+

TR201816611T4 - Drum boiler with reduced wall thickness using a multi-drum arrangement. - Google Patents

Drum boiler with reduced wall thickness using a multi-drum arrangement. Download PDF

Info

Publication number
TR201816611T4
TR201816611T4 TR2018/16611T TR201816611T TR201816611T4 TR 201816611 T4 TR201816611 T4 TR 201816611T4 TR 2018/16611 T TR2018/16611 T TR 2018/16611T TR 201816611 T TR201816611 T TR 201816611T TR 201816611 T4 TR201816611 T4 TR 201816611T4
Authority
TR
Turkey
Prior art keywords
drum
water
steam
boiler
separation
Prior art date
Application number
TR2018/16611T
Other languages
Turkish (tr)
Inventor
Balczunas Nicolas
Agnetti Ildo
Anciaux Didier
Original Assignee
Cockerill Maintenance & Ingenierie Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cockerill Maintenance & Ingenierie Sa filed Critical Cockerill Maintenance & Ingenierie Sa
Publication of TR201816611T4 publication Critical patent/TR201816611T4/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially-straight water tubes
    • F22B21/18Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially-straight water tubes involving two or more upper drums and a single lower drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/261Steam-separating arrangements specially adapted for boiler drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Mevcut buluş örneğin elektrik santralleri veya proses endüstrileri sektöründe kullanılan ve yüksek çalışma basınçlarıyla birlikte sık ve hızlı başlangıçlara maruz kalan tamburlu kazanlar alanına ilişkindir. Buluş bilhassa ısı geri kazanımlı buhar kazanı ya da HRSG (heat recovery steam generator) tipi kazanlara ilişkindir.The present invention relates, for example, to the field of drum boilers used in the power plant or process industries sector, which are subjected to frequent and rapid starts with high working pressures. More particularly, the invention relates to heat recovery steam generators or heat recovery steam generators.

