KR100764341B1 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- KR100764341B1 KR100764341B1 KR1020010036605A KR20010036605A KR100764341B1 KR 100764341 B1 KR100764341 B1 KR 100764341B1 KR 1020010036605 A KR1020010036605 A KR 1020010036605A KR 20010036605 A KR20010036605 A KR 20010036605A KR 100764341 B1 KR100764341 B1 KR 100764341B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- semiconductor device
- manufacturing
- forming
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
- H10D84/0177—Manufacturing their gate conductors the gate conductors having different materials or different implants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/667—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
본 발명은 반도체소자의 제조방법에 관한 것으로, CMOS 트랜지스터의 형성공정 시 반도체기판 상부에 게이트절연막을 형성하고, 상기 반도체기판의 NMOS영역에 Ta1-xAlxN막을 형성하고, PMOS영역에 Ti1-xAlxN막을 형성한 다음, 전체표면 상부에 금속층을 형성한 후 게이트전극 마스크를 식각마스크로 상기 금속층, Ta1-xAlxN막 또는 Ti1-xAlxN막과 게이트절연막을 식각하여 NMOS영역에는 금속층패턴, Ta1-xAl xN막패턴 및 게이트절연막패턴의 적층구조를 형성하고, 상기 PMOS영역에는 금속층패턴, Ti1-xAlxN막패턴 및 게이트절연막패턴의 적층구조를 형성함으로써 NMOS영역과 PMOS영역 모두에서 일함수 값을 조절하여 문턱전압을 낮추고, 내산화성 및 열적 안정성을 향상시켜 그에 따른 소자의 동작 특성 및 신뢰성을 향상시키는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, wherein a gate insulating film is formed over a semiconductor substrate during a process of forming a CMOS transistor, a Ta 1-x Al x N film is formed in an NMOS region of the semiconductor substrate, and a Ti is formed in a PMOS region. After forming a 1-x Al x N film, and then forming a metal layer on the entire surface, using a gate electrode mask as an etching mask, the metal layer, Ta 1-x Al x N film or Ti 1-x Al x N film and a gate insulating film Is formed to form a stacked structure of a metal layer pattern, a Ta 1-x Al x N film pattern and a gate insulating film pattern in the NMOS region, and the metal layer pattern, a Ti 1-x Al x N film pattern and a gate insulating film pattern in the PMOS region. By forming a stacked structure, the threshold voltage is reduced by adjusting the work function value in both the NMOS region and the PMOS region, and the oxidation resistance and thermal stability are improved, thereby improving the operation characteristics and reliability of the device.
Description
도 1 은 본 발명에 따른 반도체소자의 제조방법에 의해 형성된 게이트전극의 단면도.1 is a cross-sectional view of a gate electrode formed by a method of manufacturing a semiconductor device according to the present invention.
< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>
10 : 반도체기판 11 : n웰10 semiconductor substrate 11: n well
12 : 소자분리절연막 13 : 게이트절연막12: device isolation insulating film 13: gate insulating film
14 : p웰 15 : TiAlNx막패턴14: p well 15: TiAlN x film pattern
17 : TaAlNx막패턴 19 : 금속층패턴17 TaAlN x
21 : LDD영역 23 : 절연막 스페이서21: LDD region 23: insulating film spacer
25 : 소오스/드레인영역25: source / drain area
Ⅰ: NMOS영역 Ⅱ : PMOS영역Ⅰ: NMOS area Ⅱ: PMOS area
본 발명은 반도체소자의 제조방법에 관한 것으로, 보다 상세하게 NMOS 및 PMOS에 적절한 일함수 값을 갖는 박막을 이용하여 안정한 이중 금속 게이트전극을 형성하는 반도체소자의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device for forming a stable double metal gate electrode using a thin film having a work function value suitable for NMOS and PMOS.
일반적으로 MOSFET 의 게이트 절연막은 반도체기판과 게이트 전극을 중계하는 역할로서 반도체기판 및 상기 게이트 전극의 사이에 위치한다. 그리고, 상기 게이트 절연막은 게이트 전극으로 주로 사용되는 다결정실리콘층과의 계면 상태가 가장 양호한 열산화막(SiO2)을 주로 사용한다.In general, the gate insulating film of the MOSFET serves as a relay between the semiconductor substrate and the gate electrode and is located between the semiconductor substrate and the gate electrode. In addition, the gate insulating film mainly uses a thermal oxide film (SiO 2 ) having the best interface state with the polysilicon layer mainly used as the gate electrode.
