+

JPS60169551A - Manufacture of shape memory alloy - Google Patents

Manufacture of shape memory alloy

Info

Publication number
JPS60169551A
JPS60169551A JP1466284A JP1466284A JPS60169551A JP S60169551 A JPS60169551 A JP S60169551A JP 1466284 A JP1466284 A JP 1466284A JP 1466284 A JP1466284 A JP 1466284A JP S60169551 A JPS60169551 A JP S60169551A
Authority
JP
Japan
Prior art keywords
shape memory
phase
treatment
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1466284A
Other languages
Japanese (ja)
Other versions
JPS624462B2 (en
Inventor
Hiroki Nakanishi
中西 寛紀
Tsutomu Inui
乾 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1466284A priority Critical patent/JPS60169551A/en
Publication of JPS60169551A publication Critical patent/JPS60169551A/en
Publication of JPS624462B2 publication Critical patent/JPS624462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a shape memory Ti-Ni alloy having bidirectional properties by carrying out soln. heat treatment at a specified temp., quenching, againg, cold working at a specified percentage and memory treatment at a prescribed temp. CONSTITUTION:A shape memory Ti-Ni alloy contg. Ni in excess and having TiNi and TiNi3 phases is subjected to soln. heat treatment at 500-1,100 deg.C, quenching, aging at 200-700 deg.C, cold working at <=60% and memory treatment at <=700 deg.C. By the cold working after the aging, orientation different from that of TiNi3 grains obtd. by only aging under constraint is obtd., so the direction of martensite transformation during cooling is controlled. By this method, satisfactory bidirectional properties are provided to a coil spring or the like.

Description

【発明の詳細な説明】 本発明はT1Ni相およびT1Ni、相の二相を有する
Ni過剰組成の’I’ i −N i系形状記憶合金に
おいて500〜1100°Cの温度範囲において溶体化
処理した後急冷処理を施し、次に200〜700°Cの
温度範囲において時効処理を行なった後60%以下の冷
間加工を施し、その後更に700°C以下の温度におい
て記憶処理を行なうことによ’) ’R4+ 温和→低
温相の変態ヒステリシスが小さく且つコイルバネにおい
て二方向ulを有する形状記憶合金を得ることを特徴と
する形状記憶合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an 'I' i -Ni type shape memory alloy with a Ni-excess composition having two phases, a T1Ni phase and a T1Ni phase, which is solution-treated in a temperature range of 500 to 1100°C. A post-quenching treatment is performed, followed by an aging treatment at a temperature range of 200 to 700°C, followed by cold working of 60% or less, followed by further storage treatment at a temperature of 700°C or less. ) 'R4+ The present invention relates to a method for manufacturing a shape memory alloy, which is characterized by obtaining a shape memory alloy having a small transformation hysteresis of the mild to low temperature phase and having a bidirectional ul in a coil spring.

T i −N i系形状記憶合金は顕著な形状記憶効果
を示すことおよび優れた機械的性質、耐食性等を有する
ことから最も広範囲な実用化の検討がなされているもの
である。
Ti--Ni type shape memory alloys exhibit a remarkable shape memory effect and have excellent mechanical properties, corrosion resistance, etc., and are therefore being studied in the widest range for practical use.

