JPS6047449B2 - Exhaust gas purification method - Google Patents
Exhaust gas purification methodInfo
- Publication number
- JPS6047449B2 JPS6047449B2 JP52080683A JP8068377A JPS6047449B2 JP S6047449 B2 JPS6047449 B2 JP S6047449B2 JP 52080683 A JP52080683 A JP 52080683A JP 8068377 A JP8068377 A JP 8068377A JP S6047449 B2 JPS6047449 B2 JP S6047449B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- air
- exhaust gas
- fuel ratio
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000000746 purification Methods 0.000 title claims description 22
- 239000003054 catalyst Substances 0.000 claims description 79
- 239000000446 fuel Substances 0.000 claims description 49
- 239000007789 gas Substances 0.000 claims description 45
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 17
- 239000010948 rhodium Substances 0.000 claims description 16
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 8
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 229910003450 rhodium oxide Inorganic materials 0.000 claims description 4
- 229910003445 palladium oxide Inorganic materials 0.000 claims description 3
- 229910003446 platinum oxide Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 229910052720 vanadium Inorganic materials 0.000 description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910018967 Pt—Rh Inorganic materials 0.000 description 6
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010981 drying operation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 101100328886 Caenorhabditis elegans col-2 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241001561429 Centropyge nox Species 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- XSKIUFGOTYHDLC-UHFFFAOYSA-N palladium rhodium Chemical compound [Rh].[Pd] XSKIUFGOTYHDLC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内燃機関の排気ガス中の一酸化炭素、炭化
水素および窒素酸化物を高能率で同時に浄化することが
できる排気ガス浄化方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an exhaust gas purification method that can simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in the exhaust gas of an internal combustion engine with high efficiency. .
自動車等の内燃機関から排出される排気ガス中の有害
成分(一酸化炭素、炭化水素、窒素酸化物)を浄化する
方法については、種々の研究がなされている。Various studies have been conducted on methods for purifying harmful components (carbon monoxide, hydrocarbons, nitrogen oxides) in exhaust gas emitted from internal combustion engines such as automobiles.
しかして、その中て比較的優れた方法とされているもの
に、排気ガスを白金一ロジウム、触媒或いはパラジウム
−ロジウム触媒に接触させる浄化方法がある。 しかし
ながら、この従来の浄化方法は、第1図に示すごとく、
狭い空燃比(内燃機関に送入する燃料と空気の混合比;
空気/燃料の比)の範囲においてのみ、上記有害成分の
全てを同時に浄化することができるにすぎない。Among these methods, one that is considered to be relatively superior is a purification method in which exhaust gas is brought into contact with a platinum-rhodium catalyst or a palladium-rhodium catalyst. However, this conventional purification method, as shown in Figure 1,
Narrow air-fuel ratio (mixture ratio of fuel and air delivered to the internal combustion engine;
It is only in the range of air/fuel ratios that it is possible to simultaneously purify all of the above-mentioned harmful components.
本発明は、かかる従来方法(従来触媒)の問題点に着
眼し、これを解決しようとしてなされたものである。The present invention has been made in an attempt to solve the problems of the conventional method (conventional catalyst).
以下これを詳説する。 即ち、第1図より知られること
く、一酸化炭素(曲線1)および炭化水素(曲線2)は
、それが酸化されて二酸化炭素および水になるために理
論空燃比(約14.6)よりも酸化側(空燃比14.6
以上)て効率良く浄化される。This will be explained in detail below. That is, as can be seen from FIG. 1, carbon monoxide (curve 1) and hydrocarbons (curve 2) are oxidized to carbon dioxide and water, so that the stoichiometric air-fuel ratio (approximately 14.6) Also on the oxidation side (air fuel ratio 14.6
(above)) and is efficiently purified.
一方窒素酸化物は還元されて窒素となるために理論空燃
比よりも還元側(空燃比14.6以下)て効率良く浄化
される。このように、上記従来法によるときには、内燃
機関の運転が、1理論空燃比±0.1J(空燃比約14
.5〜14.7)という極めて狭い範囲において行われ
た場合でなければ、上記の有害成分を同時に効率良く浄
化することができない。しかして、このような非常に狭
い空燃比の範囲内で、上記運転を行なうには、排気ガス
中の酸素濃度を酸素センサーにより測定し、該酸素セン
サーからの信号によつて電子式燃料噴射装置を作動させ
、上記空燃比の制御を行なつていく必要がある。On the other hand, since nitrogen oxides are reduced to nitrogen, they are efficiently purified on the reduction side of the stoichiometric air-fuel ratio (air-fuel ratio of 14.6 or less). In this way, when the above conventional method is used, the operation of the internal combustion engine is controlled at 1 stoichiometric air-fuel ratio ±0.1 J (air-fuel ratio approximately 14
.. Unless it is carried out within an extremely narrow range of 5 to 14.7), the above harmful components cannot be efficiently purified at the same time. However, in order to perform the above operation within such a very narrow air-fuel ratio range, the oxygen concentration in the exhaust gas is measured by an oxygen sensor, and the electronic fuel injection system is activated based on the signal from the oxygen sensor. It is necessary to operate the air-fuel ratio and control the air-fuel ratio.
