+

JPH10109206A - Surface coated cutting tool - Google Patents

Surface coated cutting tool

Info

Publication number
JPH10109206A
JPH10109206A JP28175496A JP28175496A JPH10109206A JP H10109206 A JPH10109206 A JP H10109206A JP 28175496 A JP28175496 A JP 28175496A JP 28175496 A JP28175496 A JP 28175496A JP H10109206 A JPH10109206 A JP H10109206A
Authority
JP
Japan
Prior art keywords
layer
ticn
cutting tool
coated cutting
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28175496A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueda
広志 植田
Hiroaki Inoue
洋明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP28175496A priority Critical patent/JPH10109206A/en
Publication of JPH10109206A publication Critical patent/JPH10109206A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To be excellent in both abrasion resistance and break resistance, and to bear a long time cutting work including an intermittent cutting. SOLUTION: In a surface coated cutting tool having a ceramic skinfilm formed on the surface of a base body composed of a superhard alloy or cermet, the ceramic coat is composed of a single layer or multi-layers to always contain a columnar crystal TiCN layer so that the ratio of the horizontal mean grain diameter d1 of a TiCN columnar crystal grain at a position separated as far as 1/5 of the thickness of the TiCN layer from the upper end of the TiCN layer to the horizontal mean grain diameter d2 of the TiCN columnar crystal grain at a position separated as far as 2/5 of the thickness of the TiCN layer from the lower end of the TiCN layer may be within 1<=d1/d2<=1.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は強靭かつ耐摩耗性に優れ
た皮膜を形成した表面被覆切削工具に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-coated cutting tool having a tough film having excellent wear resistance.

【0002】[0002]

【従来の技術】超硬合金、サーメットにCVDによるセ
ラミックコーティング皮膜をした工具が広く用いられて
いる。セラミック皮膜としては、TiC、TiN、Ti
CN、Al23の単層、または多層が用いられている。
この中で、TiCNの皮膜に関しては従来より、時とし
て大規模な脱落が起こるため寿命が不安定になる傾向が
見られた。この問題を解決するために、例えば特開平7
−285001や特開平8−71814などTiCN層
の微視的な構造を改善した特許が出願されている。しか
し、これらは膜厚と結晶粒径の関係を規定するにとどま
り、切削工具として最適な柱状結晶粒のテーパー形状に
ついては規定していない。
2. Description of the Related Art Tools having a ceramic coating film formed on a cemented carbide or cermet by CVD are widely used. TiC, TiN, Ti
A single layer or a multilayer of CN or Al 2 O 3 is used.
Among these, the TiCN coating film has sometimes tended to be unstable because its large-scale detachment sometimes occurred. To solve this problem, see, for example,
Patents with improved microscopic structure of the TiCN layer, such as -285001 and JP-A-8-71814, have been filed. However, they only define the relationship between the film thickness and the crystal grain size, but do not specify the optimum tapered shape of columnar crystal grains as a cutting tool.

【0003】[0003]

【発明が解決しようとする課題】本発明はTiCN皮膜
の結晶粒形状を、切削加工に適したテーパー形状にコン
トロールし、さらにその膜厚や下層等を最適化する事に
より、耐摩耗性、耐欠損性に優れる表面被覆切削工具を
提供するものである。
SUMMARY OF THE INVENTION The present invention controls the crystal grain shape of a TiCN film to a taper shape suitable for cutting, and further optimizes the film thickness and the lower layer thereof, thereby achieving abrasion resistance and resistance. An object of the present invention is to provide a surface-coated cutting tool having excellent chipping properties.

【0004】[0004]

