+

JPH02100358A - Semiconductor storage device and its manufacturing method - Google Patents

Semiconductor storage device and its manufacturing method

Info

Publication number
JPH02100358A
JPH02100358A JP63252979A JP25297988A JPH02100358A JP H02100358 A JPH02100358 A JP H02100358A JP 63252979 A JP63252979 A JP 63252979A JP 25297988 A JP25297988 A JP 25297988A JP H02100358 A JPH02100358 A JP H02100358A
Authority
JP
Japan
Prior art keywords
layer
forming
walls
conductivity type
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63252979A
Other languages
Japanese (ja)
Other versions
JPH07109877B2 (en
Inventor
Toshiharu Watanabe
渡辺 寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63252979A priority Critical patent/JPH07109877B2/en
Publication of JPH02100358A publication Critical patent/JPH02100358A/en
Publication of JPH07109877B2 publication Critical patent/JPH07109877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a semiconductor memory having a degree of integration which matches that of the next generation by forming walls of insulator layers, thereby forming element regions on the side faces and upper faces of these walls. CONSTITUTION:Word lines 11 are formed as gate electrodes around walls of 4 of insulator layers through gate insulating films 10. These word lines are insulated from the word lines 11 as electrode around the walls of adjacent insulator layers by insulating layers 14. Bit lines 15 are formed on the upper parts of these layers and N-type diffusion layers 7' are formed on the upper face of the insulating layer walls 4 in regions where these bit lines 15 and the word lines 11 as the gate electrodes formed on both sides of the insulator layer walls 4 intersect each other. Then, P-type diffusion layers 13 and N-type diffusion layers 7 are formed. A degree of integration which matches that of the next generation is thus obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、半導体記憶装置およびその製造方法に関す
るもので、特にDRAM (DynasicRando
m Access Momory)セルのセル構造を改
良した半導体記憶装置およびその製造方法に関するもの
である。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor memory device and a method for manufacturing the same, and particularly relates to a DRAM (Dynamic Random
The present invention relates to a semiconductor memory device with an improved cell structure (Access Memory) and a method for manufacturing the same.

(従来技術) 第5図、および第6図を参照して、従来技術によるDR
AMセルについて説明する。
(Prior art) With reference to FIGS. 5 and 6, DR according to the prior art
AM cells will be explained.

第5図(a)、および第5図(b)は、従来技術による
DRAMセルの平面図、および断面図で、特にクロスポ
イントセルと呼ばれるセルである。
FIGS. 5(a) and 5(b) are a plan view and a cross-sectional view of a DRAM cell according to the prior art, particularly a cell called a cross-point cell.

第5図(a)の平面図において、DRAMセルのワード
線101と、ビット線102との交点に1ビット分のセ
ルができる。このDRAMセルの記憶素子には、いわゆ
るトレンチ構造を有するキャパシタが用いられており、
半導体基板100にトレンチ溝103が開孔形成されて
いる。
In the plan view of FIG. 5(a), a cell for one bit is formed at the intersection of the word line 101 and bit line 102 of the DRAM cell. The memory element of this DRAM cell uses a capacitor having a so-called trench structure.
A trench groove 103 is formed in the semiconductor substrate 100 .

第5図(b)は、第5図(a)の断面B−8に沿った断
面図であり、この断面図に示すように、半導体基板10
0内にP型拡散層104が形成され、このP型拡散層1
04の下層には、不純物濃度の高いP中型拡散層105
が形成され、この2つの拡散層を貫通してトレンチ溝1
03が開孔形成され、このトレンチ溝103内には、キ
ャパシタ電極107、およびワード線101が形成され
ている。さらに、半導体基板100とは、埋込コンタク
ト部108を除いて、ゲート酸化膜106、およびキャ
パシタ絶縁膜109により絶縁されている。
FIG. 5(b) is a cross-sectional view taken along the cross-section B-8 in FIG. 5(a), and as shown in this cross-sectional view, the semiconductor substrate 10
A P-type diffusion layer 104 is formed in the P-type diffusion layer 1.
04 is a P medium-sized diffusion layer 105 with high impurity concentration.
is formed, and a trench groove 1 is formed through these two diffusion layers.
03 is formed as an opening, and a capacitor electrode 107 and a word line 101 are formed in this trench groove 103. Further, the semiconductor substrate 100 is insulated from the semiconductor substrate 100 by a gate oxide film 106 and a capacitor insulating film 109, except for the buried contact portion 108.

