+

JPS60261276A - Digital picture processing method - Google Patents

Digital picture processing method

Info

Publication number
JPS60261276A
JPS60261276A JP59117992A JP11799284A JPS60261276A JP S60261276 A JPS60261276 A JP S60261276A JP 59117992 A JP59117992 A JP 59117992A JP 11799284 A JP11799284 A JP 11799284A JP S60261276 A JPS60261276 A JP S60261276A
Authority
JP
Japan
Prior art keywords
vector
search
gradient
extreme value
initial point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117992A
Other languages
Japanese (ja)
Inventor
Yasuharu Ishii
康晴 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59117992A priority Critical patent/JPS60261276A/en
Publication of JPS60261276A publication Critical patent/JPS60261276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To extract accurately structural features even in case of a picture having complicated constitution by retrieving extreme values from the retrieval initial point of each small area and displaying all obtained origins to extract a pattern of the digital picture. CONSTITUTION:In a unit process, unit vectors e1 and e2 orthogonal to each other are set, and a vector sum E=Sb+k.e1 is obtained while increasing a vector from a retrieval initial point Sb in the direction of the vector e1 by an integer (k). If the order of the gradient is in the increase direction, the value (k) is increased. At the time when the gradient is inverted from increase to reduction, the value (k) is increased or reduced to change the gradient in the direction of the vector e2 orthogonal to a vector E1. A maximum position S1 of the gradient is obtained on a basis of the inversion time of a vector E2 in the direction of the vector e2. Vectors E1 and E2 are synthesized to obtain a vector E3, and thus, a unit gradient maximum value E2 is obtained. Origins Sb, S1, S2- are stored in individual unit processes to obtain an extreme value Sp. Origins S1, S2- are obtained from values obtained by this extreme value retrieval to extract a feature pattern.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、デジタル画像の特徴パターンを抽出するのに
好適なデジタル画像処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a digital image processing method suitable for extracting characteristic patterns of digital images.

(ロ)従来技術 一般に、超音波診断装置などにおいては被検体内の情報
がデジタル画像で表示される。このデジタル画像の画質
を改善するためには、従来より画像平滑化、エツジ強調
、各種フィルタリング等の処理により対応して外でいて
る。しかしながら、この種の処理は画像の見易さといっ
た点からは有効であるが画像の構造的な特徴を抽出した
ものではない。
(B) Prior Art Generally, in ultrasonic diagnostic apparatuses and the like, information inside a subject is displayed as a digital image. In order to improve the image quality of this digital image, conventional processes such as image smoothing, edge enhancement, and various filtering methods have been used. However, although this type of processing is effective in terms of image visibility, it does not extract the structural features of the image.

(ハ)発明が解決しようとする問題点 デジタル画像は所定の階調度でもって濃淡画像で表示さ
れるが、このデジタル画像から画像自体の特徴が抽出で
きれば画像解析の有効な手段となり、超音波診断装置な
どではより一層的確な診断が可能となる。しかしながら
従来、画像の全体の構造的な特徴を把握するためには診
断者の経験に頼るところがおおきく、画面上でその特徴
を抽出して表示することは難しかった。
(c) Problems to be solved by the invention Digital images are displayed as grayscale images with a predetermined gradation level, but if the characteristics of the image itself can be extracted from this digital image, it will be an effective means of image analysis and ultrasonic diagnosis. With devices, it becomes possible to make even more accurate diagnoses. However, conventionally, understanding the overall structural features of an image has largely relied on the experience of the diagnostician, and it has been difficult to extract and display those features on the screen.

本発明は、従来のかかる問題点を解決し、表示されたデ
ジタル画像の構造的な特徴のみをシンプルに抽出できる
ようにして、画像の構造解析がより一層容易にでとるよ
うにすることを目的とする。
The purpose of the present invention is to solve such conventional problems and to enable simple extraction of only the structural features of a displayed digital image, thereby making it easier to analyze the structure of the image. shall be.

(ニ)問題点を解決するための手段 本発明は、上述の目的を達成するため、デジタル画像の
表示領域を所定の複数の小領域に分割し、分割された各
小領域内に探索初期点を複数個設定し、この各探索初期
点から非線形関数の極値の直接探索手法を適用して極値
探索を行ない、この極値探索の過程における各単位過程
ごとにまる極大を示す基点を総て記憶し、前記各小領域
の各探索初期点からの極値探索によりめた総ての前記基
点を表示することにより前記デジタル画像のパターンを
抽出するようにしたものである。
(d) Means for Solving the Problems In order to achieve the above-mentioned object, the present invention divides the display area of a digital image into a plurality of predetermined small areas, and places a search initial point in each of the divided small areas. Set multiple values, and perform an extreme value search by applying the direct search method for the extrema of a nonlinear function from each search initial point, and calculate the base points that indicate the maximum for each unit process in the process of extremum search. The pattern of the digital image is extracted by displaying all the base points found by extreme value search from each search initial point of each small region.