しかしながら、かかる運転方法を採るときには、上記の
酸素センサーおよび電子式燃料噴射装置を必要とするた
め、運転装置および運転方法が複雑となる。また、長期
間にわたりこのような運転方法を維持することは、酸素
センサーに若干の経時変化があること、電子式燃料噴射
装置が高価なものであること等よりして、その普及は困
難である。一方、現在、空燃比制御に多用されているも
のはキヤブレータであり、このものは上記電子式燃料噴
射装置に比べてかなり安価である。However, when adopting such an operating method, the above-mentioned oxygen sensor and electronic fuel injection device are required, which makes the operating device and method complicated. In addition, it is difficult to maintain this operating method for a long period of time because oxygen sensors tend to change slightly over time, and electronic fuel injection devices are expensive. . On the other hand, carburetors are currently widely used for air-fuel ratio control, and are considerably cheaper than the electronic fuel injection devices described above.
しかしながら、このキヤブレータは空燃比巾が1.0以
上と言う比較的広い範囲の制御しか行なうことができず
上記のごとき狭い範囲内での空燃比制御を行なわせ難い
。また、一般に自動車用エンジンは空燃比が12ないし
18の範囲において使用される。However, this carburetor can only control the air-fuel ratio over a relatively wide range of 1.0 or more, and it is difficult to control the air-fuel ratio within such a narrow range. Furthermore, automobile engines are generally used with an air-fuel ratio in the range of 12 to 18.
しかして、この場合、空燃比が15.部付近においては
燃費が最も良好となるが、エンジンの出力はやや低く、
一方空燃比が13.部付近においてはエンジンの出力は
大きくなるが燃費がやや低いという傾向がある。このよ
うな視点から、Inter−1ndustryEmis
s10nC0ntr01Pr0gram2(IIEC−
2)、PrOgramRepOrtNO.2、SP−4
0よ第55−66頁、論文名RLalx)RatOry
EValLlatiOnOfThree一Way,.C
atalystsJ(1967年2月SOCIETYO
FAUTOMOTIVEENGINEERS,.INC
発行)は、前記3種の有害成分を同時に浄化するための
触媒(いわゆるスリー・ウェイ(3−Way)触媒〕と
しては、ウィンドウ・ゲート〔WindOwgate〕
の広い触媒、即ち広い空燃比範囲にわたつて高い浄化率
を発揮する触媒が開発されるべきである旨を論じている
。また、現在スリー・ウェイ触媒として提案されている
ものとしては、例えば、特開昭52−56217号公報
ではPt−Rh触媒が特開昭49−77023号公報で
はCuO−■20,、CUO−V2O5−Pd触媒が提
案されている。In this case, the air-fuel ratio is 15. The fuel efficiency is the best near
On the other hand, the air fuel ratio is 13. There is a tendency for the engine's output to increase near the end of the range, but for fuel consumption to be somewhat low. From this perspective, Inter-1 industryEmis
s10nC0ntr01Pr0gram2 (IIEC-
2), PrOgramRepOrtNO. 2, SP-4
0yo pages 55-66, paper name RLalx) RatOry
EValLlatiOnOfThreeWay,. C
atalystsJ (February 1967 SOCIETYYO
FAUTOMOTIVE ENGINEERS,. INC.
As a catalyst (so-called three-way catalyst) for simultaneously purifying the three types of harmful components, WindOwgate
It is argued that a catalyst with a wide range of air-fuel ratios, that is, a catalyst that exhibits high purification efficiency over a wide range of air-fuel ratios, should be developed. In addition, currently proposed three-way catalysts include, for example, Pt-Rh catalyst in JP-A-52-56217, CuO-■20, CUO-V2O5 in JP-A-49-77023. -Pd catalysts have been proposed.
しかしながら、これらの従来触媒は、いずれも広い空燃
比範囲において、スリー・ウェイ触媒として満足すべき
浄化能力を発揮することがてきない。However, none of these conventional catalysts can exhibit a satisfactory purification ability as a three-way catalyst over a wide air-fuel ratio range.
上記より知られるごとく、エンジンの運転は空”燃比1
3.5ないし15.5という広い範囲において行なうこ
とが望まれる。As is known from the above, the engine operates at an air/fuel ratio of 1.
It is desirable to perform this in a wide range of 3.5 to 15.5.
しかしながら、一方、かかる広い空燃比範囲において前
記三種の有害成分を同時に高能率で浄化することができ
る方法は見当たらない。However, on the other hand, no method has been found that can simultaneously purify the three types of harmful components with high efficiency over such a wide air-fuel ratio range.