그러나, 소자가 고집적화되어 감에 따라 디자인 룰(design rule)이 감소하여 SiO2막의 터널링(tunneling) 한계가 25 ∼ 30Å 이하로 줄어드는 추세에 있다. 그리고, 서브(sub) 0.10㎛ 기술에서 게이트절연막의 두께는 DRAM의 경우 30 ∼ 35Å, 로직(logic) 소자의 경우 13 ∼ 15Å이 예상된다.However, as the device becomes more integrated, the design rule decreases, and the tunneling limit of the SiO 2 film tends to decrease to 25 to 30 dB or less. The thickness of the gate insulating film is estimated to be 30 to 35 mW for DRAM and 13 to 15 mW for logic devices in sub 0.10 mu m technology.
현재까지 게이트전극의 재료로 사용되고 있는 다결정실리콘층을 계속 사용하는 경우, 폴리-게이트 공핍현상(poly-gate depletion effect)에 의하여 증가되는 캐패시턴스 성분이 3 ∼ 8Å 정도까지 되어 13 ∼ 30Å 정도의 게이트절연막이 차지하는 전기적인 두께(Teff)를 감소시키는데 큰 장애가 되고 있다. 따라서 이를 극복하기 위하여 고유전 물질(high-k dielectric material)을 게이트 절연막으로 사용하려는 연구가 진행되고 있으며, 게이트전극의 재료로 폴리실리콘 대신 금속을 적용함으로써 폴리 게이트 공핍현상을 최소화하려는 노력을 하고 있다. 뿐만 아니라 p+ 다결정실리콘 게이트의 경우 보론(boron)이 게이트 절연막을 통해 반도체기판으로 침투하는 문제도 금속 게이트를 사용함으로써 방지할 수 있다. In the case of continuing to use the polysilicon layer used as a gate electrode material until now, the capacitance component increased by the poly-gate depletion effect is about 3 to 8 Å and the gate insulating film is about 13 to 30 Å. This is a major obstacle in reducing the electrical thickness T eff . Therefore, in order to overcome this problem, researches are being made to use high-k dielectric materials as gate insulating films, and efforts have been made to minimize poly gate depletion by applying metal instead of polysilicon as the gate electrode material. . In addition, in the case of the p + polysilicon gate, boron is prevented from penetrating into the semiconductor substrate through the gate insulating layer by using a metal gate.
한편, 상기 금속 게이트의 경우 TiN 또는 WN을 중심으로 연구가 진행되어 왔 으나, 일함수(work function) 값이 4.75 ∼ 4.85eV 정도인 관계로 미드 갭(mid-gap) 일함수에서 밸런스 밴드(valence band) 쪽으로 가깝게 일함수를 형성하게 된다. PMOSFET를 위한 경우 상기의 일함수는 어느 정도 적합한 수준이라고 할 수 있으나, NMOSFET의 경우 채널 도핑을 2 ∼ 5×1017/㎤정도로 가져갈 때 문턱전압 값이 거의 0.8 ∼ 1.2V 종도가 됨을 의미한다. 즉, 이러한 경우 저전압(low-voltage) 또는 저전원(low-power)의 특성을 갖는 고성능(high performance) 소자에서 요구되는 0.3 ∼ 0.6V의 문턱전압 타겟(target)을 만족시킬 수 없게 된다. 따라서, NMOS와 PMOS에서 동시에 0.3 ∼ 0.6V 정도의 낮은 문턱전압을 얻기 위해서는 NMOS의 경우 일함수 값이 약 4.2 ∼ 4.4eV, PMOS의 경우 일함수 값이 약 4.8 ∼ 5.1eV 정도의 값을 가지는 이중 금속 게이트전극을 사용하는 것이 바람직하다. On the other hand, in the case of the metal gate has been studied centering around TiN or WN, the balance band (valence in the mid-gap work function due to the work function value of about 4.75 ~ 4.85eV The work function is formed close to the band). In the case of PMOSFET, the above work function can be said to be suitable to some extent, but in case of NMOSFET, when the channel doping is about 2 to 5 x 10 17 / cm 3, the threshold voltage value is almost 0.8 to 1.2V. That is, in this case, the threshold voltage target of 0.3 to 0.6 V, which is required in a high performance device having low-voltage or low-power characteristics, cannot be satisfied. Therefore, in order to obtain a low threshold voltage of 0.3 to 0.6V at the same time in the NMOS and the PMOS, the work function value is about 4.2 to 4.4 eV for the NMOS, and the work function value is about 4.8 to 5.1 eV for the PMOS. It is preferable to use a metal gate electrode.