形状記憶効果は低温でマルテンサイト状態にある材料を
変形した後加熱′fろと元の形状に戻るものであり、こ
うした効果を生ずる温度は通常合金の逆変態開始湿度(
As点)、逆変態終了温度(A4点)、マルテンライト
変態開始温度(Ms点)およびマルテンヤイト変態終了
温度(Mf点)によって決定され、As点において形状
記憶効果が開始されM点で終了するものである。この形
状記憶効果を生ずる際の回復力は50〜60kl?/g
lI に及ぶものであり、この回復力を種々の応用品へ
利用する検討がなされている。その応用の代表例に第1
図に示すような形状記憶効果を繰り返し生じさぜろこと
を利用したアクチュエーターがある。このアクチコニ−
ターはパイアスカとしての通常のコイルバネ(バイアス
バネ)と形状記憶合金コイルバネとが組み合わされたも
のであり、低温においては形記憶合金がバイアスバネよ
りも降伏応力の小さよマルテンヤイト相の状態であるた
めにバイアスバネの方が強く、形状記憶合金を変形する
ように動作し、逆に高温においては形状記憶合金がバイ
アスバネよりも降伏応力の大きなβ相の状態となり、形
状記憶合金がバイアスバネな変形するように動作する。
The shape memory effect occurs when a material that is in a martensitic state at low temperatures is deformed and then returns to its original shape upon heating.
The shape memory effect starts at the As point and ends at the M point. It is something. The recovery power when creating this shape memory effect is 50-60kl? /g
lI, and studies are being conducted to utilize this resilience in various applied products. The first example of its application is
There is an actuator that utilizes the ability to repeatedly generate a shape memory effect, as shown in the figure. This acticony
The spring is a combination of a regular coil spring (bias spring) and a shape memory alloy coil spring, and at low temperatures the shape memory alloy has a lower yield stress than the bias spring because it is in a martenyite phase state. At high temperatures, the bias spring is stronger and acts to deform the shape memory alloy, and conversely, at high temperatures, the shape memory alloy enters a β-phase state with a higher yield stress than the bias spring, causing the shape memory alloy to deform like the bias spring. It works like that.

この場合高温相→低温相の変態ヒステリシスが小さい程
また二方向性を有している程小さな温度範囲においてア
クチュエーターとしての動作が容易に得られる。しかし
、従来のTi−Ni系合金においては一方向性の形状記
憶効果しか得られず、また高温相→低温相の変態ヒステ
リシスが約30°Cと大きく、このため低温相、高濡相
を可逆的に得てアクチュエーターを動作させる温度範囲
が大きくならざるを得す、動作温度範囲が限定される欠
点があった。
In this case, the smaller the high-temperature phase→low-temperature phase transformation hysteresis or the bidirectionality, the easier it is to operate as an actuator in a small temperature range. However, in conventional Ti-Ni alloys, only a unidirectional shape memory effect can be obtained, and the transformation hysteresis from high temperature phase to low temperature phase is as large as approximately 30°C, so the low temperature phase and high wettability phase are reversible. Therefore, the temperature range in which the actuator is operated has to be widened, and the operating temperature range is limited.

一方最近、こうしたTi−NI 糸形状記憶合金におい
て原子パーセントでNi 50.3〜530%、asT
rよりなるNi過剰組成の合金を600°C以上の熱処
理を施してi’ i N i単相化処理を行ない、その
後機械的に拘束した状態で600°C以下の温度におい
て時効処理を施してT i N β相とTiNi3相の
複相化することにより可逆形状記憶効果を付与する方法
が発表された。(特開昭58−151445号)しかし
、この方法による可逆形状記憶効果は短冊状の試料を第
2図に示すように拘束した場合にのみ得られろものであ
り、この方法を第1図に示すようなコイルバネに適用し
た場合には可逆形状記憶効果は認められない。
On the other hand, recently, in such Ti-NI thread shape memory alloys, Ni 50.3-530% in atomic percent, asT
An alloy with a Ni-excessive composition consisting of r is subjected to heat treatment at 600°C or higher to make it i' i Ni single phase, and then subjected to aging treatment at a temperature of 600°C or lower under mechanical restraint. A method of imparting a reversible shape memory effect by creating a multi-phase structure of a TiN β phase and a TiNi3 phase was announced. (Japanese Unexamined Patent Publication No. 58-151445) However, the reversible shape memory effect by this method can only be obtained when a strip-shaped sample is restrained as shown in Figure 2. When applied to a coil spring as shown, no reversible shape memory effect is observed.

