+

KR100681390B1 - Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed - Google Patents

Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed Download PDF

Info

Publication number
KR100681390B1
KR100681390B1 KR1020050022563A KR20050022563A KR100681390B1 KR 100681390 B1 KR100681390 B1 KR 100681390B1 KR 1020050022563 A KR1020050022563 A KR 1020050022563A KR 20050022563 A KR20050022563 A KR 20050022563A KR 100681390 B1 KR100681390 B1 KR 100681390B1
Authority
KR
South Korea
Prior art keywords
laser beam
laser
focusing
high speed
scribing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1020050022563A
Other languages
Korean (ko)
Other versions
KR20060100773A (en
Inventor
김정묵
Original Assignee
(주)한빛레이저
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)한빛레이저 filed Critical (주)한빛레이저
Priority to KR1020050022563A priority Critical patent/KR100681390B1/en
Publication of KR20060100773A publication Critical patent/KR20060100773A/en
Application granted granted Critical
Publication of KR100681390B1 publication Critical patent/KR100681390B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/30Straw separators, i.e. straw walkers, for separating residual grain from the straw
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F11/00Threshing apparatus specially adapted for maize; Threshing apparatus specially adapted for particular crops other than cereals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/18Threshing devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/44Grain cleaners; Grain separators
    • A01F12/442Rotary cleaners
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F7/00Threshing apparatus
    • A01F7/02Threshing apparatus with rotating tools

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

본 발명은 광음향변조기나 갈바노미러 혹은 폴리곤미러와 같은 레이저빔의 편향장치와 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 집속장치를 가진 레이저빔을 이용하여 반도체 웨이퍼를 다이싱 또는 스크라이빙하는 방법에 관한 것이다. 상기 편향장치와 집속장치는 각기 단독 혹은 동시에 사용된다. 레이저빔, 특히 355nm 파장을 갖는 UV레이저빔을 이용하여 반도체웨이퍼를 다이싱 또는 스크라이빙 하는 가공방법의 적용이 활발히 이루어지고 있다. 이는 레이저빔을 이용한 다이싱 또는 스크라이빙의 경우 가공물과 접촉하지 않아 물리적 하중에 의한 균열 등의 문제를 유발하지 않고 다이아몬드 톱날을 이용한 기계적 절단 방법을 이용했을 때 보다 절단폭을 작게 할 수 있어 웨이퍼 한 장 당 수율을 높일 수가 있으며 특히 두께가 얇은 반도체웨이퍼의 경우 레이저 절단이 기계적 절단보다 절단특성이 월등히 우수하다. 그러나 이러한 장점에도 불구하고 특정한 패턴 물질에서 일어나는 chipping 현상으로 인해 기계적 작업에 비해 열악한 절단면과 절단면의 열영향, 절단부산물로 인한 반도체웨이퍼의 오염문제가 레이저 적용에 걸림돌이 되고 있다.The present invention uses a laser beam having a deflecting device of a laser beam, such as an optoacoustic modulator, a galvano mirror or a polygon mirror, and a laser beam having a focusing device capable of moving the focus position in any three dimensions at high speed. It is about how to crush. The deflecting device and the focusing device are used alone or simultaneously. Application of a processing method for dicing or scribing a semiconductor wafer using a laser beam, particularly a UV laser beam having a wavelength of 355 nm has been actively performed. In the case of dicing or scribing using a laser beam, the cutting width can be made smaller than when using a mechanical cutting method using a diamond saw blade without causing problems such as cracking due to physical load because it does not come into contact with the workpiece. Yield per sheet can be increased. Especially in the case of thin semiconductor wafers, laser cutting is superior to mechanical cutting. Despite these advantages, however, chipping phenomena occurring in specific pattern materials are a barrier to the application of lasers due to poor cutting and thermal effects compared to mechanical work, and contamination of semiconductor wafers due to cutting by-products.

