+

JPH10223961A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH10223961A
JPH10223961A JP9026605A JP2660597A JPH10223961A JP H10223961 A JPH10223961 A JP H10223961A JP 9026605 A JP9026605 A JP 9026605A JP 2660597 A JP2660597 A JP 2660597A JP H10223961 A JPH10223961 A JP H10223961A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
chromatic dispersion
value
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9026605A
Other languages
Japanese (ja)
Inventor
Akira Fujisaki
晃 藤崎
Haruki Ogoshi
春喜 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9026605A priority Critical patent/JPH10223961A/en
Publication of JPH10223961A publication Critical patent/JPH10223961A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

(57)【要約】 【課題】 波長分散の値を制御することにより4光波混
合の有無を積極的に利用し、広帯域な光源や波長変換素
子として用いることのできる光増幅装置を提供する。 【解決手段】 励起光源4、合波器5およびコア部に希
土類元素等の蛍光物質が混入されている光導波路3を備
え、励起光源4から光導波路3に供給される励起光によ
り生ずる蛍光物質の誘導放出作用により、光導波路3内
を伝送する光信号を増幅する光増幅装置1において、光
信号の使用波長帯域で光信号が通過する際に増幅作用を
持つ光導波路3および光導波路3に接続される全ての入
出力用光導波路6の波長分散の波長に対する傾きの和が
平坦もしくはきわめて平坦に近い値となっている。
(57) [Problem] To provide an optical amplifier that can be used as a broadband light source or a wavelength conversion element by positively utilizing the presence or absence of four-wave mixing by controlling the value of chromatic dispersion. An excitation light source, a multiplexer, and an optical waveguide in which a fluorescent material such as a rare earth element is mixed in a core portion, and a fluorescent material generated by excitation light supplied to the optical waveguide from the excitation light source. In the optical amplifying device 1 for amplifying an optical signal transmitted through the optical waveguide 3 by the stimulated emission of the optical waveguide 3, the optical waveguide 3 and the optical waveguide 3 having an amplifying effect when the optical signal passes in the used wavelength band of the optical signal. The sum of the slopes of the wavelength dispersions of all the connected input / output optical waveguides 6 with respect to the wavelength is flat or extremely flat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の励起により光
増幅作用を示す光導波路を用い、光通信等における光信
号の線路損失、分配損失の補償あるいは受信感度の改善
等に利用される光増幅装置に関するもので、特に幅広い
自然放出光の蛍光帯域を使用し、広波長の光源としても
利用される光増幅装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an optical waveguide which exhibits an optical amplification effect by pumping light, and is used for compensating a line loss and a distribution loss of an optical signal in optical communication and the like, or improving reception sensitivity. The present invention relates to an amplifying device, and particularly to an optical amplifying device that uses a wide fluorescent band of spontaneous emission light and is also used as a light source of a wide wavelength.

【0002】[0002]

【従来の技術】光ファイバの中に希土類元素等の蛍光物
質を混入させて、これらのイオンの光励起時の光増幅作
用を利用したファイバ型光増幅装置が提案され、その幾
つかは実用化されている。希土類元素を添加した光ファ
イバを用いた光増幅装置として、従来はErを添加した石
英系光ファイバやPrを添加したフッ化物系光ファイバが
ある。これらの光ファイバを用いることにより1550
nm帯や1300nm帯の光を直接増幅することができ
る。上記の光ファイバを用いた光増幅装置は、光増幅を
行うための励起光源、光信号と励起光を合波するための
合波器および希土類元素等の蛍光物質が混入された光フ
ァイバから構成されている。
2. Description of the Related Art Fiber-type optical amplifiers have been proposed in which a fluorescent substance such as a rare earth element is mixed into an optical fiber and an optical amplification effect at the time of light excitation of these ions is used. ing. Conventionally, as an optical amplifier using an optical fiber doped with a rare earth element, there are a quartz optical fiber doped with Er and a fluoride optical fiber doped with Pr. By using these optical fibers, 1550
The light in the nm band or the 1300 nm band can be directly amplified. The optical amplifier using the above optical fiber is composed of an excitation light source for performing optical amplification, a multiplexer for multiplexing the optical signal and the excitation light, and an optical fiber mixed with a fluorescent material such as a rare earth element. Have been.