이러한 이중 금속 게이트전극의 요구되는 특성은 일함수가 NMOS용과 PMOS용으로 가능한 동종의 물질을 적용하는 것이 식각단계나 공정단순화 측면에서 유리하다고 볼 수 있지만, 동종의 물질로 구성성분이나 박막의 배향성의 조절로 일 함수가 0.7 ∼ 1.0eV 이상으로 차이가 나는 경우는 현재까지는 극히 드문 실정이다. 따라서, 일함수가 다른 이종의 물질을 이중 금속 게이트전극에 적용하기 위해서는 게이트전극의 적층 높이가 달라지고 전극을 구성하는 물질이 달라져서 전극을 식각하는데 어려움이 있고, 950℃ 이상의 고온 열처리공정 시 하부 게이트절연막과 반응하여 소자의 동작 특성 및 신뢰성을 저하시키는 문제점이 있다. The required property of the double metal gate electrode is that it is advantageous to apply the same kind of material that the work function is possible for NMOS and PMOS in terms of etching step or process simplification. It is extremely rare to date if the work function differs by more than 0.7 to 1.0 eV. Therefore, in order to apply heterogeneous materials having different work functions to the double metal gate electrode, it is difficult to etch the electrode because the stacking height of the gate electrode is changed and the material constituting the electrode is different. Reaction with the insulating film has a problem of lowering the operation characteristics and reliability of the device.
본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, NMOS영역에는 Ta1-xAlxN막을 형성하고, PMOS영역에는 Ti1-xAlxN막을 형성하여 각각의 일함수값을 조절함으로써 문턱전압이 감소된 CMOS 트랜지스터를 형성하는 반도체소자의 제조방법을 제공하는데 그 목적이 있다.According to the present invention, in order to solve the problems of the prior art, a Ta 1-x Al x N film is formed in an NMOS region, and a Ti 1-x Al x N film is formed in a PMOS region, thereby adjusting the respective work function values. It is an object of the present invention to provide a method of manufacturing a semiconductor device for forming a CMOS transistor with reduced voltage.
이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 제조방법은, Method for manufacturing a semiconductor device according to the present invention for achieving the above object,
NMOS영역과 PMOS영역이 구비되는 반도체기판에 p웰과 n웰을 각각 형성하는 공정과,Forming p wells and n wells on a semiconductor substrate having an NMOS region and a PMOS region, respectively;
상기 반도체기판 상부에 게이트절연막을 형성하는 공정과,Forming a gate insulating film on the semiconductor substrate;
상기 NMOS영역에 Ta1-xAlxN막을 형성하고, 상기 PMOS영역에 Ti1-xAlx N막을 형성하는 공정과,Forming a Ta 1-x Al x N film in the NMOS region and a Ti 1-x Al x N film in the PMOS region;
전체표면 상부에 금속층을 형성하는 공정과,Forming a metal layer on the entire surface,
게이트전극 마스크를 식각마스크로 상기 금속층과 Ta1-xAlxN막 또는 Ti1-xAl xN막 및 게이트절연막을 식각하여 상기 NMOS영역에 금속층패턴, Ta1-xAlxN막패턴 및 게이트절연막패턴의 적층구조를 형성하고, 상기 PMOS영역에는 금속층패턴, Ti1-xAlxN막패턴 및 게이트절연막패턴의 적층구조를 형성하는 공정과,A metal layer pattern, a Ta 1-x Al x N film pattern, and a Ta 1-x Al x N film or a Ti 1-x Al x N film and a gate insulating film are etched by using a gate electrode mask as an etch mask. Forming a stacked structure of a gate insulating film pattern, and forming a stacked structure of a metal layer pattern, a Ti 1-x Al x N film pattern, and a gate insulating film pattern in the PMOS region;
상기 적층구조의 양측 반도체기판에 LDD영역을 형성하는 공정과, Forming LDD regions on both semiconductor substrates of the laminated structure;
상기 적층구조의 측벽에 절연막 스페이서를 형성하는 공정과,Forming an insulating film spacer on sidewalls of the laminated structure;
상기 절연막 스페이서의 양측 반도체기판에 소오스/드레인영역을 형성하는 공정을 포함하는 것을 특징으로 한다(여기서, x의 조성은 0.05~0.95이다).And forming a source / drain region on both semiconductor substrates of the insulating film spacer (where x has a composition of 0.05 to 0.95).