本発明は、13.5ないし15.5という広範囲の空燃
比においてエンジンを運転した場合においても、エンジ
ンからの排気ガス中の前記有害成分を高能率て同時に浄
化することがてきる方法を解決しようとするものてある
。The present invention aims to solve a method that can simultaneously purify the harmful components in exhaust gas from an engine with high efficiency even when the engine is operated in a wide range of air-fuel ratios from 13.5 to 15.5. There is something to do.
即ち、本発明は、13.5ないし15.5の空燃比範囲
内において運転される内燃機関(エンジン)から排出さ
れる排気ガスを、白金、ロジウムおよびバナジウム酸化
物よりなる触媒(以下、Pt−Rh−■0x触媒という
)、パラジウム、ロジウムおよびバナジウム酸化物(以
下、Pd−Rh−■0x触媒という)、白金、パラジウ
ム、ロジウムおよびバナジウム酸化物よりなる触媒(以
下、Pt−Pd−Rh一VOx触媒という)の1種又は
2種以上を充填してなる排気ガス浄化用コンバータに送
入して、排気ガス中の一酸化炭素(以下、COという)
、炭化水素(以下、HCという)および窒素酸化物(以
下、NOxという)を同時に浄化することを特徴とする
排気ガス浄化方法にある。That is, the present invention uses a catalyst (hereinafter referred to as Pt- Rh-■0x catalyst), palladium, rhodium and vanadium oxide (hereinafter referred to as Pd-Rh-■0x catalyst), catalyst consisting of platinum, palladium, rhodium and vanadium oxide (hereinafter referred to as Pt-Pd-Rh-VOx carbon monoxide (hereinafter referred to as CO) in the exhaust gas.
, an exhaust gas purification method characterized by simultaneously purifying hydrocarbons (hereinafter referred to as HC) and nitrogen oxides (hereinafter referred to as NOx).
しかして、本発明においては、上記Pt−Rh一■へ、
Pd−Rh−VOx又はPt−Pd−Rh−VOxの一
種又は二種以上の触媒を用いているので、前記のごとき
広い空燃比範囲で運転されるエンジンからの排気ガス中
のCO.HC.NOxを高能率で同時に浄化することが
できる。Therefore, in the present invention, to the above Pt-Rh
Since one or more catalysts of Pd-Rh-VOx or Pt-Pd-Rh-VOx are used, CO. H.C. NOx can be purified simultaneously with high efficiency.
また、そのために、現在エンジンの空燃比制御に多用さ
れているキヤブレータをそのまま使用することができる
。〔本発明の詳細な説明〕
本発明において、浄化対象とする排気ガスは、空燃比を
13.5ないし15.5の範囲内において運転したエン
ジンからの排気ガスである。Further, for this purpose, the carburetor that is currently widely used for controlling the air-fuel ratio of engines can be used as is. [Detailed Description of the Present Invention] In the present invention, the exhaust gas to be purified is the exhaust gas from an engine operated at an air-fuel ratio within the range of 13.5 to 15.5.
この空燃比巾は、その最大上限が15.5、最低下限が
13.5の範囲内で行なうことを意味するが、この往復
運動は常にこの空燃比巾2.0の間を往復する必要はな
い。例えば、空燃比が13.8〜15.01或いは14
.3〜15.4などであつても良い。しかし、この変動
は理論空燃比(約14.6)を中心に上下方向に往復さ
せることが好ましい。もしも、理論空燃比よりも大なる
方のみ、或いは小なる方のみで運転した場合には、例え
それが往復変動てあつたとしても、それが長時間続く場
合には優れた浄化能力を発揮させることができない。こ
の意味からしても、理論空燃比を中心にその大小方向に
行なう往復変動は少なくとも1分間に20ないし200
サイクルの範囲て行わせることが好ましい。次に、上記
のごとくエンジンを制御する方法は、例えば第2図にそ
の概要を示すごとく、エン5ジン4からコンバータ5に
至る排気ガスバイブ41の途中に酸素センサー61を配
置し、該酸素センサー61の信号に応じてコントローラ
6を作動させキヤブレータ7における空燃比制御を行な
う。This air-fuel ratio range means that the maximum upper limit is 15.5 and the minimum lower limit is 13.5, but this reciprocating movement does not always need to reciprocate within this air-fuel ratio range of 2.0. do not have. For example, if the air-fuel ratio is 13.8-15.01 or 14
.. It may be 3 to 15.4. However, it is preferable that this fluctuation be made to reciprocate in the vertical direction around the stoichiometric air-fuel ratio (approximately 14.6). If the air-fuel ratio is operated only at a higher or lower ratio than the stoichiometric air-fuel ratio, even if the ratio fluctuates back and forth, if this continues for a long time, excellent purification ability will be exhibited. I can't. From this point of view, the reciprocating fluctuations in the direction of increase and decrease around the stoichiometric air-fuel ratio are at least 20 to 200 times per minute.
