JPS62151562A - Thin film forming equipment - Google Patents
Thin film forming equipmentInfo
- Publication number
- JPS62151562A JPS62151562A JP29441585A JP29441585A JPS62151562A JP S62151562 A JPS62151562 A JP S62151562A JP 29441585 A JP29441585 A JP 29441585A JP 29441585 A JP29441585 A JP 29441585A JP S62151562 A JPS62151562 A JP S62151562A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- vessel
- vacuum
- film forming
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、薄り形成袋σに係り、特に牛場体装痘を製
造する製造1稈において、半導体ウェハ表面に薄膜を形
成する作業に使用するスパッタリング1A置に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a thinning forming bag σ, and is particularly applicable to the work of forming a thin film on the surface of a semiconductor wafer in one production process for manufacturing Ubata Sosopox. This is related to the sputtering 1A setting used.
第2図は、この種従来の薄膜形成装置であるスパッタリ
ング装置の一例を示す断面図であり、図において(1)
Fi真空槽、(2)は被薄膜形成体としての半導体ウェ
ハ、(3a)け油回転ポンプ、(4&)はクライオポン
プ、Isn’を真空槽t1)内の真空圧を計測する為の
真空圧センサー、(6)け半導体ウェハ(2)上に形成
される薄膜形成材料であるターゲラ) 、(71けスパ
ッタリング?llである。FIG. 2 is a cross-sectional view showing an example of a sputtering apparatus which is a conventional thin film forming apparatus of this kind, and in the figure (1)
Fi vacuum chamber, (2) is a semiconductor wafer as a thin film forming object, (3a) is an oil pump, (4 &) is a cryopump, and Isn' is a vacuum pressure for measuring the vacuum pressure in the vacuum chamber t1). The sensor, (6) is a thin film forming material formed on the semiconductor wafer (2), and (71 is sputtering).
次に動作について説明する。Next, the operation will be explained.
真空R”1(11を大気圧に開放した後、薄膜形厄面を
上にして半導体ウェハ(2)を真空mfl+内の定位置
に置いた後、油回転ポンプ(3a)、およびクライオポ
ンプ(4a)を用いて、真空槽(1)を高真空まで真空
排気する。次いで、高純度のアルゴンガスを真空槽(1
)に導入し、真空圧センサー15+および真空圧コント
ローラ(7)を使用して、真空N(11内を一定の真空
圧にする。次いで、スパッタリング[源(7)の出力を
ターゲット(6)に印加することにより、スパッタリン
グ作用を起こし、ターゲット(6)の材料を半導体ウェ
ハ(2)上に堆積させる。After opening the vacuum R"1 (11) to atmospheric pressure and placing the semiconductor wafer (2) in a fixed position in the vacuum mfl+ with the thin film side up, the oil rotary pump (3a) and the cryopump ( 4a) to evacuate the vacuum chamber (1) to a high vacuum.Then, high-purity argon gas is pumped into the vacuum chamber (1).
) and use the vacuum pressure sensor 15+ and the vacuum pressure controller (7) to maintain a constant vacuum pressure in the vacuum N (11). The application causes a sputtering action and deposits the material of the target (6) onto the semiconductor wafer (2).
従来の薄膜形成装置は以上のように、スパッタリング中
の真空圧のみを検知している為、真空槽(11のリーク
等により真空W!(1)内が高純度アルゴンガス以外の
ガスで汚染きれても検知できず、品質の悪い薄膜を半導
体ウェハ(2)表面に形成する場合があるなどの問題点
があった。As mentioned above, conventional thin film forming equipment only detects the vacuum pressure during sputtering, so the inside of the vacuum W! (1) may be contaminated with gas other than high-purity argon gas due to leakage from the vacuum chamber (11). However, there are problems in that a thin film of poor quality may be formed on the surface of the semiconductor wafer (2).