【0003】[0003]

【発明が解決しようとする課題】一般に光増幅装置は、
広い帯域を持っているので現状の光伝送に対しては十分
な帯域であると考えられる。しかし、今後のより超高速
な光伝送を考えた場合、その中に使用される信号伝送部
分の光導波路の波長分散の絶対値が小さくないと超高速
な伝送に対して適用不可能である。一方、光導波路の波
長分散の値は4光波混合に代表される非線形現象に影響
を与える。特に光導波路の波長分散の絶対値が零、もし
くは零に近い小さな値であるときに4光波混合が発生し
やすくなる。この4光波混合は、単純に光増幅を行う場
合、じゃまになる厄介な現象となっている。
SUMMARY OF THE INVENTION Generally, an optical amplifier is
Since it has a wide band, it is considered that the band is sufficient for the current optical transmission. However, when ultra-high-speed optical transmission is considered in the future, it cannot be applied to ultra-high-speed transmission unless the absolute value of the chromatic dispersion of the optical waveguide in the signal transmission portion used therein is small. On the other hand, the value of the chromatic dispersion of the optical waveguide affects a nonlinear phenomenon represented by four-wave mixing. In particular, when the absolute value of the chromatic dispersion of the optical waveguide is zero or a small value close to zero, four-wave mixing easily occurs. This four-wave mixing is a troublesome phenomenon that is hindered when simply performing optical amplification.

【0004】本発明は上記の課題に対応するもので、波
長分散の値を制御することにより4光波混合の有無を積
極的に利用し、広帯域な光源や波長変換素子として用い
ることのできる光増幅装置を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention addresses the above-mentioned problems, and utilizes the presence or absence of four-wave mixing by controlling the value of chromatic dispersion to provide an optical amplifier that can be used as a broadband light source or wavelength conversion element. It is intended to provide a device.

【0005】[0005]

【課題を解決するための手段】本発明は上記の課題を解
決するために以下のような手段を有している。
The present invention has the following means to solve the above problems.

【0006】本発明の請求項1の光増幅装置は、励起光
源、合波器およびコア部に希土類元素等の蛍光物質が混
入されている光導波路を備え、前記励起光源から前記光
導波路に供給される励起光により生ずる前記蛍光物質の
誘導放出作用により、前記光導波路内を伝送する光信号
を増幅する光増幅装置において、前記光信号の使用波長
帯域で前記光信号が通過する際に増幅作用を持つ光導波
路および前記光導波路に接続される全ての入出力用光導
波路の波長に対する波長分散の傾きの和が平坦もしくは
きわめて平坦に近い値となっていることを特徴とする。
According to a first aspect of the present invention, there is provided an optical amplifier including an excitation light source, a multiplexer, and an optical waveguide in which a fluorescent material such as a rare earth element is mixed in a core portion, and supplies the optical waveguide from the excitation light source. In the optical amplifying device for amplifying an optical signal transmitted through the optical waveguide due to the stimulated emission of the fluorescent substance caused by the excited excitation light, the amplifying operation is performed when the optical signal passes in the wavelength band used by the optical signal. And the sum of the slopes of the chromatic dispersion with respect to the wavelength of the optical waveguide having the above and all the input / output optical waveguides connected to the optical waveguide is flat or extremely flat.

【0007】本発明の請求項2の光増幅装置は、使用波
長帯域の波長分散の絶対値が零もしくは零に近い値とな
っていることを特徴とする。
According to a second aspect of the present invention, an optical amplifying apparatus is characterized in that the absolute value of the chromatic dispersion in the used wavelength band is zero or a value close to zero.

【0008】本発明の請求項3の光増幅装置は、使用波
長帯域の波長分散の絶対値が4光波混合が発生しない所
定の値となっていることを特徴とする。
According to a third aspect of the present invention, there is provided the optical amplifying apparatus, wherein the absolute value of the chromatic dispersion in the used wavelength band is a predetermined value at which four-wave mixing does not occur.

【0009】本発明の請求項1の光増幅装置によれば、
光信号の使用波長帯域で増幅作用を持つ光導波路および
光導波路に接続される全ての入出力用光導波路の波長分
散の傾きの和がきわめて平坦に近い値となっているの
で、例えば使用波長帯域で光導波路の波長分散の絶対値
が零もしくは零に近い値となると使用波長帯域全てで4
光波混合が発生し、この4光波混合を広帯域な光源や波
長変換素子として利用できる。また、例えば使用波長帯
域で光導波路の波長分散の絶対値が4光波混合が発生し
ない所定の値であると広帯域の光増幅装置となる。
According to the optical amplifying device of claim 1 of the present invention,
Since the sum of the slopes of the chromatic dispersions of the optical waveguide having an amplifying action in the operating wavelength band of the optical signal and all the input / output optical waveguides connected to the optical waveguide is a value that is extremely flat, for example, the operating wavelength band When the absolute value of the chromatic dispersion of the optical waveguide becomes zero or a value close to zero, 4 in the entire used wavelength band.
Light wave mixing occurs, and this four light wave mixing can be used as a broadband light source or wavelength conversion element. Further, for example, if the absolute value of the chromatic dispersion of the optical waveguide in the used wavelength band is a predetermined value at which four-wave mixing does not occur, the optical amplifier becomes a broadband optical amplifier.