It is preferable to carry out the cycle within a range of cycles. Next, the method for controlling the engine as described above, for example, as shown in the outline in FIG. The controller 6 is operated in response to the signal to control the air-fuel ratio in the carburetor 7.
即ち、酸素センサー61より排気ガス中の酸一素濃度を
検出して、その濃度に応じた信号をキヤブレータ7に送
り、エンジン4が前記のごとく空燃比13.5ないし1
5.5において運転されるようにキヤブレータ7の制御
を行なう。同図において、符号62は電気信号用リード
線、71は燃料供給パ.イプ、72は空気供給バイブ、
73は燃料・空気混合気の供給バイブである。なお、本
発明とは直接関係がないが、エンジン4からの排気ガス
中へ空気を添加する場合には、排気ガスバイブ41中へ
空気ポンプ8により空気.を送入する。That is, the oxygen sensor 61 detects the oxygen concentration in the exhaust gas, sends a signal corresponding to the concentration to the carburetor 7, and the engine 4 adjusts the air-fuel ratio to 13.5 to 1 as described above.
The carburetor 7 is controlled so that it is operated in step 5.5. In the figure, reference numeral 62 indicates an electrical signal lead wire, and 71 indicates a fuel supply port. 72 is an air supply vibe,
73 is a fuel/air mixture supplying vibe. Although not directly related to the present invention, when adding air to the exhaust gas from the engine 4, air is added into the exhaust gas vibrator 41 by the air pump 8. send.
81,82は空気吸入バイブである。81 and 82 are air-inhaling vibes.
上記の各触媒に関しては、いずれも担体に対する触媒成
分(Pt.Rh..Pd..VOx)の担持量は重量比
て次の範囲内にあることが好ましい。Regarding each of the above-mentioned catalysts, the amount of catalyst components (Pt.Rh..Pd..VOx) supported on the carrier is preferably within the following range in terms of weight ratio.
即ちPtおよびPdはそれぞれ0.02ないし2%、R
hは0.002ないし0.2%、■0xは0.3ないし
10%の範囲内である。なお、ここに■0xはバナジウ
ムの酸化物であつて、これらはV2O5、V2O4、V
2O3等の状態又はこれらの混合状態で存在するものて
ある。また、上記の触媒の調製は、実施例にも示すごと
く、例えば、Pt原料としての塩化白金酸、Rh原料と
しての塩化ロジウム、Pd原料としての塩化パラジウム
等を溶解させた水溶液を作成しておき、この中にδ−ア
ルミナ等の担体を浸漬し、その後これを取り出して乾燥
し、焼成して一旦Pt−Rh触媒、Pd−Rh触媒、P
t−Pd−Rh触媒となし、然る後バナジウム源として
のメタバナジン酸アンモン等の水溶液に上記触媒を浸漬
し、乾燥し空気中で焼成することにより行なう。この空
気中での焼成により酸化バナジウムVOxが形成される
。なお、上記の担体は粒状、ハニカム状等種々の構造の
ものを用いることができる。また、上記触媒を充填する
コンバータは通常使用するものを用いる。実施例1
(イ)浄化率の測定
自動車用エンジンを空燃比13.75、14.55およ
び15.35てそれぞれ運転した場合に相当する排気ガ
スの組成を有するモデルガス(Rガス、SガスおよびL
ガス)を作製し、これらを交互に、触媒を充填したコン
バータの内部に送入し、該ガス中のCO.HC.NOの
浄化状態を検討した。That is, Pt and Pd are each 0.02 to 2%, R
h is in the range of 0.002 to 0.2%, and ■0x is in the range of 0.3 to 10%. Note that ■0x here is an oxide of vanadium, and these are V2O5, V2O4, and V2O5.
Some exist in a state such as 2O3 or a mixture thereof. In addition, as shown in the examples, the above catalyst can be prepared by first preparing an aqueous solution in which chloroplatinic acid as a Pt raw material, rhodium chloride as a Rh raw material, palladium chloride as a Pd raw material, etc. are dissolved. A carrier such as δ-alumina is immersed in this, and then taken out, dried, and fired to form a Pt-Rh catalyst, a Pd-Rh catalyst, and a Pt-Rh catalyst.
The catalyst is prepared as a t-Pd-Rh catalyst, and then immersed in an aqueous solution of ammonium metavanadate or the like as a vanadium source, dried, and calcined in air. Vanadium oxide VOx is formed by this firing in air. Note that the above-mentioned carrier can have various structures such as granular and honeycomb shapes. Furthermore, a commonly used converter is used for filling the catalyst. Example 1 (a) Measurement of purification rate Model gases (R gas, S gas, and L
CO. H.C. The purification status of NO was investigated.
