JPH11214212A - Non-reciprocal circuit element - Google Patents
Non-reciprocal circuit elementInfo
- Publication number
- JPH11214212A JPH11214212A JP10011452A JP1145298A JPH11214212A JP H11214212 A JPH11214212 A JP H11214212A JP 10011452 A JP10011452 A JP 10011452A JP 1145298 A JP1145298 A JP 1145298A JP H11214212 A JPH11214212 A JP H11214212A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- ferrite
- saturation magnetization
- permanent magnet
- reciprocal circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 81
- 230000005415 magnetization Effects 0.000 claims abstract description 41
- 230000005291 magnetic effect Effects 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 14
- 230000005350 ferromagnetic resonance Effects 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 2
- 238000003780 insertion Methods 0.000 abstract description 21
- 230000037431 insertion Effects 0.000 abstract description 21
- 239000002223 garnet Substances 0.000 abstract description 7
- 239000004020 conductor Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
Landscapes
- Non-Reversible Transmitting Devices (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、100MHz以上
20GHz以下で用いられる集中定数型の非可逆回路素
子すなわちアイソレータやサーキュレータに関するもの
であり、また、温度特性に優れた非可逆回路素子を得る
ための磁性材料に関するものであり、あるいは、挿入損
失や中心周波数の温度特性に優れた、非可逆回路素子を
得るための温度補償の方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lumped constant type non-reciprocal circuit device used at 100 MHz to 20 GHz, that is, an isolator and a circulator, and to obtain a non-reciprocal circuit device excellent in temperature characteristics. The present invention relates to a magnetic material or a method of temperature compensation for obtaining a non-reciprocal circuit device having excellent insertion loss and temperature characteristics of a center frequency.
【0002】[0002]
【従来の技術】100MHzから20GHzの周波数帯
を利用した高周波機器には、アイソレータやサーキュレ
ータといった非可逆回路素子を用いることが多い。この
素子は特定の周波数で順方向の高周波を低損失で通過せ
しめ、逆方向の高周波を阻止せしめる機能を有する。2. Description of the Related Art Non-reciprocal circuit devices such as isolators and circulators are often used in high-frequency devices using a frequency band of 100 MHz to 20 GHz. This element has a function of passing a high frequency wave in a forward direction at a specific frequency with low loss and blocking a high frequency wave in a reverse direction.
【0003】通常の集中定数型非可逆回路素子は、永久
磁石と、その磁気ヨークである主成分が鉄の金属ケース
と、永久磁石の磁束を印加されるマイクロ波フェライト
と、このマイクロ波フェライト近傍に配置された複数本
のストリップラインや中心導体と、該ストリップライン
に電気的に接続する容量要素(例えばチップコンデンサ
のような容量素子)とを有する構造である。また通常上
記マイクロ波フェライトと上記磁石とは積み重なるよう
に配置されている。An ordinary lumped-constant type nonreciprocal circuit element includes a permanent magnet, a metal case whose main component is a magnetic yoke, a microwave ferrite to which the magnetic flux of the permanent magnet is applied, and a vicinity of the microwave ferrite. Has a plurality of strip lines and a central conductor arranged in the same and a capacitive element (for example, a capacitive element such as a chip capacitor) electrically connected to the strip line. Usually, the microwave ferrite and the magnet are arranged so as to be stacked.
【0004】なお、非可逆回路素子の1つである3端子
サーキュレータの1端子を抵抗素子で終端すればアイソ
レータとなるものであり、技術的にも形態上もアイソレ
ータとサーキュレータは類似している。[0004] If one terminal of a three-terminal circulator, which is one of the non-reciprocal circuit elements, is terminated by a resistor element, the isolator becomes an isolator. The isolator and the circulator are similar in terms of technology and form.
【0005】かかる非可逆回路素子に要求される最も重
要な特性の1つに、当該素子を順方向に通過せしめる高
周波の通過時の損失、すなわち挿入損失がある。言うま
でもなく挿入損失は小さいほど良い。さらに上記非可逆
回路素子が広い温度範囲で優れた性能を維持するために
は、挿入損失の温度特性も優れている必要がある。One of the most important characteristics required of such a non-reciprocal circuit device is a loss at the time of passing a high frequency that allows the device to pass in a forward direction, that is, an insertion loss. Needless to say, the smaller the insertion loss, the better. Further, in order for the non-reciprocal circuit device to maintain excellent performance in a wide temperature range, it is necessary that the temperature characteristics of insertion loss be excellent.
【0006】一方、非可逆回路素子に要求される最も重
要な特性の他の1つに、周波数特性がある。非可逆回路
素子は強磁性共鳴を利用するものであり、通常アバブレ
ゾナンス(avobe resonanse;マイクロ
波フェライトのμ+”が最大となる直流磁界よりも高磁
界側で共鳴させる設計方法)の考え方で設計される。On the other hand, another one of the most important characteristics required for the non-reciprocal circuit device is a frequency characteristic. Non-reciprocal circuit elements utilize ferromagnetic resonance, and are usually designed based on the concept of aberresonance (a design method that resonates at a higher magnetic field side than a DC magnetic field at which μ + of a microwave ferrite becomes maximum). Is done.
【0007】周波数は、当該非可逆回路素子の使用周波
数となるように設定される。すなわち、マイクロ波フェ
ライトの飽和磁化(以下、Msfと記述する)の大きさ
と永久磁石の飽和磁化(以下、Msmと記述する)の大
きさとそれらの比率で近似的に決定する周波数が使用周
波数となるように設定される。[0007] The frequency is set to be the frequency used by the non-reciprocal circuit device. That is, the saturation magnetization of the microwave ferrite (hereinafter, referred to as Ms f) the saturation magnetization of the size and the permanent magnets (hereinafter, Ms m and describes) size and approximately determined frequency is used frequency in their ratio of Is set to be
【0008】非可逆回路素子が広い温度範囲で優れた性
能を維持するためには、環境温度が変化しても、動作周
波数があまり変動しないように対策することが重要であ
る。In order for the non-reciprocal circuit device to maintain excellent performance over a wide temperature range, it is important to take measures to prevent the operating frequency from fluctuating even when the environmental temperature changes.
【0009】かかる観点から、従来の非可逆回路素子の
温度補償には、大別して2種類の対策・対処の方法があ
った。すなわち第1の方法はMsfとMsmの温度係数が
何れも小さくなるようにすることである。From such a viewpoint, the conventional temperature compensation of the non-reciprocal circuit device has roughly two types of countermeasures and countermeasures. That is, the first method is to make the temperature coefficient of the Ms f and Ms m are both reduced.
【0010】たとえば、Msfを小さくするためにはG
d置換型YIG系のマイクロ波フェライトを採用し、そ
のMsfの温度に対する変化が少ない組成の材料を選択
すると同時に、Msmの変化を少なくするためにはキュ
リー温度の高い金属系の永久磁石、例えば希土類磁石を
採用し、さらに整磁鋼を組み合わせて直流磁気回路の磁
気抵抗を調整し、より正確な温度補償を行うという方法
である。[0010] For example, in order to reduce the Ms f is G
d substituted YIG based microwave ferrite employed in, at the same time by selecting a material composition change is small with respect to the temperature of the Ms f, permanent magnets of high Curie temperature metal system in order to reduce the change of Ms m, For example, a method of adopting a rare earth magnet and further combining a magnetic shunt steel to adjust the magnetic resistance of the DC magnetic circuit to perform more accurate temperature compensation.
【0011】このような方法による対策は例えば特開昭
50年第31400号公報や特開昭57年第42544
号公報に示されている。この方法による場合は当然高価
な永久磁石や高価な整磁鋼を用いることになる。The countermeasure by such a method is disclosed in, for example, Japanese Patent Application Laid-Open No. 31400/1982 and 42544/1982.
No. in the official gazette. In the case of this method, expensive permanent magnets and expensive magnetic shunt steels are naturally used.
【0012】そこでより安価な永久磁石としてフェライ
ト磁石を用いることができないかと考えたのが第2の方
法である。良く知られているようにフェライト磁石は金
属系磁石よりもキユリー温度が低いため、Msmの温度
係数は必ずしも小さいとは言えない。しかしMsfの温
度係数とMsmの温度係数が同程度の大きさであれば環
境温度が変化しても動作周波数があまり変動しないよう
にすることができるものとされてきた。Therefore, the second method was to consider whether a ferrite magnet could be used as a less expensive permanent magnet. Since Kiyuri temperature is lower than the metal-based magnet ferrite magnet, as is well known, the temperature coefficient of Ms m is not necessarily small. However Ms temperature coefficient and Ms operating frequency even if the temperature coefficient is environmental temperature changes if the size of the same order of m of f has been assumed that it is possible not vary much.
