JPS58167484A - Method for producing porous ceramic molded body - Google Patents
Method for producing porous ceramic molded bodyInfo
- Publication number
- JPS58167484A JPS58167484A JP5085082A JP5085082A JPS58167484A JP S58167484 A JPS58167484 A JP S58167484A JP 5085082 A JP5085082 A JP 5085082A JP 5085082 A JP5085082 A JP 5085082A JP S58167484 A JPS58167484 A JP S58167484A
- Authority
- JP
- Japan
- Prior art keywords
- molded body
- lithium
- porous ceramic
- body material
- ceramic molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000463 material Substances 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 229910052878 cordierite Inorganic materials 0.000 claims description 9
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 5
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- 150000002642 lithium compounds Chemical class 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims 2
- 239000003054 catalyst Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 9
- 230000035939 shock Effects 0.000 description 9
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 8
- 229910001947 lithium oxide Inorganic materials 0.000 description 8
- 230000002706 hydrostatic effect Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical group [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 235000010210 aluminium Nutrition 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は触媒担体、ディーゼルパティキコレートのトラ
ッパ等に使用される多孔質セラミック成形体の製造方法
に関するものである。排気ガスを浄化づるための白金あ
るいはパラジウム等の触媒を担持する担体として使用さ
れる多孔質セラミック成形体として、蜂の巣状の多数の
セルを形成したセラミック製のハニカム構造体が知られ
ている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous ceramic molded body used as a catalyst carrier, a trapper for diesel particulate collate, and the like. A ceramic honeycomb structure having a large number of honeycomb-shaped cells is known as a porous ceramic molded body used as a carrier for supporting a catalyst such as platinum or palladium for purifying exhaust gas.
この様なセラミック成形体は多数のセルを持つばかりで
なくセルを形成する隔壁自体が多孔質であり、その上に
、成形体が排気ガスに直接接触するところに使用される
ため、優れた耐熱衝撃性および強度が要求される。本発
明はかかる耐熱衝撃性及び強度を向上した多孔質セラミ
ック成形体を提供づるしのである。This kind of ceramic molded body not only has a large number of cells, but also the partition walls that form the cells are porous.Furthermore, because the molded body is used in a place where it comes into direct contact with exhaust gas, it has excellent heat resistance. Impact resistance and strength are required. The present invention provides a porous ceramic molded body with improved thermal shock resistance and strength.
本発明においては従来のコージ1ライト質多孔質セラミ
ック成形体の表面に酸化りリチウムを含む粉末を被覆づ
ることにより多孔質しラミック成形体全体の耐熱衝撃性
及び強度が向−1することを発見し本発明を完成したち
のCある。In the present invention, it has been discovered that by coating the surface of a conventional cordierite porous ceramic molded body with powder containing lithium oxide, the thermal shock resistance and strength of the entire ceramic molded body can be improved by making it porous. I have completed the present invention.
即ち本発明の多孔質セラミック成形体の製造1J法は従
来と同様に7グネシヤ、アルミナ、シリカを含む混合粉
末、合成コーラ1ライ]〜粉末の1H・または2種を成
形焼成してコージェライ1〜質の多孔質セラミック成形
体素材を形成づる第1]−稈及び得られた成形体素材の
表面にリチウムを含む化合物を被覆する第2工程となる
ことを特徴とりるものである。That is, the 1J method for manufacturing the porous ceramic molded body of the present invention is similar to the conventional method, by molding and firing a mixed powder containing 7 gnesia, alumina, and silica, synthetic cola 1 lye] to 1H powder, or 2 kinds of powder to produce cordierai 1- The second step is to coat the surface of the culm and the obtained molded body material with a compound containing lithium.