본 발명은 레이저 발생장치에서 나오는 레이저빔을 광음향변조기를 이용하여 동적으로 편향시키거나, 원통면 렌즈로 레이저빔을 한쪽방향으로만 길게하여 가공에 적절한 레이저 세기로 조절하여 전송된 평행한 레이저빔을 집속하는 질량이 적은 집속광학계를 고속으로 전.후, 좌.우 및 상.하로 이동시켜 피가공물체의 초점위치에 고속으로 조사할 수 있는 집속광학계 고속이동장치를 장착하여 중첩가공 함으로써, 특정한 패턴 물질에서 일어나는 chipping 현상을 제거하여 절단면의 가공품질을 개선시킬 뿐만 아니라 가공시간도 단축시킬수 있는 기술에 관한 것이다.In the present invention, the laser beam from the laser generator is deflected dynamically using a photoacoustic modulator, or the parallel laser beam is transmitted by adjusting the laser beam to a laser intensity suitable for processing by lengthening the laser beam in only one direction with a cylindrical lens. By superimposing the focused optical system with a high speed moving device that can move the focusing optical system that focuses the mass at high speed forward, backward, left, right and up and down to irradiate the focal position of the object with high speed, The present invention relates to a technology capable of shortening the processing time as well as improving the machining quality of the cut surface by removing the chipping phenomenon occurring in the pattern material.

레이저빔 다이싱, 스크라이빙, 반도체웨이퍼, 레이저 절단, 광음향변조기 초점위치, 고속이동, 집속장치, 레이저 가공  Laser beam dicing, scribing, semiconductor wafer, laser cutting, photoacoustic modulator focusing position, high speed movement, focusing device, laser processing

Description

레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법{A semiconductor wafer dicing and scribing system and appratus with a high speed laser beam focus positioning system to arbitrary 3D positions and laser beam diffraction system}Laser dicing and scribing method of semiconductor wafer using optical focusing device and optical deflecting device which can move the focusing position of laser beam at high speed in any three dimensions {A semiconductor wafer dicing and scribing system and appratus with a high speed laser beam focus positioning system to arbitrary 3D positions and laser beam diffraction system}

도 1 : 초점위치 고속이동형 집속장치를 부착한 레이저빔 발생장치의 구성도1: Configuration diagram of a laser beam generator with a focusing position fast moving focusing device

도 1의 주요부분에 대한 부호의 설명Explanation of the code | symbol about the principal part of FIG.

1: 레이저빔 발생장치 2: 광음향변조기  1: laser beam generator 2: photoacoustic modulator

3: 집속광학계 4: 집속광학계 고속이동장치  3: focused optical system 4: focused optical system

5: 레이저빔 6:초점위치   5: laser beam 6: focus position

7: 피가공물체 및 작업스테이지  7: Processed object and work stage

도 2 : 레이저빔의 초점위치 고속이동형 집속장치의 3축용의 집속광학계 구조도2 is a structural diagram of a focusing optical system for three axes of a focal position high speed mobile focusing apparatus of a laser beam;

도 2의 주요부분에 대한 부호의 설명Explanation of the code | symbol about the principal part of FIG.

8: 레이저빔 9: X축 렌즈이동장치   8: laser beam 9: X-axis lens shifter

10: X축 집속용 원통면 광학렌즈 11: X축이 가변된 레이저빔  10: cylindrical optical lens for X-axis focusing 11: laser beam with X-axis variable

12: Y축 렌즈이동장치 13: Y축 집속용 원통면 광학렌즈  12: Y-axis lens shift device 13: Cylindrical optical lens for Y-axis focusing

14: X축과 Y축이 가변된 레이저빔 15: Z축 렌즈이동장치   14: X- and Y-axis laser beam 15: Z-axis lens shift device