【0010】本発明の請求項2の光増幅装置によれば、
使用波長帯域の波長分散の絶対値が零もしくは零に近い
値となっているので、使用波長帯域全てで4光波混合が
発生し、この4光波混合を広帯域な光源や波長変換素子
として利用できる。
According to the optical amplifying device of claim 2 of the present invention,
Since the absolute value of the chromatic dispersion in the used wavelength band is zero or a value close to zero, four-wave mixing occurs in the entire used wavelength band, and this four-wave mixing can be used as a light source or a wavelength conversion element in a wide band.

【0011】本発明の請求項3の光増幅装置によれば、
使用波長帯域の波長分散の絶対値が4光波混合が発生し
ない所定の値となっているので、広帯域の光増幅装置と
なる。
According to the optical amplifying device of claim 3 of the present invention,
Since the absolute value of the chromatic dispersion in the used wavelength band is a predetermined value at which four-wave mixing does not occur, a wideband optical amplifier is obtained.

【0012】[0012]

【発明の実施の形態】以下に本発明の光増幅装置の実施
の形態を図1ないし図7を参照してより詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the optical amplifying device of the present invention will be described below in more detail with reference to FIGS.

【0013】(実施の形態1)図1は、本発明の光増幅
装置1を示す説明図である。光増幅装置1は、アイソレ
ータ2A、2B、増幅光ファイバ3、励起光源4および
励起光合波用の光合波器5を有している。増幅光ファイ
バ3は希土類元素等の蛍光物質が混入されている光ファ
イバであって、1500nm帯で波長分散が平坦かつ零
分散となっている。アイソレータ2A、2B、励起光源
4および励起光合波用の光合波器5のピグテイル光ファ
イバ6も1500nm帯で波長分散の波長依存性が平坦
かつ零分散となっている。4光波混合等の光ファイバ非
線形現象の発生は、光ファイバコアの有効断面積に大き
く依存し、これが小さい程非線形現象が大きくなるの
で、一般にはコア径の小さい光ファイバ程非線形現象が
強くなる。また、非線形屈折率n2 は屈折率が大きい程
これも大きくなる。1500nm帯で波長分散が平坦か
つ零分散とする具体的な光ファイバのプロファイルとし
ては、図2に示すようにW型屈折率プロファイルとし
て、各屈折率n1 、n2 、n3 およびそれぞれの半径α
1 、α 2、α 3をコントロールすることによって得るこ
とができる。図3は分散補償を考慮した増幅光ファイバ
の波長分散特性を示すもので、図3の黒丸は本実施の形
態で用いた分散スロープも考慮して分散補償した増幅光
ファイバ3の特性である。
(Embodiment 1) FIG. 1 is an explanatory diagram showing an optical amplifier 1 according to the present invention. The optical amplifier 1 includes isolators 2A and 2B, an amplification optical fiber 3, an excitation light source 4, and an optical multiplexer 5 for multiplexing excitation light. The amplification optical fiber 3 is an optical fiber in which a fluorescent substance such as a rare earth element is mixed, and has a flat and zero dispersion in the 1500 nm band. The isolator 2A, 2B, the pump light source 4, and the pigtail optical fiber 6 of the pump light multiplexing optical multiplexer 5 also have a flat and zero dispersion in the wavelength dependence of chromatic dispersion in the 1500 nm band. The occurrence of optical fiber nonlinear phenomena such as four-wave mixing greatly depends on the effective cross-sectional area of the optical fiber core. The smaller this is, the greater the nonlinear phenomenon is. The nonlinear refractive index n 2 increases as the refractive index increases. As a specific optical fiber profile in which chromatic dispersion is flat and zero-dispersion in the 1500 nm band, as shown in FIG. 2, a W-type refractive index profile is defined as each refractive index n 1 , n 2 , n 3 and each radius. α
It can be obtained by controlling 1 , α 2 and α 3 . FIG. 3 shows the wavelength dispersion characteristics of the amplification optical fiber in consideration of the dispersion compensation. The black circles in FIG. 3 show the characteristics of the amplification optical fiber 3 in which the dispersion slope is used in consideration of the dispersion slope used in the present embodiment.