Description

TARIFNAME ÇOK TAMBURLU BIR TERTIP KULLANILARAK CEPER KALINLIGI AZALTILIVIIS TAMBUFlLU BUHAR KAZANI BULusUN KONUSU Mevcut bulus örnegin elektrik santralleri veya proses endüstrileri sektöründe kullanilan ve yüksek çalisma basinçlariyla birlikte sik ve hizli baslangiçlara maruz kalan tamburlu kazanlar alanina iliskindir. Mevcut bulus bilhassa isi geri kazanimli buhar kazani ya da HRSG (hear recovery steam generator) tipi kazanlara iliskindir. TEKNOLOJIK ARKA-PLAN VE TEKNIGIN BILINEN DURUMU Eneji pazarinin gelisimi günümüzde üretim birimlerinde daha büyük esneklik ihtiyaci dogurmustur zira kazan tamburlarinin kalinliklari döngüsel yorgunluk bakimindan giderek artan siklikta sorun haline gelecegi sekilde yeterince yüksek çalisma basinçlari vardir. Bu yüzden kazan tamburlarinin, bilhassa kritik kosullarda, yorgunluga karsi dirençli olabilmeleri için, tamburlarin optimum sekilde boyutlandirilmasi istenir, bu kritik kosullar sunlardir: sartnamede kazanin birçok baslangiç yapmasinin öngörülmesi ve bunlarin basinç yükselis gradyanlarinin yüksek olmasi; asagidaki iki sebep yüzünden kalin çeperli tamburlar tasarlanmis olmasi: ° yüksek çalisma basinçlari yüksek tasarim basinçlarini gerektirir; ° geçislerin veya istisnai çalismalarin zorunlu kildigi daha büyük depolama hacimlerine olan talebi karsilamak için büyük çaplara basvurulur. Yüksek basinçli tamburlarin (HP) yorgunluk sorunlarinin etkili biçimde azaltilmasini saglayan bilinen üç tip çözüm vardi: zorlamali dolasimli kazan (veya "once through"): HP kazanin tamburu yerine, çapi tamburunkinden daha küçük olan bir ayirici kullanilir. Bunun avantaji yorulmaya karsi direncin daha yüksek olmasidir çünkü ilgili kalinliklar daha zayiltir. Bu alternatif teknoloji daha karmasik bir kazan borusu donanimini gerektirir ve ayrica çok yüksek saflikta bir su kalitesinin kullanilmasina yol açar. Bununla birlikte daha düsük hatta sifir olan bir depolama kapasitesi belirli istisnai çalismalari daha kritik hale getirir; çok tamburlu kazan: kazanin içinde dikkate alinan bir basinç seviyesi için tek bir tamburu dikkate almak yerine, tamburun depolama hacmi toplam kapasitesi esit olan iki hazneye dagitilmistir. Iki haznenin çaplari tek bir tamburun çapina göre belirgin bir seklide daha küçüktür, bu da ilgili kalinliklari da azaltmayi ve böylece esas itibariyle yorulma sorununu iyilestirmeyi saglar. Teknigin bilinen durumunda önerilen çözüm Piyasaya sürülen bir baska örnekte, nihai sur/buhar ayirma adimini tamburun disinda gerçeklestirmek için tamburun disina ayiricilar yerlestirilmesinden ibaret bir çözüm önerilmistir, bu da normal çalisma seviyesinin ve ana tamburun yüksek seviyeden baslatilma seviyesinin yükselebilmesine yol açar. Bu durum ana tamburun çapinin ve kalinliginin azalmasini saglar; yöntemin kontrolüne bagli çözümler: ° üretilen buhar için çikislar (buhar delikleri, buhar türbininin bypass valfi, vb.) uygun biçimde kullanilarak, tertibat baslatilirken öncelikli olarak basinç yükselmesi gradyanlarini sinirlandirmak için bir yöntem. Bu çikislar tamburun içindeki basinç/ sicaklik yükselmesini kontrol eden bir mantiga bagimlidir. Bu çözümün en büyük kusuru kazanin içinde nominal basincin kurulmasini geciktirmesidir (yania baslangiç daha yavas olur) bu da günümüzde pazar ihtiyaçlarina giderek daha az uyumludur; ° bir baska yöntem, yorgunluk bakimindan en zorlayicilari olan soguk baslangiçlari engellemek amaciyla, bir sonraki baslangiç ihtimali göz önünde tutularak, bir duraklamadan sonra kazani az çok "sicak" ve dolayisiyla az çok basinçli tutmaktir. Bu sicak/basinçli tutma ana kazanin içine yardimci buhar püskürtmesi sayesinde mümkün kilinir. Bu yöntemin dezavantajlari, yakinlarda kullanilabilir bir yardimci buhar kaynaginin bulunmasi ve ayrica bu buhar tüketimine bagli enerji tüketiminin desteklenmesi gerekliligidir; ° Ievhalarin dogrudan isitilmasiyla (trace heati'ng) tamburun çeperlerinin sicak tutulmasi gibi baska imkânlar da mevcuttur. Sunumun devami için asagida iki önemli kavram tanimlanmistir: ROT: "run-out time" ve akis süresi sartnamede anlasmali olarak tanimlanan bir süredir, bunun tekabül ettigi süre, tamburun besleme pompalari üzerinden suyla beslenmeksizin çalisabilmesi gerektigi süredir; doldurulur. Bu su isinip kaynama noktasina ulastiginda, büyük bir su hacmi tambura dogru itilir ve buharlastiricinin borulari içinde bu suyun yerini buhar alir. Tambur kizdiricilara dogru tasmamayi garantileyerek, bu su hacmini içine alabilecek sekilde boyutlandirilmalidir. Bu olay belirli yük geçisleri sirasinda da meydana gelebilir. Teknigin bilinen durumuna uygun halihazirda tipik bir tertipte, Sekil 1'de gösterilen tamburlu kazan için tambur 1 kontrol valfi 5 (feed water control vai've-FWCV) denilen birinci bir valf Tambur 1 "su inis borulari - buharlastirici - su yükseltme borulari" döngüsüne baglidir: su tamburdan 1 buharlastiriciya dogru su inis borularindan 6 (downcomers) akar, su, buharlastiricinin 2 borularinin içinden geçer ve bu borularin içinde kismen buharlasir. Bu su/buhar karisimi su yükseltme borulari 7 (risers) üzerinden tambura 1 dogru gönderilir. Su/buhar tazi olan iki faz tamburun içinde, meslek erbabi tarafindan kendinden bilinen uygun bir veya birçok donanimla (yöntemle) ayrilir. Tamburun içindeki su düzlem seviyesi kontrol valli "A" 5 tarafindan kontrol edilir. Tamburun su düzleminin üstündeki doymus buhar. bu amaçla öngörülmüs bir tabandan 3 tamburun disina çikar ve (gerekirse) kizdiricilar üzerinden buhar sebekesine dogru yönlendirilir ve böylece sonra, üretilen buhari kullanan buhar prosesini veya türbinini besler. Bu tamburun hacmi söz konusu FtOT ve swell effect için yeterli olmalidir. US-2.702.026 A belgesi buharin birçok ayri isi kaynaginda kullanilabilen isidan hareketle üretildigi bir buhar üretim tesisini anlatir, bu tesis sunlari içerir: -dogal dolasimli tipte bagimsiz ayri birçok kazan, bunlarin her biri farkli bir isi kaynaginda yer alir ve mukabil isiyi kullanacak sekilde düzenlenmistir, ayri kazanlarin her biri bir buharli ayirma tamburuna ve borulara sahiptir, bu borular isiyi isi kaynagindan çikaracak sekilde yer alirlar ve bir kazan akiskaninin tamburun içinden dogal bir sekilde dolasmasi için tamburla baglantilidirlar; -kazanlari, tüm buhar tamburlari esas itibariyle ayni seviyede