16: X, Y, Z축이 가변된 레이저빔 초점  16: Laser beam focus with X, Y and Z axes

종래에는 다이아몬드 블레이드 다이싱 또는 스크라이빙 한 후 브레이킹 하는 기계적인 절단방법과 레이저빔을 이용한 반도체 웨이퍼를 다이싱하는 가공방법이 이루어지고 있다. 기계적 방법의 장점은 우수한 절단면의 품질을 얻을 수 있는 것이나 톱날 마모 등으로 인한 균일한 품질 유지가 어렵고, chipping 또는 크랙 발생 등의 문제점을 가지고 있다. 특히 얇은 웨이퍼(50-150㎛)의 경우 다이아몬드 톱날 하중에 의한 균열 및 깨짐 현상이 심해 매우 저속으로 가공할 수 밖에는 없다. 이러한 문제를 해결하기 위하여 레이저빔을 이용한 다이싱의 적용이 활발히 진행중이다. 이 방법은 가공물과 접촉하지 않아 물리적 하중에 의한 균열의 문제를 유발하지 않고 또한 절단폭을 보다 작게 할 수 있어서 웨이퍼 한 장 당 수율을 높일 수 있다. 그러나 웨어퍼 상의 특정한 패턴 물질에서 일어나는 chipping 현상으로 인하여 기계적 작업에 비해 열악한 절단면의 품질로 인하여 레이저빔을 이용한 다이싱 또는 스크라이빙 방법 적용에 걸림돌이 되고 있다.Conventionally, a mechanical cutting method for breaking after diamond blade dicing or scribing and a processing method for dicing a semiconductor wafer using a laser beam have been made. The advantage of the mechanical method is that it is possible to obtain an excellent cutting surface quality, it is difficult to maintain a uniform quality due to saw blade wear, and has problems such as chipping or cracking. Especially in the case of thin wafers (50-150㎛), the cracks and cracks caused by the diamond saw blade load is severe and can only be processed at a very low speed. In order to solve this problem, the application of dicing using a laser beam is actively in progress. This method does not cause a problem of cracking due to physical loads because it does not come into contact with the workpiece, and can further reduce the cutting width, thereby increasing the yield per wafer. However, due to the chipping phenomena occurring in certain pattern materials on the wafer, the quality of the cut surface is inferior to the mechanical work, which makes it difficult to apply the dicing or scribing method using the laser beam.

본 발명은 레이저빔을 이용한 가공의 장점을 그대로 활용하면서 chipping 현상으로 인한 기계적 작업에 비해 열악한 절단면의 품질을 향상 시키기 위하여 집속 광학계 고속이동장치로 구성된 광음향 변조기를 레이저저빔의 편향장치로 사용하여 중첩 가공하는 방법을 사용하는 것이다. 레이저 발생장치에서 나오는 레이저빔을 광음향변조기를 이용하여 동적으로 편향시키거나, 원통면 렌즈로 레이저빔을 한쪽방향으로만 길게하여 가공에 적절한 레이저 세기로 조절하여 전송된 평행한 레이저빔을 집속하는 질량이 적은 집속광학계를 고속으로 전.후, 좌.우 및 상.하로 이동시켜 피가공물체의 초점위치에 고속으로 조사할 수 있는 집속광학계 고속이동장치를 장착하여 중첩가공 함으로써, 특정한 패턴 물질에서 일어나는 chipping 현상을 제거하여 절단면의 가공품질을 개선시킬 뿐만 아니라 가공시간도 단축시킬수 있는 기술에 관한 것이다.The present invention superimposes an optoacoustic modulator composed of a focused optical system as a deflector for a laser low beam in order to improve the quality of the cutting surface which is poor compared to the mechanical work due to the chipping phenomenon while utilizing the advantages of the processing using the laser beam as it is. Is to use the processing method. The laser beam emitted from the laser generator is deflected dynamically by using an optoacoustic modulator, or the cylindrical lens is focused in one direction by lengthening the laser beam in one direction to focus the parallel laser beam transmitted by adjusting the laser intensity suitable for processing. It is possible to move the focusing optical system with a small mass forward, backward, left, right and up and down at high speed so that the focusing optical system can move to the focal position of the object at high speed. The present invention relates to a technology capable of shortening the processing time as well as improving the machining quality of the cutting surface by eliminating the chipping phenomenon.

본 발명은 상기의 기술적과제를 해결하기 위한 것으로 도 1을 참조하여 설명하면 다음과 같다.The present invention is to solve the above technical problem is described with reference to FIG. 1 as follows.

(a) 레이저 발생장치(1)에서 나오는 빔을 광음향변조기(2)를 이용하여 동적으로 편향하는 단계와(a) dynamically deflecting the beam from the laser generator 1 using the optoacoustic modulator 2;

(b) 원통면 렌즈(3)로 빔형상을 변화시키는 단계와(b) changing the beam shape with the cylindrical lens 3 and

(c) 이렇게 동적으로 평향된 레이저 빔을 집속광학계(3)의 크기 이내의 좁은 영영역에서 전·후, 좌·우, 상·하로 고속 이동해 초점위치(6)를 이동시킬 수 있는 집속광학계 고속이동장치(4)로 집속하는 단계와(c) A fast focusing optical system capable of moving the focusing position 6 by moving the dynamically beamed laser beams forward, backward, left, right, up and down in a narrow zero region within the size of the focusing optical system 3. Focusing on the moving device (4) and