【課題を解決するための手段】TiCN層の柱状晶の成
長過程において、成膜面に凹凸があるなどの理由で膜表
面に高さの不均一があると、粒子間で成長速度に差が現
れる。このため、ある粒子はテーパー状に拡がりながら
成長を続ける反面、別の粒子は先細りとなりTiCN層
の上面にまで達しない場合もある。従って、TiCN層
の上部と下部では水平方向の平均粒子径が異なることに
なるが、これを最適に制御することにより工具に最適な
構造を得るに至ったのである。本発明者等は上記の課題
を解決するために種々検討を加えた結果、下記のように
すれば耐摩耗性、耐欠損性に優れ、切削工具として満足
できる性能が得られることを見出した。即ち、表面被覆
切削工具の皮膜を構成するTiCN層は柱状晶からな
り、該TiCN層の上端から該TiCN層内部に向かっ
て該TiCN層の厚さの1/5の距離の位置におけるT
iCN柱状結晶粒の水平方向の平均粒径d1と、該Ti
CN層の下端から該TiCN層内部に向かって該TiC
N層の厚さの2/5の距離の位置におけるTiCN柱状
結晶粒の水平方向の平均粒径d2の比、d1/d2が1
≦d1/d2≦1.3を満たすようにすること。さらに
d1を0.2〜1.5μmとすること。さらにTiCN
層の膜厚が、全膜厚に対して60%以上の厚さを占め、
かつ、10μm以上とすること。また、該TiCN層の
塩素含有量を0.01〜0.7wt%とすること。さら
に、皮膜を構成する層の内、基体と接する第1層をTi
C、TiCN、TiNの何れか1種以上とし、その上の
第2層を該柱状晶のTiCN層とし、第3層以降の層を
、Al23、TiN、TiCN、TiC、TiCO、
TiCNOのうちの1種又は2種以上の多層で構成する
こと。さらに基体に接する第1層を0.3〜1.5μm
のTiNとすること。さらに基体はZr及び/又はHf
を合計0.04〜1wt%含むこと。
Means for Solving the Problems In the process of growing columnar crystals of a TiCN layer, if the film surface has a non-uniform height due to, for example, irregularities on the film-forming surface, a difference in growth rate between the particles will occur. appear. For this reason, while a certain particle continues to grow while expanding in a tapered shape, another particle may be tapered and may not reach the upper surface of the TiCN layer. Therefore, the average particle diameter in the horizontal direction is different between the upper part and the lower part of the TiCN layer. By controlling this optimally, the optimum structure for the tool is obtained. The present inventors have made various studies in order to solve the above-mentioned problems, and as a result, have found that the following features provide excellent wear resistance and chipping resistance and provide satisfactory performance as a cutting tool. That is, the TiCN layer constituting the coating of the surface-coated cutting tool is composed of columnar crystals, and the TCN at a distance of 1/5 of the thickness of the TiCN layer from the upper end of the TiCN layer toward the inside of the TiCN layer.
The horizontal average grain size d1 of the iCN columnar crystal grains and the Ti
From the lower end of the CN layer toward the inside of the TiCN layer, the TiC
The ratio of the average grain size d2 in the horizontal direction of the TiCN columnar crystal grains at a position 2/5 of the thickness of the N layer, d1 / d2 is 1
≤ d1 / d2 ≤ 1.3. Further, d1 is set to 0.2 to 1.5 μm. Further TiCN
The thickness of the layer accounts for more than 60% of the total thickness,
In addition, it should be 10 μm or more. Further, the chlorine content of the TiCN layer is set to 0.01 to 0.7 wt%. Further, of the layers constituting the film, the first layer in contact with the base is made of Ti.
At least one of C, TiCN, and TiN, the second layer on which is the columnar TiCN layer, and the third and subsequent layers are formed of Al 2 O 3 , TiN, TiCN, TiC, TiCO,
To be composed of one or more layers of TiCNO. Further, the first layer in contact with the base is 0.3 to 1.5 μm
Of TiN. Further, the substrate is made of Zr and / or Hf
In total of 0.04 to 1 wt%.

【0005】[0005]

【作用】本発明の最も重要なポイントはd1とd2の比
を1≦d1/d2≦1.3とした点である。TiCN層
の垂直方向に長い粒子では、切削中の力が1つの粒子に
粒界を介さずに伝わるため、垂直方向の力に非常に強い
ものとなる。また、摩耗に関しては、方向性の無い粒子
では粒子が、粒界より脱落することにより摩耗が進行す
るが、垂直方向に長い粒子では、脱落することがなく、
耐摩耗性に対して優れている。これらが柱状晶のTiC
Nを採用する大きな理由であるが、本発明では特に柱状
晶粒子のテーパー形状に留意し、柱状晶の上部と下部で
粒径に差が少なくd1/d2が1に近いものとした。こ
のようにすることで断続切削において、皮膜に発生する
クラックは垂直方向に入り、基体表面と平行なクラック
は従来のものと比べて非常に入りにくい。基体表面と平
行なクラックは、皮膜の破壊、剥離につながり、これは
即ち工具寿命を大幅に縮める。
The most important point of the present invention is that the ratio of d1 and d2 is 1 ≦ d1 / d2 ≦ 1.3. In a vertically long particle of the TiCN layer, the force during cutting is transmitted to one particle without passing through a grain boundary, so that the force is extremely strong in the vertical direction. In addition, with respect to abrasion, in particles having no directionality, abrasion proceeds by falling off from the grain boundary, but in particles that are vertically long, they do not fall off,
Excellent in wear resistance. These are columnar crystals of TiC
Although this is a major reason for adopting N, the present invention pays particular attention to the tapered shape of the columnar crystal grains, and has a small difference in particle diameter between the upper and lower portions of the columnar crystal and d1 / d2 is close to 1. In this manner, in the intermittent cutting, cracks generated in the film enter in the vertical direction, and cracks parallel to the surface of the base are very unlikely to occur as compared with the conventional one. Cracks parallel to the substrate surface lead to destruction and delamination of the film, which significantly reduces tool life.

【0006】また、この時のTiCNの粒径としてはd
1が1.5μm以下の場合に、特に耐摩耗性に優れてい
る。d1が1.5μmより大では1つの粒子が大きくな
りすぎ、切削時の力を多くの粒界で分散して受け止める
ことが出来ず、皮膜が破壊しやすくなる。d1を1.5
μm以下とすれば皮膜が破壊しにくくなる上に、たとえ
破壊が起こっても微細な結晶粒故に大規模な結晶粒の脱
落が起こりにくくなるため、摩耗の進行が不安定になり
にくい利点がある。より好ましくはd1を1.2μm以
下とする。しかし、d1が小さすぎる場合は柱状晶の効
果が現れにくくなるのでd1は0.2μm以上が必要で
ある。より好ましくはd1を0.5μm以上とする。
The particle diameter of TiCN at this time is d
When 1 is 1.5 μm or less, the abrasion resistance is particularly excellent. When d1 is larger than 1.5 μm, one particle becomes too large, and the force at the time of cutting cannot be dispersed and received at many grain boundaries, and the film is easily broken. d1 is 1.5
When the thickness is less than μm, the coating is not easily broken, and even if the breaking occurs, large-scale crystal grains do not easily fall off due to the fine crystal grains, so that there is an advantage that the progress of abrasion hardly becomes unstable. . More preferably, d1 is set to 1.2 μm or less. However, if d1 is too small, the effect of the columnar crystal is unlikely to appear, so d1 needs to be 0.2 μm or more. More preferably, d1 is 0.5 μm or more.