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 1 는 본 발명에 따른 반도체소자의 제조방법에 의해 형성된 게이트전극의 단면도이다. 1 is a cross-sectional view of a gate electrode formed by a method of manufacturing a semiconductor device according to the present invention.
먼저, 반도체기판(10)에 활성영역을 정의하는 소자분리절연막(12)을 형성한다.First, a device
다음, 상기 반도체기판(10)의 NMOS영역(Ⅰ)과 PMOS영역(Ⅱ)에 p웰(14)과 n웰(11)을 각각 형성한다. Next,
그 다음, 상기 반도체기판(10) 상부에 게이트절연막(도시안됨)을 소정 두께 형성한다. Next, a gate insulating film (not shown) is formed on the
다음, 상기 NMOS영역(Ⅰ)에 Ta1-xAlxN막(도시안됨)을 형성한다.Next, a Ta 1-x Al x N film (not shown) is formed in the NMOS region I.
그 다음, PMOS영역(Ⅱ)에 Ti1-xAlxN막(도시안됨)을 형성한다. 이때, 상기 Ta1-xAlxN막과 Ti1-xAlxN막은 확산방지 역할을 한다. Next, a Ti 1-x Al x N film (not shown) is formed in the PMOS region (II). In this case, the Ta 1-x Al x N film and the Ti 1-x Al x N film serve to prevent diffusion.
상기 Ta1-xAlxN막과 Ti1-xAlxN막에서 x의 조성은 0.05 ∼ 0.95이다. 그리고, 상기 Ta1-xAlxN막의 일함수값은 4.0 ∼ 4.4eV이고, 상기 Ti1-xAlxN막의 일함수값은 4.8 ∼ 5.2eV이다. The composition of x is 0.05 to 0.95 in the Ta 1-x Al x N film and the Ti 1-x Al x N film. The work function value of the Ta 1-x Al x N film is 4.0 to 4.4 eV, and the work function value of the Ti 1-x Al x N film is 4.8 to 5.2 eV.
상기 Ta1-xAlxN막과 Ti1-xAlxN막은 질소 반응성 스퍼터링방법 또는 화학기상증착방법(chemical vapor deposition, 이하 CVD라 함) 또는 어드벤스트(advanced) CVD방법 또는 단원자증착법(automic layer deposition)방법으로 5 ∼ 500Å 두께 증착된다. The Ta 1-x Al x N film and the Ti 1-x Al x N film are nitrogen reactive sputtering method or chemical vapor deposition method (chemical vapor deposition, CVD) or advanced CVD method or monoatomic deposition method ( 5 to 500 mm thick deposition by automic layer deposition).
상기 질소 반응성 스퍼터링방법은 0 ∼ 500℃의 온도에서 Ta1-xAlx 또는 Ti1-xAlx를 타겟으로 이용하고, 5 ∼ 100sccm의 질소와 5 ∼ 50sccm의 Ar 및 0.25 ∼ 15kW의 RF 파워를 사용하는 조건으로 실시된다.The nitrogen reactive sputtering method uses Ta 1-x Al x or Ti 1-x Al x as a target at a temperature of 0 to 500 ° C., and nitrogen of 5 to 100 sccm, Ar of 5 to 50 sccm, and RF power of 0.25 to 15 kW. Is carried out under the conditions of using.
그리고, 상기 CVD방법 또는 어드벤스트 CVD방법은 전구체를 이용하여 실시된다. 상기 Ta1-xAlxN막은 Ta의 전구체로 TaCl4, Ta(OC2H5)4, TDMAT 또는 TDEAT를 사용하고, 상기 Ti1-xAlxN막은 Ti의 전구체로 TiCl4, TDMAT 또는 TDEAT를 사용하며, Al의 전구체로 AlCl3, DMAH(di-methyl aluminate hydride) 또는 DMEAA(di-methyl aluminate)를 사용하고 질소 소스로 NH3, N2 또는 ND3를 이용한다. The CVD method or the advanced CVD method is performed using a precursor. The Ta 1-x Al x N film uses TaCl 4 , Ta (OC 2 H 5 ) 4 , TDMAT or TDEAT as a precursor of Ta, and the Ti 1-x Al x N film uses TiCl 4 , TDMAT or TDEAT is used, AlCl 3 , di-methyl aluminate hydride (DMAH) or di-methyl aluminate (DMEAA) is used as the precursor of Al, and NH 3 , N 2 or ND 3 is used as the nitrogen source.