【0014】この光増幅装置1の動作について以下に説
明する。図1の左側から入射された光信号は、アイソレ
ータ2Aを通過し、増幅光ファイバ3を通過する際に、
励起光源4から増幅光ファイバ3に供給される励起光に
より生ずる蛍光物質の誘導放出作用で、増幅光ファイバ
3内を伝送する光信号が増幅されて出力側のアイソレー
タ2Bを通過して出力される。この出力光は図3に示す
ように全ての入出力用光ファイバの波長分散の波長依存
性の傾きの和がきわめて平坦に近い値となっていて、そ
の波長分散の絶対値が零に近い値となっているので、使
用波長帯域全てで4光波混合が発生し、この4光波混合
を広帯域な光源や波長変換素子として利用できる。
The operation of the optical amplifier 1 will be described below. The optical signal incident from the left side of FIG. 1 passes through the isolator 2A and passes through the amplification optical fiber 3,
Due to the stimulated emission of the fluorescent substance generated by the excitation light supplied from the excitation light source 4 to the amplification optical fiber 3, the optical signal transmitted through the amplification optical fiber 3 is amplified and output through the output side isolator 2B. . As shown in FIG. 3, this output light has a value in which the sum of the slopes of the wavelength dependences of the chromatic dispersions of all the input / output optical fibers is almost flat, and the absolute value of the chromatic dispersion is close to zero. Therefore, four-wave mixing occurs in the entire used wavelength band, and this four-wave mixing can be used as a broadband light source or a wavelength conversion element.

【0015】(実施の形態2)図4は、本発明に係る他
の実施の形態の光増幅装置11を示す説明図である。光
増幅装置11は実施の形態1の光増幅装置1と同一の構
成となっていて、増幅光ファイバは希土類元素を添加し
た光ファイバであって、1500nm帯で波長分散が平
坦かつ零分散となっている。2個のアイソレータ、励起
光源および励起光合波用の光合波器のピグテイル光ファ
イバも1500nm帯で波長分散が平坦かつ零分散とな
っている。
(Embodiment 2) FIG. 4 is an explanatory view showing an optical amplifying device 11 according to another embodiment of the present invention. The optical amplifying device 11 has the same configuration as the optical amplifying device 1 of the first embodiment. The amplifying optical fiber is an optical fiber doped with a rare earth element, and has a flat and zero dispersion in the 1500 nm band. ing. The two optical isolators, the excitation light source, and the pigtail optical fiber of the optical multiplexer for excitation light multiplexing also have flat and zero chromatic dispersion in the 1500 nm band.

【0016】本実施の形態の光増幅装置11の特徴は実
施の形態1の条件に加えて希土類元素を添加した増幅光
ファイバおよび全てのピグテイル光ファイバが定偏波光
ファイバ12となっていることである。偏波依存型の外
部変調器13の前段に本実施の形態の光増幅装置11を
配置すると全ての光ファイバが定偏波光ファイバ12と
なっていることで、より強い光信号14を外部変調器1
3に入力することができるので十分なS/N比を確保す
ることができる。
The feature of the optical amplifying device 11 of the present embodiment is that, in addition to the conditions of the first embodiment, the amplification optical fiber doped with a rare earth element and all the pigtail optical fibers are the constant polarization optical fibers 12. is there. When the optical amplifying device 11 of the present embodiment is arranged in front of the polarization-dependent external modulator 13, all the optical fibers are the constant polarization optical fibers 12, so that a stronger optical signal 14 is transmitted to the external modulator. 1
3, a sufficient S / N ratio can be secured.