【0007】尚、平均粒径d1及びd2の評価は、電子
顕微鏡により撮影された皮膜の破面の一定視野の写真の
中にみられる粒子の数を数えることによって行われる。
d1はTiCN層の上端の界面からTiCN層膜厚の1
/5の距離の位置において測定する。例えば、この位置
に引いた基体表面と水平な10μmの線分上に20本の
粒子がある場合、水平方向の平均粒径は0.5μmとな
る。同様に、d2はTiCN層の下端の界面からTiC
N層膜厚の2/5の距離の位置において測定する。
The evaluation of the average particle diameters d1 and d2 is carried out by counting the number of particles seen in a photograph of a fixed field of view of the fracture surface of the film taken by an electron microscope.
d1 is the thickness of the TiCN layer 1 from the interface at the upper end of the TiCN layer.
Measured at a distance of / 5. For example, if there are 20 particles on a line of 10 μm horizontal to the substrate surface drawn at this position, the average particle size in the horizontal direction is 0.5 μm. Similarly, d2 is TiC from the interface at the lower end of the TiCN layer.
It is measured at a position at a distance of / of the thickness of the N layer.

【0008】このようにして得られた、優れた特性を有
するTiCN層の性能を最大限発揮させるためには従来
から行われているようにAl23、TiN、TiC、T
iC等の皮膜と組み合わせた多層皮膜とすることが推奨
される。特に耐酸化性に優れたAl23層をTiCN層
よりも表面側に配置することで工具寿命の延命が図られ
る。尚、柱状晶のTiCN層の膜厚は10μm以上であ
ることが望ましく、さらに全膜厚に対して60%以上の
厚さを占めることが望ましい。TiCN膜をこのような
膜厚にすることで、耐摩耗性に優れ長時間の使用に耐え
る皮膜となる。鋳鉄の切削に際して、耐摩耗性に優れた
TiCN層の膜厚が厚いほど長寿命となるのは当然のこ
とであるが、鋼の切削においては従来の工具では刃先の
基体が塑性変形するために皮膜が破壊し寿命に至るケー
スが多かった。しかし本発明のTiCN層を上記の厚さ
にすることで工具刃先の剛性が増し塑性変形しにくくな
る。結果、皮膜は破壊、脱落することなく正常な摩耗状
態を示すので長時間に渡り安定した切削が可能となる。
さらに高い耐塑性変形性が必要な場合には基体成分にZ
r、Hf等を加え耐塑性変形性を向上させる方法もあ
る。
In order to maximize the performance of the thus obtained TiCN layer having excellent properties, Al 2 O 3 , TiN, TiC, T
It is recommended to use a multilayer coating in combination with a coating such as iC. Particularly, by disposing the Al 2 O 3 layer having excellent oxidation resistance on the surface side of the TiCN layer, the tool life can be extended. The thickness of the columnar crystal TiCN layer is preferably 10 μm or more, and more preferably occupies 60% or more of the total thickness. By setting the TiCN film to such a thickness, a film having excellent wear resistance and enduring long-term use can be obtained. When cutting cast iron, it is natural that the longer the thickness of the TiCN layer, which is superior in wear resistance, the longer the life will be. In many cases, the film was broken and the life was extended. However, by setting the TiCN layer of the present invention to the above-described thickness, the rigidity of the tool edge is increased, and plastic deformation is difficult. As a result, the film shows a normal wear state without breaking or falling off, so that stable cutting can be performed for a long time.
If higher plastic deformation resistance is required, Z
There is also a method of improving the plastic deformation resistance by adding r, Hf or the like.

【0009】しかし、皮膜を厚くするために、ただ単に
長時間のコーティング処理を行うと結晶粒子が粗大化し
上記の粒径、テーパー形状から外れるので目的とする特
性が得られない。そのため、コーティング処理条件を時
間と共に変更して、皮膜の結晶粒子が粗大化しないよう
に制御する必要がある。同一コーティング処理条件では
皮膜が厚くなるにつれて、粒径が大きくなる。皮膜粒子
の粗大化を抑えるために、反応ガス濃度、反応圧力、温
度を連続的に変化させる。段階的に条件を変更すると、
変更の前後で水平方向の粒界が形成され、皮膜が2層に
分かれるので好ましくない。
However, if the coating treatment is simply performed for a long time to make the film thick, the crystal grains become coarse and deviate from the above-mentioned particle diameter and tapered shape, so that the desired characteristics cannot be obtained. Therefore, it is necessary to change the coating processing conditions with time so as to control the crystal grains of the coating so as not to become coarse. Under the same coating conditions, the larger the film, the larger the particle size. The reaction gas concentration, reaction pressure, and temperature are continuously changed in order to suppress the coarsening of the film particles. If you change the conditions step by step,
Before and after the change, a horizontal grain boundary is formed, and the film is divided into two layers, which is not preferable.