【0013】従って、Msfの温度係数とMsmの温度係
数が同程度の大きさとなるようにマイクロ波フェライト
とフェライト磁石の材料を選択して組み合わせることが
行われていた。これは言い換えれば、マイクロ波フェラ
イトの飽和磁化(Msf)の大きさと永久磁石の発生磁
場の強さとの比率が常に一定であるようにしたものであ
る。[0013] Therefore, that the temperature coefficient of the temperature coefficient and Ms m of Ms f is selected and combined microwave ferrite and ferrite magnetic material so that the size of the same order was done. In other words, the ratio between the magnitude of the saturation magnetization (Ms f ) of the microwave ferrite and the strength of the generated magnetic field of the permanent magnet is always constant.
【0014】しかるに上記第2の方法で充分に温度補償
したはずの非可逆回路素子であっても、その素子の挿入
損失や中心周波数の温度特性を見ると常温域以外では不
充分な値となりがちであった。However, even if the nonreciprocal circuit element is supposed to be sufficiently temperature-compensated by the above-mentioned second method, the insertion loss of the element and the temperature characteristics of the center frequency tend to be insufficient at temperatures other than the normal temperature range. Met.
【0015】すなわち環境温度の変化に対して常に挿入
損失が少なく、かつ動作周波数の温度安定性に優れた非
可逆回路素子を提供することは、容易でなかった。That is, it has not been easy to provide a non-reciprocal circuit device which always has a small insertion loss with respect to a change in environmental temperature and has excellent temperature stability of the operating frequency.
【0016】[0016]
【発明が解決しようとする課題】そこで本発明が解決し
ようとする課題は、以下に列挙する課題の少なくとも一
つである。 (1)挿入損失が広い温度領域に亘って優れた非可逆回
路素子の提供 (2)動作周波数が広い温度領域に亘って安定な非可逆
回路素子の提供 (3)広い温度領域に亘って挿入損失が優れ、かつ広い
温度領域に亘って動作周波数が安定な非可逆回路素子の
提供 (4)安価で高信頼性の、非可逆回路素子の提供 (5)上記課題の少なくともいずれか1つを容易に解決
するような磁性材料の提供。 (6)上記課題の少なくともいずれか1つを容易に解決
するような温度特性の補償方法の提供。The problem to be solved by the present invention is at least one of the problems listed below. (1) Providing an excellent non-reciprocal circuit element over a wide temperature range where insertion loss is wide (2) Providing a stable non-reciprocal circuit element over a wide temperature range where the operating frequency is wide (3) Inserting over a wide temperature range Provision of a non-reciprocal circuit device having excellent loss and a stable operating frequency over a wide temperature range. (4) Provision of an inexpensive, highly reliable non-reciprocal circuit device. (5) At least one of the above-mentioned problems is solved. Providing magnetic materials that can be easily solved. (6) To provide a method for compensating for temperature characteristics which can easily solve at least one of the above-mentioned problems.
【0017】[0017]
【課題を解決するための手段】上述の課題を解決するた
め鋭意研究の結果、本発明者らは、著しく構成を改善し
た非可逆回路素子、または、かかる非可逆回路素子を得
るための磁性材料、あるいは、かかる非可逆回路素子の
温度特性を補償する新しい方法に想到したものである。As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a non-reciprocal circuit device having a significantly improved configuration, or a magnetic material for obtaining such a non-reciprocal circuit device. Alternatively, a new method for compensating for the temperature characteristics of such a nonreciprocal circuit device has been conceived.
【0018】すなわち第1の発明は、強磁性共鳴磁界よ
り高い磁界で動作する非可逆回路素子であって、永久磁
石の飽和磁化(Msm)とマイクロ波フェライトの飽和
磁化(Msf)の比(Msm/Msf)の値が、低温側と
高温側のいずれにおいても、常温時よりも大となるよう
に構成した非可逆回路素子である。That is, the first invention is a nonreciprocal circuit device which operates at a magnetic field higher than the ferromagnetic resonance magnetic field, and has a ratio of the saturation magnetization (Ms m ) of the permanent magnet to the saturation magnetization (Ms f ) of the microwave ferrite. This is a non-reciprocal circuit device configured such that the value of (Ms m / Ms f ) is larger than that at normal temperature on both the low temperature side and the high temperature side.
【0019】本発明の最大の特徴は、従来一定とするの
が最善と考えられていたMsm/Msfの値を、低温側の
みならず高温側においても、常温での値よりも大きくし
たところにある。常温付近のMsm/Msfの値のみを小
さくしても結果的には同じことである。The greatest feature of the present invention, the values of the conventional constant and to was considered the best Ms m / Ms f, even in a high temperature side not cold side only, was greater than the value at room temperature There. By reducing only the value of Ms m / Ms f of about room temperature is the same thing also result.
【0020】このような構成とすることで、広い温度範
囲で低損失かつ動作周波数変化の少ないの非可逆回路素
子が得られる。すなわち、当該非可逆回路素子の保証規
格の飛躍的な向上に繋がるものであるから、その寄与す
るところは極めて大である。With such a configuration, a non-reciprocal circuit device with low loss and small change in operating frequency over a wide temperature range can be obtained. In other words, since this leads to a dramatic improvement in the guarantee standard of the non-reciprocal circuit device, the contribution is extremely large.
【0021】なお、言うまでもないが、部品として完成
された非可逆回路素子は一体のものであるから、低温
側、高温側、常温付近の3種の温度帯域でそれぞれに適
した別々の部品構成をとることはできない。Needless to say, since the non-reciprocal circuit device completed as a component is an integral component, separate component configurations suitable for each of the three temperature ranges of low temperature, high temperature and near normal temperature are required. I can't take it.
【0022】発明者らの検討結果によっても第1の発明
のような構成が有効である理由については必ずしも理論
的に明快ではないが、以下のような事実が複雑に関与し
ているものと考えられる。Although the reason why the configuration as in the first invention is effective is not necessarily theoretically clear from the results of the studies by the inventors, it is considered that the following facts are involved in a complicated manner. Can be
【0023】Fe製磁気ヨークの透磁率の温度特性や熱
膨張率によって、磁気回路のパーミアンスが変化するこ
と。一般にテンソル透磁率の、右回りの円偏波に対する
透磁率の損失を表す虚数部(通常μ+”と記述される)
の大きさは、印加磁界の強さが強磁性共鳴を起こす磁界
から離れれば離れるほどこれが小さくなること。永久磁
石中に漏洩あるいは伝搬するマイクロ波の永久磁石中で
の損失が環境温度によって変化すること。The permeance of the magnetic circuit changes depending on the temperature characteristic of the magnetic permeability and the coefficient of thermal expansion of the magnetic yoke made of Fe. In general, the imaginary part of tensor permeability, which represents the loss of permeability for clockwise circularly polarized waves (usually described as μ + )
The magnitude of the magnetic field must be smaller as the applied magnetic field is farther from the magnetic field causing ferromagnetic resonance. The loss of microwaves leaking or propagating in the permanent magnet in the permanent magnet varies with the environmental temperature.
【0024】この発明において、常温とは20℃近傍の
温度、低温側とはおよそ−40℃以上10℃以下の温
度、高温側とはおよそ40℃以上100℃以下の温度で
ある。In the present invention, the normal temperature is a temperature around 20 ° C., the low temperature side is a temperature of about −40 ° C. to 10 ° C., and the high temperature side is a temperature of about 40 ° C. to 100 ° C.