こうした観点から本発明者らは変態ヒステリシスが小さ
く且つコイルバネにおいて二方向性を有し、第1図に示
すようなアクチュエーターの動作を容易に−づ−ろ合金
を得るためにT1Nβ相およびT1Ni、相の二相を有
するNi過剰組成のTi−Ni系形状記憶合金において
500〜1100°Cの温度範囲 2で溶体化処理した
後急冷処理を施し、次に200〜700°Cの温度範囲
において時効処理を行なった後60%以下の冷間加工を
施し、その後更に700″C以下の温度において記憶処
理を行なったところ有益な効果をもたらす事を発見した
ものである。
From this point of view, the present inventors have developed a T1Nβ phase, a T1Ni phase, and a T1Ni phase alloy in order to easily operate the actuator as shown in FIG. A Ti-Ni-based shape memory alloy with a Ni-excessive composition having two phases is subjected to solution treatment at a temperature range of 500 to 1100 °C, followed by rapid cooling treatment, and then aging treatment at a temperature range of 200 to 700 °C. It has been discovered that a beneficial effect can be obtained by subjecting the material to a cold working process of 60% or less, followed by further memory treatment at a temperature of 700''C or less.

本発明における時効処理後の冷間加工は溶体化処理およ
び時効処理によってマトリックス中に析出したT i 
N i 3粒子の方位を加工方向に揃えろことを目的と
したものであり、拘束時効処理のみによって得られるT
1Ni、粒子の方位と異なった方位が得られろ。これに
件なって冷却時のマルテンザイト変態の生成方位が拘束
されるようになり、拘束時効処理では得られないフィル
バネにおけろ良好な二方向性が得られるようになる。ま
た、溶体化処理後の時効処理により過飽和Niが゛l’
iNi、粒子となってマトリックス中に析/Ji L 
、これに伴な。て中間相変態が導入され変態が2段階的
に起こるようになり、高温相→低濡相(中間相)の変態
ヒステリシスが非常に小さくなる。
In the present invention, cold working after aging treatment is performed to remove Ti precipitated in the matrix by solution treatment and aging treatment.
The purpose is to align the orientation of the N i 3 particles in the processing direction, and the T
1Ni, an orientation different from that of the particles can be obtained. As a result, the direction of formation of martenzite transformation during cooling is restricted, and good bidirectionality can be obtained in the fill spring, which cannot be obtained by restrained aging treatment. In addition, supersaturated Ni is reduced by aging treatment after solution treatment.
iNi becomes particles and deposits in the matrix/Ji L
, along with this. An intermediate phase transformation is introduced and the transformation occurs in two stages, and the transformation hysteresis from the high temperature phase to the low wetness phase (intermediate phase) becomes extremely small.

次に本発明における処理条件の限定理由について述べる
Next, the reasons for limiting the processing conditions in the present invention will be described.

溶体化処理温度については500″C未満において。Regarding solution treatment temperature, below 500''C.

は’I’ i N iマトリックス中への’1”1Ni
3の十分な固溶度が得られないものと考えられ、その効
果が十分間められない。また1100°Cヶこえると酸
化によるTI元素の滅失が問題となる。以上の観点から
500〜1100°Cの沼1度範囲に限定した。
is '1' 1Ni into 'I' i N i matrix
It is considered that a sufficient solid solubility of No. 3 cannot be obtained, and its effect cannot be sufficiently maintained. Moreover, if the temperature exceeds 1100°C, loss of TI elements due to oxidation becomes a problem. From the above point of view, the temperature range was limited to 500 to 1100°C.

lソr効処理温度については200’C未満Gこおいて
は十分なT1Ni、オ′12子の析出が起こらず、また
10o’cをこえろと中間相変態が導入できなくなり、
高温相→低温相(中間相)変態の際の小ヒステリシスが
得らノする゛くなる。以上の観点から200〜700’
Cの温度範囲に限定した。
As for l-Sor treatment temperature, if the temperature is less than 200°C, sufficient precipitation of T1Ni and O'12 molecules will not occur, and if it exceeds 10°C, intermediate phase transformation will not be introduced.
A small hysteresis during the transformation from high temperature phase to low temperature phase (intermediate phase) becomes difficult to obtain. From the above point of view, 200-700'
The temperature range was limited to C.

