JPS63271322A - Transmissivity characteristic varying element - Google Patents
Transmissivity characteristic varying elementInfo
- Publication number
- JPS63271322A JPS63271322A JP10717287A JP10717287A JPS63271322A JP S63271322 A JPS63271322 A JP S63271322A JP 10717287 A JP10717287 A JP 10717287A JP 10717287 A JP10717287 A JP 10717287A JP S63271322 A JPS63271322 A JP S63271322A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength band
- transparent films
- characteristic
- spacings
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002834 transmittance Methods 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- 230000005540 biological transmission Effects 0.000 abstract description 12
- 230000003287 optical effect Effects 0.000 abstract description 6
- 238000010030 laminating Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 13
- 238000003384 imaging method Methods 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Filters (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、帯域変換フィルター、面順次式カラー照明用
又は撮像用の色フイルタ−、色温度変換フィルターとし
て好適な透過率特性可変素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable transmittance characteristic element suitable as a band conversion filter, a color filter for frame sequential color illumination or imaging, and a color temperature conversion filter.
〔従来技術及び発明が解決しようとする問題点〕光学系
には種々のフィルターが用いられており、このうち帯域
変換フィルター、面順次式カラー照明用又は撮像用の色
フイルタ−、帯域変換カットフィルター、色温度変換フ
ィルターはいずれも所要時に又は時分割的に透過光又は
不透過光の波長帯域を変換するものであるが、従来は波
長帯域の異なる複数のフィルターを用意してこれらを挿
脱式或は回転式に交換することにより波長帯域変換を行
うものであった。そのため、電磁・機械式駆動装置を必
要とするため、光学系全体が大型化したり、波長帯域変
換速度の高速化が困難であったり、消費電力が大きいと
いう問題があった。[Prior art and problems to be solved by the invention] Various filters are used in optical systems, including band conversion filters, color filters for frame-sequential color illumination or imaging, and band conversion cut filters. Both color temperature conversion filters convert the wavelength band of transmitted light or non-transmitted light when necessary or in a time-sharing manner, but conventionally, multiple filters with different wavelength bands are prepared and these are inserted and removed. Alternatively, wavelength band conversion was performed by rotating and exchanging them. Therefore, since an electromagnetic/mechanical drive device is required, there are problems in that the entire optical system becomes large in size, it is difficult to increase the wavelength band conversion speed, and power consumption is large.
本発明は、上記問題点に鑑み、光学系全体の小型化に貢
献し、波長帯域変換速度を高速化でき、低消費電力化で
きる全く新規な透過率特性変換素子を提供することを目
的とする。In view of the above problems, it is an object of the present invention to provide a completely new transmittance characteristic conversion element that contributes to miniaturization of the entire optical system, increases wavelength band conversion speed, and reduces power consumption. .
〔問題点を解決するための手段及び作用〕本発明による
透過率特性可変素子は、複数枚の透明膜を積層し、圧電
アクチュエータ素子により前記透明膜同志の間隔を変化
させ得るようにして、前記間隔の大きさによりある最大
透過率の波長を有する透過率特性が得られるとともに前
記間隔が複数個存在することにより透過率特性が重ね合
わされである波長帯域の光を透過する特性が得られ、前
記間隔が変化することにより透過波長帯域が変化するよ
うにしたものである。又、同様にしてある波長帯域の光
を反射する特性が得られると共に、不i!ii波長帯域
が変化するようにしたものである。[Means and effects for solving the problem] The transmittance characteristic variable element according to the present invention has a plurality of transparent films laminated, and the spacing between the transparent films can be changed by a piezoelectric actuator element. Depending on the size of the interval, a transmittance characteristic having a wavelength of a certain maximum transmittance can be obtained, and the presence of a plurality of said intervals makes it possible to obtain a characteristic of transmitting light in a certain wavelength band by superimposing the transmittance characteristics, The transmission wavelength band is changed by changing the interval. In addition, in the same way, the characteristic of reflecting light in a certain wavelength band can be obtained, and the characteristic of reflecting light in a certain wavelength band can also be obtained. (ii) The wavelength band is changed.