ここで焼成によりコージェライト組成となる\1go、
Δl 203、S i 02 ヲ含ムa 金粉末ト1
.t、化学組成がMg014手ω%、△l 2033
5手量%、5iOz51重量%を中心とする化学組成を
もつ、カオリン、タルク、アルミノ分(アルミナとか水
酸化アルミニウム等)等の混合粉末をいう。このような
混合粉末は焼成時に反応し一]〜ジIライト、あるいは
コージェライトを主要成分とづ−るセラミックとなる。\1go, which becomes cordierite composition by firing here,
Δl 203, S i 02 Gold powder 1
.. t, chemical composition is Mg014 ω%, △l 2033
It refers to a mixed powder of kaolin, talc, aluminium (alumina, aluminum hydroxide, etc.), etc., with a chemical composition centered around 5% by weight and 51% by weight of 5iOz. Such a mixed powder reacts during firing and becomes a ceramic whose main component is diilite or cordierite.
合成コージェライト粉末とは、MgO,Aft○3、S
i 02から加熱して]−ジェライト系セラミックとし
これを粉末化したものである。これら混合粉末と合成]
−ジIライl〜粉末は単独でも両者を混合して使用し°
Cもよい。また、不純物として含まれるM(l O,A
l2O5、St 02以外の成分も含み得る。Synthetic cordierite powder is MgO, Aft○3, S
It is heated from i 02 to form gelite ceramic, which is then powdered. Synthesis with these mixed powders]
-DiI-LyI powder can be used alone or in combination with each other.
C is also good. In addition, M(l O, A
Components other than 12O5 and St 02 may also be included.
本発明の第1工程は上記の組成原料を従来と同じ方法に
より成形、焼成し、多孔質セラミック成形体素材を成形
するものである。すなわち、組成物を構成する各原料粉
末はその粒径をサブミクIXIンから数十ミクロン程度
とし、メチルセルロース等のバインダ、水等の液体を加
え、ニーダ等の混練機で混練し押出材料を調整する。こ
の押出材料を真空押出機でハニカム形状に押出成形する
。押出成形された成形体は加熱下で乾燥づる。その後1
370℃〜1450℃)温度に3〜20時間加熱、焼成
し、コージェライトを生成させつつ焼結し、多孔質セラ
ミック成形体素材を製造する。なJ5、成形は押出成形
に限らず、原料の組成物粉末に比較的多量の液体を加え
、ペーストを調整し、このペーストをプラスチックの多
孔質体の社中(、二導入し、イの後乾燥するとともに、
プラスチックを分解除去し、ブラスチツ発泡体に似た多
孔質成形体を作り、これを焼成して多孔質セラミック成
形体素材とすることもできる。The first step of the present invention is to mold and fire the above-mentioned raw material composition in the same manner as conventional methods to form a porous ceramic molded body material. That is, each raw material powder constituting the composition has a particle size ranging from submicron to several tens of microns, and a binder such as methylcellulose and a liquid such as water are added and kneaded using a kneader such as a kneader to prepare an extrusion material. . This extruded material is extruded into a honeycomb shape using a vacuum extruder. The extruded molded product is dried under heat. then 1
370° C. to 1450° C.) for 3 to 20 hours and sintered while producing cordierite to produce a porous ceramic molded body material. J5, molding is not limited to extrusion molding; a relatively large amount of liquid is added to the raw material composition powder to prepare a paste, and this paste is introduced into a plastic porous body (2), and after (2) As it dries,
It is also possible to decompose and remove the plastic to create a porous molded body similar to a plastic foam, which is then fired to produce a porous ceramic molded body material.
多孔質セラミック成形体素材の形状は押出成形で得られ
るハニカム形状、泡状のセルをもつブ[コック等で、外
観形状には限定されない。The shape of the porous ceramic molded material is not limited to the external shape, such as a honeycomb shape obtained by extrusion molding or a bubble-like cell shape.