【0010】通常のCVDコーティング皮膜には原料物
質から混入する塩素はほとんど含まれないが、結晶粒子
の粗大化を抑制するようコーティング条件を変更する
と、皮膜中の塩素が増加する傾向がみられる。塩素が過
度に含まれると皮膜の耐摩耗性が劣化するが、0.7w
t%以下であるならば通常の使用上、特に問題にならな
い。特に耐摩耗性を重視し長寿命を狙う場合には0.1
wt%以下とすることが望ましい。
Although a normal CVD coating film hardly contains chlorine mixed from a raw material, when the coating conditions are changed so as to suppress the coarsening of crystal grains, the chlorine in the film tends to increase. If the chlorine content is excessive, the wear resistance of the coating deteriorates.
If it is less than t%, there is no particular problem in normal use. In particular, when the wear resistance is emphasized and a long service life is aimed at, 0.1%
It is desirable that the content be not more than wt%.

【0011】尚、全膜厚が過度に厚くなると皮膜が壊れ
やすくなる。本発明者等の実験では全膜厚が23μmま
では実用に耐えることがわかっている。また、使用条件
を制限すれば全膜厚が30μm程度のものまで実用可能
である。
When the total film thickness is excessively large, the film is easily broken. Experiments by the present inventors have shown that practical use is possible up to a total film thickness of 23 μm. In addition, if the use conditions are restricted, it is practical to use a film having a total thickness of about 30 μm.

【0012】超硬合金やサーメットの基体にTiCN皮
膜を形成する場合に基体に接する第1層としてTiN層
を設けた後にTiCNを設けることが従来より行われて
いる。これはコーティング処理の際に基体から基体成
分、特に炭素と鉄族元素の皮膜中への拡散を防ぐバリア
の目的で行われているものである。このバリアは本発明
のTiCN皮膜においても有効であるがTiN層の膜厚
は1.5μm以下であることが重要である。1.5μm
を越えるとその上に形成するTiCNの結晶粒子は粗大
化する傾向にあり上記の最適な粒径及びテーパー形状を
保つことが極めて困難となるからである。また、TiN
層の膜厚の下限は0.2μm程度でこれを下回るとバリ
アの効果が不充分となる。好ましいTiN層の膜厚の範
囲は0.3〜1.3μmである。
[0012] When a TiCN film is formed on a cemented carbide or cermet substrate, it has been customary to provide TiCN after providing a TiN layer as a first layer in contact with the substrate. This is performed for the purpose of a barrier for preventing the diffusion of the components of the substrate, particularly carbon and iron group elements, into the film during the coating treatment. Although this barrier is effective also in the TiCN film of the present invention, it is important that the thickness of the TiN layer is 1.5 μm or less. 1.5 μm
This is because, when the value exceeds, the crystal grains of TiCN formed thereon tend to be coarse, and it is extremely difficult to maintain the above-mentioned optimum particle size and tapered shape. Also, TiN
The lower limit of the thickness of the layer is about 0.2 μm, and below this, the barrier effect becomes insufficient. The preferable range of the thickness of the TiN layer is 0.3 to 1.3 μm.

【0013】このような構成の皮膜を被覆する超硬合金
基体として、基体に耐熱性のあるISO P10、M1
0相当の超硬合金が最適である。しかし、高速切削によ
り刃先温度が高くなる場合には、皮膜の摩耗よりも先
に、基体超硬が塑性変形し、寿命に至る。この問題に対
してはZr及び/又はHfを超硬基体成分中に含有させ
ることにより、耐熱性が増し、長寿命となる。含有量は
0.04〜1wt%が適当である。この範囲を下回ると
効果がなく、上回ると靱性の劣化につながる。Zr、H
fは炭化物、窒化物、炭窒化物等の化合物の形で添加し
ても良い。このようにすることで必要な炭素、窒素等を
安定した形で添加することができる。例えばZrCは
0.05〜1.1wt%を添加すれば良い。
As a cemented carbide substrate coated with a film having such a structure, a heat-resistant substrate such as ISO P10 or M1 is used.
A cemented carbide equivalent to 0 is optimal. However, when the cutting edge temperature is increased by high-speed cutting, the base carbide is plastically deformed before the wear of the film, and the life is extended. To solve this problem, by including Zr and / or Hf in the cemented carbide component, the heat resistance is increased and the life is extended. The content is suitably 0.04 to 1 wt%. Below this range, there is no effect, and above this range leads to deterioration in toughness. Zr, H
f may be added in the form of a compound such as carbide, nitride, carbonitride and the like. In this way, necessary carbon, nitrogen and the like can be added in a stable manner. For example, 0.05 to 1.1 wt% of ZrC may be added.

【0014】[0014]