この発明は上記のような間m点を解消するためになされ
たもので、高品質の薄膜が形成できる薄膜形成装置を得
ることを目的とする。This invention was made to solve the above-mentioned problem, and aims to provide a thin film forming apparatus capable of forming a high quality thin film.
この発明に係る薄膜形成袋ff1F′:、真空槽内のガ
スの成分を分析するガス成分分析袋Tを備えたものであ
る。Thin film forming bag ff1F' according to the present invention: This bag is equipped with a gas component analysis bag T for analyzing gas components in a vacuum chamber.
この発明における薄膜形成装置は、ガス成分分析装置に
より、薄膜形成中の真空槽内のガス成分を検知するから
、上記真空槽内にあるべきガス以外のガスが存在した場
合には、薄膜形成作業を中止できるものである。The thin film forming apparatus according to the present invention uses a gas component analyzer to detect gas components in the vacuum chamber during thin film formation. can be canceled.
以下、この発明の一実施例を図について説明する。第1
図において、C8)は、真空槽(1)内のガスの成分を
分析するガス成分分析装置で、このガス成分分析装置は
、真空槽(1)の排気口に取り付けられたクライオポン
プ(4b)と、このクライオポンプ(4b)と上記真空
槽(1)との間の排気口に設けられ、上記排気口径を#
!節することによっての真空槽(1)側の真空圧とクラ
イオポンプ(4b)側の真空圧との差を作る差圧発生器
(9)と、この差圧発生器(9)とフライ吋ポンプ(4
b)との間の排気口内に含まれるガスをセンスする質量
分析器センサーGOと、この質量分析器センサー00の
センスに基づいてガスの成分を分析する質量分析器C1
1lと、上記クライオポンプ(4b)に取り付けられた
油回転ポンプ(3b)とからなるものである。An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, C8) is a gas component analyzer that analyzes the gas components in the vacuum chamber (1), and this gas component analyzer is connected to a cryopump (4b) attached to the exhaust port of the vacuum chamber (1). It is provided at the exhaust port between this cryopump (4b) and the vacuum chamber (1), and the exhaust port diameter is set to #.
! A differential pressure generator (9) that creates a difference between the vacuum pressure on the vacuum chamber (1) side and the vacuum pressure on the cryopump (4b) side by (4
b) a mass spectrometer sensor GO that senses the gas contained in the exhaust port between the mass spectrometer sensor GO and a mass spectrometer C1 that analyzes the components of the gas based on the sense of the mass spectrometer sensor 00;
1 liter, and an oil rotary pump (3b) attached to the cryopump (4b).
次に作用、動作について説明する。Next, the function and operation will be explained.
真空槽(1)を大気圧に開放した後、薄膜形成面を上に
して被薄膜形成体である半導体ウェハ(2)を真空!f
1(13内の定位置にセットする。次いで、油回転ホ゛
ンブ(3a)を用いて真空槽(1)をLO’τorr程
度の真空圧に真空排気する。次いで、クライオポンプ(
41)を用いて真空槽rl)を10 Torr程度の
真空圧に真空排気する。次いで、純度99999%程度
の高純度アルゴンガスを真空% (11に導入する。こ
の時、真空センサー(5)および真空圧コントローラ(
7)を使用して、高純度アルゴンガスの流入速度を制御
し、真空槽内を10 Torr程度の真空圧に保持す
る。次いで、スパッタリングηt’6fAの出力?薄明
形成材料であるターゲット(6)に印加して、ターゲッ
ト(6)表面近傍にプラズマを発生させ、ウェハ(2)
表面にターゲット材料をデボさせる。このスパッタリン
グ中のカス成分を、ガス成分分析装置(8)を用いて常
時検知する。通常の質量分析器口11け10 Tor
r程度以下の真空圧で動作するので、真空圧がユ0−2
Torr程度であるスパッタリング中のガス成分を検知
する事はできない。そこで、本発明例では、真空槽C1
)に取り付けたf(ff1分析器センサー00を、クラ
イオポンプ(4b)を用いて10 Torr以下の真
空圧に保持させろ。このとき、真空PJ(1)内の1O
−2Torr程度の真空圧と、質量分析器上ンサーQG
部のユOTorr以下の真空圧との差圧が生じるのを可
能とするために、差圧発生器(9)を取り付けている。After opening the vacuum chamber (1) to atmospheric pressure, the semiconductor wafer (2) on which the thin film is to be formed is placed in a vacuum with the thin film forming surface facing up! f