このDRAMセルの動作としては、ビット線102に与
えられた電位が、ワード線101の電位を上げることに
より、ゲート酸化膜106近傍のP型拡散層104が反
転することにより、埋込コンタクト108に伝達される
。一方、この埋込コンタクト108は、キャパシタ電極
107と接続されているので、このキャパシタ電極10
7と、キャパシタ絶縁膜109を挾んで対向しているP
中型拡散層105との間において形成されるM I S
 (M etal  I n5ulator  S e
mlcondoctor)型キャパシタに電荷を蓄えて
記憶する。
The operation of this DRAM cell is such that when the potential applied to the bit line 102 increases the potential of the word line 101, the P-type diffusion layer 104 near the gate oxide film 106 is inverted, and the buried contact 108 is inverted. communicated. On the other hand, since this buried contact 108 is connected to the capacitor electrode 107, this buried contact 108 is connected to the capacitor electrode 107.
7 and P facing each other with the capacitor insulating film 109 in between.
M I S formed between the medium-sized diffusion layer 105
(Metal I n5ulator S e
mlcondoctor) type capacitor to store and store charge.

このような構成の従来技術による半導体記憶装置による
と、キャパシタのみならず、転送ゲート領域もトレンチ
溝103の内部に埋込むので、半導体記憶装置の平面方
向においてかなりの集積度の向上が図れる。しかしなが
ら、この集積度の向上、即ち装置の微細化には限界があ
る。この微細化の限界について、第6図を参照して説明
する。
According to the conventional semiconductor memory device having such a configuration, not only the capacitor but also the transfer gate region is buried inside the trench groove 103, so that the degree of integration of the semiconductor memory device can be considerably improved in the planar direction. However, there is a limit to this improvement in the degree of integration, that is, the miniaturization of devices. The limits of this miniaturization will be explained with reference to FIG.

第6図に示すように、写真蝕刻工程等から決まる最小寸
法をFとし、さらに、異なる写真蝕刻工程間の合わせ余
裕を0.2Fとして、製造しうる最小の半導体記憶装置
を製造するとするならば、トレンチ溝−辺の長さは前記
した最小寸法のFとなり、ワード線、ビット線の線幅は
夫々1.4F。
As shown in FIG. 6, if we are to manufacture the smallest semiconductor memory device that can be manufactured, let F be the minimum dimension determined by the photo-etching process, etc., and let the alignment margin between different photo-etch processes be 0.2F. , the trench groove-side length is F, which is the minimum dimension described above, and the line widths of the word line and bit line are each 1.4F.

および各ワード線、各ビット線の間隔は1.OFとなる
ので、セル領域の1辺の長さは、0.5 F +0.2
 F +1.OF +0.2 F +0.5 F−2,
4F となる。従って、1ビット分のセルの最小面積は、2.
4 F X2.4 F −5,76F 2 となる。
The interval between each word line and each bit line is 1. Since it is OF, the length of one side of the cell area is 0.5 F +0.2
F+1. OF +0.2 F +0.5 F-2,
It will be 4F. Therefore, the minimum area of a cell for one bit is 2.
4F X2.4F -5,76F 2 .

これ以上、1ビット分のセルの面積を小さくしようとす
れば、写真蝕刻技術を大幅に改善、進歩させ、解像度、
および合わせ精度を向上させる以外に方法はない。
If we were to try to reduce the cell area for one bit even further, we would have to significantly improve and advance photoetching technology, and the resolution would increase.
There is no other way than to improve the alignment accuracy.

(発明が解決しようとする課題) この発明は上記のような点に鑑みて為されたもので、写
真蝕刻技術の大幅な改善にたよることなく、次四代並み
の集積度を有する半導体記憶装置およびその製造方法を
提供することを目的とする。
(Problems to be Solved by the Invention) This invention has been made in view of the above points, and it is possible to develop a semiconductor memory with an integration level comparable to that of the next four generations without relying on significant improvements in photolithographic technology. The purpose of the present invention is to provide a device and a method for manufacturing the same.