【0017】(実施の形態3)図5は、本発明に係る他
の実施の形態の光増幅装置21を示す説明図である。光
増幅装置21は実施の形態1の光増幅装置1と同一の構
成となっていて、増幅光ファイバ3は希土類元素を添加
した光ファイバであって、1500nm帯で波長分散が
平坦かつ零分散となっている。2個のアイソレータ2
A、2B、励起光源4および励起光合波用の光合波器5
のピグテイル光ファイバ6も1500nm帯で波長分散
が平坦かつ零分散となっている。本実施の形態の光増幅
装置21の特徴はアイソレータ2Bの出力側に波長分散
が平坦な分散シフト光ファイバ22を配置したもので、
このことにより使用波長帯域全てで4光波混合が発生す
る。
(Embodiment 3) FIG. 5 is an explanatory view showing an optical amplifying device 21 according to another embodiment of the present invention. The optical amplifying device 21 has the same configuration as the optical amplifying device 1 of the first embodiment. The amplifying optical fiber 3 is an optical fiber doped with a rare earth element, and has a flat chromatic dispersion and a zero dispersion in a 1500 nm band. Has become. Two isolators 2
A, 2B, pumping light source 4 and optical multiplexer 5 for pumping light multiplexing
Of the pigtail optical fiber 6 has a flat and zero dispersion in the 1500 nm band. The feature of the optical amplifying device 21 of the present embodiment is that a dispersion-shifted optical fiber 22 having a flat chromatic dispersion is arranged on the output side of the isolator 2B.
This causes four-wave mixing in the entire used wavelength band.

【0018】また、本実施の形態の増幅光ファイバ3お
よび全てのピグテイル光ファイバ6を実施の形態3の条
件に加えて定偏波光ファイバとすることによって4光波
混合の発生効率をよりあげることが可能となる。その他
の作用は実施の形態1と同様につき詳細な説明は省略す
る。
Further, the generation efficiency of the four-wave mixing can be further improved by using the amplification optical fiber 3 and all the pigtail optical fibers 6 of the present embodiment as the constant polarization optical fiber in addition to the conditions of the third embodiment. It becomes possible. Other operations are the same as those in the first embodiment, and detailed description is omitted.

【0019】(実施の形態4)実施の形態1と同様の光
増幅装置1において、増幅光ファイバ3の希土類元素の
添加濃度を薄くして、そのファイバ長を長くすることに
より4光波混合の発生効率をあげることが可能となる。
また、本実施の形態の増幅光ファイバ3および全てのピ
グテイル光ファイバ6を実施の形態4の条件に加えて定
偏波光ファイバとすることによって4光波混合の発生効
率をさらにあげることが可能となる。その他の作用は実
施の形態1と同様につき詳細な説明は省略する。
(Embodiment 4) In the same optical amplifying apparatus 1 as in Embodiment 1, the concentration of the rare earth element added to the amplification optical fiber 3 is reduced and the length of the fiber is lengthened to generate four-wave mixing. It is possible to increase efficiency.
Further, by making the amplification optical fiber 3 and all the pigtail optical fibers 6 of the present embodiment into constant polarization optical fibers in addition to the conditions of the fourth embodiment, it is possible to further increase the generation efficiency of four-wave mixing. . Other operations are the same as those in the first embodiment, and detailed description is omitted.

【0020】(実施の形態5)本実施の形態の光増幅装
置は実施の形態1の光増幅装置1と同一の構成となって
いるもので、本実施の形態の光増幅装置の特徴は、増幅
光ファイバ3が1500nm帯で波長分散値σAが図6
に示すように正の値で、かつ平坦とし、他の全てのピグ
テイル光ファイバ6の1500nm帯での波長分散の傾
きの和の値σBが図6に示すように負の値で、かつ平坦
とし、光増幅装置全体の波長分散値を零としたものであ
る。光増幅装置全体の波長分散値を零とすることによっ
て、使用波長帯域全てで4光波混合が発生し、この4光
波混合を広帯域な光源や波長変換素子として利用でき
る。
(Embodiment 5) The optical amplifying device of the present embodiment has the same configuration as the optical amplifying device 1 of the embodiment 1, and the features of the optical amplifying device of the present embodiment are as follows. FIG. 6 shows that the wavelength dispersion σA of the amplification optical fiber 3 is 1500 nm band.
As shown in FIG. 6, the sum σB of the slope of the chromatic dispersion in the 1500 nm band of all other pigtail optical fibers 6 is a negative value and flat as shown in FIG. , The chromatic dispersion value of the entire optical amplifying device is set to zero. By setting the chromatic dispersion value of the entire optical amplifying device to zero, four-wave mixing occurs in the entire used wavelength band, and this four-wave mixing can be used as a broadband light source or wavelength conversion element.