【0025】本願第2の発明は上述の第1の発明の内容
をさらに具体的な構成としたものである。すなわち第2
の発明は、永久磁石と、磁気ヨークである主成分が鉄の
金属ケースと、該永久磁石の磁束を印加されるマイクロ
波フェライトと、該マイクロ波フェライト近傍に配置さ
れた複数本のストリップラインと、該ストリップライン
に電気的に接続する容量要素とを有する非可逆回路素子
であって、前記マイクロ波フェライトの飽和磁化(Ms
f)の温度係数は、−40℃〜20℃の温度領域におけ
る平均値が0%/℃〜α%/℃(ただしαは前記永久磁
石の飽和磁化(Msm)の−40℃〜20℃における温
度係数)であり、かつ60℃〜100℃の温度領域にお
ける平均値が(1.5×β)%/℃〜(1.9×β)%
/℃(ただしβは前記永久磁石の飽和磁化(Msm)の
60℃〜100℃における温度係数)であるように構成
した非可逆回路素子である。The second invention of the present application is a more specific configuration of the above-described first invention. That is, the second
The invention is directed to a permanent magnet, a magnetic yoke whose main component is a magnetic yoke, a microwave ferrite to which the magnetic flux of the permanent magnet is applied, and a plurality of strip lines arranged near the microwave ferrite. , A capacitive element electrically connected to the strip line, wherein the saturation magnetization (Ms
The temperature coefficient of f ) is 0% / ° C. to α% / ° C. in the temperature range of −40 ° C. to 20 ° C. (where α is −40 ° C. to 20 ° C. of the saturation magnetization (Ms m ) of the permanent magnet. And the average value in the temperature range of 60 ° C. to 100 ° C. is (1.5 × β)% / ° C. to (1.9 × β)%.
/ ° C. (where β is the temperature coefficient of the saturation magnetization (Ms m ) of the permanent magnet at 60 ° C. to 100 ° C.).
【0026】この発明において、冒頭の「永久磁石と〜
非可逆回路素子であって」の部分は従来の集中定数型非
可逆回路素子の一般的な構成である。従ってこの部分は
類似の他の構成であってもよい。ストリップラインは中
心導体であって、3端子サーキュレータや3端子アイソ
レータの場合は3本からなる。In the present invention, at the beginning, "permanent magnet and ...
The part "is a non-reciprocal circuit device" is a general configuration of a conventional lumped constant type non-reciprocal circuit device. Therefore, this part may have another similar configuration. The strip line is a central conductor, and in the case of a three-terminal circulator or a three-terminal isolator, the strip line includes three lines.
【0027】容量要素は要するにコンデンサであるが、
最近のものはチップ型や、セラミック基板兼用のものが
多い。その機能は、通常、インピーダンス整合の機能
と、マイクロ波フィルターとしての機能とを併せ持つ。The capacitance element is essentially a capacitor,
Recently, there are many chip-type and ceramic-substrate-type ones. The function usually has both the function of impedance matching and the function as a microwave filter.
【0028】また、飽和磁化の温度係数は、−40℃〜
20℃の領域における平均値は、 ((Ms20−Ms-40)/Ms20/60)×100 で与えられ、同様に、60℃〜100℃の領域における
平均値は、 ((Ms100−Ms60)/Ms20/40)×100 で与えられる(単位は%/℃である。Msの右下付数字
は何れも温度を示し、例えばMs-40は−40℃におけ
る飽和磁化を示す。式中の60や40は、当該温度領域
の温度幅(単位℃)。)ものである。これらの飽和磁化
の値や飽和磁化の温度特性は、振動試料型磁力計(VS
M)で容易に正確に測定できる。The temperature coefficient of the saturation magnetization is -40.degree.
The average value in the region of 20 ℃, ((Ms 20 -Ms -40) / Ms 20/60) given by × 100, Similarly, the average value in the region of 60 ℃ ~100 ℃, ((Ms 100 - ms 60) / ms 20/40 ) bottom right with numbers .Ms is given (a unit is% / ° C. in × 100 are both show the temperature, for example, ms -40 indicates the saturation magnetization at -40 ° C.. Reference numerals 60 and 40 in the formulas indicate the temperature width (unit: ° C.) of the temperature region. The values of these saturation magnetizations and the temperature characteristics of the saturation magnetizations are measured using a vibrating sample magnetometer (VS
M) can be easily and accurately measured.
【0029】この発明を別の観点から表現すると、永久
磁石とマイクロ波フェライトのそれぞれのMsfの温度
特性をそれらの20℃での値でそれぞれ規格化した場合
に、これを1つの図に表せば、それらの温度特性線は常
温付近で互いに接し、かつ、マイクロ波フェライトの温
度特性線が永久磁石のそれよりも内側にあるような2つ
の曲線の関係になることを意味する。[0029] When expressing the present invention from another point of view, when normalized respectively by the value of the temperature characteristics of each Ms f in their 20 ° C. of the permanent magnets and the microwave ferrite, expressed it in one of FIG. For example, it means that those temperature characteristic lines are in contact with each other near normal temperature, and that the temperature characteristic line of the microwave ferrite has a relationship of two curves such that it is inside the permanent magnet.
【0030】上記第2の発明の永久磁石をフェライト磁
石とし、マイクロ波フェライトをガーネット型フェライ
トとした場合について、温度特性の具体的な傾斜を示す
と、本願第3の発明となる。In the case where the permanent magnet of the second invention is a ferrite magnet and the microwave ferrite is a garnet-type ferrite, the present invention is the third invention if a specific slope of the temperature characteristic is shown.
【0031】すなわち本願第3の発明は、永久磁石と、
磁気ヨークである主成分が鉄の金属ケースと、該永久磁
石の磁束を印加されるガーネット型フェライトと、該ガ
ーネット型フェライト近傍に配置された複数本の中心導
体と、該中心導体に電気的に接続する容量素子とを有す
る非可逆回路素子であって、前記永久磁石はフェライト
磁石であり、かつ前記ガーネット型フェライトの飽和磁
化(Msf)の温度係数は−40℃〜20℃の温度領域
における平均値が0%/℃〜−0.18%/℃であり、
かつ60℃〜100℃の温度領域における平均値が−
0.27%/℃〜−0.34%/℃であるように構成し
た非可逆回路素子である。That is, the third invention of the present application relates to a permanent magnet,
The main component of the magnetic yoke is a metal case made of iron, a garnet-type ferrite to which the magnetic flux of the permanent magnet is applied, a plurality of central conductors arranged near the garnet-type ferrite, and electrically connected to the central conductor. A permanent magnet is a ferrite magnet, and a temperature coefficient of a saturation magnetization (Ms f ) of the garnet-type ferrite is in a temperature range of −40 ° C. to 20 ° C. Average value is 0% / ° C to -0.18% / ° C,
And the average value in the temperature range of 60 ° C to 100 ° C is-
It is a non-reciprocal circuit device configured to be 0.27% / ° C. to −0.34% / ° C.
【0032】この発明において、フェライト磁石はSr
フェライトであればなお良い。フェライト磁石は金属磁
石に較べて比抵抗が大きく、高周波帯域での損失を少な
くすることに有効である。さらにこれがSrフェライト
磁石であればBaフェライトに較べて、Msmの温度特
性の直線性が優れ温度係数は約−0.18%/℃である
と共に広い温度範囲で使用可能である。In the present invention, the ferrite magnet is Sr
Ferrite is even better. Ferrite magnets have higher specific resistance than metal magnets, and are effective in reducing loss in a high frequency band. Furthermore, this is compared to the Ba ferrite if Sr ferrite magnets, linearity is good temperature coefficient of the temperature characteristic of the Ms m can be used in a wide temperature range with about -0.18% / ° C..
【0033】また、ガーネット型フェライトはGd−C
a−V−In置換型YIGであればなお良い。ガーネッ
トの損失に関係する△H(共鳴吸収半値幅)が小さいこ
とに加えて、本項に規定する温度係数の材料が容易に作
成可能であり、かつ、常温のMsfの値を種々実現可
能、すなわち動作周波数の設定範囲が広くなるので応用
範囲が広がるからである。The garnet type ferrite is Gd-C
It is even better if it is an a-V-In substitution type YIG. Related to the loss of garnet △ H in addition to (resonance absorption half-width) is small, the material temperature coefficient prescribed in this section is easily be created, and various realizable values of room temperature Ms f That is, since the setting range of the operating frequency is widened, the application range is widened.
【0034】ただし、Gd置換型ガーネットでも本項に
規定する温度係数を実現することは、少々常温のMsf
の値に制約があるものの十分に可能である。他系統のガ
ーネットであってもよいことは言うまでもない。However, realizing the temperature coefficient defined in this section even in the Gd-substituted garnet requires a little room temperature Ms f
Although the value of is restricted, it is possible. It goes without saying that garnet of another system may be used.