[発明の構成] (課題を解決するための手段およびその作用)この発明
による半導体記憶装置にあっては、絶縁体層の壁を形成
し、この絶縁体層の壁の上部と側面に半導体層を設け、
この半導体層を平面方向に分断して第1導電型、および
第2導電型の半導体層を形成する。このような構成のセ
ル構造によるとセル用の素子領域が絶縁体層の壁の上部
と側面に形成され、この壁の幅、および壁と壁の間の溝
の幅を現在の写真蝕刻技術の最小寸法Fとすれば、1ビ
ット分のセルの最小面V45.76F2の面積に、2ビ
ット分のセルを製造することができ、写真蝕刻技術の大
幅な改善にたよることなく、その時代における最高の写
真蝕刻技術を用いて製造した従来のセル構造を有する半
導体記憶装置の2倍、即ち、次世代並みの集積度を有す
る半導体記憶装置およびその製造方法が可能となる。
[Structure of the Invention] (Means for Solving the Problems and Their Effects) In the semiconductor memory device according to the present invention, a wall of an insulating layer is formed, and a semiconductor layer is formed on the top and side surfaces of the wall of the insulating layer. established,
This semiconductor layer is divided in a planar direction to form semiconductor layers of a first conductivity type and a second conductivity type. According to a cell structure with such a configuration, the element region for the cell is formed on the top and side surfaces of the wall of the insulating layer, and the width of this wall and the width of the groove between the walls can be adjusted using current photolithography technology. If the minimum dimension is F, then a 2-bit cell can be manufactured in the area of the minimum surface V45.76F2 of a 1-bit cell, and without relying on significant improvements in photolithographic technology, It becomes possible to create a semiconductor memory device and its manufacturing method that has twice the degree of integration of a semiconductor memory device having a conventional cell structure manufactured using the best photolithography technology, that is, the degree of integration comparable to that of the next generation.

(実施例) 以下、第1図乃至第4図を参照してこの発明の実施例に
係わる半導体記憶装置およびその製造方法について説明
する。
(Embodiment) Hereinafter, a semiconductor memory device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

第1図(a)乃至第1図(f)は、この発明の実施例に
係わるDRAMセルの製造方法について、工程順に示し
た断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views showing the steps of a method for manufacturing a DRAM cell according to an embodiment of the present invention.

第1図(a)において、絶縁体層1上に、例えば気相成
長法を用いて第1の単結晶シリコン層2を成長させる。
In FIG. 1(a), a first single crystal silicon layer 2 is grown on an insulator layer 1 using, for example, a vapor phase growth method.

次に、全面にホトレジスト3を堆積して所定形状にバタ
ーニングし、この所定形状のホトレジスト3をマスクに
して絶縁体層1、および単結晶シリコン層2をエツチン
グし、絶縁体層の壁4を形成する。この時、この壁4と
4との間隔は、壁4との厚さと略等しい寸法となる。
Next, a photoresist 3 is deposited on the entire surface and patterned into a predetermined shape. Using the photoresist 3 in the predetermined shape as a mask, the insulator layer 1 and the single crystal silicon layer 2 are etched, and the walls 4 of the insulator layer are etched. Form. At this time, the distance between the walls 4 is approximately equal to the thickness of the walls 4.

第1図(b)において、ホトレジスト3を取除いた後、
全面に、例えば気相成長法を用いて第2のシリコン層2
′を成長させる。この時、第1の単結晶シリコン2を種
結晶にして単結晶シリコン2゛が成長する。次に、例え
ばP型の不純物であるB(ホウ素)をシリコン層2″に
イオン注入し、熱拡散させ、第2の単結晶シリコン層2
″をP型にドープする。次に、RI E (React
ive I onE tchlng)法を用いて、この
P種単結晶シリコン酸化層を絶縁体層の壁4の上面と側
面にのみ残留するようにエツチングする。
In FIG. 1(b), after removing the photoresist 3,
A second silicon layer 2 is formed on the entire surface using, for example, a vapor phase growth method.
′ to grow. At this time, single crystal silicon 2' is grown using the first single crystal silicon 2 as a seed crystal. Next, for example, B (boron), which is a P-type impurity, is ion-implanted into the silicon layer 2'' and thermally diffused to form a second single-crystal silicon layer 2''.
'' is doped to P type. Next, RI E (React
This P-type single-crystal silicon oxide layer is etched so that it remains only on the top and side surfaces of the walls 4 of the insulator layer using a ive I on E tchlng method.