【実施例】以下のように6種類のスローアウエイチップ
を作成した。本発明例1として、CNMG120408
形状の超硬合金(ISO P10相当)を基体とし、そ
の表面に公知の熱CVDにより第1層TiNを0.3μ
m成膜、アセトニトリルを用いたMT−CVDにより第
2層TiCN(粒成長を抑えるコーティング条件)を1
1μm成膜、第3層にCVDでTiCを1.0μm成
膜、第4層CVDでAl23を1.5μm成膜、最外層
にCVDでTiNを0.5μm成膜。全膜厚は14.3
μm。第2層のTiCN柱状晶の膜厚は、全膜厚の77
%。第2層のTiCN柱状晶の粒径は、d1=0.9μ
m、d2=0.8μm、d1/d2=1.1。第2層中
の塩素量は0.3wt%。本発明例2として、本発明例
1と同一形状の超硬合金基体(ISO P10相当、Z
rCを0.3wt%含有)の表面に本発明例1と同様の
条件、層構造、膜厚で成膜した。全膜厚は14.3μ
m。第2層のTiCN柱状晶の膜厚は、全膜厚の77
%。第2層のTiCN柱状晶の粒径は、d1=0.9μ
m、d2=0.8μm、d1/d2=1.1。第2層中
の塩素量は0.3wt%。本発明例3として、本発明例
1と同様の超硬基体を用い、本発明例1と同様の条件で
基体表面より第1層TiNを0.3μm、第2層TiC
Nを5.5μm、第3層TiCを2.0μm、第4層A
23を2.0μm、最外層TiNを0.5μm順次成
膜。全膜厚は10.3μm。第2層のTiCN柱状晶の
膜厚は、全膜厚の53%。第2層のTiCN柱状晶の粒
径は、d1=1.0μm、d2=0.9μm、d1/d
2=1.1。第2層中の塩素量は0.1wt%。
EXAMPLES Six types of throw-away chips were prepared as follows. As Example 1 of the present invention, CNMG120408
A first layer TiN of 0.3 μm is formed on the surface of a cemented carbide (equivalent to ISO P10) by a known thermal CVD method.
m, and the second layer TiCN (coating conditions for suppressing grain growth) is set to 1 by MT-CVD using acetonitrile.
A 1 μm film is formed, a 1.0 μm TiC film is formed on the third layer by CVD, a 1.5 μm film is formed on Al 2 O 3 by the fourth layer CVD, and a 0.5 μm film is formed on the outermost layer by CVD. The total film thickness is 14.3
μm. The thickness of the TiCN columnar crystal of the second layer is 77
%. The particle size of the TiCN columnar crystals in the second layer is d1 = 0.9 μm
m, d2 = 0.8 μm, d1 / d2 = 1.1. The amount of chlorine in the second layer is 0.3 wt%. As a second example of the present invention, a cemented carbide substrate having the same shape as the first example of the present invention (equivalent to ISO P10, Z
A film having the same conditions, layer structure, and film thickness as in Example 1 of the present invention was formed on the surface (containing 0.3 wt% of rC). Total thickness 14.3μ
m. The thickness of the TiCN columnar crystal of the second layer is 77
%. The particle size of the TiCN columnar crystals in the second layer is d1 = 0.9 μm
m, d2 = 0.8 μm, d1 / d2 = 1.1. The amount of chlorine in the second layer is 0.3 wt%. As Example 3 of the present invention, a cemented carbide substrate similar to that of Example 1 of the present invention was used, and the first layer TiN was 0.3 μm thick and the second layer TiC was
N = 5.5 μm, third layer TiC = 2.0 μm, fourth layer A
l 2 O 3 is formed in order of 2.0 μm and the outermost layer TiN is formed in order of 0.5 μm. The total film thickness is 10.3 μm. The thickness of the second layer of TiCN columnar crystals is 53% of the total thickness. The particle size of the TiCN columnar crystals of the second layer is d1 = 1.0 μm, d2 = 0.9 μm, d1 / d
2 = 1.1. The amount of chlorine in the second layer is 0.1 wt%.

【0015】本発明例4として、本発明例1と同様の基
体の表面に公知の熱CVDにより第1層TiNを0.3
μm成膜、アセトニトリルを用いたMT−CVD、但し
本発明例1の場合よりも30℃温度を下げて第2層Ti
CNを11μm成膜、第3層にCVDでTiCを1.0
μm成膜、第4層CVDでAl23を1.5μm成膜、
最外層にCVDでTiNを0.5μm成膜。全膜厚は1
4.3μm。第2層のTiCN柱状晶の膜厚は、全膜厚
の77%。第2層のTiCN柱状晶の粒径は、d1=
0.7μm、d2=0.7μm、d1/d2=1.0。
第2層中の塩素量は0.9wt%。比較例5として、本
発明例1と同様の超硬合金基体を用い、基体表面より第
1層TiNを0.3μm成膜、アセトニトリルを用いた
MT−CVDにより第2層TiCNを11μm、第3層
にTiCを1.0μm、第4層にAl23を1.5μ
m、最外層にTiNを0.5μm成膜。全膜厚は14.
3μm。第2層のTiCN柱状晶の膜厚は、全膜厚の7
7%。第2層のTiCN柱状晶の粒径は、d1=1.5
μm、d2=0.7μm、d1/d2=2.1。第2層
中の塩素量は0.1wt%。比較例6として、本発明例
1と同様の基体を用い、第1層のTiNの膜厚を1.6
μmとした以外は本願発明例1と同様の条件、層構造、
膜厚で成膜した。全膜厚は15.6μm。第2層のTi
CN柱状晶の膜厚は、全膜厚の71%。d1=2.5μ
m、d2=1.2μm、d1/d2=2.1。第2層中
の塩素量は0.3wt%。
As Example 4 of the present invention, a first layer TiN of 0.3 was formed on the surface of the same substrate as in Example 1 of the present invention by known thermal CVD.
μm film-formed, MT-CVD using acetonitrile, except that the temperature was lowered by 30 ° C. as compared with the case of Example 1 of the present invention, and the second layer Ti was formed.
11 μm thick CN, TiC 1.0
μm film formation, Al 2 O 3 film formation with a fourth layer CVD of 1.5 μm,
A 0.5 μm TiN film is formed on the outermost layer by CVD. Total film thickness is 1
4.3 μm. The thickness of the second layer of TiCN columnar crystals is 77% of the total thickness. The particle size of the TiCN columnar crystals of the second layer is d1 =
0.7 μm, d2 = 0.7 μm, d1 / d2 = 1.0.
The amount of chlorine in the second layer is 0.9 wt%. As Comparative Example 5, a cemented carbide substrate similar to that of Example 1 of the present invention was used, a first layer TiN was formed to a thickness of 0.3 μm from the substrate surface, and a second layer TiCN was formed to a thickness of 11 μm by MT-CVD using acetonitrile. 1.0 μm of TiC for the layer and 1.5 μm of Al 2 O 3 for the fourth layer
m, a 0.5 μm TiN film is formed on the outermost layer. The total film thickness is 14.
3 μm. The thickness of the TiCN columnar crystal of the second layer is 7
7%. The particle size of the TiCN columnar crystals of the second layer is d1 = 1.5
μm, d2 = 0.7 μm, d1 / d2 = 2.1. The amount of chlorine in the second layer is 0.1 wt%. As Comparative Example 6, a substrate similar to that of Inventive Example 1 was used, and the thickness of the first layer of TiN was 1.6.
The same conditions, layer structure, and
The film was formed to have a thickness. The total film thickness is 15.6 μm. Second layer Ti
The thickness of CN columnar crystals is 71% of the total thickness. d1 = 2.5μ
m, d2 = 1.2 μm, d1 / d2 = 2.1. The amount of chlorine in the second layer is 0.3 wt%.