即ち、理論空燃比を14.6と仮定し、それより僅かに
還元側の14.55に相当するSガス、該理論空燃比よ
り低い側(還元側)の13.75に相当するRガス、お
よび高い側(酸化側)の15.35に相当するLガスを
用いた。That is, assuming that the stoichiometric air-fuel ratio is 14.6, S gas corresponds to 14.55, which is slightly on the reducing side, R gas corresponds to 13.75, which is on the lower side (reducing side) than the stoichiometric air-fuel ratio, and L gas corresponding to 15.35 on the higher side (oxidation side) was used.
上記の3種類のガスは、Sガス→Rガス→Sガス→Lガ
ス→Sガス→Rガスという順序て順次送入し、このS→
R→S→Lの1サイクルを2秒間で行なつた。The above three types of gas are supplied in the order of S gas → R gas → S gas → L gas → S gas → R gas, and this S →
One cycle of R→S→L was performed in 2 seconds.
それ故、各ガスは0.醗づつ順次送入される。各ガスの
切り換えは、電磁弁により行なつた。上記のガス送入は
、上記からも知られるよう比、理論空燃比14.55を
中心に空燃比巾±0.8、1サイクル2秒間で往復変動
させてエンジンを運転させ、その排気ガスを触媒充填コ
ンバータに送入する場合に相当する。Therefore, each gas has 0. It will be sent one by one. Switching between each gas was performed using a solenoid valve. As is known from the above, the above gas supply is carried out by operating the engine with a stoichiometric air-fuel ratio of 14.55, which is centered around the air-fuel ratio range of ±0.8, and reciprocating for 2 seconds per cycle. This corresponds to the case of feeding into a catalyst-filled converter.
触媒は、後述するごとく調製し、コンバータとしての石
英管内に充填した。上記のガスは石英管内に送入する前
に管状炉により500′Cに加熱した。ガスは、空間速
度(S.V)3刈01/時で触媒層を通過させた。上記
ガス中のCO..HCおよびNOの浄化率は、触媒層か
ら出てきたガスを一旦トラツパに導入して水滴を除去し
、更に除湿剤を通過させた後そのガス中のこれらの各成
分を分析することにより算出した。The catalyst was prepared as described below and filled into a quartz tube as a converter. The above gas was heated to 500'C in a tube furnace before being introduced into the quartz tube. The gas was passed through the catalyst bed at a space velocity (S.V) of 3.01/hr. CO in the above gas. .. The purification rate of HC and NO was calculated by first introducing the gas coming out of the catalyst layer into a trapper to remove water droplets, then passing it through a dehumidifier, and then analyzing each of these components in the gas. .
上記のRガス、Sガス、Lガスの組成は第1表のようで
ある。The compositions of the above R gas, S gas, and L gas are shown in Table 1.
第2表において、1触媒の成分、担持量ョに示す( )
内の数値は、各成分の担体に対する担持量てある。In Table 2, the components and supported amounts of one catalyst are shown in ( )
The numbers in the box indicate the amount of each component supported on the carrier.
担持量は、各触媒成分における金属としての値てある。
第2表より知られるごとく、本発明法によれば、NO,
.COおよびHCを極めて高能率て同時に浄化すること
ができる。The supported amount is the value of the metal in each catalyst component.
As is known from Table 2, according to the method of the present invention, NO,
.. CO and HC can be purified simultaneously with extremely high efficiency.
特に、大気汚染において重視されるNOおよびCOにつ
いては高い浄化率を達成することができることが分る。
(ロ)触媒の調製
各触媒の調製は次のようにして行なつた。In particular, it is found that a high purification rate can be achieved for NO and CO, which are important in air pollution.
(b) Preparation of catalyst Each catalyst was prepared as follows.
触媒C1; 蒸溜水1eに白金0.7q1ロジウr+[
;1,1二Eテ110/.:FOZミ第1表において、
H2は水素、02は酸素、C3F[8は炭化水素として
のプロパン、H2Oは水蒸気、N2は窒素である。Catalyst C1; 0.7q1 platinum r + [ in distilled water 1e
;1,12Ete110/. :In FOZ Mi Table 1,
H2 is hydrogen, 02 is oxygen, C3F[8 is propane as a hydrocarbon, H2O is water vapor, and N2 is nitrogen.
上記の浄化率の測定は、8種類の本発明方法に用いる触
媒について行なつた。The above purification rate measurements were performed on eight types of catalysts used in the method of the present invention.
また、比較のために従来方法に用いられる3種類の触媒
についても同様の測定を行なつた。上記の各使用触媒お
よびその浄化率の測定結果を第2表に示す。Further, for comparison, similar measurements were performed on three types of catalysts used in the conventional method. Table 2 shows the measurement results of each of the catalysts used above and their purification rates.