olacak sekilde monte etmek için araçlar; -her bir kazana, ilgili kazandan alinan isiyla belirlenen ve diger kazanlarin besleme suyu ihtiyaçlarindan bagimsiz olan bir akis hizinda besleme suyu saglamak için araçlar; -her bir kazandan, ilgili kazandan alinan isiyla belirlenen ve buharin diger kazanlardan alindigi akis hizindan bagimsiz olan bir akis hizinda buhar sizdirmak için araçlar; -tüm buhar tamburlarini, tamburlarin su seviyelerinin üzerinde birbirine baglayan kanallar 've tüm buhar tamburlarini, tamburlarin su seviyelerinin altinda baglayan kanallar, bu iki kanal tipi kazanlarin dolasim sistemlerinden ve kazanlara besleme suyu saglama araçlarindan tamamen bagimsizdir. böylece tüm kazanlar ayni su seviyesini GB 241.961 A belgesi isi isinimli bir bölüm ve isi konveksiyonlu bir bölüm içeren tipte bir buhar kazanini anlatir, bu bölümlerin içinde borular esas itibariyle düsey bir sekilde ve birbirlerine paralel olarak yer alirlar. Isinimli bölümdeki borular konveksiyonlu bölümde oldugundan daha araliklidirlar. Boru bölümleri su/buhar ayirmak için olan buhar çikisli iki üst tambura ve ayrica orta seviyede su içeren bir tambura baglidir. haznesi -su haznesi buharlastiricinin akis yönünde yukarisinda yer alir- ve buharlastiriciyla akiskan baglantili birinci bir buhar tamburu -birinci buhar tamburu buharlastiricinin akis yönünde asagisinda yer alir- içeren bir sisteme iliskindir. Burada su haznesi birinci buhar tamburunun içinde önceden belirlenmis bir su seviyesini koruyarak, buharlastiricinin besleme suyunu saglayacak sekilde çalisir. Teknigin bilinen durumunda, bazisi çok eski olan birkaç patentte, bu belgelerde belirtilen sebeplerle, örnegin üst üste bindirilmis birbiriyle baglantili iki veya daha fazla tamburlu bir kazan düzenlemesi de vardir. Örnegin: kalinligi azaltilir ve çalisma esnekligi arttirilir (baslangiç süresi daha kisadir, buharlastiricinin çalisma isisina daha çabuk ulasilir); böylece kalinligi ve dolayisiyla da baslangiçta tamburun çeperi boyunca isi gradyani azaltilir, bu gradyan tamburun üzerindeki isil yorgunlugu arttirir ve bu da tamburda çatlaklar seklinde bir asinmaya yol açar. Tambur kalinliginin azaltilmasi üretim maliyetinin de azaltilmasini saglar. Bu endiseler EP 1.526.331 A1 belgesinde de vardir. BULUSUN HEDEFLERI Mevcut bulus yüksek çalisma basinçlariyla birlikte sik ve hizli baslangiçlara maruz kalan tamburlu kazanlara bir çözüm getirmeyi hedefler. Bilhassa, bulus tamburun yorulmaya karsi direncini iyilestirmeyi hedefler, mesele kazanin bu temel donaniminin kullanim ömrüdür. BULUSUN AYIFiT EDICI ANA ÖZELLIKLERI Mevcut bulusun birinci bir yönü sunlari içeren endüstriyel bir buhar kazanina iliskindir: - bir buharlastirici, - bir su/buhar ayirma tamburu, bu tambur bir doymus buhar çikis borusu içerir, buharlastirici bir su yükseltme borusu üzerinden ayirma tamburuna akiskan baglantilidir, - bir besleme suyu giris borusu, akiskan baglanti araçlari üzerinden su/buhar ayirma tamburuyla baglantilidir, - suyun buharlastiricinin bir girisine geri dönmesi için bir inis borusu, - ve bir su depolama haznesi, akiskan baglanti araçlari sunlari içerirler: -hava deligi islevi de görebilen bir tasma borusu, bu boru su depolama haznesini su/buhar ayirma tamburuna baglar ve depolama haznesi tamamen dolunca haznenin tasmasiyla ayirma tamburunu besleyebilir ve 'ayirma tamburunun bir acil besleme borusu, bu boru da su depolama haznesini su/buhar ayirma tamburuna baglar, acil besleme borusu etkinlestirilebilen bir valf ile donatilidir, bu valf açilip ilgili tasma ve acil besleme borularini kullanarak, su/buhar ayirma tamburu ile su depolama haznesi arasinda bir birlesik kaplar durumu olusturabilir, buhar kazaninin özelligi sunlardir: besleme suyu giris borusu bir kontrol valfi ile donatilidir ve su depolama haznesinin yapisi, besleme suyu borusu su/buhar ayirma tamburu ile su depolama haznesi üzerinden baglantili olacak sekildedir. Bulusun tercih edilen gerçeklestirme sekillerine uygun olarak, endüstriyel buhar kazani asagidaki özelliklerden en az birini veya bu özelliklerin uygun bir kombinasyonunu içerir: inis borusu su/ buhar ayirma tamburunu dogrudan buharlastiricinin girisine baglar; su/buhar ayirma tamburu ile depolama haznesi esas itibariyle ayni ortalama yüksekliktedirler; su depolama haznesi besleme suyu giris borusu ile su/buhar ayirma tamburu arasinda ve/veya kendi aralarinda akiskan baglantili N sayida (tam sayi N 2 1) su depolama tamburu içerir, depolama tamburu sayisi arttikça tambur çaplari ya da daha genel olarak tambur boyutlari küçülür; birçok depolama tamburu yerine boru tesisati elemanlari kullanilir; ayirma tamburunun acil besleme borusu su/buhar ayirma tamburuna degil, dogrudan inis borusuna baglidir; kazan, akis yönünde kontrol valfinden önce veya sonra yer alan bir ekonomizör içerir; kazan düsey, yatay veya karma bir isi geri kazanimli kazan ya da HRSG tipindedir. Mevcut bulusun ikinci bir yönü, yukarida anlatilan türde bir endüstriyel buhar kazani vasitasiyla yüksek basinçli bir buhar çevrimi üretmek için temel bir yönteme iliskin olup, normal çalismada, yani ayrima tamburunun içindeki su seviyesi önceden belirlenmis kritik bir esigin üstündeyken ve gerekli bir akis süresi ya da ROT saglanacak sekildeyken yöntem hiç degilse asagidaki adimlari içerir: i) kontrol valfi ile donatili besleme suyu giris borusundan suyla beslenen depolama haznesi tamamen doldurulur; ii) depolama haznesi tasarak tasma borusu üzerinden ayirma tamburunu besler, ayirma tamburunun acil besleme borusundaki etkinlestirilebilen valf kapalidir; iii) su, ayirma tamburundan itibaren su inis borusu üzerinden buharlastiricinin girisine dogru akar; iv) buharlastiricinin borulari içinde su kismen buharlasir ve su/buhar karisimi su yükseltme borusu üzerinden ayirma tamburuna dogru gönderilir, su/buhar fazlari olan iki faz ayirma tamburunun içinde ayrilir, buhar tazi kullanilmak üzere buhar çikis borusu üzerinden tahliye edilir. Mevcut bulusun üçüncü bir yönü, yukarida anlatilan türde bir endüstriyel buhar kazani vasitasiyla yüksek basinçli bir buhar çevrimi üretmek için bir yönteme iliskin olup, istisnai veya kisitli çalismada, yani ayrima tamburunun içindeki su seviyesi önceden belirlenmis kritik bir esigin altindayken, yöntem hiç degilse temel yöntemin adimlarini içerir, ancak