또한, 상기 단원자 증착법은 50 ∼ 650℃의 온도 및 0.05 ∼ 3Torr의 기압 하에서 실시된다. The monoatomic vapor deposition method is carried out at a temperature of 50 to 650 ° C. and a pressure of 0.05 to 3 Torr.
그 다음, 상기 구조 상부에 금속층(도시안됨)을 형성한다. 상기 금속층은 텅스텐층 또는 저저항 탄탈륨(α-Ta)층으로 형성된다.A metal layer (not shown) is then formed over the structure. The metal layer is formed of a tungsten layer or a low resistance tantalum (α-Ta) layer.
다음, 게이트전극 마스크를 식각마스크로 상기 금속층, Ta1-xAlxN막 및 게이 트절연막 또는 금속층, Ti1-xAlxN막 및 게이트절연막을 식각하여 NMOS영역(Ⅰ)에 금속층패턴(19), Ta1-xAlxN막패턴(17) 및 게이트절연막패턴(13)의 적층구조를 형성하고, PMOS영역(Ⅱ)에 금속층패턴(19), Ti1-xAlxN막패턴(15) 및 게이트절연막패턴(13)의 적층구조를 형성한다.Then, a gate electrode mask as an etching mask, the metal layer, Ta 1-x Al x N film and a gated insulating film or a metal layer, Ti 1-x Al x N film and by etching the gate insulating film metal patterns on the NMOS area (Ⅰ) ( 19), a lamination structure of the Ta 1-x Al x N
그 다음, 상기 적층구조의 양측에 저농도의 불순물을 이온주입하여 LDD영역(21)을 형성한다. 이때, NMOS영역(Ⅰ)에는 n형 불순물을 이온주입하고, PMOS영역(Ⅱ)는 p형 불순물을 이온주입한다. Next, the LDD
다음, 상기 적층구조의 측벽에 절연막 스페이서(23)를 형성한다. Next, the
그 다음, 상기 절연막 스페이서(23) 양측에 고농도의 불순물을 이온주입하여 소오스/드레인영역(25)을 형성한다. 이때, NMOS영역(Ⅰ)에는 n형 불순물을 이온주입하고, PMOS영역(Ⅱ)는 p형 불순물을 이온주입한다. (도 1 참조)Next, a high concentration of impurities are ion-implanted on both sides of the
상기와 같은 방법은 다마신 구조에 적용할 수도 있다. The above method can also be applied to the damascene structure.
이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은, CMOS 트랜지스터의 형성공정 시 반도체기판 상부에 게이트절연막을 형성하고, 상기 반도체기판의 NMOS영역에 Ta1-xAlxN막을 형성하고, PMOS영역에 Ti1-xAlx N막을 형성한 다음, 전체표면 상부에 금속층을 형성한 후 게이트전극 마스크를 식각마스크로 상기 금속층, Ta1-xAlxN막 또는 Ti1-xAlxN막과 게이트절연막을 식각하여 NMOS영역에는 금속층패턴, Ta1-xAlxN막패턴 및 게이트절연막패턴의 적층구조를 형성하고, 상기 PMOS영역에는 금속층패턴, Ti1-xAlxN막패턴 및 게이트절연막패턴의 적층구조를 형성함으로써 NMOS영역과 PMOS영역 모두에서 일함수 값을 조절하여 문턱전압을 낮추고, 내산화성 및 열적 안정성을 향상시켜 그에 따른 소자의 동작 특성 및 신뢰성을 향상시키는 이점이 있다.As described above, in the method of manufacturing a semiconductor device according to the present invention, a gate insulating film is formed over a semiconductor substrate during a CMOS transistor formation process, and a Ta 1-x Al x N film is formed in an NMOS region of the semiconductor substrate. After forming a Ti 1-x Al x N film in the PMOS region, and then forming a metal layer on the entire surface, using a gate electrode mask as an etching mask, the metal layer, Ta 1-x Al x N film or Ti 1-x Al x N The film and the gate insulating film are etched to form a stacked structure of a metal layer pattern, a Ta 1-x Al x N film pattern and a gate insulating film pattern in the NMOS region, and a metal layer pattern, a Ti 1-x Al x N film pattern and By forming the gate insulating film pattern stacked structure, the work voltage is controlled in both the NMOS region and the PMOS region, thereby lowering the threshold voltage, improving oxidation resistance and thermal stability, and thus improving operating characteristics and reliability of the device. .