(ホ)実施例 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
(e) Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.

第1図は本発明のデンタル画像処理方法を示すフローチ
ャートである。このデジタル画像処理方法では、まず、
画像データをたとえば、超音波診断装置ならばデジタル
スキャンフンバータ等によ))取り込み(ステップNl
)、取り込まれた画像データの内から画像処理すべき表
示領域を決定する(ステップN2)。ここでは−例とし
て512X512の画素数で6ビツトの2次元画像を画
像処理すべき表示領域とする。ついで、二の表示領域を
所定の複数の小領域に分割する。たとえば、縦横にそれ
ぞれ16分割し、N=256の小領域の各1つの小領域
を32X32の画素で構成されるようにする(ステップ
N3)。そして、1つの探索初期点に対応するカウント
1を韮ず、1に設定する(ステップN4)。次いで、各
小領域内に探索初期点sbを複数個設定する(ステップ
N5)。そして、この各探索初期点sbから非線形関数
の極値の直接探索手法を適用して極値探索を行なう(ス
テップN6)。この極値探索は次のようにして行なわれ
る。第2図に示すように、まず、6ビツト画素の場合、
各画素にOがら63までの階調度の順位を付ける。つぎ
に、1つの単位過程について、互いに直交する単位ベク
トルe1、e2を設定し、探索初期点S I)から一方
の単位ベクトルe1の示す方向にステップk(kは整数
値)ずつ増加させながらベクトル和E=Sb+に−e、
をめ、その都度前後の階調度の順位の大きさを比較する
。即ち、階調度の順位が増加(あるいは減少)傾向にあ
るときにはステップkを順次増減していく。そして、階
調度の順位が増加(あるいは減少)傾向から減少(増加
)傾向に反転すると、その時点でのベクトルE1に対し
、これに直交する単位ベクトルe2方向に上記と同様に
して前後の階調度の大きさを逐次比較しながらkを増減
していく。そして、この単位ベクトルe、方向のkの増
減に伴ない階調度が増加(減少)傾向から減少(増加)
傾向に反転した時点でのその時のベクトルE、によって
示される階調度の極大(極小)位置Slを記憶する。こ
れによって1つの単位過程が終了するので、次9・でE
lとE2を加算合成して得られるベクトルE3方向を示
す単位ベクトルe3とこれに直交する単位ベクトルe、
とを設定し、以下同様な手順でベクトルE5をめる。そ
してその終点位置での階調度の極大(極小)値を示す基
点S2を記憶する。このよう−にして、単位過程毎にま
る基点sb、s、、S2、・・・・を順次記憶しつつ極
値Spをめる。そして、1つの小領域に設定された総て
の初期点Sllについて極致探索が終了すると(ステッ
プN7)、次に、力・クント数1を分割した小領域の数
Nと比較しくステップN8)、小領域の総てに渡って極
値探索が終了するまでカウント数1を1つずつ増加させ
ながら上記動作を繰り返す。そして、総ての小領域内の
総ての初期点sbからの極値探索によりめた総、ての基
点S1、S7、S3、・・・・・がまると、即ちカウン
ト数lが小領域の数Nと一致したとき、この記憶してい
た基点をもとに各小領域ごとに軌跡を再合成しくステッ
プN9)、さらに各小領域を1、6 X 1.6個並べ
て画像1画面を構成する(ステップN9)。ついで、C
RT、プリンタなどの表示機へ再合成した抽出パターン
を出力する(ステップN10)。これにより、第三図か
ら第五図にそれぞれ示すように、極値探索の過程で得ら
れた特徴的パターンが表示される。これらの図中、符号
sbは初期探索点を、spは極値をそれぞれ示しており
、第3図は郡峰状のパターン、第4図は輪峰状のパター
ン、第5図は尾根状のパターンをそれぞれ抽出した場合
である。なお、この画像抽出の方法は、本例では2次元
画像について説明したが、これ以外の次元の場合も可能
で、領域の分割も任意である。さらに、探索初期点の選
定の方法は、計画的でもよいし、ランダムに選定しても
よい。
FIG. 1 is a flowchart showing the dental image processing method of the present invention. In this digital image processing method, first,
For example, in the case of an ultrasonic diagnostic device, the image data is captured using a digital scan converter (step Nl).
), a display area to be subjected to image processing is determined from among the captured image data (step N2). Here, as an example, a 6-bit two-dimensional image with 512×512 pixels is assumed to be the display area to be image-processed. Next, the second display area is divided into a plurality of predetermined small areas. For example, the area is divided vertically and horizontally into 16 areas, and each of the N=256 small areas is made up of 32×32 pixels (step N3). Then, the count 1 corresponding to one search initial point is set to 1 without changing it (step N4). Next, a plurality of search initial points sb are set within each small area (step N5). Then, from each search initial point sb, a direct search method for extreme values of the nonlinear function is applied to perform an extreme value search (step N6). This extreme value search is performed as follows. As shown in Figure 2, first, in the case of a 6-bit pixel,