【0035】かかる知見を基に発明したものの1つが、
本願第4の発明のGd−Ca−V−In置換型YIGの
ガーネット型フェライトである。すなわち本願第4の発
明は、組成式GdzY3-2x-zCa2xFe2-yInyFe3-x
VxO12で表され、かつ、0<x≦0.7、0.25<
y≦0.4、0.35≦z≦2.0を満足する磁性材料
である。One of the inventions based on such knowledge is as follows.
This is a Gd-Ca-V-In substituted YIG garnet-type ferrite of the fourth invention of the present application. That fourth aspect of the invention, a composition formula Gd z Y 3-2x-z Ca 2x Fe 2-y In y Fe 3-x
V x O 12 , and 0 <x ≦ 0.7, 0.25 <
The magnetic material satisfies y ≦ 0.4, 0.35 ≦ z ≦ 2.0.
【0036】この磁性材料を本願第1〜3の発明に適用
すれば、挿入損失や動作周波数の温度特性に優れた非可
逆回路素子が得られる。If this magnetic material is applied to the first to third aspects of the present invention, a non-reciprocal circuit device having excellent insertion loss and temperature characteristics of operating frequency can be obtained.
【0037】本願第5の発明は、方法に関するものであ
り、技術内容は第1の発明と共通するものである。すな
わち本願第5の発明は、強磁性共鳴磁界より高い磁界で
動作する非可逆回路素子の温度特性を補償する方法であ
って、永久磁石の飽和磁化(Msm)とマイクロ波フェ
ライトの飽和磁化(Msf)の比(Msm/Msf)の値
が、低温側と高温側のいずれにおいても、常温時よりも
大となるようにする非可逆回路素子の温度特性を補償す
る方法である。The fifth invention of the present application relates to a method, and the technical content is common to the first invention. That is, the fifth invention of the present application is a method for compensating for the temperature characteristics of a non-reciprocal circuit device operating at a magnetic field higher than the ferromagnetic resonance magnetic field, wherein the saturation magnetization (Ms m ) of the permanent magnet and the saturation magnetization (Ms m ) of the microwave ferrite are the value of the ratio (ms m / ms f) the ms f) is, in any of the low temperature side and high temperature side, a method of compensating the temperature characteristic of the nonreciprocal circuit device to be larger than normal temperature.
【0038】[0038]
【発明の実施の形態】図1は、本発明を説明するため
の、代表的な非可逆回路素子の、この場合はアイソレー
タの分解斜視図である。図1は、視認性を確保するため
に模式的に描いているので各部の縮尺や形状について
は、正確ではない。FIG. 1 is an exploded perspective view of a typical non-reciprocal circuit device, in this case, an isolator, for explaining the present invention. FIG. 1 is drawn schematically to ensure visibility, and thus the scale and shape of each part are not accurate.
【0039】まず非可逆回路素子の構造の内、従来型の
集中定数型非可逆回路素子と共通する部分についての概
要は、例えば、移動体通信用を例に図1に基づいて説明
すると、以下の通りである。ただし、図1のタイプ以外
の種々のアイソレータやサーキュレータであっても良い
ことは言うまでもない。First, of the structure of the non-reciprocal circuit device, an outline of a portion common to the conventional lumped-constant type non-reciprocal circuit device will be described with reference to FIG. It is as follows. However, it goes without saying that various isolators and circulators other than the type shown in FIG. 1 may be used.
【0040】外部端子電極を有する絶縁基板に鉄製の下
の磁気ヨークを固着し、これに銅製のアース板(省略
可)をハンダ付けし、その上に中心導体の接地部をハン
ダ付けし、その上に円板状のマイクロ波フェライトを固
着し(例えば樹脂で加熱接着する)、上記中心導体のス
トリップライン部の1つの端子を、上記マイクロ波フェ
ライトを包むように折り曲げる。続いて上記中心導体の
他の1つの端子を同様に折り曲げ、先の端子との間に絶
縁フィルム(図示せず。)を挟む。同様の手順を繰り返
して残った端子を折り込む。A lower magnetic yoke made of iron is fixed to an insulating substrate having an external terminal electrode, and a copper ground plate (optional) is soldered to the lower magnetic yoke, and a grounding portion of a center conductor is soldered thereon. A disk-shaped microwave ferrite is fixed thereon (for example, heat-bonded with a resin), and one terminal of the strip line portion of the center conductor is bent so as to surround the microwave ferrite. Subsequently, another terminal of the center conductor is similarly bent, and an insulating film (not shown) is sandwiched between the other terminal and the terminal. Repeat the same procedure to fold the remaining terminals.
【0041】これに、予め用意した、上の磁気ヨークに
円板状の永久磁石を固着し(例えば、樹脂で加熱接着す
る方法でも良い)その永久磁石を直流電磁石で着磁し磁
力を調整したものを填め合わせる。A disk-shaped permanent magnet was fixed to the upper magnetic yoke prepared beforehand (for example, a method of heating and bonding with resin). The permanent magnet was magnetized with a DC electromagnet to adjust the magnetic force. Put things together.
【0042】また、上記中心導体のストリップライン部
からの延出部は、上記絶縁基板に設けられた入出力外部
端子に接続せしめる。さらに上記中心導体のストリップ
ライン部からの延出部と上記アース板との間には整合用
のチップコンデンサを挿入し接続する。チップコンデン
サに代えてセラミックの誘電体基板を用いる方法もあ
る。The extension of the center conductor from the strip line portion is connected to an input / output external terminal provided on the insulating substrate. Further, a chip capacitor for matching is inserted and connected between the extended portion of the center conductor from the strip line portion and the ground plate. There is also a method using a ceramic dielectric substrate instead of the chip capacitor.
【0043】このようにして作成した非可逆回路素子は
上記永久磁石の発生磁力を微調整することによって所望
の動作周波数となるように正確に設定する。The non-reciprocal circuit device thus prepared is accurately set to a desired operating frequency by finely adjusting the magnetic force generated by the permanent magnet.
【0044】なお、ここに上記入出力端子が3個であっ
て、その内の1個は抵抗素子を介してアース板に接続す
るような配置とすれば、残った2個を入力端子、出力端
子とするアイソレータが作成できる。Here, if the three input / output terminals are arranged and one of them is connected to a ground plate via a resistance element, the remaining two terminals become input terminals and output terminals. An isolator can be made as a terminal.
【0045】次に本願発明の実施の形態についてその概
要を説明する。上述の永久磁石と、マイクロ波フェライ
トの飽和磁化(Msm)、(Msf)の温度特性をそれぞ
れ測定し、それらの所定温度領域の温度係数を求めて比
較し、所定の範囲にあるものを選抜し、その選抜の結果
選ばれた材料を用いて非可逆回路素子とすればよい。Next, an outline of an embodiment of the present invention will be described. The temperature characteristics of the saturation magnetization (Ms m ) and (Ms f ) of the above-mentioned permanent magnet and microwave ferrite are measured, and their temperature coefficients in a predetermined temperature range are determined and compared. A non-reciprocal circuit element may be selected by using a material selected as a result of the selection.
【0046】あるいは、特には永久磁石としてフェライ
ト磁石を、さらに望ましくはSrフェライト磁石を採用
し、マイクロ波フェライトとしては、特にはガーネット
型フェライト、さらに望ましくは所定の組成を有するガ
ーネット型フェライト材料を採用し、これらを用いて非
可逆回路素子とすればよい。Alternatively, a ferrite magnet, more preferably an Sr ferrite magnet is used as the permanent magnet, and a garnet-type ferrite is more preferable as the microwave ferrite, and a garnet-type ferrite material having a predetermined composition is more preferable. However, a non-reciprocal circuit element may be used by using these.
【0047】以下に本願発明の詳細を実施例に基づいて
説明する。The details of the present invention will be described below based on embodiments.
【実施例】(実施例1)実施例1は、永久磁石として異
方性Srフェライト磁石、マイクロ波フェライトとして
各種Gd−Ca−V−In置換型YIGの飽和磁化のそ
れぞれの温度係数と、それらを用いて作成した非可逆回
路素子の挿入損失や動作周波数の温度特性との関係を明
らかにするために行った実験に関するものである。(Example 1) In Example 1, the respective temperature coefficients of the saturation magnetization of an anisotropic Sr ferrite magnet as a permanent magnet and various Gd-Ca-V-In substituted YIGs as microwave ferrites were described. The present invention relates to an experiment performed to clarify the relationship between the insertion loss of a non-reciprocal circuit device and the temperature characteristics of an operating frequency.