【0021】(実施の形態6)本実施の形態の光増幅装
置は実施の形態1の光増幅装置1と同一の構成となって
いるもので、本実施の形態の光増幅装置の特徴は、増幅
光ファイバ3が1500nm帯で波長分散値σA1 が図
7に示すように正の値で、かつ平坦とし、他の全てのピ
グテイル光ファイバ6の1500nm帯での波長分散の
傾きの和の値σB1 がきわめて平坦に近い値となってい
て、その波長分散の絶対値が零に近い値となっていて光
増幅装置全体の波長分散値を正の値で、かつ平坦とした
ものである。光増幅装置全体の波長分散値を正の値で、
かつ平坦とすることによって、使用波長帯域全てで4光
波混合が発生することがない広帯域の光増幅装置とな
る。4光波混合が発生することがない波長分散の和の値
としては5ps/nm/km程度以上が必要である。
(Embodiment 6) The optical amplifying device of the present embodiment has the same configuration as the optical amplifying device 1 of Embodiment 1, and the features of the optical amplifying device of this embodiment are as follows. As shown in FIG. 7, the chromatic dispersion value .sigma.A1 of the amplifying optical fiber 3 is positive and flat as shown in FIG. 7, and the sum of the chromatic dispersion values .sigma.B1 of all other pigtail optical fibers 6 in the 1500 nm band. Is very close to a flat value, the absolute value of the chromatic dispersion is close to zero, and the chromatic dispersion value of the entire optical amplifier is a positive value and flat. The chromatic dispersion value of the entire optical amplifier is a positive value,
Further, by making it flat, a wide band optical amplifying device that does not generate four-wave mixing in the entire used wavelength band can be obtained. The value of the sum of chromatic dispersion in which four-wave mixing does not occur needs to be about 5 ps / nm / km or more.

【0022】なお、上記の光増幅装置において、波長分
散値を正の値で、かつ平坦とするために、増幅光ファイ
バ3が1500nm帯で波長分散値σA1 が正の値で、
かつ平坦とし、他の全てのピグテイル光ファイバ6の1
500nm帯での波長分散の傾きの和の値σB1 がきわ
めて平坦に近い値となっていて、その波長分散の絶対値
が零に近い値としているが、その逆であってもよい。ま
た、その両方の波長分散値σA1 、σB1 が正の値で、
かつ平坦であってもよい。さらに、上記の光増幅装置に
おいて、光増幅装置全体の波長分散値を正の値で、かつ
平坦としたが、光増幅装置全体の波長分散値を負の値
で、かつ平坦としても使用波長帯域全てで4光波混合が
発生することがない広帯域の光増幅装置となる。
In the above-described optical amplifier, in order to make the chromatic dispersion value positive and flat, the amplifying optical fiber 3 has a 1500 nm band and the chromatic dispersion value σA1 has a positive value.
And one of all other pigtail optical fibers 6
The value σB1 of the sum of the slopes of the chromatic dispersion in the 500 nm band is very flat and the absolute value of the chromatic dispersion is close to zero, but the reverse is also possible. Further, both the wavelength dispersion values σA1 and σB1 are positive values,
And it may be flat. Further, in the above optical amplifier, the chromatic dispersion value of the entire optical amplifier is a positive value and is flat, but the chromatic dispersion value of the entire optical amplifier is a negative value and the used wavelength band is flat. A wide-band optical amplifier that does not generate four-wave mixing in all cases.

【0023】[0023]

【発明の効果】以上述べたように、本発明のうち請求項
1の光増幅装置によれば、光信号の使用波長帯域で増幅
作用を持つ光導波路および光導波路に接続される全ての
入出力用光導波路の波長分散の傾きの和がきわめて平坦
に近い値となっているので、例えば使用波長帯域で光導
波路の波長分散の絶対値が零もしくは零に近い値となる
と使用波長帯域全てで4光波混合が発生し、この4光波
混合を広帯域な光源や波長変換素子として利用できる。
また、例えば使用波長帯域で光導波路の波長分散の絶対
値が4光波混合が発生しない所定の値であると広帯域の
光増幅装置となる。
As described above, according to the optical amplifying device of the first aspect of the present invention, the optical waveguide having an amplifying function in the used wavelength band of the optical signal and all the input / output connected to the optical waveguide. Since the sum of the slopes of the chromatic dispersions of the optical waveguides for use is very close to a flat value, for example, if the absolute value of the chromatic dispersion of the optical waveguides becomes zero or a value close to zero in the used wavelength band, 4 Light wave mixing occurs, and this four light wave mixing can be used as a broadband light source or wavelength conversion element.
Further, for example, if the absolute value of the chromatic dispersion of the optical waveguide in the used wavelength band is a predetermined value at which four-wave mixing does not occur, the optical amplifier becomes a broadband optical amplifier.