(d) 피가공물체(7)의 표면에 집속광학계 고속이동장치(4)를 이용하여 레이저빔(5)을 원하는 초점위치(6)에 조사하여 반도체웨이퍼의 소정의 절단선을 따라 고 속으로 chipping 현상 없이 다이싱 또는 스크라이빙하는 단계를 포함하는 것을 특징하는 방법과 장치이다(d) The laser beam 5 is irradiated to the desired focal position 6 using the focusing optical high speed moving device 4 on the surface of the workpiece 7 at high speed along a predetermined cutting line of the semiconductor wafer. A method and apparatus comprising dicing or scribing without a chipping phenomenon.

이러한 광음향변조기(2)를 이용한 빔의 동적 편향에 대한 주파수는 수백kHz에 이를 수 있고 편향의 효과는 거리에 따라 대상물의 표면에서 수십㎛로 부터 수mm까지 얻을 수 있다. 또한 기존의 피가공물체의 스테이지(7)를 작업방향으로 이동할 때 광음향변조기(2)가 동시에 작동하여 레이저빔을 편향시키는 방법에서 본 발명은 질량이 레이저빔 발생장치(1)나 피가공물체의 스테이지(7)에 비하여 상대적으로 현저히 적은 집속광학계(3)만을 집속집속광학계 고속이동장치(4)를 이용함으로써 고속으로 초점위치(6)에 조사할 수 있도록 하여 레이저빔(5)의 고속 편향을 가능하게 했다. 초점위치 고속이동형 집속장치(4)를 부착한 레이저빔 발생장치(1)의 구체적인 방법으로는The frequency of the dynamic deflection of the beam using the optoacoustic modulator 2 can reach several hundred kHz and the effect of the deflection can be obtained from several tens of micrometers to several millimeters on the surface of the object depending on the distance. In addition, in the method of deflecting a laser beam by simultaneously operating the optoacoustic modulator 2 when the stage 7 of the existing workpiece is moved in the working direction, the present invention has a mass of the laser beam generator 1 or the workpiece. High-speed deflection of the laser beam 5 by allowing the focused optical system 3 to irradiate the focus position 6 at high speed by using the focused optical system high speed moving device 4, which is relatively less than the stage 7 of Made it possible. As a specific method of the laser beam generator 1 with the focusing position fast moving focusing device 4,

가. 서보모터, 리니어모터, 압전소자와 같은 구동장치와end. Driving devices such as servo motors, linear motors and piezoelectric elements

나. 볼스크류, LM가이드와 같은 기계장치부와I. Mechanical parts such as ball screw and LM guide

다. 엔코더, 리니어 스케일과 같은 위치 인식 장치들을 조합하여 구성할 수 있다. 미세한 영역에서 가장 빠른 초점위치 이동을 위하여 압전소자를 구동장치로 사용한다. 한축의 이동을 위한 집속광학계(3)는 구면광학렌즈들을 사용하면 되고 2축 이상(X축,Y축)의 구동을 구현하기 위하여 원통면 광학렌즈들을 사용한다.All. Position recognition devices such as encoders and linear scales can be combined. A piezoelectric element is used as a driving device for the fastest focusing position movement in minute areas. The focusing optical system 3 for one-axis movement may use spherical optical lenses and cylindrical optical lenses to implement two or more axes (X-axis, Y-axis).