【0048】まず市販の異方性Srフェライト磁石円板
を準備した。その飽和磁化(Msm)の温度特性はVS
Mを用いて測定した。さらにマイクロ波フェライトとし
てはGd−Ca−V−In置換型YIGの各種置換量の
材料を作成し、円板状に加工したものを準備した。これ
らの飽和磁化(Msf)の温度特性も、VSMを用いて
測定した。First, a commercially available anisotropic Sr ferrite magnet disk was prepared. The temperature characteristic of the saturation magnetization (Ms m ) is VS
M was measured. Further, as a microwave ferrite, a material having various substitution amounts of Gd-Ca-V-In substitution type YIG was prepared and processed into a disk shape. The temperature characteristics of these saturation magnetizations (Ms f ) were also measured using VSM.
【0049】上記Gd−Ca−V−In置換型YIGの
作成手順は以下の通りである。いずれも市販品で試薬特
級のGd2O3、CaCO3、V2O5、In2O3、Y
2O3、およびFe2O3の粉末を用意した。The procedure for preparing the above-mentioned Gd-Ca-V-In substituted YIG is as follows. All of them are commercially available and special grade reagents Gd 2 O 3 , CaCO 3 , V 2 O 5 , In 2 O 3 , Y
2 O 3, and powder was prepared of Fe 2 O 3.
【0050】さらに、組成式GdzY3-2x-zCa2xFe
2-yInyFe3-xVxO12のx、y、zをそれぞれ、xは
0〜0.7、yは0〜0.6、zは0〜2の範囲内で各
種変化させた組成となるように、上記に準備した粉末を
秤量し、ボールミルを用いてエチルアルコール中で24
時間混合したのち、乾燥、解砕して混合粉を得た。Further, the composition formula Gd z Y 3-2x-z Ca 2x Fe
2-y In y Fe 3- x V x O 12 of x, y, z, respectively, x is 0 to 0.7, y is 0 to 0.6, z is is varied is in the range of 0-2 The powder prepared above was weighed so as to obtain a composition having the following composition, and was weighed in ethyl alcohol using a ball mill.
After mixing for an hour, the mixture was dried and crushed to obtain a mixed powder.
【0051】これらの混合粉は、セラミック製のケース
中で、1000℃2時間、大気雰囲気中にて仮焼して仮
焼粉とした。この仮焼粉は解砕後ボールミルを用いてエ
チルアルコール中で24時間粉砕した。これを乾燥後、
濃度10%のポリビニールアルコール水溶液を固形分に
して1重量%相当量を添加し、造粒、整粒して原料顆粒
とした。These mixed powders were calcined in a ceramic case at 1000 ° C. for 2 hours in an air atmosphere to obtain calcined powder. The calcined powder was pulverized and ground in ethyl alcohol for 24 hours using a ball mill. After drying this,
An aqueous solution of polyvinyl alcohol having a concentration of 10% was solidified, and an equivalent amount of 1% by weight was added thereto, followed by granulation and sizing to obtain raw material granules.
【0052】上記作成した原料顆粒を金型に充填し、油
圧プレスによる乾式加圧成形法により、約100MPa
で円板状の成形体を得た。これらの成形体は、1270
℃酸素雰囲気中で3時間焼成して焼成体とした。これら
の焼成体は外周および上下面に研磨加工を施して非可逆
回路素子用のマイクロ波フェライトとした。The above-prepared raw material granules are filled in a mold, and are dried to about 100 MPa by a dry press molding method using a hydraulic press.
With the above, a disk-shaped molded body was obtained. These compacts are 1270
It was fired in an oxygen atmosphere at 3 ° C. for 3 hours to obtain a fired body. These fired bodies were subjected to polishing on the outer periphery and upper and lower surfaces to obtain microwave ferrite for non-reciprocal circuit devices.
【0053】なお、これらの焼成体は別途X線回折法で
確認したところ、ほぼガーネット単相であった。その他
の基本特性として、常温でのMsfは50〜130mT
であり、また強磁性共鳴半値幅△Hは560〜6,90
0A/m(ただし大半の試料は1,800〜2,100
A/mの範囲内)のものが各種得られた。When these fired bodies were separately confirmed by an X-ray diffraction method, they were almost a garnet single phase. Other basic characteristics, the Ms f at room temperature 50~130mT
And the ferromagnetic resonance half width ΔH is 560 to 6,90.
0 A / m (However, most samples are 1,800 to 2,100
A / m range).
【0054】以上に準備した永久磁石と各種マイクロ波
フェライトとを組み合わせ、通常の要領で非可逆回路素
子を作成し、常温20℃にて、挿入損失が最小となりか
つ動作周波数がおよそ300MHzとなるように調整し
たものについて、挿入損失の温度特性を測定した。測定
器および測定系は、恒温槽とネットワークアナライザ
と、正確に調整したケーブルと接続端子からなる自作治
具によるものである。By combining the above-prepared permanent magnet and various kinds of microwave ferrites, a non-reciprocal circuit device is prepared in the usual manner, and at room temperature of 20 ° C., the insertion loss is minimized and the operating frequency is approximately 300 MHz. The temperature characteristics of the insertion loss were measured for those adjusted to. The measuring instrument and the measuring system are based on a self-made jig composed of a thermostat, a network analyzer, an accurately adjusted cable and a connection terminal.
【0055】なお、非可逆回路素子の挿入損失および動
作周波数の測定点は−10℃、20℃、80℃とした。
−10℃は−40℃〜20℃の中間点の温度、20℃は
常温、80℃は60℃〜100℃の中間点の温度であ
る。The measurement points of the insertion loss and the operating frequency of the non-reciprocal circuit device were -10 ° C., 20 ° C., and 80 ° C.
-10 ° C is the midpoint temperature between -40 ° C and 20 ° C, 20 ° C is room temperature, and 80 ° C is the midpoint temperature between 60 ° C and 100 ° C.
【0056】また、周波数の300MHzは、用途から
すると最も低い周波数帯に属するが、判断を正確にする
ためには低周波の方が有利だからである。別途約2GH
zで確認して、その判断の正当性が確認できた。すなわ
ち少なくとも2GHzまでは本発明の効果が変わらない
ことを確認した。Further, the frequency of 300 MHz belongs to the lowest frequency band from the viewpoint of the application, but the low frequency is more advantageous for accurate judgment. Separately about 2GH
By confirming with z, the validity of the judgment was confirmed. That is, it was confirmed that the effect of the present invention did not change at least up to 2 GHz.
【0057】以上のようにして測定した結果を図2に示
す。図2は各種マイクロ波フェライトの飽和磁化(Ms
f)の温度係数(ただし60℃〜100℃の平均値)
と、これらのマイクロ波フェライトを用いて作成したそ
れぞれのアイソレータの80℃での挿入損失の値であ
り、この時用いた永久磁石はいずれもSrフェライト
(温度係数の60℃〜100℃の平均値は、0.19%
/℃)である。FIG. 2 shows the result of the measurement as described above. FIG. 2 shows the saturation magnetization (Ms) of various microwave ferrites.
f ) Temperature coefficient (however, average value from 60 ° C to 100 ° C)
And the insertion loss at 80 ° C. of each of the isolators prepared using these microwave ferrites. The permanent magnets used at this time were all Sr ferrites (the average value of the temperature coefficient from 60 ° C. to 100 ° C.). Is 0.19%
/ ° C).
【0058】図2によれば、挿入損失の値はマイクロ波
フェライトの飽和磁化(Msf)の温度係数(ただし6
0℃〜100℃の平均値)が−0.27〜−0.34の
範囲内に有れば極めて小さく、すなわち0.2dB以下
となっている。According to FIG. 2, the value of the insertion loss is the temperature coefficient of the saturation magnetization (Ms f ) of the microwave ferrite (6
(Average value at 0 ° C. to 100 ° C.) is in the range of −0.27 to −0.34, which is extremely small, that is, 0.2 dB or less.
【0059】さらに、注目すべきことは、上記温度係数
が0%/℃付近の場合および上記温度係数が−0.19
%/℃付近の場合は、何れの場合も挿入損失が0.25
dB以上であり、悪い値ではないものの最善とは言えな
いということである。It should be further noted that when the temperature coefficient is around 0% / ° C. and when the temperature coefficient is -0.19
% / ° C., the insertion loss was 0.25 in all cases.
dB or more, which is not bad but not the best.
