 | 2012-08-06 | 삼성전자주식회사 | Touch sensible display device and driving apparatus and method thereof |
US7868874B2 (en) | 2005-11-15 | 2011-01-11 | Synaptics Incorporated | Methods and systems for detecting a position-based attribute of an object using digital codes |
US8537121B2 (en) | 2006-05-26 | 2013-09-17 | Cypress Semiconductor Corporation | Multi-function slider in touchpad |
WO2008007372A2 (en) * | 2006-07-12 | 2008-01-17 | N-Trig Ltd. | Hover and touch detection for a digitizer |
KR20080023832A (en) * | 2006-09-12 | 2008-03-17 | 삼성전자주식회사 | Touch screen for mobile terminal and its power saving method |
US7835772B2 (en) | 2006-12-22 | 2010-11-16 | Cirrus Logic, Inc. | FM output portable music player with RDS capability |
US8085247B2 (en) | 2007-01-03 | 2011-12-27 | Apple Inc. | Advanced frequency calibration |
US8970501B2 (en) | 2007-01-03 | 2015-03-03 | Apple Inc. | Proximity and multi-touch sensor detection and demodulation |
US8125456B2 (en) * | 2007-01-03 | 2012-02-28 | Apple Inc. | Multi-touch auto scanning |
US7848825B2 (en) | 2007-01-03 | 2010-12-07 | Apple Inc. | Master/slave mode for sensor processing devices |
US7986313B2 (en) | 2007-01-03 | 2011-07-26 | Apple Inc. | Analog boundary scanning based on stray capacitance |
US8094128B2 (en) | 2007-01-03 | 2012-01-10 | Apple Inc. | Channel scan logic |
US7719367B2 (en) | 2007-01-03 | 2010-05-18 | Apple Inc. | Automatic frequency calibration |
US8049732B2 (en) | 2007-01-03 | 2011-11-01 | Apple Inc. | Front-end signal compensation |
US8493331B2 (en) | 2007-06-13 | 2013-07-23 | Apple Inc. | Touch detection using multiple simultaneous frequencies |
US8223179B2 (en) | 2007-07-27 | 2012-07-17 | Omnivision Technologies, Inc. | Display device and driving method based on the number of pixel rows in the display |
US10969917B2 (en) | 2008-01-30 | 2021-04-06 | Apple Inc. | Auto scanning for multiple frequency stimulation multi-touch sensor panels |
-
2007
- 2007-01-03 US US11/650,040 patent/US8125456B2/en active Active
- 2007-12-22 CN CN2007800492786A patent/CN101583923B/en active Active
- 2007-12-22 KR KR1020097016220A patent/KR101109346B1/en active IP Right Grant
- 2007-12-22 EP EP17170603.9A patent/EP3252582B1/en active Active
- 2007-12-22 JP JP2009544886A patent/JP5786239B2/en active Active
- 2007-12-22 EP EP07866002.4A patent/EP2118726B1/en active Active
- 2007-12-22 WO PCT/US2007/088751 patent/WO2008085720A1/en active Application Filing
- 2007-12-22 AU AU2007342148A patent/AU2007342148B2/en active Active
- 2007-12-28 DE DE202007018133U patent/DE202007018133U1/en not_active Expired - Lifetime
-
2008
- 2008-01-02 HK HK08100004A patent/HK1108274A2/en not_active IP Right Cessation
- 2008-01-02 AU AU2008100001A patent/AU2008100001B4/en not_active Expired
- 2008-01-03 TW TW097100213A patent/TWI347543B/en active
- 2008-01-03 CN CNU2008200062652U patent/CN201315054Y/en not_active Expired - Lifetime
- 2008-01-03 TW TW097200123U patent/TWM341273U/en not_active IP Right Cessation
-
2011
- 2011-12-29 US US13/340,153 patent/US8823660B2/en active Active
-
2012
- 2012-02-24 US US13/405,221 patent/US8542208B2/en active Active
-
2013
- 2013-04-03 JP JP2013077506A patent/JP5796250B2/en active Active
-
2014
- 2014-07-07 JP JP2014139335A patent/JP5922189B2/en active Active
- 2014-08-08 US US14/455,604 patent/US9383843B2/en active Active
-
2016
- 2016-04-13 JP JP2016080061A patent/JP6309040B2/en active Active
- 2016-06-07 US US15/176,008 patent/US10712866B2/en active Active
-
2020
- 2020-06-24 US US16/911,212 patent/US11194423B2/en active Active
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI459343B (en) * | 2009-02-02 | 2014-11-01 | Apple Inc | Liquid crystal display reordered inversion |
TWI402737B (en) * | 2009-05-04 | 2013-07-21 | Mitac Int Corp | Multi - touch device and its method |
TWI400646B (en) * | 2009-08-12 | 2013-07-01 | Htc Corp | Method for detecting pressure of touch sensing element and electronic device using the same |
US8390303B2 (en) | 2009-08-12 | 2013-03-05 | Htc Corporation | Method for detecting pressure on touch sensing element and electronic device using the same |
TWI411789B (en) * | 2009-10-27 | 2013-10-11 | Himax Tech Ltd | Capacitance touch contorl element |
TWI497379B (en) * | 2010-03-29 | 2015-08-21 | Wacom Co Ltd | Pointer detection apparatus and detection sensor |
TWI414989B (en) * | 2010-05-03 | 2013-11-11 | Raydium Semiconductor Corp | Contorl method applied to touch panel for determining touch detection manner employed by touch panel and control circuitry thereof |
TWI406167B (en) * | 2010-08-20 | 2013-08-21 | Chunghwa Picture Tubes Ltd | Touch system with multi-touch detection functions and method for detecting multi-touch |
TWI474160B (en) * | 2011-03-07 | 2015-02-21 | Quanta Comp Inc | Computer system and operation method applicable thereto |
TWI573050B (en) * | 2011-09-29 | 2017-03-01 | 日本顯示器股份有限公司 | Display, touch detection unit, driving method, and electronic unit having display |
TWI454022B (en) * | 2012-03-19 | 2014-09-21 | Htc Corp | Touch-controlled electronic device and method for reducing wireless signal interference to touch sensing function |
US9074954B2 (en) | 2012-07-19 | 2015-07-07 | Industrial Technology Research Institute | Readout apparatus and driving method for sensor |
TWI487883B (en) * | 2012-07-19 | 2015-06-11 | Ind Tech Res Inst | Readout apparatus and driving method for sensor |
TWI502433B (en) * | 2013-07-08 | 2015-10-01 | Acer Inc | Electronic device for interacting with stylus and touch control method thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200837618A (en) | Multi-touch auto scanning | |
US10969917B2 (en) | Auto scanning for multiple frequency stimulation multi-touch sensor panels | |
US11132097B2 (en) | Channel scan logic | |
KR102151921B1 (en) | Low power touch sensing during a sleep state of an electronic device | |
CN101324822B (en) | Multiple simultaneous frequency detection |