冷間加工C1二ついては数%程度の加工でもその効果が
訂1めらねイ)が、7トリノクス中に析出した’I” 
i N i 、粒イの方位を加工方向に揃えろという点
からはできン)限り大きな加工度をとることが必要であ
る。し2かし6〔)%を越えろ加工度においては合金の
加工?1史化が顕著となり次の記憶茹理時の成形性が夷
化するので、この点を考慮して加工度を決定側ることが
望ましい。
The effect of cold working C1 is not noticeable even if it is only a few percent of cold working, but 'I' precipitated in 7-trinox.
It is necessary to obtain as large a processing degree as possible from the point of view of aligning the orientation of the grains i and the processing direction. However, in terms of machining rate exceeding 2 or 6 [)%, is it possible to process alloys? Since this phenomenon becomes noticeable and the formability during the next memory boiling is impaired, it is desirable to take this point into account when determining the degree of processing.

記憶処理洗1度については700’C以上の温度におい
ては形状記憶特性が劣化し、また中間相変態が消失し高
温相→低温相(中間相)変態の際の小ヒステリシスが得
られなくなる。以上の観点から700°C以下の温度範
囲に限定した。
For one memory treatment wash, the shape memory properties deteriorate at temperatures of 700'C or higher, and the mesophase transformation disappears, making it impossible to obtain a small hysteresis during the transformation from high temperature phase to low temperature phase (intermediate phase). From the above point of view, the temperature range was limited to 700°C or less.

以下本発明を実施例に基づき説明する。The present invention will be explained below based on examples.

〔実施例1〕 I″iN1相およびTiNi3相の二相を有するNi過
剰組成のTi −50,7at%Ni合金をアルゴン中
にて高周波誘導溶解した後1000’Cにて2時間真空
焼鈍を行なって均一化処理を施し、その後900°Cに
て鍛造を行なってφ12の棒とした。次にこの棒を熱間
加工および冷間加工によりφ10の線としだ後800°
Cにて2時間溶体化処理を行ない水冷した。その後更G
こ400°Cにて10時間時効処理を施した後冷間伸線
を行ないφ08の線とした。この線を第3図(d)に示
すようなフィルバネに成形し400°Cにて50分間記
憶処理を行なった後、二方向性の有無および示差走査熱
量計(DSC)を用いた変態点の測定を行ない、高温相
→低温相(中間相)の変態ヒステリシスを確認した。な
お、二方向性の有無は第6図に示すようにコイルバネが
加熱時に記憶形状の密着状態になり、冷却時に自発的に
伸びた状態になろうと−4−るかどうかにより判定した
[Example 1] A Ti-50,7 at% Ni alloy with a Ni-excess composition having two phases of I''iN1 phase and TiNi3 phase was subjected to high-frequency induction melting in argon and then vacuum annealed at 1000'C for 2 hours. After that, it was forged at 900°C to make a φ12 rod.Then, this rod was hot-worked and cold-worked into a φ10 wire, and then forged at 800°C.
Solution treatment was performed at C for 2 hours and cooled with water. After that G
After aging at 400°C for 10 hours, cold wire drawing was performed to obtain a wire of φ08. After forming this line into a fill spring as shown in Figure 3(d) and performing memory treatment at 400°C for 50 minutes, the presence or absence of bidirectionality and the transformation point using a differential scanning calorimeter (DSC) were determined. We conducted measurements and confirmed the transformation hysteresis from high-temperature phase to low-temperature phase (intermediate phase). The presence or absence of bidirectionality was determined by whether the coil spring was in a close contact state with a memorized shape when heated and spontaneously stretched when cooled, as shown in FIG.

第4図に実か゛li例1におけろ記憶処理後の]) S
 Cによる変態点の測定結果を示す。図から明らかなよ
うに中間相変態が導入され加熱、冷却時に各々2つづつ
のピークを有する。これに伴なって冷却時のピークは加
熱時の変態終了温度とほとんど同じrr::、 lψで
開始才ろようになり、高温相→低温和(中間相)の変ρ
(」ヒスプリシスがほとんど0°Cとなイ)。市ノ、−
この状p[Sにおいてコイルバネは顕著な二方向性をイ
耐44)ようになり、第5図に変位一温度曲線を示−(
ように冷却時に大きな自発変位が得られろ。
Figure 4 shows the actual example 1 after memory processing])
The results of measuring the transformation point using C are shown. As is clear from the figure, an intermediate phase transformation is introduced and there are two peaks each during heating and cooling. Along with this, the peak during cooling begins at rr::, lψ, which is almost the same as the transformation end temperature during heating, and the change from high temperature phase to low temperature sum (intermediate phase) ρ
(The hysteresis is almost 0°C). City, -
In this state p[S, the coil spring exhibits remarkable bidirectionality (44), and the displacement-temperature curve is shown in Figure 5.
A large spontaneous displacement can be obtained during cooling.