そして、前記複数個の間隔の大きさを同一に維持するか
又はそれらの差を小に維持することにより狭い波長帯域
が得られ、前記複数個の間隔の大きさの差を大に維持す
ることにより、広い波長帯域が得られるようにしたもの
である。又、前記複数個の間隔の大きさの差を常に一定
に維持することにより波長帯域が一定中のまま移動する
ようにしたものである。又、前記複数個の間隔の大きさ
の差の密度を波長に応じてリニアに変化させ、該リニア
な関係を保持したまま前記密度の分布を変えることによ
り色温度を変化させるようにしたものである。A narrow wavelength band is obtained by maintaining the same size of the plurality of intervals or a small difference therebetween, and maintaining a large difference in the size of the plurality of intervals. This makes it possible to obtain a wide wavelength band. Further, by always maintaining a constant difference in size between the plurality of intervals, the wavelength band is moved while remaining constant. Further, the color temperature is changed by linearly changing the density of the difference in the size of the plurality of intervals according to the wavelength, and changing the density distribution while maintaining the linear relationship. be.
以下図示した実施例に基づき本発明の詳細な説明する。 The present invention will be described in detail below based on the illustrated embodiments.
第1図は第1実施例を示しており、1は積層された数枚
から数十枚の例えば円形の透明膜、2は内周部が全透明
膜1の外周部に固着された円筒状の積層型圧電アクチュ
エータ素子であって、透明膜1同志の間隔は全て等しく
且つ透明膜1の圧電アクチュエータ素子2への取付位置
同志の間隔は全て等しいものとする。3は圧電アクチュ
エータ素子2に電圧を印加するための可変電圧電源であ
って、圧電アクチュエータ素子2は印加電圧に略比例し
て第1図上下方向即ち軸方向に伸びるようになっている
。尚、透明膜1は全て同一の厚さを有し且つ同質材料か
ら成るものとする。FIG. 1 shows a first embodiment, in which numeral 1 is a stack of several to several tens of layers, for example, circular transparent films, and numeral 2 is a cylindrical shape whose inner periphery is fixed to the outer periphery of the fully transparent film 1. In this laminated piezoelectric actuator element, the distances between the transparent films 1 are all equal, and the distances between the mounting positions of the transparent films 1 on the piezoelectric actuator element 2 are all equal. Reference numeral 3 denotes a variable voltage power supply for applying voltage to the piezoelectric actuator element 2, and the piezoelectric actuator element 2 extends in the vertical direction, that is, in the axial direction in FIG. 1, approximately in proportion to the applied voltage. It is assumed that all the transparent films 1 have the same thickness and are made of the same material.
本実施例は上述の如く構成されており、透明膜l同志の
間に空気間隔dが存在する場合、そこでλ
光の干渉が生じ、d=−なる波長に透過率のピーりを有
する透過率特性が生じる。例えば、第2図に示した如く
可視光領域に属する波長0.6μにおいて透過率のピー
クを生じせしめるには、d=0.6
−− 0.15μの間隔を生じさせれば良い、又、本実
施例は上述の如く透明膜l同志の間隔dも全て等しい、
従って、本実施例全体としての透過率特性は第2図の透
過率特性を間隔dの数だけ重ね合わせたもの卯ち第3図
に示した如き鋭いピークを持つ特性となる。従って狭い
透過波長帯域が得られる。This embodiment is configured as described above, and when there is an air gap d between the transparent films l, interference of λ light occurs there, and the transmittance has a peak at the wavelength where d=-. Characteristics arise. For example, in order to produce a transmittance peak at a wavelength of 0.6μ belonging to the visible light region as shown in FIG. 2, it is sufficient to create an interval of d=0.6 -- 0.15μ; In this embodiment, as described above, the distances d between the transparent films l are all equal.
Therefore, the transmittance characteristic of this embodiment as a whole is obtained by superimposing the transmittance characteristics of FIG. 2 by the number of intervals d, and has a sharp peak as shown in FIG. 3. Therefore, a narrow transmission wavelength band can be obtained.
又、電源3により圧電アクチュエータ素子2へ電圧を印
加し、その電圧を変化せしめると、圧電素子アクチュエ
ータ2は該電圧に略比例した伸びが生じ、それにより透
明膜1の圧電アクチュエーク素子2への取付位置同志の
間隔が変化するので、各透明膜1同志の間隔(空気間隔
)dも変化する。Further, when a voltage is applied to the piezoelectric actuator element 2 by the power source 3 and the voltage is changed, the piezoelectric element actuator 2 stretches approximately in proportion to the voltage, thereby preventing the attachment of the transparent film 1 to the piezoelectric actuator element 2. Since the distance between the positions changes, the distance d between the transparent films 1 (air distance) also changes.
その場合、上述の如く予め透明膜1同志の間隔dが全て
等しく且つ透明膜lの圧電アクチュエータ素子2への取
付位置同志の間隔も全て等しく設定されているので、全
ての間隔dは互いに大きさが一致したまま変化する。従
って、本実施例全体の透過率特性は、第4図に示した如
く狭い透過波長帯域が移動するものとなる。従って、本
実施例は、スペクトル分析等を行うための分光用帯域変
換フィルターとして用いることができる。その場合、本
実施例は、電磁・機械式駆動機構を必要としないため、
光学系全体の小型化に貢献し、透過波長帯域変換速度を
高速化でき、低消費電力化できるという利点がある。In this case, as mentioned above, all the distances d between the transparent films 1 are set to be equal, and the distances between the mounting positions of the transparent films 1 to the piezoelectric actuator element 2 are also set to be the same, so all the distances d are set to be equal in size to each other. changes while remaining consistent. Therefore, the transmittance characteristic of the entire embodiment is such that the narrow transmission wavelength band shifts as shown in FIG. Therefore, this embodiment can be used as a spectroscopic band conversion filter for performing spectrum analysis and the like. In that case, this embodiment does not require an electromagnetic/mechanical drive mechanism, so
It has the advantage of contributing to miniaturization of the entire optical system, increasing the transmission wavelength band conversion speed, and reducing power consumption.
尚、圧電アクチュエータ素子2の伸びが印加電圧に比例
しない場合でも、印加電圧を適当に制御するか又は透明
膜1を適当に配置することにより必要な特性を得ること
が可能である。Note that even if the elongation of the piezoelectric actuator element 2 is not proportional to the applied voltage, it is possible to obtain the necessary characteristics by appropriately controlling the applied voltage or appropriately arranging the transparent film 1.
第5図は第2実施例を示しており、これは透明膜1の圧
電アクチュエータ素子2の取付位置同志の間隔は全て等
しいが、透明膜1同志の間隔dl。FIG. 5 shows a second embodiment, in which the distances between the mounting positions of the piezoelectric actuator elements 2 on the transparent film 1 are all equal, but the distance between the transparent films 1 is dl.
dt、d、は全て異なり且つ隣接する間隔同志の差dt
d+ 、ds dtが大となるように設定したも
のである。dt, d are all different and the difference between adjacent intervals dt
d+, ds and dt are set to be large.
本実施例は上述の如く構成されており、透明膜1同志の
間隔d、、d、、d、は全て異なり且つ隣接する間隔同
志の差dt d+ 、dx dzが大であるから、
本実施例全体としての透過率特性は、第6図に示した如
く透過率がピークとなる波長λ1.λ2.λ、が全て異
なり且つ隣接する波長同志の差λ2−λ1.λ、−λ2
が大である複数個の透過率特性を重ね合わせたもの即ち
第7図に示した如(広い透過波長域を有する特性となる
。This embodiment is configured as described above, and the intervals d, d, , d between the transparent films 1 are all different, and the differences dt d+ and dx dz between adjacent intervals are large.
The transmittance characteristics of this embodiment as a whole are as shown in FIG. 6, with the wavelength λ1 at which the transmittance peaks. λ2. λ, are all different and the difference between adjacent wavelengths λ2−λ1. λ, −λ2
As shown in FIG. 7, a plurality of transmittance characteristics having a large transmittance are superimposed, that is, a characteristic having a wide transmission wavelength range is obtained.
尚、隣接する間隔同志の差dz dt 、d3−dz
を等しくすれば、第6図における隣接する波長同志の差
λ2−λ1.λ3−λ2も等しくなるので、バランスの
とれた透過率特性が得られる。Furthermore, the difference between adjacent intervals dz dt , d3−dz
are made equal, the difference λ2−λ1 . between adjacent wavelengths in FIG. Since λ3−λ2 is also equal, balanced transmittance characteristics can be obtained.
又、電源3により圧電アクチェエータ素子2へ電圧を印
加し、その電圧を変化せしめると各透明膜1同志の間隔
d、、d2.d、が変化するが、上述の如く透明膜1の
圧電アクチュエータ素子2への取付位置同志の間隔が全
て等しく設定されているので、間隔d、、d2.d、は
第8図に示した如く隣接する間隔同志の差dz d
t 、ds −d2を夫々一定に維持したまま変化する
。従って、透過波長帯域は第7図(A)−CB)→(C
)の如く一定巾のまま移動する。そこで、印加電圧がV
+ 、Vt 、V3の時夫々透過光がB(青)、G(緑
)、R(赤)となるようにV、、V、、v。When a voltage is applied to the piezoelectric actuator element 2 by the power source 3 and the voltage is changed, the distances d, d2, . . . between the transparent films 1 are changed. d changes, but since the distances between the attachment positions of the transparent film 1 to the piezoelectric actuator element 2 are all set equal as described above, the distances d, d2 . d is the difference between adjacent spacings dz d as shown in FIG.
t and ds −d2 are kept constant and changed. Therefore, the transmission wavelength band is Fig. 7 (A)-CB) → (C
), it moves with a constant width. Therefore, the applied voltage is V
+, Vt, and V3 so that the transmitted light becomes B (blue), G (green), and R (red), respectively.
を選択し、第9図に示した如く印加電圧がこれらの電位
V、、Vt 、V3に段階的に繰り返し変化するように
設定すれば、本実施例は面順次式力与−照明用又は撮像
用の色フィルターとして用いることができる。is selected and the applied voltage is set to repeatedly change stepwise to these potentials V, , Vt, and V3 as shown in FIG. It can be used as a color filter.
第12図は第3実施例を示しており、これは透明膜1同
志の間隔d、、d2.d、は電圧非印加時いずれも零で
あるが、透明膜1の圧電アクチュエータ素子2の取付位
置同志の間隔は徐々に広くなっているものである。FIG. 12 shows a third embodiment, in which the distances between the transparent films 1 are d, d2, . d is zero when no voltage is applied, but the distance between the mounting positions of the piezoelectric actuator elements 2 on the transparent film 1 gradually increases.
本実施例は上述の如く構成されており、透明膜1の圧電
アクチュエータ素子2への取付位置同志の間隔が徐々に
広くなっているので、電源3により圧電アクチュエータ
素子2へ電圧を印加し、その電圧を印加せしめると各退
引B1同志の間隔d。This embodiment is constructed as described above, and the distance between the attachment positions of the transparent film 1 to the piezoelectric actuator element 2 gradually increases. When a voltage is applied, the distance d between each retraction B1.
d、、d、は第11図に示した如く変化する。即ち・間
隔d、、d、、d、が広がるのにつれてそれらの差d、
−d、、d、−d、も広がるので、透過波長帯域は第1
2図に示した如く長波長側へ移動するにつれて幅が広く
なる0本実施例は透過波長帯域幅が波長に比例して変動
するという問題があるが、上記第2実施例の代りに十分
実用になるものである。d, ,d, change as shown in FIG. That is, as the intervals d, , d, , d, increase, the difference d between them,
-d, , d, -d also expand, so the transmission wavelength band is the first
As shown in Figure 2, the width becomes wider as you move toward the longer wavelength side.This embodiment has a problem in that the transmission wavelength bandwidth varies in proportion to the wavelength, but it can be used in place of the second embodiment for practical use. It is something that becomes.
第13図は第4実施例を示しており、これは隣接する透
明膜1の外周部同志を夫々各−個の圧電アクチュエータ
素子2で連結し、各圧電アクチェエータ素子2に個別の
可変型圧電[3により電圧を印加するようにしたもので
ある。FIG. 13 shows a fourth embodiment, in which the outer peripheries of adjacent transparent films 1 are connected by respective piezoelectric actuator elements 2, and each piezoelectric actuator element 2 is provided with an individual variable piezoelectric [ 3 to apply voltage.
本実施例は上述の如く構成されているから、各印加電圧
を制御することにより、例えば第14図(A)に示した
如く間隔d+ 、dz 、ds 、d4が広い(波長が
大)の時に隣接する間隔の大きさの差dz dt 、
dz dz 、da dsを大にしたり或いは逆
に小にしたり、又第14図(B)に示した如く間隔dl
+ dt、a、、a4の間隔が狭い(波長が小)の時
に隣接する間隔の大きさの差dz dlr d3
d2+ da d’+を小にしたり或いは
大にしたり、又第14図(C)に示した如く間隔d、、
d、、d、、d、をほとんど一致させることができる。Since this embodiment is configured as described above, by controlling each applied voltage, for example, when the intervals d+, dz, ds, and d4 are wide (the wavelength is large) as shown in FIG. 14(A), The difference in size between adjacent intervals dz dt ,
By increasing dz dz and da ds, or conversely by decreasing the interval dl as shown in Fig. 14 (B).
+ When the distance between dt, a,, a4 is narrow (wavelength is small), the difference in size between adjacent distances dz dlr d3
d2+ da d'+ can be made small or large, and the interval d, as shown in Fig. 14 (C),
d,,d,,d,can almost match.
そして、第14図(A)から(B)のように変化するよ
うにすると、第12図に示した如き透過率特性変化を生
み出すことができる。第14図(C)にすると、第3図
に示した如き透過率特性を生み出すことができる。If the transmittance changes as shown in FIG. 14(A) to FIG. 14(B), changes in transmittance characteristics as shown in FIG. 12 can be produced. 14(C), it is possible to produce transmittance characteristics as shown in FIG. 3.
これまで透過率が最大となる波長帯域の設定にλ
ついて述べてきたが、本実施例においてd=−とするこ
とにより反射率が最大となる波長帯域を設定することも
できる。そして、隣接する間隔の差dz dt 、d
s dz 、da dsを大にすれば、第15図
(A)に示した如く広い不透過波長域が得られ、隣接す
る間隔の差dz−d、、d。Up to now, we have described the setting of the wavelength band where the transmittance is maximum as λ, but in this embodiment, by setting d=-, it is also possible to set the wavelength band where the reflectance is maximum. Then, the difference between adjacent intervals dz dt , d
By increasing s dz and da ds, a wide opaque wavelength region can be obtained as shown in FIG. 15(A), and the difference between adjacent intervals dz-d, d.
−d、、d、−d、を小にすれば、第15図(B)に示
した如く狭い不透過波長域が得られる。If -d, d, -d are made small, a narrow non-transmissive wavelength range can be obtained as shown in FIG. 15(B).
これは、例えばB(青)、G(緑)、R(赤)十NOR
(近赤外)を順次照射する方式の面順次式カラー撮像装
置においてB、G、Rの三色による観察とB、G、NI
Rの擬似三色による観察を切り換えて行う場合に撮像系
に入れるフィルターとして有効である。又、異なる不透
過波長帯域を有する二つの間隔群を重ね合わせれば、第
15図(C)に示した如く二つの不透過波長域を有する
透過率特性が得られ、又必要時のみ一方の不透過波長帯
域が現出するようにすることもできる。This is, for example, B (blue), G (green), R (red) ten NOR
Observation using three colors of B, G, and R using a field-sequential color imaging device that sequentially irradiates (near infrared) light and B, G, and NI
It is effective as a filter to be installed in the imaging system when switching between observation using the R pseudo three colors. Furthermore, by superimposing two spacing groups having different non-transparent wavelength bands, a transmittance characteristic having two non-transparent wavelength bands can be obtained as shown in FIG. It is also possible to make a transmission wavelength band appear.
これは、例えば医療用の内視鏡において11060nの
YAGレーザ−(赤外線レーザー)を処理用として用い
る場合に、YAGレーザーの反射光が固体撮像素子に入
射してスミア−等が生じることを防止するのに役立つ。For example, when using a 11060n YAG laser (infrared laser) for processing in a medical endoscope, this prevents the reflected light of the YAG laser from entering the solid-state image sensor and causing smear etc. useful for.
又、上記第4実施例において、第16図(A)に示した
如く透明膜1同志の間隔が大になるに従って隣接する間
隔同志の差dz d+ 、ds da 。Further, in the fourth embodiment, as shown in FIG. 16(A), as the distance between the transparent films 1 increases, the difference between the adjacent distances dz d+ and ds da increases.
d、−d、が小となるようにすると、第17図(A)に
示した如く各透過率のピークが長波長側で密になるので
、その透過率特性は第18図の実線aの如くになる。又
、第16図(B)に示した如く透明膜1同志の間隔が小
になるに従って隣接する間隔同志の差d4 d3+
d、 dt、dz−d、が小になるようにすると、
第17図(B)に示した如く各透過率のピークが短波長
側で密になるので、その透過率特性は第18図の点線す
の如くになる。従って、各可変電圧電源3により各間隔
d+ 、dz、di、daを上述の如く制御すれば色温
度変換フィルターとして用いることができる。When d and -d are made small, the peaks of each transmittance become denser on the longer wavelength side as shown in FIG. It becomes like this. Furthermore, as shown in FIG. 16(B), as the distance between the transparent films 1 becomes smaller, the difference between the adjacent distances d4 d3+
If we make d, dt, dz-d small,
As shown in FIG. 17(B), the peaks of each transmittance become denser on the shorter wavelength side, so the transmittance characteristics become as shown by the dotted line in FIG. 18. Therefore, if the intervals d+, dz, di, and da are controlled by each variable voltage power supply 3 as described above, it can be used as a color temperature conversion filter.
第19図は第5実施例の要部を示しており、これは透明
膜1の両面に透明膜1と異なる特性の単層の被覆層4を
設けて間隔変更時に所定の特性が得られるようにしたも
のである。第19図(A)は被覆層4を含む間隔がλ/
4となるようにしたものであり、第19図(B)は空気
間隔がλ/4となるようにしたものであり、第19図(
C)は空気間隔がλ/2となるようにしたものである。FIG. 19 shows the main part of the fifth embodiment, in which a single-layer coating layer 4 with different characteristics from the transparent film 1 is provided on both sides of the transparent film 1 so that predetermined characteristics can be obtained when changing the spacing. This is what I did. In FIG. 19(A), the distance including the coating layer 4 is λ/
Figure 19 (B) shows the air spacing λ/4.
In C), the air spacing is λ/2.
本実施例は以上のように被覆層4を設けたことにより適
用範囲が広がると共に一層高性能になるという利点を有
する。This embodiment has the advantage that by providing the coating layer 4 as described above, the range of application is expanded and the performance is further improved.
第20図は第6実施例の要部を示しており、これは透明
[1の両面に透明膜1と異なる種々の特性の多層の被覆
N5,6.7を設けて最適特性が得られるようにしたも
のである。FIG. 20 shows the main part of the sixth embodiment, which is made by providing a multilayer coating N5, 6.7 with various characteristics different from the transparent film 1 on both sides of the transparent film 1 so as to obtain the optimum characteristics. This is what I did.
第21図は第7実施例の要部を示しており、これは第4
実施例と基本構造が同じ透過率特性素子を固体撮像素子
8の撮像面に固着することにより一体化して成るもので
ある。FIG. 21 shows the main part of the seventh embodiment, which is similar to the fourth embodiment.
A transmittance characteristic element having the same basic structure as that of the embodiment is fixed to the imaging surface of the solid-state image sensor 8 to be integrated.
上述の如く、本発明による透過率特性可変素子は、光学
系全体の小型化に貢献し、波長帯域変換速度を高速化で
き、低消費電力化できるという実用上重要な利点を有し
ている。As described above, the variable transmittance characteristic element according to the present invention has important practical advantages in that it contributes to miniaturization of the entire optical system, can increase the wavelength band conversion speed, and can reduce power consumption.
第1図は本発明による透過率特性可変素子の第1実施例
の断面図、第2図は第1実施例における単一の間晴によ
る透過率特性を示す図、第3図は第2図の透過率特性を
重ね合わせて成る特、性を示す図、第4図は第1実施例
において印加電圧を変化させた場合の透過率特性を示す
図、第5図は第2実施例の断面図、第6図は第2実施例
における透過率特性を示す図、第7図は第2実施例にお
いて印加電圧を変化させた場合の透過率特性を示す図、
第8図は第2実施例の間隔の変化特性を示す図、第9図
は第2実施例における印加電圧の一つの変化特性を示す
図、第10図は第3実施例の断面図、第11図は第3実
施例の間隔の変化特性を示す図、第12図は第3実施例
において印加電圧を変化させた場合の透過率特性を示す
図、第13図は第4実施例の断面図、第14図は第4実
施例において作れる間隔の変化特性を示す図、第15図
は第4実施例において作れる透過率特性を示す図、第1
6図は第4実施例において作れる他の間隔の変化特性を
示す図、第17図は第16図に対応する透過率特性を示
す図、第18図は第17図の特性を総合した透過率特性
を示す図、第19図乃至第21図は夫々第5乃至第7実
施例の要部断面図である。
1・・・・透明膜、2・・・・圧電アクチュエータ素子
、3・・・・可変電圧電源、4,5,6.7・・・・被
覆層、8・・・・固体撮像素子。
オフ図 18図
:I+!へ
第12図
液長
液長
:X&
1■−
六
r!ば匝
第15図
(A)
(B)
第19図
第16
(A)
第17
(A)
図
(B)
図
(B)FIG. 1 is a sectional view of a first embodiment of a variable transmittance characteristic element according to the present invention, FIG. 2 is a diagram showing transmittance characteristics by a single aperture in the first embodiment, and FIG. Fig. 4 is a diagram showing the transmittance characteristics when the applied voltage is changed in the first embodiment, and Fig. 5 is a cross section of the second embodiment. 6 is a diagram showing the transmittance characteristics in the second embodiment, and FIG. 7 is a diagram showing the transmittance characteristics when the applied voltage is changed in the second embodiment.
FIG. 8 is a diagram showing the change characteristics of the interval in the second embodiment, FIG. 9 is a diagram showing one change characteristic of the applied voltage in the second embodiment, and FIG. 10 is a cross-sectional view of the third embodiment. Fig. 11 is a diagram showing the interval change characteristics of the third embodiment, Fig. 12 is a diagram showing the transmittance characteristics when the applied voltage is changed in the third embodiment, and Fig. 13 is a cross section of the fourth embodiment. 14 is a diagram showing the interval change characteristics that can be created in the fourth embodiment. FIG. 15 is a diagram showing the transmittance characteristics that can be created in the fourth embodiment.
Figure 6 is a diagram showing other interval change characteristics that can be created in the fourth embodiment, Figure 17 is a diagram showing transmittance characteristics corresponding to Figure 16, and Figure 18 is a diagram showing the transmittance that combines the characteristics in Figure 17. Figures 19 to 21 showing the characteristics are sectional views of main parts of the fifth to seventh embodiments, respectively. DESCRIPTION OF SYMBOLS 1... Transparent film, 2... Piezoelectric actuator element, 3... Variable voltage power supply, 4, 5, 6.7... Covering layer, 8... Solid-state image sensor. Off figure 18 figure: I+! To Figure 12 Liquid length Liquid length: X & 1 ■ - 6r! Figure 15 (A) (B) Figure 19 Figure 16 (A) Figure 17 (A) Figure (B) Figure (B)
Claims (1)
り前記透明膜同志の間隔を変化させ得るようにして成る
透過率特性可変素子。A transmittance characteristic variable element comprising a plurality of transparent films stacked together and the distance between the transparent films being changed by a piezoelectric actuator element.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10717287A JPS63271322A (en) | 1987-04-30 | 1987-04-30 | Transmissivity characteristic varying element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10717287A JPS63271322A (en) | 1987-04-30 | 1987-04-30 | Transmissivity characteristic varying element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS63271322A true JPS63271322A (en) | 1988-11-09 |
Family
ID=14452304
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10717287A Pending JPS63271322A (en) | 1987-04-30 | 1987-04-30 | Transmissivity characteristic varying element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS63271322A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004012642A (en) * | 2002-06-04 | 2004-01-15 | Nec Corp | Tunable filter, method of manufacturing the same, and optical switching apparatus using the same |
| US7768570B2 (en) | 2004-04-26 | 2010-08-03 | Olympus Corporation | Image pickup apparatus using an imaging unit including an etalon and calibration method therefor |
| JP2013178392A (en) * | 2012-02-28 | 2013-09-09 | Seiko Epson Corp | Wavelength variable interference filter, optical filter device, optical module, and electronic apparatus |
| US11442328B2 (en) | 2018-09-27 | 2022-09-13 | Seiko Epson Corporation | Optical device and electronic apparatus |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58153902A (en) * | 1982-03-09 | 1983-09-13 | Matsushita Electric Ind Co Ltd | Fabry-perot type optical modulator |
-
1987
- 1987-04-30 JP JP10717287A patent/JPS63271322A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58153902A (en) * | 1982-03-09 | 1983-09-13 | Matsushita Electric Ind Co Ltd | Fabry-perot type optical modulator |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004012642A (en) * | 2002-06-04 | 2004-01-15 | Nec Corp | Tunable filter, method of manufacturing the same, and optical switching apparatus using the same |
| US7768570B2 (en) | 2004-04-26 | 2010-08-03 | Olympus Corporation | Image pickup apparatus using an imaging unit including an etalon and calibration method therefor |
| JP2013178392A (en) * | 2012-02-28 | 2013-09-09 | Seiko Epson Corp | Wavelength variable interference filter, optical filter device, optical module, and electronic apparatus |
| US11442328B2 (en) | 2018-09-27 | 2022-09-13 | Seiko Epson Corporation | Optical device and electronic apparatus |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3732527B1 (en) | Waveguide element and waveguide stack for display applications | |
| KR100840827B1 (en) | Optical multilayer structures, optical switching devices and image displays | |
| US9664824B2 (en) | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same | |
| JP4401880B2 (en) | Multiple band pass filter | |
| WO2017182771A1 (en) | Display with a waveguide coated with a meta-material | |
| CA2141902A1 (en) | Frequency routing device having a wide and substantially flat passband | |
| EP0932058A3 (en) | Multilayer thin film bandpass filter | |
| KR102740394B1 (en) | Waveguide display device, personal display device, and method for coupling light propagating into a waveguide display | |
| JP2004511827A (en) | Light valve and device provided with the light valve | |
| JP2004511827A5 (en) | ||
| WO2011031326A2 (en) | Interference filters for viewing anaglyphs | |
| CN113670441A (en) | Long-wave infrared multispectral imaging device based on filter array and its design method | |
| JP2008139693A (en) | Infrared cut filter | |
| JP2019523444A (en) | Optical laminate | |
| JP4899008B2 (en) | Improved color photodetector array and method of manufacturing the same | |
| GB2054195A (en) | Colour Selective Directional Mirrors | |
| US7319559B2 (en) | Spectral optical element | |
| JP2000329933A (en) | Multilayered film filter | |
| US20100271482A1 (en) | Imaging element unit | |
| JPS63271322A (en) | Transmissivity characteristic varying element | |
| WO2006088155A1 (en) | Dielectric multilayer periodic structure | |
| JPS63271308A (en) | Optical system for endoscope | |
| CN206281995U (en) | For the step optical filter of ultra-optical spectrum imaging system | |
| US6111996A (en) | Optical multiplexer/demultiplexer | |
| JPH1078510A (en) | filter |