【0060】同様にして測定した低温側での検討結果を
図3に示す。図3は各種マイクロ波フェライトの飽和磁
化(Msf)の温度係数(ただし−40℃〜20℃の平
均値)と、これらのマイクロ波フェライトを用いて作成
したそれぞれのアイソレータの−10℃での挿入損失の
値であり、この時用いた永久磁石Srフェライトの温度
係数の−40℃〜20℃での平均値は、0.18%/
℃)である。FIG. 3 shows the results of the study on the low temperature side, which were measured in the same manner. Figure 3 is the saturation magnetization of the various microwave ferrite (average value of the proviso -40 ° C. to 20 ° C.) temperature coefficient (Ms f), at -10 ° C. Each isolator made using these microwave ferrite The average value of the temperature coefficient of the permanent magnet Sr ferrite used at this time at −40 ° C. to 20 ° C. is 0.18% /
° C).
【0061】図3によれば、−10℃における挿入損失
の値はマイクロ波フェライトの飽和磁化(Msf)の温
度係数(ただし−40℃〜20℃の平均値)が0〜−
0.18%/℃の範囲内に有れば極めて小さく、すなわ
ち0.2dB以下となっている。According to FIG. 3, the value of the insertion loss at −10 ° C. is such that the temperature coefficient of the saturation magnetization (Ms f ) of the microwave ferrite (however, the average value at −40 ° C. to 20 ° C.) is 0 to −−.
If it is within the range of 0.18% / ° C., it is extremely small, that is, 0.2 dB or less.
【0062】ここでさらに注目すべきことは、上記温度
係数が先の温度係数(60〜100℃)での最適点と異
なる位置に最適点を有することである。0%/℃以上の
場合および上記温度係数が−0.19%/℃以下の場合
は、何れの場合も挿入損失が0.2dB以上であり、悪
い値ではないものの最善とは言えない。It should be further noted that the temperature coefficient has an optimum point at a position different from the optimum point at the previous temperature coefficient (60 to 100 ° C.). When the temperature coefficient is 0% / ° C. or more and the temperature coefficient is −0.19% / ° C. or less, the insertion loss is 0.2 dB or more in each case, and it is not a bad value but it is not the best.
【0063】図4、図5は図2、図3における検討と同
じ条件下で、挿入損失の所を動作周波数の変化量とした
評価結果である。負号は動作周波数が低周波化したこと
を示す。図4によれば、20℃を基準とした80℃にお
ける動作周波数の変化量が5MHz以内となるようなM
sfの温度係数(60℃〜100℃の平均値)は、およそ
−0.23〜−0.36%/℃である。FIGS. 4 and 5 show the results of evaluation under the same conditions as the investigations in FIGS. 2 and 3, where the insertion loss is the change in the operating frequency. A negative sign indicates that the operating frequency has been lowered. According to FIG. 4, M is such that the change amount of the operating frequency at 80 ° C. based on 20 ° C. is within 5 MHz.
(average of 60 ° C. to 100 ° C.) the temperature coefficient of s f is approximately -0.23~-0.36% / ℃.
【0064】また図5によれば、20℃を基準とした−
10℃における動作周波数の変化量が5MHz以内とな
るようなMsfの温度係数(−40℃〜20℃の平均値)
は、およそ−0.4〜+0.02%/℃である。Further, according to FIG. 5,-
Temperature coefficient of Ms f such as variation of the operating frequency at 10 ° C. is within 5 MHz (the average value of -40 ° C. to 20 ° C.)
Is approximately −0.4 to + 0.02% / ° C.
【0065】図4、5に示した事実から注目すべき点
は、永久磁石の温度係数とマイクロ波フェライトの温度
係数とを単純に一致させても理想的な温度補償は困難で
あること、特に低温側では従来定説であった点よりも、
フェライトの飽和磁化がより少なくなるように補償すべ
きであることである。It should be noted from the facts shown in FIGS. 4 and 5 that it is difficult to achieve ideal temperature compensation even if the temperature coefficient of the permanent magnet and the temperature coefficient of the microwave ferrite are simply made to coincide with each other. On the low-temperature side,
The reason is that the saturation magnetization of the ferrite should be compensated for to be smaller.
【0066】さらに図2〜図5を総合的に判断すると、
挿入損失が少なくかつ動作周波数の変化量が少ない非可
逆回路素子を得るためのマイクロ波フェライトの温度係
数は、高温側(60〜100℃)で−0.27〜−0.
34%/℃、低温側(−40〜20℃)で0〜0.18
%/℃である。Further, judging from FIG. 2 to FIG. 5 comprehensively,
The temperature coefficient of the microwave ferrite for obtaining a non-reciprocal circuit device having a small insertion loss and a small change in operating frequency is -0.27 to -0.07 on the high temperature side (60 to 100 ° C).
34% / ° C, 0 to 0.18 on low temperature side (-40 to 20 ° C)
% / ° C.
【0067】(実施例2)次に、実施例1で用いたガー
ネット型マイクロ波フェライトであるGd−Ca−V−
In置換型YIGの各元素成分の原子比であるx、y、
zの各値と前述温度係数との関係について詳細に調べ
た。その結果を以下に示す。(Example 2) Next, the garnet type microwave ferrite used in Example 1, Gd-Ca-V-
X, y, which are the atomic ratios of the respective element components of the In-substituted YIG.
The relationship between each value of z and the temperature coefficient was examined in detail. The results are shown below.
【0068】Gd−Ca−V−In置換型YIGの飽和
磁化(Msf)の温度係数を−40℃〜20℃の温度領
域における平均値が0%/℃〜−0.18%/℃であ
り、かつ60℃〜100℃の温度領域における平均値が
−0.27%/℃〜−0.34%/℃となるようにする
ためには、以下のようにすればよい。The temperature coefficient of the saturation magnetization (Ms f ) of the Gd—Ca—V—In substituted YIG is 0% / ° C. to −0.18% / ° C. in the temperature range of −40 ° C. to 20 ° C. In order to make the average value in the temperature range of 60 ° C. to 100 ° C. to be −0.27% / ° C. to −0.34% / ° C., the following may be performed.
【0069】すなわち、組成式GdzY3-2x-zCa2xF
e2-yInyFe3-xVxO12 で、0<x≦0.7、0.
25<y≦0.4、0.35≦z≦1.6を満足する組
成とすればよい。That is, the composition formula Gd z Y 3-2x-z Ca 2x F
e 2-y In y Fe 3-x V x O 12 , 0 <x ≦ 0.7, 0.
The composition may satisfy 25 <y ≦ 0.4 and 0.35 ≦ z ≦ 1.6.
【0070】ただし、x>0.7かつz<0.35であ
っても温度係数に限って言えば上述の条件を満たすが、
この場合は過剰に焼結が進み低損失の材料とならない。
またy≦0.25では、結晶粒が微細となるため、低損
失とならない。y≧0.4では低温側の温度係数が負と
なり適当でないし、過剰に焼結が進み損失を悪化させ
る。z<0.35では低温側の温度係数が過大、z>
1.6では高温側の温度係数が過大となり、望ましくな
い。However, even if x> 0.7 and z <0.35, the above condition is satisfied in terms of the temperature coefficient, but
In this case, excessive sintering proceeds, and a low-loss material is not obtained.
Further, when y ≦ 0.25, the crystal grains are fine, so that the loss is not reduced. If y ≧ 0.4, the temperature coefficient on the low temperature side becomes negative, which is not appropriate, and excessive sintering proceeds to worsen the loss. When z <0.35, the temperature coefficient on the low temperature side is excessive, and z>
In the case of 1.6, the temperature coefficient on the high temperature side becomes excessive, which is not desirable.