ム0.07yを含むように塩化白金酸および塩化ロジウ
ムを溶解した水溶液に、粒径約4W$tのδ−アルミナ
担体1fを、室温て1時間浸漬し、浸漬液を沖別した後
、110℃て(イ)時間乾燥し、清浄な空気を少量流し
ながら、600℃で3時間焼成し、Pt−Rh触媒を調
製した。A δ-alumina carrier 1f having a particle size of about 4 W$t was immersed at room temperature for 1 hour in an aqueous solution containing chloroplatinic acid and rhodium chloride so as to contain 0.07y of rhodium. The mixture was dried at 600° C. for (a) hours and calcined at 600° C. for 3 hours while a small amount of clean air was passed through to prepare a Pt-Rh catalyst.
触媒C2; 蒸溜水1fにパラジウム0.7g、ロジウ
ム0.07yを含むように、塩化パラジウムおよび塩化
ロジウムを溶解した水溶液を作成し、他は触媒C1の場
合と同様にして、Pd−Rh触媒を調製した。Catalyst C2; Prepare an aqueous solution in which palladium chloride and rhodium chloride are dissolved so that it contains 0.7 g of palladium and 0.07 y of rhodium in 1f of distilled water, and in the same manner as in the case of catalyst C1, prepare a Pd-Rh catalyst. Prepared.
触媒C3; 蒸溜水1eに白金0.35ダ、パラジr+
口し1二E1)0/.;トqζウム0.35ダ、ロジウ
ム0.07yを含むように、塩化白金酸、塩化パラジウ
ムおよび塩化ロジウムを溶解した水溶液を作成し、他は
触媒C1の場合同様にして、Pt−Pd−Rh触媒を調
製した。Catalyst C3: Distilled water 1e, platinum 0.35 da, palladium r+
Mouth 12E1) 0/. ; Prepare an aqueous solution in which chloroplatinic acid, palladium chloride, and rhodium chloride are dissolved so that it contains 0.35 da of ζium and 0.07 y of rhodium, and in the same manner as in the case of catalyst C1, Pt-Pd-Rh. A catalyst was prepared.
触媒1 蒸溜水100mtにバナジウム0.44yを
含むようにメタバナジン酸アンモンを溶解したバナジウ
ム水溶液に、前記触媒CllOOmlを、室温で1時間
浸漬し、浸漬液を沖別した後、110゜Cで4時間乾燥
した。以上のような、含浸および乾燥の操作を4回繰り
かえした後、清浄な空気を少量流しながら、600゜C
で3時間焼成し、Pt−Rh−VOx触媒を調製した。
触媒2; バナジウム水溶液への含浸、乾燥の操作を5
回繰りかえした他は触媒1と同様にして調製した。Catalyst 1 The catalyst CllOOml was immersed at room temperature for 1 hour in a vanadium aqueous solution in which ammonium metavanadate was dissolved to contain 0.44y of vanadium in 100mt of distilled water, and after draining the immersion liquid, it was heated at 110°C for 4 hours. Dry. After repeating the above-mentioned impregnation and drying operations four times, the temperature was heated to 600°C while flowing a small amount of clean air.
The mixture was calcined for 3 hours to prepare a Pt-Rh-VOx catalyst.
Catalyst 2: Impregnation in vanadium aqueous solution and drying operations 5
It was prepared in the same manner as Catalyst 1 except that the steps were repeated.
触媒3; 蒸溜水100mLにバナジウム0.88yを
含むように、メタバナジン酸アンモンを溶解した水溶液
を作成し、他は上記触媒1と同様にして調製した。Catalyst 3: An aqueous solution was prepared by dissolving ammonium metavanadate so that 100 mL of distilled water contained 0.88 y of vanadium, but otherwise it was prepared in the same manner as Catalyst 1 above.
触媒4; バナジウム水溶液への含浸、乾燥一の操作を
5回繰りかえした他は上記触媒3と同様にして調製した
。Catalyst 4: It was prepared in the same manner as Catalyst 3 above, except that the operations of impregnation with an aqueous vanadium solution and drying were repeated five times.
触媒5; 蒸溜水100m1にバナジウム0.22qを
含むようにメタバナジン酸アンモンを溶解した水溶液を
作成したこと、および含浸、乾燥の−操作を4回繰り返
した他は触媒1と同様に調製した。Catalyst 5: Prepared in the same manner as Catalyst 1, except that an aqueous solution of ammonium metavanadate containing 0.22 q of vanadium was prepared in 100 ml of distilled water, and the impregnation and drying operations were repeated four times.
触媒6; 含浸、乾燥の操作を2回繰りかえした他は触
媒5と同様に調製した。Catalyst 6; Prepared in the same manner as Catalyst 5 except that the impregnation and drying operations were repeated twice.