burada ii) adiminin yerine asagidaki adim gelir: ii) etkilestirilebilen valf hiç degilse kismen açilir, bu durumda tasma borusu hava deligi islevi görür ve depolama haznesi ayirma tamburunu ayirma tamburunun acil besleme borusu üzerinden besler, depolama haznesinin hacmi gereken ROT'u saglamak üzere birlesik kaplar üzerinden katki saglar. Mevcut bulusun dördüncü bir yönü, yukarida anlatilan türde endüstriyel buhar kazani vasitasiyla yüksek basinçli bir buhar çevrimi üretmek için bir yönteme iliskin olup, yöntem baslangiç asamasinda hiç degilse temel yöntemin adimlarini içerir, ancak burada ii) adiminin yerine asagidaki adim gelir: ii) etkinlestirilebilen valf açilir ve açik konumda kalir, böylece hem ayirma tamburunun hem de depolama haznesinin içindeki sisme etkisine mukabil su hacmini içine alir. SEKILLEHIN KISA TANlMl Sekil 1 teknigin bilinen durumuna uygun ayirma tamburlu bir kazani sematik olarak gösterir. Sekil 2 mevcut bulusa uygun çok tamburlu bir kazani sematik olarak gösterir. BULUSUN TERCIH EDILEN BIR GERÇEKLESTIRME SEKLiNiN TANIMl Mevcut bulus çerçevesinde Önerilen çözüm çok tamburlu çözümlerin bir parçasidir. Buradaki prensip. hem zorunlu kilinan akis zamanini (ROT) saglamak için hem de baslangiç sirasinda veya yük geçisleri sirasinda sisme hacmini (sweli' effect) içine almak için gerekli olan depolama hacmini en az iki hazneye veya temel tikrin genellestirilmis bir versiyonunda ikiden fazla hazneye dagitmaktir. Sekil 2'de gösterilen bulusa uygun olarak önerilen iyilestirmeyi kapsayan yeni tertipte, iki hacim ayirt edilmelidir: depolama haznesi 8 ve su/ buhar ayrimini gerçeklestiren kazan tamburunun kendisi 1. Depolama haznesi veya depolama tamburu 8 kontrol valfi 5 denilen birinci bir valf "A" içeren besleme suyu borusundan 4 su ile beslenir. Bu depolama haznesi 8 normal çalisma sirasinda tamamen doludur ve tasma borusu 9 üzerinden kazan tamburunu 1 besler. Normal çalismada, tamburun acil besleme borusunu 11 (backup drum feedi'ng !ine - BFL) donatan etkinlestirilebilen vali 10 denilen ikinci bir valf "B" kapalidir. Kazan tambur 1 "inis borulari - buharlastirici - yükseltme borulari" döngüsüne baglidir: su tamburdan 1 buharlastiriciya 2 dogru su inis borularindan 6 akar, bu durumda su, buharlastiricinin 2 borularinin içinden geçer ve bu borularin içinde kismen buharlasir, sonra bu su/buhar karisimi yükseltme borulari 7 üzerinden tambura 1 dogru gönderilir. Su/buhar fazi olan iki faz tamburun 1 içinde, meslek erbabi tarafindan kendinden bilinen uygun bir veya birçok donanimla (yöntemle) ayrilir. Tamburun 1 içindeki suyun düzlem seviyesi kontrol valti "A" 5 tarafindan kontrol edilir. Tamburun 1 su düzleminin üstündeki doymus buhar, bu amaçla öngörülmüs bir tabandan 3 tamburun disina çikar ve (gerekirse) kizdiricilar üzerinden buhar sebekesine dogru yönlendirilir ve böylece sonra, üretilen buhari kullanan buhar prosesini veya türbinini besler. istisnai çalismada, ayirma tamburunun 1 seviyesi seçilmis bir kritik esigin altina düsünce veya besleme pompalari harekete geçirince, etkinlestirilebilen "B" valfi 10 kismen ya da tamamen açilir: böylece tasma borusu 9 hava deligi islevini görür ve BFL 11 tamburu 1 besler. Böylelikle, birlesik kaplar ilkesiyle, depolama haznesinin hacmi gerekli BOT'u saglamak üzere katki saglar. Bununla birlikte, tasma borusu 9 ayirma tamburunun 1 içinde yeterince alçak bir konuma açilmalidir, böylece tamburun üst kisminda, kizdiricinin veya buhar dolasim borularinin içine tasacak sekildeki asiri su yükselmeleri engellenir. Dahasi, baslangiçta, yeni gerçeklestirme tarzina uygun olarak, etkinlestirilebilen "B" valfi 10 açik konumda tutulabilir. Böylece sisme etkisi meydana geldiginde mukabil su fazlasi eskiden oldugu gibi tek hazne yerine, kazan tamburu 1 ve depolama haznesi 8 olmak üzere iki haznenin içine alinir, bunlar birlikte, birlesik kaplar ilkesi sayesinde, saglanan toplam su hacmini çekmeye katki saglarlar. Bulus prensibine göre asagidaki alternatifler ve genellemeler yapilabilir: - önerilen iyilestirme prensibi dikkate alinan kazan -düsey veya yatay veya karma HBSG- tipinden bagimsizdir; - temel fikir kapsaminda, kazan tamburunun yan taraflarinda tek bir depolama haznesi dikkate alinmistir. Ancak, depolama haznelerinin çaplarini daha fazla küçültmek ve dolaysiyla tamburlarin/haznelerin kalinliklarini daha da fazla küçültmek için (ki bunlar gerekirse bir boru tesisati bütünü olabilir), bu fikrin depolama haznesi sayisinin ihtiyaca göre arttirilarak genellestirilmesi karsisinda hiçbir engel yoktur; - BFL`nin tambura bagli olmak yerine dogrudan inis borusunun içine bagli olmasi dikkate alinabilir; - önerilen iyilestirme prensibi su/ buhar fazlarinin ayrilmasini ve buharin kurutulmasini gerçeklestirmek için kullanilan yöntemlerden ve donanimlardan bagimsizdir; - önerilen iyilestirme prensibi sistemin su ile beslenmesinin ve hava deliginin gerçek geometrisinden bagimsizdir, esas olan tamburun ve depolama haznesinin (haznelerinin) gerektiginde birlesik kaplar olarak çalisabilmelerini saglamaktir; - önerilen iyilestirme prensibi FWCV "A`"nin 5 konumundan bagimsizdir, yani kazandaki ekonomizörler akis yönünde önce veya sonradir; - önerilen iyilestirme prensibi "A" ve "B" valflerini düzenlemek için olan elemanin tipinden bagimsizdir. Mevcut bulus çerçevesi kapsaminda önerilen çözüm daha önce açiklanan ve gerektiginde bilhassa asagidaki noktalari itibariyle teknigin bilinen durumunda korunan çözümlerden ayrilir. Mevcut bulusa göre: A. inis borulari su/ buhar ayrimini gerçeklestiren tambura baglidir; B. temel iyilestirme prensibinin islemesi için iki tamburun farkli yüksekliklerde olmasi gerekmez (ama olabilirler de), bu da çevreleyen yapi kafesinin tasarimini basitlestirir; C. su/ buhar ayrimini gerçeklestiren tamburun beslenmesi depolama tamburunun tasmasiyla gerçeklesir. Bu sebeple, normal çalismada depolama tamburu tamamen su ile dolar, bu da onun faydali hacmini azami seviyeye çikarir. TR TR TR DESCRIPTION DRUM STEAM BOILER WITH REDUCED WALL THICKNESS BY USING A MULTI-DRUM ARRANGEMENT SUBJECT OF THE INVENTION The present invention relates to the field of drum boilers, which are used, for example, in power plants or in the process industry sector and are subject to frequent and rapid starts together with high operating pressures. The