Each pixel is ranked according to the gradation level from 0 to 63. Next, for one unit process, unit vectors e1 and e2 that are orthogonal to each other are set, and the vector is Sum E = Sb + -e,
, and compare the order of the gradation levels before and after each time. That is, when the ranking of gradations tends to increase (or decrease), the steps k are sequentially increased or decreased. When the order of the gradation levels reverses from an increasing (or decreasing) tendency to a decreasing (increasing) tendency, the previous and subsequent gradations are adjusted in the same manner as above in the direction of the unit vector e2 orthogonal to the vector E1 at that time. While successively comparing the size of , k is increased or decreased. Then, as the unit vector e and k in the direction increase or decrease, the gradation tends to increase (decrease) to decrease (increase).
The maximum (minimum) position Sl of the gradation indicated by the vector E at the time when the trend reverses is stored. This completes one unit process, so in the next 9
A unit vector e3 indicating the direction of vector E3 obtained by adding and combining l and E2, and a unit vector e orthogonal to this,
Then, use the same procedure to find the vector E5. Then, a base point S2 indicating the maximum (minimum) value of the gradation at the end point position is stored. In this way, the extreme value Sp is calculated while sequentially storing the round base points sb, s, , S2, . . . for each unit process. Then, when the maximum search is completed for all the initial points Sll set in one small region (step N7), the next step is to compare the number N of small regions obtained by dividing the force-Kunt number 1 (step N8). The above operation is repeated while incrementing the count number 1 by 1 until the extreme value search is completed over the entire small area. Then, when all the base points S1, S7, S3, . When the number N matches the number N, the trajectory is recombined for each small area based on this memorized base point (step N9), and each small area is further arranged in 1.6 x 1.6 pieces to form one image screen. Configure (step N9). Then, C
The recombined extracted pattern is output to a display device such as an RT or a printer (step N10). As a result, the characteristic patterns obtained in the process of extreme value search are displayed, as shown in FIGS. 3 to 5, respectively. In these figures, the symbol sb indicates the initial search point, and sp indicates the extreme value. Figure 3 shows a peak-like pattern, Figure 4 shows a ring-like pattern, and Figure 5 shows a ridge-like pattern. This is a case where each pattern is extracted. Note that although this image extraction method has been described for a two-dimensional image in this example, it is possible to use a two-dimensional image, and the region can be divided arbitrarily. Furthermore, the search initial point may be selected systematically or randomly.