또한 초점위치 고속이동형 집속장치는 2축용의 집속광학계 구조도를 갖을 수 있다. 도 2와 같이 레이저빔(8)을 X축으로 집속하는 원통면 광학렌즈(10)을 통과하면 X축으로만 집속되고 Y축은 평행광이 된다. 이 X축 집속용 원통면 광학렌즈 (10)를 X축 렌즈 이동장치(9)로 이동시키면 초점위치(7)에서 X축방향으로 초점이 이동된다. 마찬가지로 X축으로 집속 및 이동된 레이저빔(10)을 Y축으로 집속하는 원통면 광학렌즈(11)를 통과하면 X축으로 집속 및 이동된 레이저빔(10)을 Y축으로도 집속 하는 원통면 광학렌즈(11)를 통과하면 Y축으로도 이동된 레이저빔(13)을 얻을 수 있으며 이 결과로 X축과 Y축에 가변된 레이저빔 초점(13)이 얻을 수 있는 것이다. In addition, the focal position high-speed moving focusing apparatus may have a biaxial focusing optical structure. As shown in FIG. 2, when the laser beam 8 passes through the cylindrical optical lens 10 that focuses on the X axis, the laser beam 8 is focused only on the X axis, and the Y axis becomes parallel light. When the X-axis focusing cylindrical optical lens 10 is moved to the X-axis lens shifting device 9, the focus is shifted in the X-axis direction at the focus position 7. Similarly, when passing through the cylindrical optical lens 11 focusing and moving the laser beam 10 focused on the X-axis to the Y-axis cylindrical surface focusing the laser beam 10 focused and moved on the X-axis also on the Y-axis Passing through the optical lens 11, the laser beam 13 moved also in the Y axis can be obtained, and as a result, the laser beam focus 13 that is variable in the X and Y axes can be obtained.

이때 X축 집속용 원통면 광학렌즈(9)와 Y축 집속용 원통면 광학렌즈(11)의 초점거리는 각 렌즈가 있는 위치에 따라 다르다.At this time, the focal lengths of the X-axis focusing cylindrical optical lens 9 and the Y-axis focusing cylindrical optical lens 11 differ depending on the positions of the respective lenses.

본 발명은 Q-스위치된 kHz이상 고반복의 펄스 레이저빔을 이용하여 반도체웨이퍼를 다이싱 또는 스크라이빙 할 때에 같은 지점에 레이저 펄스가 계속 조사될때 가공효율이 떨어지는 점을 개선하기 위하여 레이저빔의 초점위치를 미세한 영역에서 가장 빠른 초점위치 이동을 구동할 수 있는 집속장치를 가진 광음향변조기와 반도체웨이퍼 가공에 적합한 레이저 세기로 한쪽으로 긴 형상의 빔을 만들기 위한 원통면 렌즈를 이용하여 편향시킴으로써 반도체산업 등과 같은 정밀한 결과물이 요구되는 분야에서 산업적 이용 효용성이 높은 다이싱 또는 스크라이빙 방법을 제공한다.The present invention focuses on laser beams to improve processing efficiency when laser pulses are continuously irradiated at the same point when dicing or scribing a semiconductor wafer using a Q-switched kHz high-repetitive pulsed laser beam. Semiconductor industry by deflecting the photoacoustic modulator with a focusing device capable of driving the fastest focal position movement in the minute area and the cylindrical lens to make a long shape beam to one side with laser intensity suitable for semiconductor wafer processing. The present invention provides a dicing or scribing method having high industrial utility in fields requiring precise results.

Claims (7)