present invention relates in particular to heat recovery steam boilers or HRSG (hear recovery steam generator) type boilers. TECHNOLOGICAL BACKGROUND AND KNOWN STATE OF THE ART The development of the energy market has nowadays created a need for greater flexibility in production units, as the working pressures of boiler drums are sufficiently high that their thickness becomes an increasingly frequent problem in terms of cyclic fatigue. Therefore, optimum dimensioning of the drums is required to ensure that they are resistant to fatigue, especially under critical conditions, which are: the specification foresees that the boiler will make many starts and that these have high pressure gradients; thick-walled drums are designed for the following two reasons: ° high operating pressures require high design pressures; ° large diameters are used to meet the demand for larger storage volumes required by transitions or exceptional operations. There are three known types of solutions that have effectively reduced fatigue problems in high-pressure drums (HP): forced circulation boiler (or "once through"): instead of the drum of the HP boiler, a separator with a diameter smaller than that of the drum is used. This has the advantage of being more resistant to fatigue because the thicknesses involved are weaker. This alternative technology requires a more complex boiler tube arrangement and also leads to the use of very high purity water quality. However, a lower storage capacity, even zero, makes certain exceptional operations more critical; multi-drum boiler: instead of considering a single drum for a given pressure level inside the boiler, the storage volume of the drum is distributed over two chambers of equal total capacity. The diameters of the two chambers are significantly smaller than the diameter of a single drum, which allows to reduce the thicknesses involved and thus to substantially improve the fatigue problem. Solution proposed in the state of the art Another example presented on the market is a solution consisting of placing separators outside the drum to perform the final steam/steam separation step outside the drum, which results in the possibility of increasing the normal operating level and the starting level of the main drum from a high level. This allows the diameter and thickness of the main drum to be reduced; solutions based on the control of the method: ° a method to limit the pressure rise gradients during the start-up of the device, by appropriately using the outlets for the produced steam (steam holes, bypass valve of the steam turbine, etc.). These outlets are dependent on a logic that controls the pressure/temperature rise inside the drum. The biggest drawback of this solution is that it delays the establishment of the nominal pressure in the boiler (i.e. the start-up is slower), which is less and less compatible with today's market needs; ° another method is to keep the boiler more or less "hot" and therefore more or less pressurized after a pause, taking into account the possibility of the next start, in order to prevent cold starts, which are the most difficult ones in terms of fatigue. This hot/pressurized keeping is made possible by the injection of auxiliary steam into the main boiler. The disadvantages of this method are that an auxiliary steam source must be available nearby and that the energy consumption related to this steam consumption must also be supported; ° other possibilities exist, such as keeping the drum walls warm by direct heating of the plates (trace heating). For the continuation of the presentation, two important concepts are defined below: ROT: "run-out time" and flow time are a time defined in the specification, the corresponding time during which the drum must be able to operate without being fed with water via the feed pumps; it is filled. When this water is heated and reaches the boiling point, a large volume of water is pushed into the drum and this water is replaced by steam in the evaporator tubes. The drum must be sized to accommodate this volume of water, ensuring that it does not overflow towards the superheaters. This phenomenon can also occur during certain load transitions. In a typical arrangement in accordance with the current state of the art, a first valve, called the control valve 5 (feed water control valve - FWCV) of drum 1 for a drum boiler, shown in Fig. 1, is connected to the cycle "water downpipes - evaporator - water riser pipes" of drum 1: water flows from drum 1 to the evaporator through water downpipes 6 (downcomers), the water passes through the pipes of the evaporator 2 and partially evaporates in these pipes. This water/vapor mixture is sent to drum 1 via water riser pipes 7 (risers). The two phases, the water/vapor fresh, are separated inside the drum by one or more suitable devices (methods) known to the person skilled in the art. The water level inside the drum is controlled by the control valve "A" 5. Saturated steam above the water level of the drum. It exits the 3 drums through a base provided for this purpose and is directed towards the steam network via superheaters (if necessary) and thus feeds the steam process or turbine that uses the steam produced. The volume of this drum must be sufficient for the FtOT and swell effect in question. US-2.702.026 A describes a steam generating plant in which steam is produced from heat available from a plurality of separate heat sources, comprising: - a plurality of independent boilers of the natural circulation type, each located at a different heat source and arranged to utilize the corresponding heat, each of the separate boilers having a steam separation drum and tubes, the tubes being so arranged as to remove the heat from the heat source and being connected to the drum so that a boiler fluid circulates naturally through the drum; - means for mounting the boilers so that all the steam drums are substantially at the same level; -means for supplying feed-water to each boiler at a flow rate determined by the heat received from the boiler concerned and independent of the feed-water requirements of the other boilers; -means for extracting steam from each boiler at a flow rate determined by the heat received from the boiler concerned and independent