【0016】以上の試料を以下の切削試験1〜3にて評
価した。切削試験1では鋼を旋削した。被削材:S45
C丸棒、切削速度:200m/min、送り:0.3m
m/rev、切り込み:2.0mm、湿式切削とした。
切削試験1についてはチップの逃げ面摩耗幅が0.3m
mとなるまでの切削時間で評価した。結果は、本発明例
1が62分、本発明例2が68分、本発明例3が20
分、本発明例4が57分、比較例5が35分、比較例6
が20分であった。切削試験2では鋳鋼を旋削した。被
削材:FCD70丸棒、切削速度:150m/min、
送り:0.3mm/rev、切り込み:2.0mm、湿
式切削とした。切削試験2もチップの逃げ面摩耗幅が
0.3mmとなるまでの切削時間で評価した。結果は、
本発明例1が32分、本発明例2が33分、本発明例3
が16分、本発明例4が28分、比較例5が13分、比
較例6が10分であった。
The above samples were evaluated in the following cutting tests 1 to 3. In cutting test 1, the steel was turned. Work material: S45
C round bar, cutting speed: 200m / min, feed: 0.3m
m / rev, depth of cut: 2.0 mm, wet cutting.
For cutting test 1, the flank wear width of the insert was 0.3 m
The evaluation was made based on the cutting time until the value reached m. The results were as follows: Example 1 of the present invention was 62 minutes, Example 2 of the present invention was 68 minutes, and Example 3 of the present invention was 20 minutes.
Minute, Inventive Example 4 was 57 minutes, Comparative Example 5 was 35 minutes, Comparative Example 6
Was 20 minutes. In cutting test 2, the cast steel was turned. Work material: FCD70 round bar, Cutting speed: 150m / min,
Feeding: 0.3 mm / rev, cutting depth: 2.0 mm, wet cutting. Cutting test 2 was also evaluated by cutting time until the flank wear width of the chip became 0.3 mm. Result is,
Invention Example 1 for 32 minutes, Invention Example 2 for 33 minutes, Invention Example 3
Was 16 minutes, Invention Example 4 was 28 minutes, Comparative Example 5 was 13 minutes, and Comparative Example 6 was 10 minutes.

【0017】本発明例1、2は切削試験1、2の両方で
良好な結果を得た。本発明例3はTiCN層が薄いため
鋳鋼の切削では膜厚に相応した寿命を示したが、刃先の
剛性不足のため、鋼の切削においては膜厚が薄いことを
差し引いてもやや劣る結果となった。本発明例4はTi
CNの柱状晶を特に微粒とした為に塩素濃度が高く、切
削試験1、2の両方で本発明例1、2よりもやや劣る結
果となった。比較例5はTiCNの柱状晶が粗粒であ
り、強いテーパー形状であるため耐摩耗性に劣り、切削
試験1、2の両方で劣る結果となった。比較例6は第1
層のTiNが厚すぎるためTiCNの柱状晶が粗粒かつ
強いテーパー形状となり非常に劣る結果となった。
In Examples 1 and 2 of the present invention, good results were obtained in both cutting tests 1 and 2. Inventive Example 3 showed a life corresponding to the film thickness when cutting cast steel because the TiCN layer was thin. became. Inventive Example 4 is Ti
Since the columnar crystals of CN were particularly fine, the chlorine concentration was high, and the results of cutting tests 1 and 2 were slightly inferior to those of Examples 1 and 2 of the present invention. In Comparative Example 5, the columnar crystals of TiCN were coarse and had a strong tapered shape, so that the wear resistance was poor, and the results of both cutting tests 1 and 2 were poor. Comparative Example 6 is the first
Since the TiN layer was too thick, the columnar crystals of TiCN were coarse and strongly tapered, resulting in very poor results.