41′お、比較のために拘束時効処理のみの場合のフィ
ルバネの変イ〜′f一温度曲線を第5図に示すか、コイ
ルバネにおいては冷却時の自発変位がほとんど得られず
、本発明方法による合金のコイルバネか優れた二方向性
を有していることが明らかである。
41'For comparison, Figure 5 shows the temperature curve of the fill spring in the case of only the restrained aging treatment.In the coil spring, almost no spontaneous displacement is obtained during cooling, and the method of the present invention It is clear that the alloy coil spring has excellent bidirectional properties.

〔実施例2〕 Ti −51,Oat%Ni合金をアルゴン中にて高周
波誘導溶解し、実施13’lJ 1の場合と同様な方法
によりφ12の線とした後900°Cにて2時間溶体化
処理を行なった。次に500°Cにて2時間時効処理を
施した後冷間伸線を行ないφ08の線とし、更に実施例
1の場合と同様な方法によりコイルバネに成形した後5
00°Cにて30分間記憶処理を行なった。
[Example 2] A Ti-51, Oat%Ni alloy was melted by high-frequency induction in argon and made into a φ12 wire using the same method as in Example 13'lJ1, followed by solution treatment at 900°C for 2 hours. processed. Next, after aging treatment at 500°C for 2 hours, cold wire drawing was performed to obtain a wire of φ08, which was further formed into a coil spring by the same method as in Example 1.
Amnestic treatment was performed at 00°C for 30 minutes.

第6図に変位一温度曲線を示すが、実施例1の場合上同
様に良好な二方向性が得られていイ)ことが明らかであ
る。なお、この場合の高温相→低温相(中間相)の変態
ヒステリシスは1°Cであった。
FIG. 6 shows a displacement-temperature curve, and it is clear that good bidirectionality was obtained in Example 1 as well. In this case, the transformation hysteresis from high temperature phase to low temperature phase (intermediate phase) was 1°C.

〔実施例3〕 ’I’i −51,23t%N1 合金をアルゴン中に
て高周波誘導溶解し、実施例1の場合と同様な方法によ
りφ10の線とした後600°Cにて2時間溶体化処理
を行なった。次に400°Cにて5時間時効処理を施し
た後冷間伸線を行ないφ08の線とし、更に実施例1の
場合と同様な方法によりコイルバネに成形した後4OO
°Cにて1時間記憶処理を行なった。この時の昌渇相→
低渇相(中間相)の変態ヒステリシスiJi 1°Cで
あり、また顕著な二方向性を有してい2)ことが確認さ
れた。
[Example 3] 'I'i -51,23t%N1 alloy was subjected to high-frequency induction melting in argon, made into a φ10 wire by the same method as in Example 1, and then melted at 600°C for 2 hours. processing was performed. Next, after aging treatment at 400°C for 5 hours, cold wire drawing was performed to obtain a wire of φ08, which was further formed into a coil spring by the same method as in Example 1, and then 4OO
Amnestic treatment was performed for 1 hour at °C. The prosperity phase at this time →
It was confirmed that the transformation hysteresis iJi of the low-depletion phase (intermediate phase) was 1°C, and that it had remarkable bidirectionality 2).