of the flow rate at which steam is received from the other boilers; -channels connecting all the steam drums above the water level of the drums and channels connecting all the steam drums below the water level of the drums, these two types of channels being completely independent of the circulation systems of the boilers and of the means for supplying feed-water to the boilers so that all boilers maintain the same water level GB 241.961 A describes a steam boiler of the type comprising a heat-convection section and a heat-convection section, within which the tubes are arranged substantially vertically and parallel to each other. The tubes in the radiant section are spaced further apart than in the convective section. The tube sections are connected to two upper drums with steam outlets for water/steam separation and also to a drum containing water at the middle level. It is related to a system comprising a water tank - the water tank is located upstream of the evaporator - and a first steam drum in fluid connection with the evaporator - the first steam drum is located downstream of the evaporator. Here the water tank operates to provide the feed water of the evaporator by maintaining a predetermined water level inside the first steam drum. In the state of the art, there are also several patents, some of which are very old, for the reasons stated in these documents, for example a boiler arrangement with two or more superimposed interconnected drums. For example: its thickness is reduced and its operating flexibility is increased (start-up time is shorter, the operating temperature of the evaporator is reached more quickly); thus its thickness and therefore the temperature gradient along the drum wall at start-up is reduced, this gradient increases the thermal fatigue on the drum and this leads to wear in the form of cracks in the drum. Reducing the drum thickness also reduces production costs. These concerns are also present in EP 1.526.331 A1. OBJECTIVES OF THE INVENTION The present invention aims to provide a solution for drum boilers that are subject to frequent and rapid starts together with high operating pressures. In particular, the invention aims to improve the resistance of the drum to fatigue, the issue being the service life of this essential piece of equipment of the boiler. KEY FEATURES OF THE INVENTION A first aspect of the present invention relates to an industrial steam boiler comprising: - an evaporator, - a water/steam separation drum, the drum comprising a saturated steam outlet pipe, the evaporator being fluidly connected to the separation drum via a water rise pipe, - a feed water inlet pipe, the water/steam separation drum being fluidly connected via fluid connection means, - a downpipe for water to return to an inlet of the evaporator, - and a water storage chamber, the fluid connection means comprising: - an overflow pipe which can also serve as an air vent, the pipe connecting the water storage chamber to the water/steam separation drum and being able to feed the separation drum by the overflow of the chamber when the storage chamber is completely filled and being able to feed the separation drum via the overflow of the chamber. an emergency feed pipe, which connects the water storage tank to the water/steam separation drum, the emergency feed pipe being equipped with an activatable valve, which can be opened and, by using the relevant overflow and emergency feed pipes, create a combined container state between the water/steam separation drum and the water storage tank, the steam boiler is characterized by: the feed water inlet pipe being equipped with a control valve and the structure of the water storage tank being such that the feed water pipe is connected to the water/steam separation drum and the water storage tank via the water storage tank. In accordance with preferred embodiments of the invention, the industrial steam boiler comprises at least one of the following features or a suitable combination of these features: the downpipe connecting the water/steam separation drum directly to the inlet of the evaporator; the water/steam separation drum and the storage tank are essentially at the same average height; the water storage tank contains N (integer N 2 1) water storage drums with fluid connection between the feed water inlet pipe and the water/steam separation drum and/or between themselves, the drum diameters or more generally the drum dimensions decrease as the number of storage drums increases; piping elements are used instead of many storage drums; the emergency feed pipe of the separation drum is not connected to the water/steam separation drum but directly to the downstream pipe; the boiler contains an economizer located upstream or downstream of the control valve; the boiler is a vertical, horizontal or mixed heat recovery boiler or HRSG type. A second aspect of the present invention relates to a basic method for generating a high-pressure steam cycle by means of an industrial steam boiler of the type described above, comprising at least the following steps in normal operation, i.e. when the water level in the separation drum is above a predetermined critical threshold and a required flow time or ROT is provided: i) the storage tank, fed with water through the feed water inlet pipe equipped with a control valve, is completely filled; ii) the storage tank overflows and feeds the separation drum through the overflow pipe, the activatable valve in the emergency feed pipe of the separation drum being closed; iii) water flows from the separation drum through the water downpipe towards the inlet of the evaporator; iv) Water partially evaporates in the evaporator tubes and the water/vapor mixture is sent towards the separation drum via the water riser tube, the two phases, water/vapor phases, are separated inside the separation drum, the steam is discharged via the steam outlet tube to be used in the steam tank. A third aspect of the present invention relates to a method for generating a high-pressure steam cycle by means of an industrial steam boiler of the type described above, wherein, in exceptional or limited operation, i.e. when the water level inside the separation drum is below a predetermined critical threshold, the method