1 (13). Next, the vacuum chamber (1) is evacuated to a vacuum pressure of about LO'τorr using the oil rotary horn (3a). Next, the cryopump (
41) to evacuate the vacuum chamber rl) to a vacuum pressure of about 10 Torr. Next, high-purity argon gas with a purity of about 99999% is introduced into the vacuum % (11). At this time, the vacuum sensor (5) and the vacuum pressure controller (
7) to control the inflow rate of high-purity argon gas and maintain the vacuum pressure in the vacuum chamber at about 10 Torr. Next, the output of sputtering ηt'6fA? A plasma is generated near the surface of the target (6) by applying it to the target (6), which is a twilight-forming material, and the wafer (2)
Deboss the target material onto the surface. The residue components during this sputtering are constantly detected using a gas component analyzer (8). Ordinary mass spectrometer port 11 x 10 Torr
Since it operates at a vacuum pressure of about r or less, the vacuum pressure is
It is not possible to detect gas components during sputtering, which are on the order of Torr. Therefore, in the example of the present invention, the vacuum chamber C1
) attached to f(ff1
Vacuum pressure of about -2 Torr and QG sensor on the mass spectrometer
A differential pressure generator (9) is installed to enable the generation of a differential pressure with the vacuum pressure of less than OTorr.
この為、スパッタリング中の真空槽〔1)内のガスの一
部は排気口を通して常時クライオポンプ(4b)に流れ
込み、この排気0逮中に取り付けた質量分析器センサー
00で、スパッタリング中の真空槽(1)内のガス成分
を71イ時検知することが可能となった。For this reason, part of the gas in the vacuum chamber [1] during sputtering constantly flows into the cryopump (4b) through the exhaust port, and the mass spectrometer sensor 00 installed during this exhaust gas (1) It became possible to detect the gas components in 71 times.
その為、スパッタリング中に、高純度アルゴン以外のガ
ス成分が真空fi (1)内に流入した場合には、すぐ
にτ!毎分析器01Jに取り付けられた5報器から5報
を発し、スパッタリング作業を中止する。この為、不純
なガスが混入あるいは、不純なガスと反応した低品質の
薄膜がウエノ為上にデボされる事はなくなった。Therefore, if a gas component other than high-purity argon flows into the vacuum fi (1) during sputtering, τ! Five alarms are issued from the five alarms attached to each analyzer 01J, and the sputtering work is stopped. For this reason, a low-quality thin film mixed with impure gas or reacted with impure gas is no longer deposited on the substrate.
なお、上記実施例では、高真空ポンプとしてクライオポ
ンプ(4,) (4b)を使用したが、ターボモレキュ
ラーどンプや、油拡散ポンプ等の他の高真空ポンプを使
用してもよい。In the above embodiment, the cryopump (4,) (4b) was used as the high vacuum pump, but other high vacuum pumps such as a turbo molecular pump or an oil diffusion pump may be used.
また上記実施例では、真空l (1)が1箇のスパッタ
リング装置について説明したが、複数の真空槽を有した
スパッタリング装置であってもよい。Furthermore, in the above embodiments, a sputtering apparatus with one vacuum l (1) was described, but a sputtering apparatus with a plurality of vacuum chambers may be used.