また、その個数も探索の結果に応じて試行錯誤的に繰り
返し、個数を゛増減しながら実行すればよ竜)正確なパ
ターンが得られる。
Also, if you repeat the search by trial and error depending on the search results, increasing or decreasing the number, you can obtain an accurate pattern.

(ト)効果 以上のように、本発明によればデジタル画像の表示領域
を所定の複数の小領域に分割し、分割された各小領域内
に探索初期点を複数個設定し、この各探索初期点から非
線形関数の極値の直接探索手法を適用して極値探索を行
ない、この極値探索の過程における各単位過程ごとにま
る極大を示す基点を総て記憶し、前記各小領域の各探索
初期点からの極値探索によりめた総ての前記基点を表示
することにより前記デジタル画像のパターンを抽出する
よう1こしたので、複雑な構成をもつ画像でもその構造
的な特徴を的確に抽出することができる。したがって、
画像の構造解析がより一層容易となり、超音波診断装置
などで用いられる医療用のデジタル画像の診断などに広
く適用することが可能となる。
(g) Effects As described above, according to the present invention, the display area of a digital image is divided into a plurality of predetermined small areas, a plurality of search initial points are set in each of the divided small areas, and each search Extrema search is performed from the initial point by applying the direct search method for extrema of the nonlinear function, and all base points indicating the maximum are memorized for each unit process in the process of extremum search, and the base points of each small region are Since the pattern of the digital image is extracted by displaying all the base points found by extreme value search from each search initial point, it is possible to accurately identify the structural features even in images with complex configurations. can be extracted into therefore,
Structural analysis of images becomes even easier, and it can be widely applied to diagnosis of medical digital images used in ultrasound diagnostic equipment and the like.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の実施例を示し、第1図はデジタル画像の
特徴抽出方法を説明するだめのフローチャト、第2図は
極値探索の手法の説明図、第3図ないし第5図はそれぞ
れ特徴抽出したパターンを示す模式図である。 sb・・・探索初期点、 S、、Sl、Sl・・・基点
・Sp・・・極値。 出願人 株式会社 島津製作所 代理人 弁理士 岡1)和秀 el 第5図 (a) (b) 第3図 (a) (b) 第4図 (a) (b)
The drawings show an embodiment of the present invention; Fig. 1 is a flowchart for explaining the method of extracting features from digital images; Fig. 2 is an explanatory diagram of the extreme value search method; and Figs. 3 to 5 show the features. FIG. 3 is a schematic diagram showing extracted patterns. sb...search initial point, S,, Sl, Sl...base point, Sp...extreme value. Applicant Shimadzu Corporation Representative Patent Attorney Oka 1) Kazuhide el Figure 5 (a) (b) Figure 3 (a) (b) Figure 4 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] (1)デジタル画像の表示領域を所定の複数の小領域に
分割し、分割された各小領域内に探索初期点を複数個設
定し、この各探索初期点から非線形関数の極値の直接探
索手法を適用して極値探索を行ない、この極致探索の過
程における各単位過程ごとにまる極大を示す基点を総て
記憶し、前記各小領域の各探索初期点からの極値探索に
よりめた総ての前記基点を表示することにより前記デジ
タル画像のパターンを抽出することを特徴とするデジタ
ル画像処理方法。
(1) Divide the display area of the digital image into a plurality of predetermined small areas, set multiple search initial points in each divided small area, and directly search for the extreme value of the nonlinear function from each search initial point. Perform extreme value search by applying the method, memorize all the base points that indicate the maximum for each unit process in the process of this maximum search, and find the base points by searching for the extreme value from each search initial point of each small region. A digital image processing method, characterized in that a pattern of the digital image is extracted by displaying all of the base points.
JP59117992A 1984-06-07 1984-06-07 Digital picture processing method Pending JPS60261276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117992A JPS60261276A (en) 1984-06-07 1984-06-07 Digital picture processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117992A JPS60261276A (en) 1984-06-07 1984-06-07 Digital picture processing method

Publications (1)

Publication Number Publication Date
JPS60261276A true JPS60261276A (en) 1985-12-24

Family

ID=14725346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117992A Pending JPS60261276A (en) 1984-06-07 1984-06-07 Digital picture processing method

Country Status (1)

Country Link
JP (1) JPS60261276A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379593A (en) * 1976-12-24 1978-07-14 Hitachi Ltd Surface inspecting method of objects and apparatus for the same
JPS57147073A (en) * 1981-03-09 1982-09-10 Mitsubishi Electric Corp Correlation tracking device
JPS5890883A (en) * 1981-11-25 1983-05-30 Fujitsu Ltd Profile extructing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379593A (en) * 1976-12-24 1978-07-14 Hitachi Ltd Surface inspecting method of objects and apparatus for the same
JPS57147073A (en) * 1981-03-09 1982-09-10 Mitsubishi Electric Corp Correlation tracking device
JPS5890883A (en) * 1981-11-25 1983-05-30 Fujitsu Ltd Profile extructing system

Similar Documents

Publication Publication Date Title
US4831528A (en) Apparatus and method for improvement of 3D images derived from tomographic data
EP0635727A1 (en) Magnetic resonance imaging apparatus
JPS6324478A (en) Generation of 2-d data display for indicating 3-d data set
US11574189B2 (en) Image processing apparatus and learned model
CN112836653A (en) Face privacy method, device, device and computer storage medium
JP2886162B2 (en) Image display device
CN112017263A (en) Intelligent test paper generation method and system based on deep learning
JPH021082A (en) Apparatus and method for generating definition of three-dimensional surface
JPS6119077B2 (en)
CN114219710A (en) Super-resolution image reconstruction method and device, electronic equipment and storage medium
JP4379706B2 (en) Region extraction method
JPS60261276A (en) Digital picture processing method
CN109509237B (en) Filter processing method and device and electronic equipment
WO2023206844A1 (en) Product image reconstruction method and apparatus, and product reconstruction model training method and apparatus
Eng et al. Numerical evaluation for solving Poisson image blending problem by four-point Egsor iterative method
JPH04122359A (en) Image contour stressing processor
JPH03102478A (en) Image processing device
JP7486516B2 (en) Reduction of video material to the action parts
JPS6219973A (en) Data compression method
JP3333050B2 (en) Shape measuring method and shape measuring device
JPH05143733A (en) Contour extracting device
JPH096962A (en) Evaluating method for sharpness
JPS5935470B2 (en) Shape correction method
JPS62210596A (en) Split pattern matching method
JPS62152097A (en) Object identification system
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载