リチウム化合物としては加熱して酸化リチウムとなるも
のであればよく、例えば水酸化りf−ラムあるいはリチ
ウムの硝酸塩、ハロゲン化物あるいはコージェライトの
成分であるマグネジN)、アルミナ、シリカ等の複合酸
化物でも良い。複合酸化物としてはリチウムシリケイト
等がある。酸化リチウムの塗布酸は成形体素材であるコ
ーラ1948100重量部に対して酸化リチウムとして
1・〜10重轍部、酸化リチウムとシリカ、マグネシャ
、アルミナ等との混合酸化物としてコージェライト10
0重量部に対して5〜25重量部が適当である。Any lithium compound may be used as long as it becomes lithium oxide when heated, such as f-ram hydroxide, lithium nitrate, halides, or composite oxides such as magnezi N, which is a component of cordierite, alumina, and silica. But it's okay. Examples of composite oxides include lithium silicate. The coating acid for lithium oxide was 1 to 10 parts by weight of lithium oxide based on 100 parts by weight of Coke 1948, which is the material of the molded body, and 10 parts of cordierite as a mixed oxide of lithium oxide and silica, magnesia, alumina, etc.
5 to 25 parts by weight is suitable for 0 parts by weight.
成形体素材の表面にリチャを含む化合物を被覆する本発
明の第2工程は水溶性の水酸化リチウム、すfラム塩を
水に溶解し、この水溶液に成形体素材を浸漬して成形体
素材の表面に水溶液を塗布し、その後乾燥することによ
り達成できる。他の方法としては、リチャ等の微細粉末
を液中に分散したスラリーを用い、そのスラリー中に成
形体素材を浸漬し、その表面にリチャを含む酸化物を被
覆する方法を採用できる。なお、成形体素材の表面に被
覆されたりチャ等の化合物は600〜1300℃より好
ましくは800〜1200℃に焼成するのが良い。この
焼成はかならずしも必要とするものではない。触媒担体
等で使用されるに際し、排気ガスで加熱され、実際に焼
成されるのと同等の効果が期待出来る。このように多孔
質セラミックス成形体素材にリチャを含む酸化物を被覆
した成形体は例えば被覆層がない多孔質成形体の強度に
比較して強度で1.5倍、耐熱衝撃性で600℃程度の
ものが700〜800℃に向上する。The second step of the present invention, in which the surface of the molded body material is coated with a compound containing lithium, involves dissolving water-soluble lithium hydroxide and sulfur salt in water, and immersing the molded body material in this aqueous solution. This can be achieved by applying an aqueous solution to the surface and then drying it. Another method is to use a slurry in which fine powder such as richer is dispersed in a liquid, immerse the molded body material in the slurry, and coat the surface with an oxide containing richer. Note that it is preferable that the compound such as char coated on the surface of the molded body material be fired at a temperature of 600 to 1300°C, more preferably 800 to 1200°C. This firing is not always necessary. When used as a catalyst carrier, etc., it is heated with exhaust gas and can be expected to have the same effect as actually being fired. In this way, a molded body made of a porous ceramic molded body material coated with an oxide containing lithium has a strength 1.5 times that of a porous molded body without a coating layer, and a thermal shock resistance of about 600°C. temperature increases to 700-800°C.
本発明の製造方渋で得られる多孔質レノミック成形体は
、この成形体にγ−アルミナ等で触媒p]持層を被覆成
形し、それに白Φ等を含む水溶液を接触させ触媒を担持
させて111気ガス浄化装置とすることができる。また
排気ガス中の微細粉γを捕集するトラッパ−とすること
もできる。この場合には触媒担持層とか触媒を必要とし
ないことしとる。以下実施例により説明づる。The porous rhenomic molded body obtained by the production method of the present invention is obtained by coating the molded body with a catalyst support layer of γ-alumina, etc., and then contacting it with an aqueous solution containing white Φ etc. to support the catalyst. 111 gas purification device. It can also be used as a trapper that collects fine powder γ in exhaust gas. In this case, no catalyst support layer or catalyst is required. This will be explained below using examples.