【0024】本発明の請求項2の光増幅装置によれば、
使用波長帯域の波長分散の絶対値が零もしくは零に近い
値となっているので、使用波長帯域全てで4光波混合が
発生し、この4光波混合を広帯域な光源や波長変換素子
として利用できる。
According to the optical amplifier of claim 2 of the present invention,
Since the absolute value of the chromatic dispersion in the used wavelength band is zero or a value close to zero, four-wave mixing occurs in the entire used wavelength band, and this four-wave mixing can be used as a light source or a wavelength conversion element in a wide band.

【0025】本発明の請求項3の光増幅装置によれば、
使用波長帯域の波長分散の絶対値が4光波混合が発生し
ない所定の値となっているので、広帯域の光増幅装置と
なる。
According to the optical amplifier of claim 3 of the present invention,
Since the absolute value of the chromatic dispersion in the used wavelength band is a predetermined value at which four-wave mixing does not occur, a wideband optical amplifier is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光増幅装置の一実施の形態を示す
説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of an optical amplifying device according to the present invention.

【図2】本発明に係る光増幅装置に使用される光ファイ
バの屈折率プロファイルの一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a refractive index profile of an optical fiber used for an optical amplifier according to the present invention.

【図3】図1の光増幅装置に使用される増幅光ファイバ
および従来の増幅光ファイバの波長分散特性を示す説明
図である。
FIG. 3 is an explanatory diagram showing wavelength dispersion characteristics of an amplification optical fiber used in the optical amplification device of FIG. 1 and a conventional amplification optical fiber.

【図4】本発明に係る光増幅装置の他の実施の形態を示
す説明図である。
FIG. 4 is an explanatory diagram showing another embodiment of the optical amplifying device according to the present invention.

【図5】本発明に係る光増幅装置のその他の実施の形態
を示す説明図である。
FIG. 5 is an explanatory diagram showing another embodiment of the optical amplifying device according to the present invention.

【図6】本発明に係る光増幅装置のその他の実施の形態
の波長分散特性を示す説明図である。
FIG. 6 is an explanatory diagram illustrating chromatic dispersion characteristics of another embodiment of the optical amplifying device according to the present invention.

【図7】本発明に係る光増幅装置のさらにその他の実施
の形態の波長分散特性を示す説明図である。
FIG. 7 is an explanatory diagram showing chromatic dispersion characteristics of still another embodiment of the optical amplifying device according to the present invention.

【符号の説明】[Explanation of symbols]

1 光増幅装置 2A、2B アイソレータ 3 増幅光ファイバ 4 励起光源 5 光合波器 6 ピグテイル光ファイバ DESCRIPTION OF SYMBOLS 1 Optical amplifier 2A, 2B Isolator 3 Amplifying optical fiber 4 Excitation light source 5 Optical multiplexer 6 Pigtail optical fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 励起光源、合波器およびコア部に希土類
元素等の蛍光物質が混入されている光導波路を備え、前
記励起光源から前記光導波路に供給される励起光により
生ずる前記蛍光物質の誘導放出作用により、前記光導波
路内を伝送する光信号を増幅する光増幅装置において、
前記光信号の使用波長帯域で前記光信号が通過する際に
増幅作用を持つ光導波路および前記光導波路に接続され
る全ての入出力用光導波路の波長に対する波長分散の傾
きの和が平坦もしくはきわめて平坦に近い値となってい
ることを特徴とする光増幅装置。
1. An excitation light source, a multiplexer, and an optical waveguide in which a fluorescent material such as a rare earth element is mixed in a core portion, wherein the fluorescent material generated by excitation light supplied from the excitation light source to the optical waveguide is provided. In an optical amplifier that amplifies an optical signal transmitted through the optical waveguide by a stimulated emission effect,
The sum of the slopes of the chromatic dispersion with respect to the wavelength of the optical waveguide having an amplifying action when the optical signal passes in the used wavelength band of the optical signal and all the input / output optical waveguides connected to the optical waveguide is flat or extremely large. An optical amplifying device having a value close to flat.
【請求項2】 使用波長帯域の波長分散の絶対値が零も
しくは零に近い値となっていることを特徴とする請求項
1に記載の光増幅装置。
2. The optical amplifying device according to claim 1, wherein the absolute value of chromatic dispersion in the used wavelength band is zero or a value close to zero.
【請求項3】 使用波長帯域の波長分散の絶対値が4光
波混合が発生しない所定の値となっていることを特徴と
する請求項1に記載の光増幅装置。
3. The optical amplifying device according to claim 1, wherein the absolute value of the chromatic dispersion in the used wavelength band is a predetermined value at which four-wave mixing does not occur.
JP9026605A 1997-02-10 1997-02-10 Optical amplifier Pending JPH10223961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9026605A JPH10223961A (en) 1997-02-10 1997-02-10 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9026605A JPH10223961A (en) 1997-02-10 1997-02-10 Optical amplifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003417143A Division JP3966853B2 (en) 2003-12-15 2003-12-15 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH10223961A true JPH10223961A (en) 1998-08-21