以上実施例で述べたように本発明による合金は従来の合
金に比べ高温相→低温相(中間相)の変+gQヒステリ
シスが極めて小さく、また拘束時効処理のみの場合、に
(」得られないコイルバネにおける顕著な二方向fl:
を右しており、アクチーエータ−等に使用さi1石場合
の動作温度範囲の制限を著しく緩和すると同時に熱応答
性を高めるものであり極めて治益である。
As described in the examples above, the alloy according to the present invention has extremely small change from high temperature phase to low temperature phase (intermediate phase) + gQ hysteresis compared to conventional alloys. Noticeable bidirectional fl in:
This is extremely beneficial as it significantly alleviates the limitations on the operating temperature range when used in actuators, etc. and at the same time increases thermal responsiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1UAは形状記憶合金を用いたアクチーエータ−を示
す。第2図は短冊状試料の拘束状態および可逆形状記憶
効果による試料の動作ケ示し・(a)は試料の拘束形状
、(b)および(C)は冷却時に自発的に直伸形状とな
る状態を示したものである。第5図はコイルバネの形状
を示す。(d)は記憶形状を、(e)は冷却により伸び
た状態を示す。第4図は実施例10合金のl) S C
による変態点測定結果を示す。 第5図は実施例10合金のコイルバネおよび拘束時効処
理のみを施したコイルバネの変位−渇度曲度曲線を示す
。第6図は実施例2の合金のコイルバネの変位一温度曲
線を示す。 1 : フィルバネ、 2 :形状記憶合金コ・イルバ
ネ、3:試料を拘束するためのパイプ、 4:短冊状の形状記憶合金、 5゛試料を拘束1−るためのワイヤ。 出願人 日立金属株式会社 を竹穴、 □′や・・夕 葛1 図 第2図 t (C) ζ========;エエっ 番3図 (、I) 第4図 3肌崖(”C) 著5月 策に図
The first UA shows an actuator using a shape memory alloy. Figure 2 shows the restrained state of a strip-shaped specimen and the behavior of the specimen due to the reversible shape memory effect. (a) shows the restrained shape of the specimen, and (b) and (C) show the state in which it spontaneously assumes a straight-stretched shape upon cooling. This is what is shown. FIG. 5 shows the shape of the coil spring. (d) shows the memorized shape, and (e) shows the state expanded by cooling. Figure 4 shows the alloy of Example 10.
The results of the transformation point measurement are shown. FIG. 5 shows the displacement-dirty curvature curves of the coil spring of the alloy of Example 10 and the coil spring subjected only to restrained aging treatment. FIG. 6 shows the displacement-temperature curve of the coil spring of the alloy of Example 2. 1: fill spring, 2: shape memory alloy coil spring, 3: pipe for restraining the sample, 4: rectangular shape memory alloy, 5゛wire for restraining the sample. Applicant: Hitachi Metals Co., Ltd., Takeana, □'ya...Yukatsu 1 Figure 2 Figure t (C) ζ========; Cliff (”C) Author May Plan Figure

Claims (1)

【特許請求の範囲】[Claims] T1Ni相およびT1Ni、相の二相を、有するNi過
剰組成のTi −N i 系形状記憶合金において50
0〜1100″Cの湿度範囲において溶体化処理した後
急冷処理を施し、次に200〜700°Cの温度範囲に
おいて時効処理を行なった後60%以下の冷間加工を施
し、その後更に700°C以下の温度において記憶処理
を行なうことを特徴とする形状記憶合金の製造方法。
In a Ti-Ni-based shape memory alloy with a Ni-excess composition having two phases: T1Ni phase and T1Ni phase, 50
After solution treatment in a humidity range of 0 to 1100°C, rapid cooling treatment is performed, then aging treatment is performed in a temperature range of 200 to 700°C, cold working is performed to a temperature of 60% or less, and then an additional temperature of 700°C is applied. 1. A method for producing a shape memory alloy, characterized in that memory treatment is performed at a temperature of C or lower.
JP1466284A 1984-01-30 1984-01-30 Manufacture of shape memory alloy Granted JPS60169551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1466284A JPS60169551A (en) 1984-01-30 1984-01-30 Manufacture of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1466284A JPS60169551A (en) 1984-01-30 1984-01-30 Manufacture of shape memory alloy

Publications (2)

Publication Number Publication Date
JPS60169551A true JPS60169551A (en) 1985-09-03
JPS624462B2 JPS624462B2 (en) 1987-01-30