【0071】たとえば、組成式Gd0.8Y1.2Ca1Fe
1.7In0.3Fe2.5V0.5O12すなわちx=0.5、y=
0.3、z=0.8としたときの緒量は、以下の通りと
なった。マイクロ波フェライトについては20℃での飽
和磁化(Msf)は75mT、強磁性共鳴吸収半値幅
(△H)は1240A/mであった。その温度係数は、
−40℃〜20℃で−0.15%/℃、20℃近傍で−
0.17%/℃、60℃〜100℃で−0.29%/℃
であった。For example, the composition formula Gd 0.8 Y 1.2 Ca 1 Fe
1.7 In 0.3 Fe 2.5 V 0.5 O 12, that is, x = 0.5, y =
The parameters when 0.3 and z = 0.8 were as follows. The microwave ferrite had a saturation magnetization (Ms f ) at 20 ° C. of 75 mT and a ferromagnetic resonance absorption half width (ΔH) of 1240 A / m. The temperature coefficient is
-0.15% / ° C at -40 ° C to 20 ° C, near 20 ° C
0.17% / ° C, -0.29% / ° C at 60 ° C to 100 ° C
Met.
【0072】このマイクロ波フェライトを用いて作成し
た非可逆回路素子については、挿入損失は−10℃で
0.19dB、20℃で0.17dB、80℃で0.1
8dBであり、動作周波数は−10℃で330MHz、
20℃で329MHz、80℃で330MHzであっ
た。With respect to the nonreciprocal circuit device manufactured using this microwave ferrite, the insertion loss was 0.19 dB at -10 ° C., 0.17 dB at 20 ° C., and 0.1% at 80 ° C.
8 dB, the operating frequency is 330 MHz at −10 ° C.,
It was 329 MHz at 20 ° C and 330 MHz at 80 ° C.
【0073】(実施例3)実施例1のSrフェライト磁
石の所を異方性Baフェライト磁石、等方性サマリウム
ーコバルト系磁石、等方性Nd−Fe−B系磁石のいず
れも市販品に替えて実施例1と同様の検討を行った。た
だし、等方性サマリウムーコバルト系磁石、等方性Nd
−Fe−B系磁石については動作周波数調整のためフェ
ライト磁石よりも薄い円板状とした。Example 3 The Sr ferrite magnet of Example 1 was replaced with a commercially available anisotropic Ba ferrite magnet, isotropic samarium-cobalt magnet, and isotropic Nd-Fe-B magnet. The same examination as in Example 1 was performed instead. However, isotropic samarium-cobalt magnet, isotropic Nd
-The Fe-B magnet was formed into a thinner disk than the ferrite magnet in order to adjust the operating frequency.
【0074】各磁石の飽和磁化(Msm)の温度特性
を、VSMを用いて測定したところ、何れの材料も温度
による温度係数の変化は少なく、異方性Baフェライト
磁石は−0.19%/℃、等方性サマリウムーコバルト
系磁石は−0.04%/℃、等方性Nd−Fe−B系磁
石は−0.12%/℃であった。The temperature characteristics of the saturation magnetization (Ms m ) of each magnet were measured using a VSM. As a result, the temperature coefficient of each material showed little change with temperature, and the anisotropic Ba ferrite magnet was -0.19%. / ° C, the isotropic samarium-cobalt magnet was −0.04% / ° C., and the isotropic Nd—Fe—B based magnet was −0.12% / ° C.
【0075】実施例1と同様にしてマイクロ波フェライ
トの最適な温度係数を求めたところ、異方性Baフェラ
イト磁石については実施例1とほぼ同一の結果を得た。
等方性サマリウムーコバルト系磁石については、低温側
(−40〜20℃)では0〜−0.4%/℃、高温側
(60〜100℃)では−0.6〜−0.8%/℃が最
適であった。等方性Nd−Fe−B系磁石については、
低温側では0〜−0.12%/℃、高温側では−0.1
7〜−0.23%/℃が最適であった。The optimum temperature coefficient of the microwave ferrite was determined in the same manner as in Example 1. As a result, the same results as in Example 1 were obtained for the anisotropic Ba ferrite magnet.
For the isotropic samarium-cobalt magnet, 0 to -0.4% / C on the low temperature side (-40 to 20C) and -0.6 to -0.8% on the high temperature side (60 to 100C). / ° C was optimal. For isotropic Nd-Fe-B magnets,
0 to -0.12% / ° C on low temperature side, -0.1 on high temperature side
The optimum was 7 to -0.23% / ° C.
【0076】以上の結果によれば、非可逆回路素子用マ
イクロ波フェライトの温度係数の最適範囲は、永久磁石
の温度係数との比率で決まる。−40℃〜20℃温度係
数は0〜α%/℃、60℃〜100℃温度係数は(1.
5×β)%/℃〜(1.9×β)%/℃が、最適(ただ
しα、βは永久磁石の飽和磁化(Msm)の同温度域に
おける温度係数)であることがわかった。According to the above results, the optimum range of the temperature coefficient of the microwave ferrite for the non-reciprocal circuit device is determined by the ratio with the temperature coefficient of the permanent magnet. The temperature coefficient of -40 ° C to 20 ° C is 0 to α% / ° C, and the temperature coefficient of 60 ° C to 100 ° C is (1.
5 × β)% / ° C. to (1.9 × β)% / ° C. was found to be optimal (where α and β are temperature coefficients in the same temperature range of the saturation magnetization (Ms m ) of the permanent magnet). .
【0077】(実施例4)実施例3で判明した最適温度
係数の関係については、実施例3のGd−Ca−V−I
n置換型YIGの所を、Gd置換型YIG、Al置換C
oドープ型Ni系スピネルフェライトのいずれも各種置
換量の市販品に替えた場合についても実施例3と同様に
確認した。その結果、上記と同結論を得た。(Embodiment 4) Regarding the relationship between the optimum temperature coefficients found in Embodiment 3, Gd-Ca-VI of Embodiment 3
Gd-substituted YIG, Al-substituted C
It was confirmed in the same manner as in Example 3 when all of the o-doped Ni-based spinel ferrites were replaced with commercial products having various substitution amounts. As a result, the same conclusion as above was obtained.
【0078】さらに、動作周波数の設定を変えるため、
マイクロ波フェライトへの印加磁場を強め、マイクロ波
フェライトの飽和磁化(Msf)がより大きい組成の材
料を選んで試作したところ、少なくとも2GHzまでは
上記結論に変化がないことを確認した。Further, in order to change the setting of the operating frequency,
When a magnetic field applied to the microwave ferrite was increased and a material having a composition having a higher saturation magnetization (Ms f ) of the microwave ferrite was selected for trial manufacture, it was confirmed that the above conclusion did not change at least up to 2 GHz.
【0079】なお、この試作にあたり非可逆回路素子の
構造は、次の点で図1に示す構造とは異なるものとし
た。下の磁気ヨークは略平板とし、上の磁気ヨークは孔
部を有する箱形とし、孔部にピン端子を設けて入出力端
子とした。絶縁基板は省略した。コンデンサの容量、抵
抗素子の耐電力性を変更した。The structure of the non-reciprocal circuit device in this prototype was different from that shown in FIG. 1 in the following points. The lower magnetic yoke was a substantially flat plate, the upper magnetic yoke was a box having holes, and pin terminals were provided in the holes to serve as input / output terminals. The insulating substrate was omitted. The capacity of the capacitor and the power durability of the resistance element were changed.
【0080】[0080]
【発明の効果】以上詳細に説明したように、本発明によ
れば、低損失にして損失や動作周波数の温度特性に優れ
た非可逆回路素子を提供することが可能となった。ある
いは該非可逆回路素子用のマイクロ波フェライトの提供
が可能となった。あるいは、理想的にして新規な温度補
償方法を提供することができた。As described above in detail, according to the present invention, it is possible to provide a non-reciprocal circuit device having a low loss and excellent temperature characteristics of loss and operating frequency. Alternatively, it has become possible to provide a microwave ferrite for the non-reciprocal circuit device. Alternatively, a novel temperature compensation method could be provided ideally.
【図1】本発明の一実施例に関る非可逆回路素子の分解
斜視図図である。FIG. 1 is an exploded perspective view of a non-reciprocal circuit device according to one embodiment of the present invention.
【図2】本発明に関る実施例の特性を説明する図であ
る。FIG. 2 is a diagram illustrating characteristics of an embodiment according to the present invention.
【図3】本発明に関る他の実施例の特性を説明する図で
ある。FIG. 3 is a diagram illustrating characteristics of another embodiment according to the present invention.
【図4】本発明に関る別の実施例の特性を説明する図で
ある。FIG. 4 is a diagram illustrating characteristics of another embodiment according to the present invention.
【図5】本発明に関るまた別の実施例の特性を説明する
図である。FIG. 5 is a diagram illustrating characteristics of another embodiment according to the present invention.