Family

ID=12198147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9026605A Pending JPH10223961A (en) 1997-02-10 1997-02-10 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH10223961A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
JP2019033262A (en) * 2013-03-06 2019-02-28 アイピージー フォトニクス コーポレーション Ultra-high power single mode fiber laser system with non-uniformly configured fiber-fiber rod multimode amplifier
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US11986421B2 (en) 2006-09-26 2024-05-21 Zeltiq Aesthetics, Inc. Cooling devices with flexible sensors
US12070411B2 (en) 2006-04-28 2024-08-27 Zeltiq Aesthetics, Inc. Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12070411B2 (en) 2006-04-28 2024-08-27 Zeltiq Aesthetics, Inc. Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US10292859B2 (en) 2006-09-26 2019-05-21 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9375345B2 (en) 2006-09-26 2016-06-28 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11986421B2 (en) 2006-09-26 2024-05-21 Zeltiq Aesthetics, Inc. Cooling devices with flexible sensors
US11395760B2 (en) 2006-09-26 2022-07-26 Zeltiq Aesthetics, Inc. Tissue treatment methods
US11219549B2 (en) 2006-09-26 2022-01-11 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US11291606B2 (en) 2007-05-18 2022-04-05 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US10675178B2 (en) 2007-08-21 2020-06-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US11452634B2 (en) 2009-04-30 2022-09-27 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11224536B2 (en) 2009-04-30 2022-01-18 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
JP2019033262A (en) * 2013-03-06 2019-02-28 アイピージー フォトニクス コーポレーション Ultra-high power single mode fiber laser system with non-uniformly configured fiber-fiber rod multimode amplifier
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US10575890B2 (en) 2014-01-31 2020-03-03 Zeltiq Aesthetics, Inc. Treatment systems and methods for affecting glands and other targeted structures
US10912599B2 (en) 2014-01-31 2021-02-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US11819257B2 (en) 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10806500B2 (en) 2014-01-31 2020-10-20 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10201380B2 (en) 2014-01-31 2019-02-12 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US12102557B2 (en) 2018-07-31 2024-10-01 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics

Similar Documents

Publication Publication Date Title
JPH10223961A (en) Optical amplifier
US6693740B2 (en) Dispersion managed discrete Raman amplifiers
US6178038B1 (en) Optical amplifier having an improved noise figure
JPH05509202A (en) optical waveguide amplifier
US6748178B2 (en) Optical transmission line
CN1582519A (en) Raman Amplification Using Microstructured Optical Fiber
US6697558B2 (en) Raman amplified optical system with reduction of four-wave mixing effects
US6888669B2 (en) Raman amplifier
JP2003241000A (en) Optical fiber, optical amplifier and optical transmission system using the optical fiber
US7038838B2 (en) Optical amplifier
US6816657B2 (en) Raman fiber optic amplifier with reduced dispersion
JP2001168427A (en) Optical fiber and optical fiber amplifier for optical amplification
US7126748B2 (en) Optical fiber, optical fiber module, and Raman amplifier
JP5408313B2 (en) Optical device, wavelength conversion method, and optical fiber suitable therefor
US6519079B1 (en) Optical fiber amplifier with reduced noise and method of making the same
JPH10242556A (en) Er-doped optical fiber amplifier for WDM transmission
JPH10256633A (en) Optical fiber amplifier with dispersion compensation function
JP5261968B2 (en) Optical device, wavelength conversion method, and optical fiber suitable therefor
JP3966853B2 (en) Optical amplifier
JP2777610B2 (en) Optical amplifier
JP2002094157A (en) Optical amplifier and optical transmission system using the same
Okuno et al. Nonlinear-fiber-based discrete Raman amplifier with sufficiently suppressed degradation of WDM signal quality
JP2000105395A (en) Raman amplification method
Van den Hoven et al. Optimizing semiconductor optical amplifiers for transmission systems
JP2789831B2 (en) Micro-optics optical component with mode field conversion function
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载