実施例1
シリカ51重量%、アルミナ35手勢%、マグネジャ1
4重醋%になるように滑石、水酸化ンフルミニウム、粘
土等を配合し、この混菖物100重量部に罰し水5重量
部、水分80%の澱粉糊溶液20重量部を加え、ニーダ
−で十分混練し、真空押出成形機にてハニカム状の押出
成形体を製造した。その後十分乾燥したのち、1430
℃で3峙間焼成しコージェライト質セラミック成形体素
祠を製造した。この成形体素材に酸化リチウム2゜2重
量%、シリカ20重量%を含むリチウムシリケート水溶
液の中に20分間浸漬した1炎引き」げで乾燥し、その
後1200℃で2時間焼成して本発明の多孔質セラミッ
ク成形体を得た。Example 1 51% by weight of silica, 35% by weight of alumina, 1% by weight of magneja
Talc, fluorinium hydroxide, clay, etc. are blended to give a 4% concentration of talcum, 5 parts by weight of water and 20 parts by weight of a starch paste solution with 80% water are added to 100 parts by weight of this mixture, and the mixture is kneaded. The mixture was sufficiently kneaded using a vacuum extrusion molding machine to produce a honeycomb-shaped extrusion molded body. After that, after sufficiently drying, 1430
A cordierite ceramic molded body was produced by firing at ℃ for 3 hours. This molded body material was immersed in a lithium silicate aqueous solution containing 2.2% by weight of lithium oxide and 20% by weight of silica for 20 minutes, dried by flaming, and then fired at 1200°C for 2 hours to produce the present invention. A porous ceramic molded body was obtained.
次に、この多孔質セラミック成形体をγ−アルミナ粉末
を含むスリシー中に浸漬し常法によりγ−アルミナの触
媒担持層を形成し、その後触媒としてプラチニウムを担
持させて自動車の排気ガス浄化用触媒コンバータ〈以下
モノリス触媒と称する)を得た。なお、後の試験等のた
め同一のものを士数個製造した。Next, this porous ceramic molded body is immersed in a slurry containing γ-alumina powder to form a γ-alumina catalyst support layer by a conventional method, and then platinum is supported as a catalyst to become a catalyst for purifying automobile exhaust gas. A converter (hereinafter referred to as monolith catalyst) was obtained. In addition, several copies of the same product were manufactured for later tests.
このモノリス触媒の静水圧強度を次のようにして測定し
た。この方法は、まず、モノリフ触媒の両端面に同じ外
径をもつ厚さ2Qmmのアルミニウム板をあて、側面に
は厚さIn+mのウレタンシートを巻き付け、次にこれ
らを厚さ1ml1lのゴムチコーブの中に挿入し、ゴム
チコーブの両端を閉じ、水が侵入しないようにする。次
に、これを水圧容器内の水中に入れ容器を密閉し、水圧
をかける。水圧が増大し、モノリス触媒はある水圧で破
壊する。The hydrostatic strength of this monolithic catalyst was measured as follows. In this method, first, aluminum plates with a thickness of 2Qmm and having the same outer diameter are placed on both end faces of a monorif catalyst, a urethane sheet with a thickness of In+m is wrapped around the sides, and then these are placed in a rubber chicove with a thickness of 1ml and 1l. Insert and close both ends of the rubber tube to prevent water from entering. Next, it is placed in water inside a hydraulic container, the container is sealed, and water pressure is applied. The water pressure increases and the monolithic catalyst breaks down at a certain water pressure.
この破壊峙の耐水圧強度を静水圧強度とするものである
。本実施例のモノリス触媒の静水圧強度は4個の平均で
約65Kg/′cm”Cあった。イrお、破損したコン
バータより、]−シライト100千聞部あたりの酸化リ
チウムの重量を求めた。酸化リチウムは1.4重量部で
あった。次に■熱l!J%I性試験を実施した。この試
験は600℃、7oO℃、800℃、900℃に保たれ
た加熱炉角に(1うものである1、まず600℃の炉に
被試験体を20分間入れ、その後、取り出して室温に6
0分間敢装ことを1サイクルとする熱衝撃を5サイクル
実施する。この後に被試験体を調査し、亀裂の有無を調
べ、亀裂の発生していない場合には100℃高い加熱炉
で同様の熱衝撃をさらに5サイクル実施するものである
。そして亀裂のR牛しなかった加熱炉の最高温度を耐熱
衝撃性の指標とげる乙のである。本実施例のモノリス触
媒の耐熱衝撃性は4個試験した全てが8oo℃であった
。The hydrostatic strength at this point of fracture is defined as the hydrostatic strength. The hydrostatic strength of the monolithic catalyst in this example was approximately 65 Kg/'cm''C on average for four pieces. From the damaged converter, the weight of lithium oxide per 100,000 parts of ]-silite was determined. The amount of lithium oxide was 1.4 parts by weight.Next, a heat l! (1) First, put the test object in a 600℃ oven for 20 minutes, then take it out and let it return to room temperature for 6 minutes.