更に、上記実施例ではスパッタリング装置について説明
したが、真空糟内で膜形成を行う装置であれば何でも良
く、例えば真空蒸着装置等にこの発明を適用しても同様
の効果が得られるものであるO
また上記実施例では、ガス成分分析袋!(8)として、
質翫分析器(111を利用したものを示したがこれに限
られるものではなく、他のガス成分分析手段であって吃
良い。Further, in the above embodiments, a sputtering device was described, but any device that forms a film in a vacuum chamber may be used. For example, the same effect can be obtained even if the present invention is applied to a vacuum evaporation device. O Also, in the above example, a gas component analysis bag! As (8),
Although the gas analyzer (111) is shown, the present invention is not limited to this, and other gas component analysis means are also suitable.
以上のように、この発明によれば、薄膜形成装置に真空
槽内のガスの成分を分析するガス成分分析装置を設けて
薄11fi形成中のガス成分を常時検知するようにした
ので、高品質の薄膜がウェハ表面上に、再現性よく形成
できるという効果がある。As described above, according to the present invention, the thin film forming apparatus is equipped with a gas component analyzer for analyzing the gas components in the vacuum chamber to constantly detect the gas components during thin 11fi formation, resulting in high quality This method has the advantage that a thin film of 100% can be formed on the wafer surface with good reproducibility.
第1図はこの発明の一実施例によるスパッタリング装置
を示す断面図、第2図は従来のスパッタリング装置を示
す断面図である。
図に於て、(1)は真空槽、C2)は被薄膜形成体、(
8)はガス成分分析装置である。
なお、図中、同一符号は同一、又は相当部分を示す。
代理人 大 岩 増 雄
f52図
2?FIG. 1 is a sectional view showing a sputtering apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional sputtering apparatus. In the figure, (1) is a vacuum chamber, C2) is a thin film forming body, (
8) is a gas component analyzer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa f52 Figure 2?
Claims (3)
槽と、上記真空槽内のガスの成分を分析するガス成分分
析装置を備えたことを特徴とする薄膜形成装置。(1) A thin film forming apparatus comprising: a vacuum chamber in which a thin film forming material and a thin film forming object are housed; and a gas component analyzer for analyzing gas components in the vacuum chamber.
に取り付けられた差圧発生器と、この差圧発生器を介し
て上記排気口に取り付けられたポンプと、上記差圧発生
器を介して上記排気口に取り付けられ上記差圧発生器と
上記ポンプとの間のガスの成分を分析する質量分析器セ
ンサと、この質量分析器センサに接続された質量分析器
とからなることを特徴とする特許請求の範囲第1項記載
の薄膜形成装置。(2) The gas component analyzer includes a differential pressure generator attached to an exhaust port provided in a vacuum chamber, a pump attached to the exhaust port via this differential pressure generator, and the differential pressure generator and a mass spectrometer sensor connected to the mass spectrometer sensor, and a mass spectrometer sensor attached to the exhaust port through the pump to analyze the components of the gas between the differential pressure generator and the pump. A thin film forming apparatus according to claim 1.