触媒7; 蒸溜水100m1にバナジウム0.44yを
含むように、メタバナジン酸アンモンを溶解した水溶液
に、前記触媒C2lOOmtを、室温で1時間浸漬し、
浸漬液をP別した後、110′Cて4時間乾燥し、その
他は触媒1と同様にしてPd一Rh−■0x触媒を調製
した。Catalyst 7: The catalyst C2lOOmt was immersed at room temperature for 1 hour in an aqueous solution in which ammonium metavanadate was dissolved so that 100ml of distilled water contained 0.44y of vanadium,
After separating the Pd from the immersion liquid, it was dried at 110'C for 4 hours, and in the same manner as Catalyst 1, a Pd-Rh--Ox catalyst was prepared.
触媒8; 前記触媒C3を用いる他は上記触媒7の場合
と同様にしてPt−Pd−Rh−■0x触媒を調製した
。Catalyst 8: A Pt-Pd-Rh-10x catalyst was prepared in the same manner as in the case of Catalyst 7 except that the Catalyst C3 was used.
比較例
本発明法において使用する触媒は前記のごとく、Pt−
Rh−■0x..Pd−Rh−VOx,.Pt−Pd−
Rh−■0xの3種類てあるが、本発明の目的を達成し
うる触媒は、多くの実験検討の中から生まれたものてあ
る。Comparative Example As mentioned above, the catalyst used in the method of the present invention is Pt-
Rh-■0x. .. Pd-Rh-VOx,. Pt-Pd-
There are three types of catalysts, Rh-10x, and the catalyst that can achieve the purpose of the present invention was developed through many experimental studies.
発明者らは、Ptl:ニ.Rhとを基本とし、これに第
3表に示す種々の添加物を加えてなる触媒を調製し、そ
れらについて、前記実施例に示したと同様の条件でガス
組成の変動を行なわせながら、浄化率測定を行なつた。
その結果を第2表と第3表に示す。また、同表には本発
明法の2例の結果も併記した。上記における各触媒は、
実施例に示した従来法に関する触媒C1と同様のPt.
Rh担持量を有するものである。The inventors have developed Ptl:d. Catalysts based on Rh and various additives shown in Table 3 were prepared, and the purification efficiency was determined by varying the gas composition under the same conditions as shown in the example above. Measurement was carried out.
The results are shown in Tables 2 and 3. In addition, the results of two examples of the method of the present invention are also listed in the same table. Each catalyst in the above is
Pt.
It has an amount of Rh supported.
また、上記の各添加物の担体上への担持は前記触媒1と
同様に行なつた。第3表より知られることく、本発明法
は多くの研究の中より生まれたものであり、他の方法に
比して優れたNO..CO..HC同時浄化方法を提供
することが分る。Further, each of the above additives was supported on the carrier in the same manner as in Catalyst 1 above. As can be seen from Table 3, the method of the present invention was born out of many studies, and is the No. 1 method superior to other methods. .. C.O. .. It can be seen that a method for simultaneous HC purification is provided.
即ち、上記第3表に示す比較触媒を用いる場合は、その
基本触媒てあるPt−Rh触媒に比してほぼ同等もしく
はこれより劣る浄化率しか達成できないが、本発明法に
よる場合には上記三成分を同時に高能率で浄化しうるこ
とが分る。また、発明者らは、上記実施例とは別に、前
記第2図に示すことき浄化方法を採用して本発明の方法
を実施したところ、非常に高能率でCOlHC,.NO
を同時に浄化することができた。That is, when using the comparative catalyst shown in Table 3 above, it is possible to achieve a purification rate that is almost the same or inferior to that of the Pt-Rh catalyst, which is the basic catalyst, but when using the method of the present invention, the above three It can be seen that the components can be simultaneously purified with high efficiency. In addition, apart from the above embodiment, the inventors implemented the method of the present invention by employing the purification method shown in FIG. 2, and found that CO1HC and . NO
were able to be purified at the same time.
第1図は、白金−ロジウム触媒を用いた場合における排
気ガス中のCO,.HC..NO浄化率を空燃比と対比
させて示す線図、第2図はエンジンの制御方法、排気ガ
スへの空気送入方法を示すフローシートである。
1・・・・・・COl2・・・・・・HCl3・・・・
・・NOl4・・・・・・エンジン、5・・・・コンバ
ータ、6・o・・・コントローラ、7・・・・・・キヤ
ブレータ、8・・・・・・空気ポンプ。FIG. 1 shows CO in exhaust gas when a platinum-rhodium catalyst is used. H.C. .. A diagram showing the NO purification rate in comparison with the air-fuel ratio, and FIG. 2 is a flow sheet showing the method of controlling the engine and the method of introducing air into the exhaust gas. 1...COl2...HCl3...
・・NOl4・・・・・Engine, 5・・・・Converter, 6・o・Controller, 7・・Carburetor, 8・・・・Air pump.