Family

ID=11867423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1466284A Granted JPS60169551A (en) 1984-01-30 1984-01-30 Manufacture of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS60169551A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089005A (en) * 1987-08-13 1992-02-18 Terumo Kabushiki Kaisha Catheter for the introduction of an expandable member
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
WO2008088197A1 (en) * 2007-01-19 2008-07-24 Korea Institute Of Science And Technology Coil spring having two-way shape memory effect and the fabrication method thereof, and adiabatic product using the same
WO2014184007A1 (en) 2013-05-17 2014-11-20 G. Rau Gmbh & Co. Kg Method and device for remelting and/or remelt-alloying metallic materials, in particular nitinol
CN110640057A (en) * 2019-09-27 2020-01-03 山东大学 Damping spring and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556701A (en) * 1978-05-30 1980-01-18 Bunpou Ri Magnet switch
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556701A (en) * 1978-05-30 1980-01-18 Bunpou Ri Magnet switch
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089005A (en) * 1987-08-13 1992-02-18 Terumo Kabushiki Kaisha Catheter for the introduction of an expandable member
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6540849B2 (en) 1998-02-19 2003-04-01 Scimed Life Systems, Inc. Process for the improved ductility of nitinol
WO2008088197A1 (en) * 2007-01-19 2008-07-24 Korea Institute Of Science And Technology Coil spring having two-way shape memory effect and the fabrication method thereof, and adiabatic product using the same
KR100936183B1 (en) * 2007-01-19 2010-01-11 한국과학기술연구원 Coil spring having this shape memory effect and its manufacturing method, and insulation product using the same
WO2014184007A1 (en) 2013-05-17 2014-11-20 G. Rau Gmbh & Co. Kg Method and device for remelting and/or remelt-alloying metallic materials, in particular nitinol
DE102013008396A1 (en) * 2013-05-17 2014-12-04 G. Rau Gmbh & Co. Kg Method and device for remelting and / or remelting of metallic materials, in particular nitinol
DE102013008396B4 (en) * 2013-05-17 2015-04-02 G. Rau Gmbh & Co. Kg Method and device for remelting and / or remelting of metallic materials, in particular nitinol
DE202014011248U1 (en) 2013-05-17 2018-10-25 G. Rau Gmbh & Co. Kg Device for remelting and / or remelting of metallic materials, in particular nitinol, and corresponding semi-finished products
US10422018B2 (en) 2013-05-17 2019-09-24 G. Rau Gmbh & Co. Kg Method and device for remelting and/or remelt-alloying metallic materials, in particular Nitinol
CN110640057A (en) * 2019-09-27 2020-01-03 山东大学 Damping spring and preparation method and application thereof
CN110640057B (en) * 2019-09-27 2020-10-09 山东大学 A shock-absorbing spring and its preparation method and application

Also Published As

Publication number Publication date
JPS624462B2 (en) 1987-01-30

Similar Documents

Publication Publication Date Title
Piao et al. Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy
JPS6214619B2 (en)
US4019925A (en) Metal articles having a property of repeatedly reversible shape memory effect and a process for preparing the same
KR930007143B1 (en) A method of controlling the physical and mechanical properties of a shape memory alloy member.
JPS5928548A (en) Superelastic, irreversible shape memory Ni-Ti based alloy material and its manufacturing method
JPS6237353A (en) Manufacture of shape memory alloy
JPS59150069A (en) Manufacture of shape memory alloy
JPS60169551A (en) Manufacture of shape memory alloy
JPS6361377B2 (en)
JPS6144150B2 (en)
JPS6157389B2 (en)
JPS59170247A (en) Manufacturing method of NiTi-based shape memory material
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JPS61227141A (en) NiTi shape memory alloy wire
JPH0480097B2 (en)
JPS62199757A (en) Manufacturing method of shape memory alloy material
JP2603463B2 (en) Low temperature reversible shape memory alloy
JPS5935978B2 (en) shape memory titanium alloy
JPH059686A (en) Method for manufacturing NiTi-based shape memory alloy
US4207380A (en) Aluminum thermostat metal
JPS61276947A (en) Shape memory ti-ni alloy having small hysteresis and its manufacture
JP4017892B2 (en) Method for producing alloys with high vibration damping performance
JPS622027B2 (en)
JP2986823B2 (en) Ti-Ni-based reversible shape memory alloy and method for producing the same
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载