する特許請求の範囲第1項または第2項記載の薄膜形成
装置。(3) The thin film forming apparatus according to claim 1 or 2, wherein the thin film forming object is a semiconductor wafer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29441585A JPS62151562A (en) | 1985-12-26 | 1985-12-26 | Thin film forming equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29441585A JPS62151562A (en) | 1985-12-26 | 1985-12-26 | Thin film forming equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62151562A true JPS62151562A (en) | 1987-07-06 |
| JPH0419301B2 JPH0419301B2 (en) | 1992-03-30 |
Family
ID=17807455
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP29441585A Granted JPS62151562A (en) | 1985-12-26 | 1985-12-26 | Thin film forming equipment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS62151562A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001031693A1 (en) * | 1999-10-26 | 2001-05-03 | Tokyo Electron Limited | Method and apparatus for monitoring process exhaust gas, semiconductor-manufacturing device, and method and system for managing semiconductor-manufacturing device |
| DE19844882B4 (en) * | 1997-12-30 | 2007-02-01 | Samsung Electronics Co., Ltd., Suwon | Apparatus for plasma processing with in-situ monitoring and in situ monitoring method for such a device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3595823B2 (en) * | 1994-07-28 | 2004-12-02 | 有限会社 渕田ナノ技研 | Apparatus and method for forming metal partial film |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5246920A (en) * | 1975-10-08 | 1977-04-14 | Suwa Seikosha Kk | Paper feeder |
| JPS5931550A (en) * | 1982-08-16 | 1984-02-20 | Ulvac Corp | Radical and excited particle measuring equipment during plasma etching |
-
1985
- 1985-12-26 JP JP29441585A patent/JPS62151562A/en active Granted
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5246920A (en) * | 1975-10-08 | 1977-04-14 | Suwa Seikosha Kk | Paper feeder |
| JPS5931550A (en) * | 1982-08-16 | 1984-02-20 | Ulvac Corp | Radical and excited particle measuring equipment during plasma etching |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19844882B4 (en) * | 1997-12-30 | 2007-02-01 | Samsung Electronics Co., Ltd., Suwon | Apparatus for plasma processing with in-situ monitoring and in situ monitoring method for such a device |
| WO2001031693A1 (en) * | 1999-10-26 | 2001-05-03 | Tokyo Electron Limited | Method and apparatus for monitoring process exhaust gas, semiconductor-manufacturing device, and method and system for managing semiconductor-manufacturing device |
| US6716477B1 (en) | 1999-10-26 | 2004-04-06 | Tokyo Electron Limited | Method and apparatus for monitoring process exhaust gas, semiconductor-manufacturing device and method and system for managing semiconductor-manufacturing device |
| US6942891B2 (en) | 1999-10-26 | 2005-09-13 | Tokyo Electron Limited | Device and method for monitoring process exhaust gas, semiconductor manufacturing device, and system and method for controlling semiconductor manufacturing device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0419301B2 (en) | 1992-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5704214A (en) | Apparatus for removing tramp materials and method therefor | |
| WO1999016108A2 (en) | Method and apparatus for fault detection and control | |
| US6964187B2 (en) | Vacuum sensor | |
| JPH0337562A (en) | Gas analysis method in vacuum equipment and process chambers | |
| US4341616A (en) | Dry etching device | |
| JPH06346234A (en) | Sputtering equipment | |
| JPS62151562A (en) | Thin film forming equipment | |
| US7094614B2 (en) | In-situ monitoring of chemical vapor deposition process by mass spectrometry | |
| JP3333657B2 (en) | Vapor phase etching apparatus and vapor phase etching method | |
| Chambers et al. | Endpoint uniformity sensing and analysis in silicon dioxide plasma etching using in situ mass spectrometry | |
| JP3300232B2 (en) | High barrier film defect detection apparatus and method | |
| JPH10242120A (en) | Plasma etching method and apparatus | |
| JPS5647569A (en) | Plasma etching method | |
| JPH02312223A (en) | Plasma treatment method and plasma treatment device | |
| JP2000124198A (en) | Plasma etching apparatus and plasma etching method | |
| JPS60234324A (en) | Dry etching apparatus | |
| Kawamura et al. | A wafer-handling interface under processing ambient conditions for a single-wafer cluster tool | |
| JP3609241B2 (en) | Plasma processing apparatus and plasma processing method | |
| JPS59170272A (en) | Dry treating device | |
| JPH01298181A (en) | Dry etching method | |
| JPH03129821A (en) | Manufacture of semiconductor device | |
| JPH09428U (en) | Sputtering equipment | |
| JPH0783825A (en) | Infrared type gas sensor and manufacture thereof | |
| JPH0613327A (en) | Gas pressure control device and gas pressure control method | |
| JPH03290930A (en) | Method for processing |