Claims (1)
される内燃機関から排出される排気ガスを、白金、ロジ
ウムおよびバナジウム酸化物よりなる触媒、パラジウム
、ロジウムおよびバナジウム酸化物よりなる触媒、白金
、パラジウム、ロジウムおよびバナジウム酸化物よりな
る触媒の1種又は2種以上を充填してなる排気ガス浄化
用コンバータに送入して、排気ガス中の一酸化炭素、炭
化水素および窒素酸化物を同時に浄化することを特徴と
する排気ガス浄化方法。 2 各触媒における担体に対する触媒成分の担持量は、
担体に対して白金、パラジウムはそれぞれ0.02ない
し2%(重量比、以下同じ)、ロジウムは0.002な
いし0.2%、バナジウム酸化物は0.3ないし10%
の範囲内であることを特徴とする特許請求の範囲第1項
に記載の排気ガス浄化方法。[Scope of Claims] 1. Exhaust gas discharged from an internal combustion engine operated in an air-fuel ratio range of 13.5 to 15.5 is controlled by a catalyst comprising platinum, rhodium and vanadium oxides, palladium, rhodium and vanadium oxides. carbon monoxide, hydrocarbons and the like in the exhaust gas. An exhaust gas purification method characterized by purifying nitrogen oxides at the same time. 2 The amount of catalyst components supported on the carrier in each catalyst is
Based on the carrier, platinum and palladium are each 0.02 to 2% (weight ratio, the same applies below), rhodium is 0.002 to 0.2%, and vanadium oxide is 0.3 to 10%.
The exhaust gas purification method according to claim 1, wherein the exhaust gas purification method is within the range of .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP52080683A JPS6047449B2 (en) | 1977-07-05 | 1977-07-05 | Exhaust gas purification method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP52080683A JPS6047449B2 (en) | 1977-07-05 | 1977-07-05 | Exhaust gas purification method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5413816A JPS5413816A (en) | 1979-02-01 |
| JPS6047449B2 true JPS6047449B2 (en) | 1985-10-22 |
Family
ID=13725135
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP52080683A Expired JPS6047449B2 (en) | 1977-07-05 | 1977-07-05 | Exhaust gas purification method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6047449B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5646106B2 (en) * | 1975-03-03 | 1981-10-30 | ||
| DE3940758A1 (en) * | 1989-12-09 | 1991-06-13 | Degussa | METHOD FOR PURIFYING THE EXHAUST GAS FROM DIESEL ENGINES |
-
1977
- 1977-07-05 JP JP52080683A patent/JPS6047449B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5413816A (en) | 1979-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| BR112017028424B1 (en) | NITROUS OXIDE REMOVAL CATALYST COMPOSITE, EMISSION TREATMENT SYSTEM, AND, METHOD TO TREAT EXHAUST GASES | |
| SE462143B (en) | Catalytic converter for car exhaust cleaning, preparation procedures for preparation thereof and application thereof | |
| JP2015093267A (en) | Exhaust gas purification catalyst | |
| WO2019088302A1 (en) | Oxygen absorbing and releasing material, catalyst, exhaust gas purifying system, and exhaust gas treatment method | |
| JP2008073654A (en) | Gas purification process, gas purification apparatus, and gas purification catalyst | |
| JP3544400B2 (en) | Exhaust gas purification catalyst | |
| JP2001170454A (en) | Exhaust gas purification system and catalyst for exhaust gas purification | |
| JP2006263582A (en) | Exhaust gas purification catalyst | |
| ES2222898T3 (en) | DEPURATION DEVICE FOR EXHAUST GASES FOR INTERNAL COMBUSTION ENGINE. | |
| JPS6047449B2 (en) | Exhaust gas purification method | |
| JPH01171625A (en) | Method for cleaning exhaust gas | |
| JP4734806B2 (en) | Exhaust gas purification catalyst | |
| JP2002168117A (en) | Exhaust gas purification system | |
| JPH04267950A (en) | Catalyst for purifying exhaust gas | |
| JPH05171921A (en) | Exhaust gas purifying device | |
| JPH08182928A (en) | Nitrogen oxide occlusion composition and exhaust gas purification | |
| JPS5820307B2 (en) | Catalyst for vehicle exhaust gas purification | |
| JPH08281071A (en) | Exhaust gas purification method and exhaust gas purification catalyst | |
| JPH0857315A (en) | Exhaust gas purification catalyst | |
| JP3347481B2 (en) | Exhaust gas purification catalyst | |
| JPH03202154A (en) | Catalyst for purifying exhaust gas of engine | |
| JP3527759B2 (en) | Method for purifying exhaust gas containing nitrogen oxides | |
| JPH04267951A (en) | Exhaust gas purification catalyst | |
| JPH06142523A (en) | Waste gas purifying material and waste gas purifying method | |
| JP2000325787A (en) | Method for producing exhaust gas purifying catalyst |