comprises at least the steps of the basic method, but where step ii) is replaced by the following: ii) the actuable valve is at least partially opened, in which case the overflow pipe acts as a vent and the storage chamber feeds the separation drum via the emergency feed pipe of the separation drum, the volume of the storage chamber contributing via the associated vessels to provide the required ROT. A fourth aspect of the present invention relates to a method for generating a high pressure steam cycle by means of an industrial steam boiler of the type described above, the method comprising at least the steps of the basic method in its initial phase, but where step ii) is replaced by the following step: ii) the activatable valve opens and remains in the open position, thus admitting the water volume corresponding to the swelling effect inside both the separation drum and the storage chamber. BRIEF DESCRIPTION OF THE FIGURES Figure 1 schematically shows a separation drum boiler in accordance with the prior art. Figure 2 schematically shows a multi-drum boiler in accordance with the present invention. DESCRIPTION OF A PREFERRED FORM OF EMBODIMENT OF THE INVENTION The proposed solution within the framework of the present invention is part of the multi-drum solutions. The principle herein. The aim of this method is to distribute the storage volume necessary both to provide the required flow time (ROT) and to contain the swelling volume (swell effect) during start-up or during load transitions, over at least two chambers or, in a generalized version of the basic method, over more than two chambers. In the new arrangement comprising the proposed improvement according to the invention shown in Figure 2, two volumes are to be distinguished: the storage chamber 8 and the boiler drum itself 1 which carries out the water/steam separation. The storage chamber or storage drum 8 is fed with water through the feed water pipe 4 which contains a first valve "A", called control valve 5. This storage chamber 8 is completely full during normal operation and feeds the boiler drum 1 via the overflow pipe 9. In normal operation, a second valve "B", called activatable valve 10, which supplies the emergency feed pipe 11 (backup drum feeding - BFL) of the drum, is closed. The boiler drum 1 is connected to the "downpipes - evaporator - riser pipes" cycle: water flows from drum 1 to evaporator 2 through water downpipes 6, in which case the water passes through the pipes of evaporator 2 and partially evaporates in these pipes, after which this water/vapor mixture is sent to drum 1 via riser pipes 7. The two phases, the water/vapor phase, are separated in drum 1 by one or more suitable devices (methods) known to the expert. The level of water in drum 1 is controlled by the control valve "A" 5. The saturated steam above the water level of drum 1 exits the drum through a bottom 3 provided for this purpose and is directed (if necessary) through superheaters into the steam network, which then feeds the steam process or turbine that uses the steam produced. In exceptional operation, when the level of the separation drum 1 falls below a selected critical threshold or when the feed pumps are activated, the activatable valve "B" 10 is partially or fully opened: the overflow pipe 9 thus serves as a vent and the BFL 11 feeds drum 1. Thus, by the principle of combined vessels, the volume of the storage tank contributes to the required BOT. However, the overflow pipe 9 must be opened to a sufficiently low position inside the separating drum 1, so that excessive water rises in the upper part of the drum, which would overflow into the superheater or the steam circulation pipes, are prevented. Moreover, at the beginning, in accordance with the new implementation, the activable valve "B" 10 can be kept in the open position. In this way, when the swelling effect occurs, the corresponding excess water is taken into two tanks, the boiler drum 1 and the storage tank 8, instead of a single tank as before, which together contribute to the total volume of water supplied, by the principle of combined vessels. According to the invention principle, the following alternatives and generalizations can be made: - the proposed improvement principle is independent of the type of boiler considered - vertical or horizontal or mixed HBSG -; - within the basic idea, a single storage chamber on the sides of the boiler drum is considered. However, in order to further reduce the diameter of the storage chambers and therefore the thickness of the drums/chambers even further (which can be a whole of pipework if necessary), there is no obstacle to generalizing this idea by increasing the number of storage chambers according to the need; - instead of being connected to the drum, the BFL can be considered to be connected directly inside the downpipe; - the proposed improvement principle is independent of the methods and equipment used to perform the separation of the water/vapor phases and the drying of the steam; - the proposed improvement principle is independent of the actual geometry of the system water supply and air vent, the main thing is to ensure that the drum and the storage tank(s) can work as combined vessels when necessary; - the proposed improvement principle is independent of the 5 positions of the FWCV "A`", i.e. the economizers in the boiler are before or after the flow direction; - the proposed improvement principle is independent of the type of element for regulating the valves "A" and "B". The solution proposed within the framework of the present invention differs from the solutions previously described and, where necessary, preserved in the state of the art, in particular in the following points. According to the present invention: A. the downpipes are connected to the drum performing the water/steam separation; B. for the basic improvement principle to work the two drums do not need to be at different heights (but they can be), which simplifies the design of the surrounding structural cage; C. The feeding of the drum that performs water/steam separation is done by the overflow of the storage drum. Therefore, in normal operation, the storage drum is completely filled with water, which maximizes its useful volume.TR TR TR