Five cycles of thermal shock were performed, one cycle being 0 minutes of exposure. After this, the test object is examined to see if there are any cracks, and if no cracks are found, the same thermal shock is applied for five more cycles in a heating furnace heated to 100°C. The maximum temperature of the heating furnace that did not cause any cracks was the index of thermal shock resistance. The thermal shock resistance of the monolithic catalyst of this example was 80° C. for all four tested samples.
また、本実施例のモノリス触媒の触媒作用試験を実際の
エンジンに装置し、その排気カス浄化効果を調べた。こ
の結果、従来のモノリス触媒と触媒作用においては変り
がないことが確認された。In addition, a catalytic action test of the monolithic catalyst of this example was carried out in an actual engine, and its exhaust gas purification effect was investigated. As a result, it was confirmed that there was no difference in catalytic action from conventional monolith catalysts.
なお、参考のために、上記した実施例でリチウムシリケ
ート水溶液に成形体素材を浸漬する工程のみを省略し、
後は全て実施例と同様にしてモノリス触媒を製造した。For reference, only the step of immersing the molded body material in the lithium silicate aqueous solution was omitted in the above example.
A monolithic catalyst was manufactured in the same manner as in the example.
このモノリス触媒の静水圧強度は43Kp/cm2 (
4個の平均値)であり、耐熱衝撃性は6゜0℃であった
実施例2
本実施例1でリチウムシリグー1〜水溶液に成形体素材
を浸漬し、乾燥後、その焼成温度を600℃とした以外
は全て実施例1と同じにしてモノリス触媒を製造した。The hydrostatic strength of this monolithic catalyst is 43Kp/cm2 (
Example 2 In Example 1, the molded body material was immersed in an aqueous solution of lithium silicone, and after drying, the firing temperature was increased to 600°C. A monolithic catalyst was produced in the same manner as in Example 1 except that the temperature was changed to .degree.
この実施例のモノリス触媒の静水圧強度は51KO/C
D+”(4個の平均値)、耐熱衝撃性はいずれも600
℃であった。The hydrostatic strength of the monolithic catalyst in this example is 51KO/C
D+” (average value of 4), thermal shock resistance is 600 for each
It was ℃.
実施例3
実施例1でリチウムシリケート水溶液に成形体素材を浸
漬し、乾燥後、その焼成温度を1000℃とした以外は
全て実施例1と同じにしてモノリス触媒を製造した。Example 3 A monolithic catalyst was produced in the same manner as in Example 1, except that the molded body material was immersed in an aqueous lithium silicate solution, and after drying, the firing temperature was 1000°C.
この実施例のモノリス触媒の静水11強19 LJL
62K Q / cm2 (4個の平均値)、耐熱衝撃
性(ま700℃ 3個、800℃ 1個であった。Monolithic catalyst of this example still water 11 strength 19 LJL
62K Q/cm2 (average value of 4 pieces), thermal shock resistance (3 pieces at 700°C and 1 piece at 800°C).
特許出願人 !〜ヨタ自動車工業株式会社 代理人 弁理士 大川 宏patent applicant ! ~Yota Automobile Industry Co., Ltd. agent Patent attorney Hiroshi Okawa
Claims (4)
シャ、アルミナ、シリカを含む混合粉末おJひ合成コー
ジェライト粉末の一種又は二種を成形伎び焼成すること
により多孔質セラミック成形体素材を作る工程と該成形
体素材の表面に少くとしリチウムを含む化合物を被覆す
る工程とよりなることを特徴とする多孔質セラミック成
形体のr G方法。(1) A porous ceramic molded body material is formed by molding and firing one or two types of synthetic cordierite powder, a mixed powder containing silica, alumina, and silica, which is converted into a cone 1 lye 1 by firing. 1. An rG method for producing a porous ceramic molded body, comprising the steps of: making a porous ceramic molded body; and coating the surface of the molded body material with a small amount of a compound containing lithium.