【0018】切削試験3は工具の耐欠損性を調べるため
に外周部に溝を設けた丸棒を用い断続切削とした。被削
材:SCM435 4つ溝付丸棒、切削速度:150m
/min、送り:0.2mm/rev、切り込み:2.
0mm、乾式切削とした。この条件で最大1000回ま
での衝撃を工具に与え、工具に欠損が生じたときの衝撃
回数で評価した。尚、この試験は各チップの4コーナに
ついて行った。
In the cutting test 3, an intermittent cutting was performed using a round bar provided with a groove on the outer periphery in order to examine the fracture resistance of the tool. Work material: SCM435 4 round bar with groove, cutting speed: 150m
/ Min, feed: 0.2 mm / rev, cut: 2.
0 mm, dry cutting. Under these conditions, a maximum of 1000 impacts were applied to the tool, and the number of impacts when the tool was damaged was evaluated. This test was performed at four corners of each chip.

【0019】結果は、本発明例1では3コーナが100
0回の衝撃に耐え残り1コーナも800回であった。本
発明例2では、2コーナが1000回の衝撃に耐え、残
り2コーナも850回、900回であった。本発明例3
は全てのコーナが1000回の衝撃に耐えた。本発明例
4は1コーナが1000回の衝撃に耐え、残りのコーナ
は800回、750回、900回であった。比較例5、
6では1000回の衝撃に耐えたコーナはなく4コーナ
の平均でそれぞれ760回、490回であった。本発明
例1、2、3はいずれも良好な結果を示した。特に本発
明例3は膜厚が薄いので良好であった。本発明例4は皮
膜がやや脆弱であり、やや劣る結果となった。比較例
5、6は強いテーパー形状のため欠けやすく、劣る結果
となった。
As a result, in Example 1 of the present invention, three corners were 100.
It survived zero impacts and 800 corners. In Example 2 of the present invention, two corners withstood 1000 impacts, and the remaining two corners were 850 and 900 times. Invention Example 3
All the corners withstood 1000 impacts. In Inventive Example 4, one corner withstood 1,000 shocks, and the remaining corners were 800, 750, and 900 times. Comparative Example 5,
In No. 6, there were no corners that withstood 1000 impacts, and the average of four corners was 760 and 490, respectively. Inventive Examples 1, 2, and 3 all showed good results. Particularly, Example 3 of the present invention was excellent because the film thickness was thin. Inventive Example 4 had a slightly fragile coating, which resulted in slightly inferior results. Comparative Examples 5 and 6 were easily chipped due to the strong tapered shape, resulting in inferior results.

【0020】[0020]

【発明の効果】以上の結果より明らかなように、本発明
品は耐摩耗性、耐欠損性の両方に優れ、断続切削を含む
長時間の切削加工に耐えるものであるので、切削加工の
高能率化に特に効果を発揮するものである。
As is clear from the above results, the product of the present invention is excellent in both abrasion resistance and chipping resistance and can withstand long-time cutting including interrupted cutting. It is particularly effective for efficiency.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 主たる成分として、元素周期表の4a、
5a、6a族元素のうち少なくとも1種類以上の炭化
物、窒化物、炭窒化物からなる硬質相を、鉄族元素の金
属により焼結した超硬合金またはサーメットからなる基
体の表面にセラミック皮膜を形成した表面被覆切削工具
において、該セラミック被覆は柱状晶のTiCN層を必
ず含む単層または多層で構成され、該TiCN層の上端
から該TiCN層内部に向かって該TiCN層の厚さの
1/5の距離の位置におけるTiCN柱状結晶粒の水平
方向の平均粒径d1と、該TiCN層の下端から該Ti
CN層内部に向かって該TiCN層の厚さの2/5の距
離の位置におけるTiCN柱状結晶粒の水平方向の平均
粒径d2の比、d1/d2が1≦d1/d2≦1.3を
満たすことを特徴とする表面被覆切削工具。
1. A main component is 4a of the periodic table of the element,
Forming a ceramic film on the surface of a substrate made of a cemented carbide or cermet obtained by sintering a hard phase made of at least one of carbides, nitrides and carbonitrides of at least one of group 5a and 6a elements with a metal of iron group element In the surface-coated cutting tool described above, the ceramic coating is composed of a single layer or a multilayer including a columnar crystal TiCN layer, and is 向 か っ て of the thickness of the TiCN layer from the upper end of the TiCN layer toward the inside of the TiCN layer. And the horizontal average particle size d1 of the TiCN columnar crystal grains at a distance of
The ratio of the average grain size d2 in the horizontal direction of the TiCN columnar crystal grains at a position at a distance of 2/5 of the thickness of the TiCN layer toward the inside of the CN layer, d1 / d2 is 1 ≦ d1 / d2 ≦ 1.3. A surface-coated cutting tool characterized by satisfying.
【請求項2】 請求項1に記載の表面被覆切削工具にお
いて、該d1が0.2〜1.5μmであることを特徴と
する表面被覆切削工具。
2. The surface-coated cutting tool according to claim 1, wherein d1 is 0.2 to 1.5 μm.
【請求項3】 請求項1乃至2に記載の表面被覆切削工
具において、該TiCN層の膜厚が10μm以上である
ことを特徴とする表面被覆切削工具。
3. The surface-coated cutting tool according to claim 1, wherein the TiCN layer has a thickness of 10 μm or more.
【請求項4】 請求項1乃至3に記載の表面被覆切削工
具において、該TiCN層の塩素含有量が0.01〜
0.7wt%であることを特徴とする表面被覆切削工
具。
4. The surface-coated cutting tool according to claim 1, wherein the TiCN layer has a chlorine content of 0.01 to 0.01.
A surface-coated cutting tool characterized by being 0.7 wt%.
【請求項5】 請求項1乃至4に記載の表面被覆切削工
具において、該セラミック皮膜を構成する層の内、基体
と接する第1層がTiC、TiCN、TiNの何れか1
種以上からなり、その上の第2層が該柱状晶のTiCN
層であり、第3層以降の層が 、Al23、TiN、T
iCN、TiC、TiCO、TiCNOのうちの1種又
は2種以上の多層で構成されることを特徴とする表面被
覆切削工具。
5. The surface-coated cutting tool according to claim 1, wherein, of the layers constituting the ceramic coating, the first layer in contact with the substrate is any one of TiC, TiCN, and TiN.
A second layer on which the columnar crystal TiCN is formed.
And the third and subsequent layers are composed of Al 2 O 3 , TiN, T
A surface-coated cutting tool comprising one or more layers of iCN, TiC, TiCO, and TiCNO.
【請求項6】 請求項5に記載の表面被覆切削工具にお
いて、該第1層が厚さ0.2〜1.5μmのTiNから
なることを特徴とする表面被覆切削工具。
6. The surface-coated cutting tool according to claim 5, wherein said first layer is made of TiN having a thickness of 0.2 to 1.5 μm.
【請求項7】 請求項1乃至6に記載の表面被覆切削工
具において、該基体はZr及び/又はHfを合計0.0
4〜1wt%含むことを特徴とする表面被覆切削工具。
7. The surface-coated cutting tool according to claim 1, wherein the substrate has a total content of Zr and / or Hf of 0.0.
A surface-coated cutting tool comprising 4 to 1 wt%.
JP28175496A 1996-10-03 1996-10-03 Surface coated cutting tool Withdrawn JPH10109206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28175496A JPH10109206A (en) 1996-10-03 1996-10-03 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28175496A JPH10109206A (en) 1996-10-03 1996-10-03 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JPH10109206A true JPH10109206A (en) 1998-04-28