반도체웨이퍼를 소정의 절단선을 따라 Q-스위치된 kHz이상 고반복의 펄스 레이저빔을 조사하여 다이싱 또는 스크라이빙하는 방법에 있어서,A method of dicing or scribing a semiconductor wafer by irradiating a pulse laser beam having a high repetition frequency of kHz or higher along a predetermined cutting line, wherein: 같은 표적에 레이저 펄스가 중복 조사되어 가공성능이 떨어짐을 개선하기 위하여 레이저빔을 광음향변조기를 이용하여 동적으로 편향시켜 편향된 빔을 이용하여 고속으로 피가공물체의 초점위치에 조사하여 반도체 표면에 chipping을 방지하여 가공의 품질과 속도를 개선한 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법.Laser beam is deflected dynamically using optoacoustic modulator to improve the processing performance by overlapping laser pulses on the same target, and chipping the semiconductor surface by irradiating at the focal position of the workpiece at high speed using the deflected beam. A laser dicing and scribing method for a semiconductor wafer using an optical focusing device and an optical deflecting device, which can move a focal position of a laser beam in an arbitrary three-dimensional manner by preventing the damage and improving processing quality and speed. 반도체웨이퍼를 소정의 절단선을 따라 Q-스위치된 kHz이상 고반복의 펄스 레이저빔을 조사하여 다이싱 또는 스크라이빙하는 방법에 있어서, A method of dicing or scribing a semiconductor wafer by irradiating a pulse laser beam having a high repetition frequency of kHz or higher along a predetermined cutting line, wherein: 같은 표적에 레이저 펄스가 중복 조사되어 가공성능이 떨어짐을 개선하기 위하여 레이저빔을 집속시키는 초점위치 고속이동형 집속 장치로서, 임의의 3차원 방향으로 고속 이동시킬 수 있는 3축용 집속 광학계를 이용하여 고속으로 피가공물체의 초점위치에 조사하여 반도체 표면에 chipping을 방지하여 가공의 품질과 속도를 개선한 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법.A focus position high speed moving focusing device that focuses a laser beam in order to improve processing performance due to overlapping laser pulses on the same target, and it uses high speed using a three-axis focusing optical system that can move in any three-dimensional direction at high speed. A semiconductor using an optical focusing device and an optical deflecting device that can move the focusing position of a laser beam in any three dimensions at high speed by irradiating the focal position of the workpiece to prevent chipping on the surface of the semiconductor, thereby improving the quality and speed of processing. Method of laser dicing and scribing wafers. 제 2항에 있어서,The method of claim 2, 상기 집속광학계는,The focusing optical system, 임의의 3차원 공간으로 구동하는 장치로써 압전소자(PZT)를 사용하는 것을 특징으로 하는 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법.A device for driving an arbitrary three-dimensional space, using a piezoelectric element (PZT), which can move a focal point of a laser beam in any three-dimensional manner, and a semiconductor wafer using an optical deflecting device. Laser dicing and scribing method. 반도체웨이퍼를 소정의 절단선을 따라 Q-스위치된 kHz이상 고반복의 펄스 레이저빔을 조사하여 다이싱 또는 스크라이빙하는 방법에 있어서,A method of dicing or scribing a semiconductor wafer by irradiating a pulse laser beam having a high repetition frequency of kHz or higher along a predetermined cutting line, wherein: 가공 특성을 개선시키기 위하여 반도체웨이퍼 가공에 적합하게 원통면 렌즈를 이용하여 절단 진행방향으로 길게 레이저빔 초점형상을 가변시키는 방법과 이 원통면 렌즈를 1축 혹은 직교하게 2축을 사용하여 초점 가변 영역내에서 임의의 레이저 빔을 조사 가공하는 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법.In order to improve the processing characteristics, the laser beam focusing shape is changed long in the cutting direction by using a cylindrical lens suitable for semiconductor wafer processing, and the cylindrical lens is used in a variable focusing region using one axis or two axes perpendicularly. A laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving a focal position of a laser beam irradiating and processing an arbitrary laser beam in an arbitrary three-dimensional manner at high speed. 제 1항에 있어서,The method of claim 1, 레이저 흡수율이 높은 여타 물질을 가공할 때 집속광학계 고속이동장치가 있는 광음향변조기를 써서 레이저빔을 동적으로 편향시켜 중첩가공을 고속으로 구현함으로써 고품질의 절단 및 스크라이빙 품질을 얻는 것을 특징으로 하는 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법.When processing other materials with high laser absorption rate, high-speed cutting and scribing quality can be obtained by dynamically deflecting the laser beam by using a photoacoustic modulator with a focusing optical high-speed moving device to realize superimposition processing at high speed. A laser dicing and scribing method for a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving a focal position of a laser beam in any three dimensions at high speed. 반도체웨이퍼를 소정의 절단선을 따라 Q-스위치된 kHz이상 고반복의 펄스 레이저빔을 조사하여 다이싱 또는 스크라이빙하는 방법에 있어서,A method of dicing or scribing a semiconductor wafer by irradiating a pulse laser beam having a high repetition frequency of kHz or higher along a predetermined cutting line, wherein: 고출력의 펄스 레이저빔으로 주가공시 가공특성이 나빠지므로 고출력으로 주가공 후 레이저 출력을 줄여서 후가공하여 속도는 느려지지만 가공특성을 향상시키는 방법을 개선하기 위하여 레이저빔을 공간적으로 다중분할하여 일부는 주가공 광원으로 사용하고 일부는 후가공 광원으로 사용하는 것을 특징으로 하는 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법.Due to the high output pulse laser beam, the processing characteristics become worse during main processing. Therefore, after the main processing is performed with high output, the laser output is reduced and the post processing is slow. Laser dicing and scribing of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focusing position of the laser beam at a high speed in any three dimensions, characterized in that it is used as a light source and a part as a post-processing light source. Way. 삭제delete
KR1020050022563A 2005-03-18 2005-03-18 Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed Expired - Lifetime KR100681390B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050022563A KR100681390B1 (en) 2005-03-18 2005-03-18 Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050022563A KR100681390B1 (en) 2005-03-18 2005-03-18 Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed

Publications (2)

Publication Number Publication Date
KR20060100773A KR20060100773A (en) 2006-09-21
KR100681390B1 true KR100681390B1 (en) 2007-02-09

Family

ID=37632217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050022563A Expired - Lifetime KR100681390B1 (en) 2005-03-18 2005-03-18 Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed

Country Status (1)

Country Link
KR (1) KR100681390B1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9174307B2 (en) 2009-09-02 2015-11-03 Samsung Display Co., Ltd. Substrate cutting apparatus and method for cutting substrate using the same
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100294746A1 (en) * 2008-11-19 2010-11-25 Applied Materials, Inc. Laser scribing platform with moving gantry
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639572A (en) * 1991-01-11 1994-02-15 Souei Tsusho Kk Wafer cutting device
KR20020076774A (en) * 2001-03-30 2002-10-11 삼성전자 주식회사 Method for scribing wafer using excimer LASER
KR20030026867A (en) * 2001-09-26 2003-04-03 가부시끼가이샤 도시바 Method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639572A (en) * 1991-01-11 1994-02-15 Souei Tsusho Kk Wafer cutting device
KR20020076774A (en) * 2001-03-30 2002-10-11 삼성전자 주식회사 Method for scribing wafer using excimer LASER
KR20030026867A (en) * 2001-09-26 2003-04-03 가부시끼가이샤 도시바 Method of manufacturing semiconductor device

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174307B2 (en) 2009-09-02 2015-11-03 Samsung Display Co., Ltd. Substrate cutting apparatus and method for cutting substrate using the same
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch

Also Published As

Publication number Publication date
KR20060100773A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
KR100681390B1 (en) Laser dicing and scribing method of a semiconductor wafer using an optical focusing device and an optical deflecting device capable of moving the focus position of the laser beam in any three-dimensional high speed
JP5985834B2 (en) Laser processing apparatus and laser processing method having switchable laser system
JP4551086B2 (en) Partial machining with laser
KR101809783B1 (en) Method of radiatively grooving a semiconductor substrate
JP5379384B2 (en) Laser processing method and apparatus for transparent substrate
US20110132885A1 (en) Laser machining and scribing systems and methods
KR20110112282A (en) Laser processing equipment
KR20160040097A (en) Laser machining apparatus
CN110722272A (en) Ultrafast laser micro-nano cutting drilling equipment and method
KR102375235B1 (en) Laser processing system and laser processing method
JP2004528991A5 (en)
CN101961817A (en) Optical system and laser processing device
JP4934762B2 (en) Positioning method and apparatus
KR20190025721A (en) Laser processing apparatus and method for laser processing a workpiece
CN111055028A (en) Laser cutting device and method for expanding controllable cracks based on plasma
JP2008036641A (en) Laser beam machining apparatus and method
CN118455713A (en) A dual-pulse laser processing method based on infrared femtosecond and ultraviolet femtosecond
CN111299859A (en) Ultrafast laser non-taper cutting system and cutting method
KR20130126287A (en) Substrate cutting and method
TWI595955B (en) A laser machining method
CN104227243A (en) Laser deep processing equipment and processing method for hard material
CN114054972A (en) A kind of dynamic focus laser cutting method and device
JP2017104875A (en) Laser processing apparatus and laser processing method
CN106994562A (en) Laser cutting method and laser cutting machine for hard and brittle materials
CN118046102A (en) Processing method and application of laser cutting material

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20050318

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060621

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20070119

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20070205

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20070205

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20100202

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20110131

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20120202

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20130130

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20130130

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20140129

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20150202

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20160202

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20170131

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20170131

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20180125

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20190130

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20200203

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20210125

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20220125

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20230201

Start annual number: 17

End annual number: 17

PR1001 Payment of annual fee

Payment date: 20240111

Start annual number: 18

End annual number: 18

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载