600〜1300℃で焼成することを47I微とする特
許請求の範囲第1項記載の製造方法。(2) The manufacturing method according to claim 1, wherein the molded body material is coated with a lithium-containing compound and then fired at 600 to 1,300°C to obtain a 47I fineness.
る方法は水溶性リチウム化合物を水に溶解し、水溶液中
に成形体素材を浸漬し、成形体素材表面にリチウムを含
む水溶液を塗布することにより達成する特許請求の範囲
第1項記載の¥J 造15法。(3) The method of coating the surface of the molded body material with a lithium-containing compound is to dissolve a water-soluble lithium compound in water, immerse the molded body material in the aqueous solution, and apply the lithium-containing aqueous solution to the surface of the molded body material. The ¥J structure 15 method according to claim 1, which is achieved by.
チウムシリケイト、塩化リチウム、硝酸リチウムである
特許請求の範囲第3項記載の製造方法。(4) The manufacturing method according to claim 3, wherein the water-soluble lithium compound is lithium hydroxide, lithium silicate, lithium chloride, or lithium nitrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5085082A JPS58167484A (en) | 1982-03-29 | 1982-03-29 | Method for producing porous ceramic molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5085082A JPS58167484A (en) | 1982-03-29 | 1982-03-29 | Method for producing porous ceramic molded body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58167484A true JPS58167484A (en) | 1983-10-03 |
Family
ID=12870190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5085082A Pending JPS58167484A (en) | 1982-03-29 | 1982-03-29 | Method for producing porous ceramic molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58167484A (en) |
-
1982
- 1982-03-29 JP JP5085082A patent/JPS58167484A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3824196A (en) | Catalyst support | |
EP2358359B1 (en) | Ceramic honeycomb structure skin coating | |
US8454886B2 (en) | Durable honeycomb structures | |
US20080176028A1 (en) | Method for manufacturing honeycomb structure, and honeycomb structure | |
US20080118701A1 (en) | Method for manufacturing honeycomb structure, and honeycomb structure | |
JPS6241054B2 (en) | ||
JP6031103B2 (en) | Fabrication method of cemented and skinned ceramic honeycomb structure | |
WO2005065199A2 (en) | Ceramic structures having hydrophobic coatings | |
EP2519482B1 (en) | Method of making polymeric barrier coating to mitigate binder migration in a diesel particulate filter to reduce filter pressure drop and temperature gradients | |
JPS61212331A (en) | Preparation of monolithic catalyst carrier having integratedhigh surface area phase | |
JP2001064084A (en) | Honeycomb-like monolith structures of porous ceramic materials and their use as filters for particles | |
WO2018012562A1 (en) | Honeycomb structure and production method for said honeycomb structure | |
US4277376A (en) | Process for the manufacture of a monolithic support for catalysts suitable for use in controlling carbon monoxide emissions | |
JPH0657320B2 (en) | Exhaust gas purification catalyst manufacturing method | |
JP2000225340A (en) | Honeycomb structure | |
JPH11333293A (en) | Honeycomb structure and manufacturing method thereof | |
WO2005051859A1 (en) | Composition and method for making ceramic filters | |
JPS58167484A (en) | Method for producing porous ceramic molded body | |
JP2651170B2 (en) | Ceramics porous body | |
JPS5881419A (en) | Particulate collection material | |
JP2004196597A (en) | Honeycomb structure, catalyst body using the same, catalyst-supporting filter, and their production processes | |
JPS58159828A (en) | Filter for exhaust gas of internal combustion engine and its production | |
JPH0337962B2 (en) | ||
JPS58135169A (en) | Porous ceramic composition | |
JPS6158873A (en) | Manufacture of ceramic porous body |