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020010036605A KR100764341B1 (en) | 2001-06-26 | 2001-06-26 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020010036605A KR100764341B1 (en) | 2001-06-26 | 2001-06-26 | Manufacturing method of semiconductor device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20030000572A KR20030000572A (en) | 2003-01-06 |
| KR100764341B1 true KR100764341B1 (en) | 2007-10-05 |
Family
ID=27711174
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020010036605A Expired - Fee Related KR100764341B1 (en) | 2001-06-26 | 2001-06-26 | Manufacturing method of semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100764341B1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100868249B1 (en) * | 2006-08-11 | 2008-11-11 | 박용진 | Anti-aging Pharmaceutical Compositions and Functional Health Foods Containing Black Trifolium and Extracts Prepared by a New Manufacturing Method |
| KR101040081B1 (en) * | 2008-09-11 | 2011-06-09 | 주식회사 우아미가구 | Functional Shoe Drying and Sterilizer |
| US11158719B2 (en) * | 2018-11-30 | 2021-10-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing semiconductor devices and semiconductor devices |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000223588A (en) * | 1999-02-03 | 2000-08-11 | Nec Corp | Complementary mis-type semiconductor device and its manufacture |
| KR20000058131A (en) * | 1999-02-26 | 2000-09-25 | 윌리엄 비. 켐플러 | Method of forming dual metal gate structures or cmos devices |
| JP2000315789A (en) * | 1999-04-30 | 2000-11-14 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
| JP2000353756A (en) * | 1999-06-14 | 2000-12-19 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
-
2001
- 2001-06-26 KR KR1020010036605A patent/KR100764341B1/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000223588A (en) * | 1999-02-03 | 2000-08-11 | Nec Corp | Complementary mis-type semiconductor device and its manufacture |
| KR20000058131A (en) * | 1999-02-26 | 2000-09-25 | 윌리엄 비. 켐플러 | Method of forming dual metal gate structures or cmos devices |
| JP2000315789A (en) * | 1999-04-30 | 2000-11-14 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
| JP2000353756A (en) * | 1999-06-14 | 2000-12-19 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20030000572A (en) | 2003-01-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11031482B2 (en) | Gate electrode having a capping layer | |
| US6770521B2 (en) | Method of making multiple work function gates by implanting metals with metallic alloying additives | |
| US6130123A (en) | Method for making a complementary metal gate electrode technology | |
| US5923999A (en) | Method of controlling dopant diffusion and metal contamination in thin polycide gate conductor of mosfet device | |
| KR100413740B1 (en) | A semiconductor device and a method for manufacturing the same | |
| US7390709B2 (en) | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode | |
| US7547951B2 (en) | Semiconductor devices having nitrogen-incorporated active region and methods of fabricating the same | |
| US7229873B2 (en) | Process for manufacturing dual work function metal gates in a microelectronics device | |
| US6514828B2 (en) | Method of fabricating a highly reliable gate oxide | |
| US7569466B2 (en) | Dual metal gate self-aligned integration | |
| US9281373B2 (en) | Semiconductor device having tungsten gate electrode and method for fabricating the same | |
| US5949092A (en) | Ultra-high-density pass gate using dual stacked transistors having a gate structure with planarized upper surface in relation to interlayer insulator | |
| US6057576A (en) | Inverse-T tungsten gate apparatus | |
| US20020086504A1 (en) | Method of manufacturing semiconductor devices | |
| US20100052079A1 (en) | Semiconductor devices and fabrication process thereof | |
| US7956413B2 (en) | Semiconductor device having a field effect transistor using a high dielectric constant gate insulating film and manufacturing method of the same | |
| US6440868B1 (en) | Metal gate with CVD amorphous silicon layer and silicide for CMOS devices and method of making with a replacement gate process | |
| KR20000023176A (en) | Manufacture of mosfet devices | |
| CN101276786A (en) | Method for manufacturing dual work function semiconductor device | |
| JP2007073660A (en) | Semiconductor device and manufacturing method thereof | |
| KR100764341B1 (en) | Manufacturing method of semiconductor device | |
| US7018887B1 (en) | Dual metal CMOS transistors with silicon-metal-silicon stacked gate electrode | |
| KR20030058664A (en) | Method for forming CMOS of semiconductor device | |
| KR100495858B1 (en) | Method of manufacturing a semiconductor device | |
| JPH08130216A (en) | Semiconductor device and its manufacture |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| A201 | Request for examination | ||
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| FPAY | Annual fee payment |
Payment date: 20100825 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20110929 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20110929 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |