+

JPS63141313A - Thin plate deformation device - Google Patents

Thin plate deformation device

Info

Publication number
JPS63141313A
JPS63141313A JP61286814A JP28681486A JPS63141313A JP S63141313 A JPS63141313 A JP S63141313A JP 61286814 A JP61286814 A JP 61286814A JP 28681486 A JP28681486 A JP 28681486A JP S63141313 A JPS63141313 A JP S63141313A
Authority
JP
Japan
Prior art keywords
thin plate
wafer
electrostrictive element
plate sample
linear electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61286814A
Other languages
Japanese (ja)
Other versions
JPH0556013B2 (en
Inventor
Akira Inagaki
晃 稲垣
Ryuichi Funatsu
隆一 船津
Yukio Kenbo
行雄 見坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61286814A priority Critical patent/JPS63141313A/en
Publication of JPS63141313A publication Critical patent/JPS63141313A/en
Publication of JPH0556013B2 publication Critical patent/JPH0556013B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体ウェハのような薄板試料の表面を所望
の形状、例えば平坦化する薄板変形に係り、特に、ミク
ロンオーダーの微小な凹凸を補正するのに好適な薄板変
形装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to thin plate deformation for flattening the surface of a thin plate sample such as a semiconductor wafer into a desired shape. The present invention relates to a thin plate deforming device suitable for correction.

[従来の技術] 従来の薄板変形装置は、特公昭57−23418号に記
載されているように、複数の上下駆動装置を半導体ウェ
ハなどの薄板試料の下部に配し、薄板試料表面の凹凸の
測定結果を基に、薄板試料の一部を前記上下駆動装置で
部分的に上下させることにより1表面を所望の状態にし
ようとするものである。
[Prior Art] As described in Japanese Patent Publication No. 57-23418, a conventional thin plate deforming device has a plurality of vertical drive devices arranged below a thin plate sample such as a semiconductor wafer, and is used to reduce irregularities on the surface of the thin plate sample. Based on the measurement results, one surface of the thin plate sample is brought into a desired state by partially moving it up and down using the vertical drive device.

[発明が解決しようとする問題点] 上記従来技術では、薄板試料の表面形状を変化できる範
囲は、上下される部分の間隔によって決まり、最少間隔
は上下駆動装置の大きさによって制限される。従って、
上下される部分を所望の形状状態にすることができても
、その間に当る上下動できない部分は、薄板試料の弾性
係数に依存した変化をしている。
[Problems to be Solved by the Invention] In the above-mentioned prior art, the range in which the surface shape of the thin plate sample can be changed is determined by the interval between the parts that are moved up and down, and the minimum interval is limited by the size of the vertical drive device. Therefore,
Even if the part that can be moved up and down can be made into a desired shape, the part that cannot be moved up and down between them changes depending on the elastic modulus of the thin plate sample.

薄板試料を所望の形状例えば精度良く平坦化する技術は
、今後ますます重要になってくる。例えば、近年の半導
体集積回路の微細化に伴い、マスクに形成された回路パ
ターンを転写するときにマスクと半導体付ウェハとの間
隙を数ミクロンオーダーで均一化し、均一度を1ミクロ
ン以下にする必要が生じてきている。しかし、上記従来
技術は、上述したように上下駆動装置の大きさによって
補正できる凹凸の大きさが制限されるため、今後の半導
体装置等の微細化に対応するのが困難である。
Techniques for accurately flattening a thin plate sample into a desired shape, for example, will become increasingly important in the future. For example, with the miniaturization of semiconductor integrated circuits in recent years, when transferring a circuit pattern formed on a mask, it is necessary to make the gap between the mask and the wafer with semiconductor uniform on the order of several microns, and to reduce the uniformity to 1 micron or less. is occurring. However, in the above-mentioned conventional technology, the size of the unevenness that can be corrected is limited depending on the size of the vertical drive device as described above, so it is difficult to cope with future miniaturization of semiconductor devices and the like.

本発明の目的は、マスクと薄板との間隙が1ミクロン以
下で均一にすること゛とができるように容易に薄板試料
の表面を変形させる薄板変形装置を提供することにある
An object of the present invention is to provide a thin plate deforming device that easily deforms the surface of a thin plate sample so that the gap between the mask and the thin plate can be made uniform to 1 micron or less.

[問題点を解決するための手段] 上記目的は、平面状の試料吸着部の下部に一体に平面状
の電歪素子を設け、この電歪素子の両面の夫々に多数の
線状電極を平行に形成し、かつ、両面間の線状電極が交
差するようにすることで。
[Means for solving the problem] The above purpose is to provide a planar electrostrictive element integrally at the bottom of a planar sample adsorption section, and to install a large number of linear electrodes in parallel on each of both sides of the electrostrictive element. , and the linear electrodes between both sides intersect.

達成される。achieved.

[作 用] 試料吸着部で吸着した薄板試料の表面に凹凸がある場合
、該箇所に交点がくる電歪素子両面の線状電極間に電界
を生じさせると、電歪素子の当該箇所が歪む。この歪み
は試料吸着部を通して伝達し、薄板試料の歪が相殺され
て薄板試料は平坦となる。
[Function] If the surface of the thin plate sample adsorbed by the sample adsorption section has unevenness, when an electric field is generated between the linear electrodes on both sides of the electrostrictive element whose intersection point is at the point, the corresponding point of the electrostrictive element will be distorted. . This distortion is transmitted through the sample adsorption section, and the distortion of the thin plate sample is canceled out, so that the thin plate sample becomes flat.

上記線状電極の間隔を狭くすることにより、精度を高め
ることが可能となる。また、複数枚の電歪素子を用い、
1つの電歪素子の線状電極間に他の電歪素子の線状電極
がくるように配置し、全体として見て線状電極が微細な
間隔で並ぶようにしてもよい。
By narrowing the spacing between the linear electrodes, accuracy can be improved. In addition, using multiple electrostrictive elements,
The linear electrodes of another electrostrictive element may be arranged between the linear electrodes of one electrostrictive element, so that the linear electrodes are lined up at minute intervals when viewed as a whole.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係る薄板変形装置及び制御
系の全体構成図である。第1図に示す実施例の薄板変形
装置1は、ウェハ2を真空吸着するウェハ吸着部3と、
該ウェハ吸着部3の下部に一体に設けられた4枚の電歪
素子4から成る。この薄板変形装置1は、基台5上に載
置されたXYテーブル6上に配置され、ウェハ2の表面
は非接触センサ7からなる測定手段で測定される。セン
サ7の出力はアンプ8で増幅され、A/Dコンバータ9
でディジタル信号に変換され、CPUl0に与えられる
。一方図示されていないがウェハ2に対向するマスクに
ついてもマスクの表面の形状が非接触センサからなる測
定手段で測定される。これによりマスクとウェハの間隙
が測定される。CPUl0は、この間隙入力信号に基づ
いて一定の値を示すように制御信号を電歪素子ドライバ
11に出力し、詳細は後述するようにウェハ2の凹凸を
補正する。また、CPUl0はXYテーブル6を駆動す
るモータ13の制御回路12に制御信号を出力する。
FIG. 1 is an overall configuration diagram of a thin plate deforming device and a control system according to an embodiment of the present invention. The thin plate deforming device 1 of the embodiment shown in FIG.
It consists of four electrostrictive elements 4 that are integrally provided at the lower part of the wafer suction section 3. This thin plate deforming device 1 is placed on an XY table 6 placed on a base 5, and the surface of the wafer 2 is measured by a measuring means consisting of a non-contact sensor 7. The output of the sensor 7 is amplified by an amplifier 8 and then sent to an A/D converter 9.
The signal is converted into a digital signal and given to CPU10. On the other hand, although not shown, the shape of the surface of the mask facing the wafer 2 is also measured by measuring means consisting of a non-contact sensor. This measures the gap between the mask and the wafer. Based on this gap input signal, the CPU 10 outputs a control signal to the electrostrictive element driver 11 so as to indicate a constant value, and corrects the unevenness of the wafer 2, as will be described in detail later. Further, the CPU 10 outputs a control signal to the control circuit 12 of the motor 13 that drives the XY table 6.

第2図はウェハ吸着部3の上面図である。ウェハ吸着部
3は正方形の板材でなり、中央部3aは円形かつ平面状
に突設されている。この中央部3aはウェハ2より若干
大径に形成され、内側は無数の細い溝3bが\h刻設さ
れている(第2図は溝3bの幅を大きくして描いである
)。多溝3bは相互に連通ずるように刻設され、中央部
3aの外周部3cはウェハ2の周縁部が載置されるよう
に突状リングとなっている。ウェハ2は。
FIG. 2 is a top view of the wafer suction section 3. The wafer suction part 3 is made of a square plate, and the central part 3a is circular and planarly protruded. This central portion 3a is formed to have a slightly larger diameter than the wafer 2, and countless narrow grooves 3b are carved on the inside (Fig. 2 shows the grooves 3b with a larger width). The multi-grooves 3b are carved so as to communicate with each other, and the outer peripheral part 3c of the central part 3a is a protruding ring on which the peripheral part of the wafer 2 is placed. As for wafer 2.

この突状リング3cと溝3b間に形成された無数の支持
突起3dにより平面状に吸着支持される。
It is sucked and supported in a plane by countless support protrusions 3d formed between the protruding ring 3c and the groove 3b.

溝3bの底部には、真空ポンプ(図示せず)に接続され
る通路3e(ウェハ吸着部3の内部に穿設されている。
At the bottom of the groove 3b is a passage 3e (pierced inside the wafer adsorption section 3) that is connected to a vacuum pump (not shown).

第1図)の開口部3fが設けられている。An opening 3f shown in FIG. 1) is provided.

第3図は電歪素子4の斜視図である。平板状の電歪素子
4は、電歪(強誘電体における電気分極による異方性変
位)効果を有する材料で形成され、ウェハ吸着部3と同
寸の正方形である。電歪素子4の上面には、多数の線状
電極4aが等間隔かつ平行に、例えば蒸着等により形成
されている。電歪素子4の下面にも、多数の線状電極4
bが等間隔かつ平行に形成されている。この線状電極4
bは、上面の線状電極4aに対し、交差するように、本
実施例では直角となるように配置されている。
FIG. 3 is a perspective view of the electrostrictive element 4. The flat electrostrictive element 4 is made of a material that has an electrostrictive (anisotropic displacement due to electric polarization in a ferroelectric material) effect, and has a square shape with the same size as the wafer adsorption section 3 . On the upper surface of the electrostrictive element 4, a large number of linear electrodes 4a are formed equally spaced and parallel to each other by, for example, vapor deposition. A large number of linear electrodes 4 are also provided on the lower surface of the electrostrictive element 4.
b are formed equally spaced and parallel. This linear electrode 4
b is arranged so as to intersect with the linear electrode 4a on the upper surface, or at right angles in this embodiment.

そして、電歪素子4の両面は絶縁膜でコーティングされ
、電極4a、4bを保護すると共にショートしないよう
にされている。各電極4a、4bの一本一本は外部に引
き出され、電歪素子ドライバ11(第1図)に接続され
、CPUl0からの制御信号により任意の電極4a、4
b間に直流電界が印加されるようになっている。
Both surfaces of the electrostrictive element 4 are coated with an insulating film to protect the electrodes 4a and 4b and to prevent short circuits. Each of the electrodes 4a, 4b is pulled out to the outside and connected to the electrostrictive element driver 11 (FIG. 1), and the arbitrary electrodes 4a, 4b are
A DC electric field is applied between b.

第4図は電歪素子4の電気的構成図である。第4図(a
)に示すように、電歪素子の上面電極と下面電極との間
には容量が形成され、この容量に電荷が供給されると、
電歪作用により電歪素子はその厚さを変える。例支ばA
点での厚さを変えたい場合、当該箇所Aで交差する上面
ffi極Bと下面電極Cとの間に直流電界を印加すると
、第4図(b)に示すようにA点での厚さが変化する。
FIG. 4 is an electrical configuration diagram of the electrostrictive element 4. Figure 4 (a
), a capacitance is formed between the top electrode and the bottom electrode of the electrostrictive element, and when charge is supplied to this capacitance,
Due to the electrostrictive effect, the electrostrictive element changes its thickness. For example, A
If you want to change the thickness at a point, if you apply a DC electric field between the top ffi pole B and the bottom electrode C that intersect at the point A, the thickness at point A will change as shown in Figure 4(b). changes.

従って、かかる電歪素子を備える薄板変形装置を基準面
上に固定しておき、電歪素子の所望の箇所の厚さを変化
させると、該変化は上部に一体接合されたウェハ吸着部
を通してウェハに伝達され、ウェハの凹凸を補正するこ
とができる。この様な変化はミクロンオーダで起きるた
め、マクロ的にみればハードなウェハ吸着部やウェハあ
るいは多層構造の上部電歪素子は、ミクロ的には柔らか
いものとみることができるからである。
Therefore, when a thin plate deforming device equipped with such an electrostrictive element is fixed on a reference surface and the thickness of a desired portion of the electrostrictive element is changed, the change is applied to the wafer through the wafer suction part integrally joined to the upper part. It is possible to correct the unevenness of the wafer. This is because such a change occurs on the micron order, so that the wafer suction part, wafer, or upper electrostrictive element of a multilayer structure, which is hard from a macroscopic perspective, can be considered to be soft from a microscopic perspective.

電歪素子4は第3図に示した構成であり、上述したこと
から容易に推測できるように、線状電極4a間及び4b
間の間隔が狭い程、高精度の凹凸補正ができるものが得
られる。しかし、製造上の困難が伴う場合には、本実施
例のように複数枚の電歪素子を重ねて使用する。例えば
、1つの電歪素子の電極間隔が8ミクロンである場合、
4枚の電歪素子を2ミクロンづつずらして重ねることに
より、実質的に2ミクロン間隔の電極を備えた電歪素子
が得られる。
The electrostrictive element 4 has the configuration shown in FIG. 3, and as can be easily inferred from the above, there are
The narrower the interval between the two, the more accurate unevenness correction can be obtained. However, if there are manufacturing difficulties, a plurality of electrostrictive elements may be stacked and used as in this embodiment. For example, if the electrode spacing of one electrostrictive element is 8 microns,
By stacking four electrostrictive elements with a shift of 2 microns each, an electrostrictive element having electrodes substantially spaced apart by 2 microns can be obtained.

斯かる構成の薄板変形装置を使用してマスクとウェハの
間隙を均一化、即ちウェハの平坦度を上げる方法につい
て説明する。
A method of equalizing the gap between the mask and the wafer, that is, increasing the flatness of the wafer using the thin plate deforming device having such a configuration will be described.

xNIAn光方式や、エキシマレーザ露光方式により回
路パターンをウェハ2上に転写する場合、まず、ウェハ
2を吸着部3上に載置し、吸着部3の溝3bを真空にし
てウェハ2全面を均一に吸着保持する。そして、CPU
l0からの指示によりXYデープル6を前後左右に移動
させ、ウェハ2全面の凹凸状態をセンサ7で検知すると
共にマスクの表面を測定し、マスクとウェハ2の間隙を
CPU10内のメモリに格納する。
When transferring a circuit pattern onto the wafer 2 using the xNIAn light method or the excimer laser exposure method, first place the wafer 2 on the suction section 3, and evacuate the groove 3b of the suction section 3 to uniformly spread the entire surface of the wafer 2. Hold it by adsorption. And the CPU
The XY daple 6 is moved back and forth and left and right according to instructions from l0, the uneven state of the entire surface of the wafer 2 is detected by the sensor 7, the surface of the mask is measured, and the gap between the mask and the wafer 2 is stored in the memory in the CPU 10.

次に、CPUl0は、マスクとウェハ2の間隙に応じた
上面電極4a、下面電極4bを選択し、当該箇所の間隙
及びその大きさに応じて、選択した電極間に所要の極性
、所要の大きさの直流電界を印加するようにドライバ1
1に制御信号を出力する。
Next, the CPU10 selects the upper surface electrode 4a and the lower surface electrode 4b according to the gap between the mask and the wafer 2, and sets the required polarity and required size between the selected electrodes according to the gap and its size at the relevant location. Driver 1 so as to apply a DC electric field of
A control signal is output to 1.

これにより、電歪素子4の所要箇所の厚さが変化し、ウ
ェハ2の凹凸は電歪素子4の変化により補正され、マス
クとウェハ2の間隙が均一化される。
As a result, the thickness of the electrostrictive element 4 at a required location changes, the unevenness of the wafer 2 is corrected by the change in the electrostrictive element 4, and the gap between the mask and the wafer 2 is made uniform.

この状態でウェハに対してマスク上の回路パターンの転
写を行なうことにより、微細なパターンが鮮明にウェハ
2上に描かれる。このとき、電歪素子の上記容量は理想
的な容量でないため電荷の漏れが生ずる。これに対して
は、繰返し失われた電荷を供給することにより、各点の
電荷をほぼ一定の値に保持することができる。これによ
り、電歪素子の変化すなわちウェハ2の平坦度も同様に
保持される。
By transferring the circuit pattern on the mask to the wafer in this state, a fine pattern is clearly drawn on the wafer 2. At this time, since the capacitance of the electrostrictive element is not an ideal capacitance, charge leakage occurs. On the other hand, by repeatedly supplying the lost charge, the charge at each point can be maintained at a substantially constant value. Thereby, the change in the electrostrictive element, that is, the flatness of the wafer 2 is similarly maintained.

本実施例によれば、高集積化する半導体製造工程(特に
0.5μm以下のりソグラフイで用し)られるX線露光
方式)で要求される平坦度を十分達成することができ、
量産を可能とする効果がある。
According to this embodiment, it is possible to sufficiently achieve the flatness required in the highly integrated semiconductor manufacturing process (in particular, the X-ray exposure method used in lithography of 0.5 μm or less),
This has the effect of making mass production possible.

尚、本発明は上記実施例の様に半導体ウェハの平坦化に
限らず、高精度な平面を作り出す必要がある他の技術分
野にも有効に適用できることはいうまでもない。
It goes without saying that the present invention is not limited to the flattening of semiconductor wafers as in the above-mentioned embodiments, but can be effectively applied to other technical fields where it is necessary to create highly accurate flat surfaces.

[発明の効果コ 本発明によれば、薄板試料の表面をサブミクロンオーダ
の高精度の平面等にすることができるという効果がある
[Effects of the Invention] According to the present invention, there is an effect that the surface of a thin plate sample can be made into a highly accurate flat surface on the order of submicrons.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る薄板変形装置と制御系
の構成図、第2図はウェハ吸着部の上面図、第3図は電
歪素子の斜視図、第4図(a)は電歪素子の電気的構成
図、第4図(b)は電歪素子の変化説明図である。 1・・・薄板変形装置、2・・・ウェハ、3・・・ウェ
ハ吸着部、4・・・電歪素子、4a、4b・・・線状電
極、11・・・電歪素子ドライバ。 代理人 弁理士  秋 本 正 実 第1図 第2図 第3 図 4α b s4  図 (Q) (b)
Fig. 1 is a block diagram of a thin plate deforming device and a control system according to an embodiment of the present invention, Fig. 2 is a top view of a wafer adsorption section, Fig. 3 is a perspective view of an electrostrictive element, and Fig. 4 (a). is an electrical configuration diagram of the electrostrictive element, and FIG. 4(b) is an explanatory diagram of changes in the electrostrictive element. DESCRIPTION OF SYMBOLS 1... Thin plate deformation device, 2... Wafer, 3... Wafer adsorption part, 4... Electrostrictive element, 4a, 4b... Linear electrode, 11... Electrostrictive element driver. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 3 Figure 4α b s4 Figure (Q) (b)

Claims (1)

【特許請求の範囲】[Claims] 1、上面に多数の線状電極を平行かつ等間隔に形成し、
これらの線状電極と交差する角度で多数の線状電極を平
行かつ等間隔に下面に形成した平板状の電歪素子を、変
形させる薄板試料を吸着保持する平板状の吸着部の下部
に一体に設けて成り、前記薄板試料の凹凸箇所で交差す
る前記上面線状電極と下面線状電極との間に所要の電界
をかけ電歪素子の当該箇所の厚さを変化させて前記薄板
試料の凹凸を相殺するようにした薄板変形装置。
1. Forming a large number of linear electrodes in parallel and at equal intervals on the top surface,
A planar electrostrictive element, in which a large number of linear electrodes are formed on the lower surface in parallel and equally spaced at angles that intersect with these linear electrodes, is integrated into the lower part of a flat adsorption section that adsorbs and holds the thin plate sample to be deformed. A required electric field is applied between the upper surface linear electrode and the lower surface linear electrode that intersect at the uneven portion of the thin plate sample, and the thickness of the electrostrictive element at the corresponding portion is changed to change the thickness of the thin plate sample. A thin plate deforming device designed to offset unevenness.
JP61286814A 1986-12-03 1986-12-03 Thin plate deformation device Granted JPS63141313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286814A JPS63141313A (en) 1986-12-03 1986-12-03 Thin plate deformation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286814A JPS63141313A (en) 1986-12-03 1986-12-03 Thin plate deformation device

Publications (2)

Publication Number Publication Date
JPS63141313A true JPS63141313A (en) 1988-06-13
JPH0556013B2 JPH0556013B2 (en) 1993-08-18

Family

ID=17709388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286814A Granted JPS63141313A (en) 1986-12-03 1986-12-03 Thin plate deformation device

Country Status (1)

Country Link
JP (1) JPS63141313A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025341A1 (en) * 2004-09-01 2006-03-09 Nikon Corporation Substrate holder, stage apparatus, and exposure apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006025341A1 (en) * 2004-09-01 2006-03-09 Nikon Corporation Substrate holder, stage apparatus, and exposure apparatus
US8717543B2 (en) 2004-09-01 2014-05-06 Nikon Corporation Substrate holder, stage apparatus, and exposure apparatus with first support part provided in a suction space and second support part
JP4779973B2 (en) * 2004-09-01 2011-09-28 株式会社ニコン Substrate holder, stage apparatus, and exposure apparatus
JPWO2006025341A1 (en) * 2004-09-01 2008-05-08 株式会社ニコン Substrate holder, stage apparatus, and exposure apparatus
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JPH0556013B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US11164842B2 (en) Bonding apparatus and bonding system
EP0561566B1 (en) Solid state condenser and microphone
JPH034341B2 (en)
JPH0360013A (en) Thin film structure for x-ray lithography
KR20200100847A (en) Substrate processing apparatus and substrate processing method
JPS63141313A (en) Thin plate deformation device
JP2750554B2 (en) Vacuum suction device
JPH0642508B2 (en) Thin plate deforming device and proximity exposure device
JPH0831515B2 (en) Substrate suction device
TWI782171B (en) Substrate processing equipment
JPH02271680A (en) Manufacture of mesa in semiconductor structure
KR20010100758A (en) Microfabricated template for multiple charged particle beam calibrations and shielded charged particle beam lithography
JPH04324658A (en) Vacuum suction type wafer holding device
JP2005091051A (en) Thin plate horizontal holding device
JP2808969B2 (en) Manufacturing method of semiconductor acceleration sensor
CN221485791U (en) Surface shape adjusting device
JPH0368175A (en) Semiconductor pressure sensor
JPS6258541B2 (en)
JPH06103237B2 (en) Diaphragm type pressure sensor
US20250012606A1 (en) Distance measuring device, distance measuring method, bonding apparatus, and bonding method
JPH0588188A (en) Assembling method of thin plate
JPH01231345A (en) Uehachiyatsuk
JPS6290660A (en) exposure equipment
JPH0322517A (en) Semiconductor manufacturing device
KR20060022151A (en) Electrostatic adsorption device
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载