Family

ID=17643515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28175496A Withdrawn JPH10109206A (en) 1996-10-03 1996-10-03 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JPH10109206A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627335B2 (en) * 2000-03-30 2003-09-30 Toshiba Tungaloy Co., Ltd. Coated cutting tool and method for producing the same
US7172807B2 (en) 2003-02-17 2007-02-06 Kyocera Corporation Surface-coated member
CN102371379A (en) * 2010-07-09 2012-03-14 三菱综合材料株式会社 Surface Covering Drill Having Excellent Abrasion Resistance And Swarf Extraction Performance
JPWO2015099047A1 (en) * 2013-12-26 2017-03-23 京セラ株式会社 Cutting tools
WO2017179233A1 (en) * 2016-04-14 2017-10-19 住友電気工業株式会社 Hard coating and cutting tool
WO2020241533A1 (en) * 2019-05-29 2020-12-03 京セラ株式会社 Coated tool and cutting tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627335B2 (en) * 2000-03-30 2003-09-30 Toshiba Tungaloy Co., Ltd. Coated cutting tool and method for producing the same
US6824823B2 (en) 2000-03-30 2004-11-30 Toshiba Tungaloy Co., Ltd. Coated cutting tool and method for producing the same
US7172807B2 (en) 2003-02-17 2007-02-06 Kyocera Corporation Surface-coated member
CN102371379A (en) * 2010-07-09 2012-03-14 三菱综合材料株式会社 Surface Covering Drill Having Excellent Abrasion Resistance And Swarf Extraction Performance
JPWO2015099047A1 (en) * 2013-12-26 2017-03-23 京セラ株式会社 Cutting tools
WO2017179233A1 (en) * 2016-04-14 2017-10-19 住友電気工業株式会社 Hard coating and cutting tool
JPWO2017179233A1 (en) * 2016-04-14 2019-02-21 住友電気工業株式会社 Hard coating and cutting tool
WO2020241533A1 (en) * 2019-05-29 2020-12-03 京セラ株式会社 Coated tool and cutting tool
JPWO2020241533A1 (en) * 2019-05-29 2020-12-03
US12121976B2 (en) 2019-05-29 2024-10-22 Kyocera Corporation Coated tool and cutting tool

Similar Documents

Publication Publication Date Title
US7087295B2 (en) Surface-coated cutting tool
US7531214B2 (en) Method for manufacturing an oxide coated cutting tool
EP2540421A1 (en) Cutting tool
KR20000062268A (en) Cubic boron nitride cutting tool
JP4019246B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
CN100448576C (en) Coated cement cutting tool with a chipping resistant, hard coating layer
US20060127671A1 (en) Cutting tool having high toughness and abrasion resistance
JP3161088B2 (en) Surface coated WC based cemented carbide cutting tool
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
EP1314790A2 (en) Cemented carbide with binder phase enriched surface zone
JP3136778B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JPH10109206A (en) Surface coated cutting tool
EP1249514A1 (en) Surface coated sintered alloy member
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP3419140B2 (en) Surface coated cutting tool
JP3460571B2 (en) Milling tool with excellent wear resistance
JPH0818163B2 (en) Alumina coating tool and manufacturing method thereof
JP3460565B2 (en) Milling tool with excellent wear resistance
JP4518626B2 (en) Coated cutting tool
JP2556116B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance
JP3161087B2 (en) Surface coated WC based cemented carbide cutting tool
JPH01252305A (en) Surface coated tungsten carbide based cemented carbide cutting tip
JP2019166584A (en) Surface-coated cutting tool allowing hard coating layer to exhibit excellent wear resistance
JP3371564B2 (en) Coated cemented carbide members
JP3391264B2 (en) Milling tool with excellent fracture resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060315

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060407

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载