TR2018/16611T 2014-11-21 2015-11-17 Drum boiler with reduced wall thickness using a multi-drum arrangement. TR201816611T4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE20145076A BE1022566A9 (en) 2014-11-21 2014-11-21 BALLOON STEAM GENERATOR HAVING REDUCED WALL THICKNESS USING MULTI-BALLOON CONFIGURATION

Publications (1)

Publication Number Publication Date
TR201816611T4 true TR201816611T4 (en) 2018-11-21

Family

ID=52813844

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2018/16611T TR201816611T4 (en) 2014-11-21 2015-11-17 Drum boiler with reduced wall thickness using a multi-drum arrangement.

Country Status (8)

Country Link
EP (1) EP3221640B1 (en)
KR (1) KR20170088377A (en)
CN (1) CN107076408B (en)
BE (1) BE1022566A9 (en)
BR (1) BR112017010434A2 (en)
CA (1) CA2968450A1 (en)
TR (1) TR201816611T4 (en)
WO (1) WO2016079120A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112178614B (en) * 2020-11-05 2023-12-29 江苏嘉林新能源科技有限公司 Adjustable modularized steam generator
US11802687B2 (en) * 2021-02-06 2023-10-31 Uop Llc Method of efficiency enhancement of fired heaters without air preheat systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB241961A (en) * 1924-04-25 1925-10-26 Charles Gilbert Hawley Radiant heat steam boiler and setting
US2702026A (en) * 1952-07-31 1955-02-15 Svenska Maskinverken Ab Steam generating plant utilizing heat emanating from many different sources
BE1005793A3 (en) * 1992-05-08 1994-02-01 Cockerill Mech Ind Sa INDUCED CIRCULATION HEAT RECOVERY BOILER.
ES2265545T3 (en) 2003-10-23 2007-02-16 Nem B.V. EVAPORATOR SYSTEM.
US9518731B2 (en) * 2011-03-23 2016-12-13 General Electric Technology Gmbh Method and configuration to reduce fatigue in steam drums
US9921001B2 (en) * 2011-04-25 2018-03-20 Nooter/Eriksen, Inc. Heat recovery steam generator and multidrum evaporator
US8851024B2 (en) * 2011-12-07 2014-10-07 Alstom Technology Ltd Water reservoir for a steam generation system and method of use thereof

Also Published As

Publication number Publication date
BE1022566A1 (en) 2016-06-03
EP3221640A1 (en) 2017-09-27
BE1022566B1 (en) 2016-06-03
WO2016079120A1 (en) 2016-05-26
KR20170088377A (en) 2017-08-01
CA2968450A1 (en) 2016-05-26
CN107076408B (en) 2019-03-08
BE1022566A9 (en) 2017-07-06
CN107076408A (en) 2017-08-18
EP3221640B1 (en) 2018-08-22
BR112017010434A2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US4674285A (en) Start-up control system and vessel for LMFBR
JP5510111B2 (en) Drain collection facility
EP2689185B1 (en) Method and configuration to reduce fatigue in steam drums
KR101710229B1 (en) Heat recovery steam generator and multidrum evaporator
JP6067173B1 (en) Geothermal exchanger and geothermal power generator
CN105114937A (en) Steam and water circulation system for supercritical circulating fluidized bed boiler
KR102199055B1 (en) System for passive heat removal from the pressurized water reactor through the steam generator
TR201816611T4 (en) Drum boiler with reduced wall thickness using a multi-drum arrangement.
US10100680B2 (en) Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
JP5448883B2 (en) Once-through exhaust heat recovery boiler
EP0125924A2 (en) Start-up systems and start-up vessels for such systems
EP3859749A1 (en) Method and system for returning a nuclear power station to a safe state after an extreme event
US4165718A (en) Method and apparatus for feeding condensate to a high pressure vapor generator
CA3066162C (en) Method and system for bringing a nuclear power plant into a safe state after extreme effect
KR102315403B1 (en) Water Recirculation in Vertical Forced Flow Steam Generators
RU2413848C1 (en) Thermal power station, mainly nuclear power station
EP3044291B1 (en) Heat recovery from a high pressure stream
KR20190024974A (en) Steam generating system
JP2019120444A (en) Cooling device
Yaurov et al. Experience of commissioning the AES-2006 (V-392M) steam generator blowdown system
RU2450380C1 (en) Method of water supply
JP2006068687A (en) Deaerator by heating for boiler
CN116697330A (en) Device and method for heat utilization of non-forced circulation rising pipe
JP2020134091A (en) Chemical cleaning method of boiler
Durrant et al. Start-up control system and vessel for lmfbr
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载