Claims (5)
非可逆回路素子であって、永久磁石の飽和磁化(M
sm)とマイクロ波フェライトの飽和磁化(Msf)の比
(Msm/Msf)の値が、低温側と高温側のいずれにお
いても、常温時よりも大であることを特徴とする非可逆
回路素子。1. A non-reciprocal circuit device operating at a magnetic field higher than a ferromagnetic resonance magnetic field, wherein a saturation magnetization (M
s m ) and the ratio (Ms m / Ms f ) of the saturation magnetization (Ms f ) of the microwave ferrite are larger than those at normal temperature on both the low temperature side and the high temperature side. Reversible circuit element.
鉄の金属ケースと、該永久磁石の磁束を印加されるマイ
クロ波フェライトと、該マイクロ波フェライト近傍に配
置された複数本のストリップラインと、該ストリップラ
インに電気的に接続する容量要素とを有する非可逆回路
素子であって、前記マイクロ波フェライトの飽和磁化
(Msf)の温度係数は、−40℃〜20℃の温度領域
における平均値が0%/℃〜α%/℃(ただしαは前記
永久磁石の飽和磁化(Msm)の−40℃〜20℃にお
ける温度係数)であり、かつ60℃〜100℃の温度領
域における平均値が(1.5×β)%/℃〜(1.9×
β)%/℃(ただしβは前記永久磁石の飽和磁化(Ms
m)の60℃〜100℃における温度係数)であること
を特徴とする非可逆回路素子。2. A permanent magnet, a metal case mainly made of iron, which is a magnetic yoke, a microwave ferrite to which a magnetic flux of the permanent magnet is applied, and a plurality of strip lines arranged near the microwave ferrite And a capacitance element electrically connected to the strip line, wherein the temperature coefficient of saturation magnetization (Ms f ) of the microwave ferrite in a temperature range of −40 ° C. to 20 ° C. The average value is 0% / ° C. to α% / ° C. (where α is the temperature coefficient of the saturation magnetization (Ms m ) of the permanent magnet at −40 ° C. to 20 ° C.) in the temperature range of 60 ° C. to 100 ° C. The average value is (1.5 × β)% / ° C. to (1.9 ×
β)% / ° C (where β is the saturation magnetization (Ms
m ) of 60 ° C. to 100 ° C.).
鉄の金属ケースと、該永久磁石の磁束を印加されるガー
ネット型フェライトと、該ガーネット型フェライト近傍
に配置された複数本のストリップラインと、該ストリッ
プラインに電気的に接続する容量要素とを有する非可逆
回路素子であって、前記永久磁石はフェライト磁石であ
り、かつ前記ガーネット型フェライトの飽和磁化(Ms
f)の温度係数は−40℃〜20℃の温度領域における
平均値が0%/℃〜−0.18%/℃であり、かつ60
℃〜100℃の温度領域における平均値が−0.27%
/℃〜−0.34%/℃であることを特徴とする非可逆
回路素子。3. A permanent magnet, a metal case mainly made of iron, which is a magnetic yoke, a garnet-type ferrite to which a magnetic flux of the permanent magnet is applied, and a plurality of strip lines arranged near the garnet-type ferrite. And a capacitance element electrically connected to the strip line, wherein the permanent magnet is a ferrite magnet, and the saturation magnetization (Ms
The temperature coefficient of f ) is 0% / ° C. to −0.18% / ° C. in the temperature range of −40 ° C. to 20 ° C., and is 60%.
The average value in the temperature range of -100 ° C to -0.27%
/ C to -0.34% / C.
yFe3-xVxO12で表され、かつ前記組成式において、
0<x≦0.7、0.25<y≦0.4、0.35≦z
≦1.6を満足する組成からなることを特徴とする磁性
材料。4. Composition formula Gd z Y 3-2x-z Ca 2x Fe 2-y In
y Fe 3-x V x O 12 , and in the above composition formula,
0 <x ≦ 0.7, 0.25 <y ≦ 0.4, 0.35 ≦ z
A magnetic material having a composition satisfying ≦ 1.6.
非可逆回路素子の温度特性を補償する方法であって、永
久磁石の飽和磁化(Msm)とマイクロ波フェライトの
飽和磁化(Msf)の比(Msm/Msf)の値が、低温
側と高温側のいずれにおいても、常温時よりも大となる
ようにすることを特徴とする非可逆回路素子の温度特性
を補償する方法。5. A method for compensating for temperature characteristics of a non-reciprocal circuit device operating at a magnetic field higher than a ferromagnetic resonance magnetic field, comprising: a saturation magnetization (Ms m ) of a permanent magnet and a saturation magnetization (Ms f ) of a microwave ferrite. A value of the ratio (Ms m / Ms f ) of both the low-temperature side and the high-temperature side is larger than that at normal temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10011452A JPH11214212A (en) | 1998-01-23 | 1998-01-23 | Non-reciprocal circuit element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10011452A JPH11214212A (en) | 1998-01-23 | 1998-01-23 | Non-reciprocal circuit element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11214212A true JPH11214212A (en) | 1999-08-06 |
Family
ID=11778501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10011452A Pending JPH11214212A (en) | 1998-01-23 | 1998-01-23 | Non-reciprocal circuit element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11214212A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002330003A (en) * | 2001-04-26 | 2002-11-15 | Murata Mfg Co Ltd | Nonreciprocal circuit element, communication equipment, and method of manufacturing the same |
US6876269B2 (en) | 2002-08-09 | 2005-04-05 | Alps Electric Co., Ltd. | Nonreciprocal circuit element having excellent signal transmission efficiency and communication apparatus using same |
-
1998
- 1998-01-23 JP JP10011452A patent/JPH11214212A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002330003A (en) * | 2001-04-26 | 2002-11-15 | Murata Mfg Co Ltd | Nonreciprocal circuit element, communication equipment, and method of manufacturing the same |
US6876269B2 (en) | 2002-08-09 | 2005-04-05 | Alps Electric Co., Ltd. | Nonreciprocal circuit element having excellent signal transmission efficiency and communication apparatus using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109563640B (en) | Temperature insensitive dielectric constant garnet | |
Laur et al. | Self-biased Y-junction circulators using lanthanum-and cobalt-substituted strontium hexaferrites | |
US6780344B2 (en) | Garnet ferrite for low-insertion-loss non-reciprocal circuit, method for preparing the same, and non-reciprocal circuit device including the same | |
JP2009001476A (en) | Ferrite sintered magnet, method for producing the same and magnet roll and non-reciprocal circuit element using the same | |
JP4586215B2 (en) | Method for controlling intermodulation product of nonreciprocal circuit element, ferrimagnetic material, and nonreciprocal circuit element using the same | |
JPH11214212A (en) | Non-reciprocal circuit element | |
US7286025B2 (en) | Circulator element | |
JP3523363B2 (en) | Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method | |
JP2005184088A (en) | Non-reciprocative circuit element and communication equipment | |
JP4803415B2 (en) | Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device | |
JP3405030B2 (en) | Method for producing magnetic material for microwave and high frequency circuit component using the same | |
JP3003599B2 (en) | Ni-Zn ferrite | |
JP3405013B2 (en) | Method for producing magnetic material and high-frequency circuit component using the same | |
JP2000191368A (en) | High frequency magnetic material and high frequency non-reciprocal circuit device using the same | |
EP1269488B1 (en) | High-frequency magnetic ceramic and high-frequency circuit component | |
JP3627329B2 (en) | Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device | |
JP3731545B2 (en) | Ferrite-based permanent magnet, method for manufacturing the permanent magnet, non-reciprocal circuit element, and communication device | |
JP2504192B2 (en) | Microwave / millimeter wave magnetic composition | |
JP2006044964A (en) | Ferrite material, non-reciprocal circuit element and radio equipment | |
JP2001126912A (en) | Magnetic material for high frequency and non-reciprocal circuit for high frequency using the same | |
Ogasawara | Device-oriented review of recent Japanese developments in magnetic materials for gyromagnetic applications | |
JP2005097044A (en) | Garnet ferrite for irreversible circuit element and irreversible circuit element using the same | |
WO2004113250A1 (en) | Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit | |
JP2005097043A (en) | Garnet ferrite for irreversible circuit element and irreversible circuit element using the same | |
JP3598596B2 (en) | Method of manufacturing magnetic material for microwave, and high-frequency circuit component using magnetic material obtained by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070727 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071116 |