第1図(C)において、各々の絶縁体層の壁4と4との
間の溝内に形成されたシリコン層2′間に、シリコン酸
化層5を、例えばCVD(Chealcal V ap
or  D cposltlon)法にて堆積し、例え
ば溝の深さの半分までのキャパシタ形成領域までエツチ
ングする。続いて、このシリコン酸化層5に、例えばN
型の不純物であるAs(ヒ素)をイオン注入し、全面を
、例えば酸化膜による保護膜6で覆い、その後、不純物
イオン活性化のための熱処理を行なうと、前記シリコン
酸化層5から、単結晶シリコン層2゛にN型不純物が熱
拡散し、シリコン酸化膜5に接する付近のみ単結晶シリ
コン層2゛がN型にドープされ、第1のN型拡散層7が
形成される。
In FIG. 1C, a silicon oxide layer 5 is formed between the silicon layers 2' formed in the grooves between the walls 4 and 4 of each insulating layer by, for example, chemical vapor deposition (CVD).
or D cposltlon) method, and etched to, for example, a capacitor formation region up to half the depth of the trench. Subsequently, this silicon oxide layer 5 is coated with, for example, N.
When As (arsenic), which is a type impurity, is ion-implanted, the entire surface is covered with a protective film 6 made of, for example, an oxide film, and then heat treatment is performed to activate the impurity ions, a single crystal is formed from the silicon oxide layer 5. N-type impurities are thermally diffused into the silicon layer 2', and the single-crystal silicon layer 2' is doped with N-type only in the vicinity where it contacts the silicon oxide film 5, thereby forming a first N-type diffusion layer 7.

第1図(d)において、シリコン酸化膜5、および保護
膜6を除去し、P種単結晶シリコン層2−1および第1
のN型拡散層7を露出させ、その後、全面に第1の熱酸
化膜8を形成する。この第1の熱酸化膜8は、後工程で
キャパシタ絶縁膜となる。次に、各々の絶縁層の壁4と
の間の溝内に、第1のポリシリコン層9を、例えばCV
D法を用いて堆積し、キャパシタ形成領域までエツチン
グして、キャパシタ電極9を形成する。
In FIG. 1(d), the silicon oxide film 5 and the protective film 6 are removed, and the P-type single crystal silicon layer 2-1 and the first
The N-type diffusion layer 7 is exposed, and then a first thermal oxide film 8 is formed on the entire surface. This first thermal oxide film 8 becomes a capacitor insulating film in a later step. Next, a first polysilicon layer 9 is applied in the groove between the walls 4 of each insulating layer, e.g.
The capacitor electrode 9 is formed by depositing using the D method and etching down to the capacitor formation region.

次に、第1図(e)において、キャパシタ電極9より、
−に部の第1の熱酸化膜8を除去する。この工程で残留
した第1の熱酸化膜8は、キャパシタ絶縁膜8となる。
Next, in FIG. 1(e), from the capacitor electrode 9,
The first thermal oxide film 8 in the - portion is removed. The first thermal oxide film 8 remaining in this step becomes the capacitor insulating film 8.

次に、全面に熱酸化により、第2の熱酸化11110を
形成する。この時、ポリシリコンの酸化速度が速いこと
から、これからなるキャパシタ電極9の上部には他より
も厚い熱酸化膜10が形成される。この第2の熱酸化膜
10は、後工程でゲート絶縁膜となる。次に、各々の絶
縁体層の壁4の間の溝内に、第2のポリシリコン層11
を、例えばCVD法にて堆積し、熱酸化膜10によって
区切られたトランジスタ形成領域までエツチングする。
Next, a second thermal oxide 11110 is formed on the entire surface by thermal oxidation. At this time, since the oxidation rate of polysilicon is fast, a thermal oxide film 10 that is thicker than the others is formed above the capacitor electrode 9 made of polysilicon. This second thermal oxide film 10 will become a gate insulating film in a later process. Next, a second polysilicon layer 11 is placed in the trench between the walls 4 of each insulator layer.
is deposited by, for example, the CVD method, and etched to the transistor formation region delimited by the thermal oxide film 10.

この第2のポリシリコン層11は、後工程でゲート電極
となる。次に、例えばN型不純物As(ヒ素)を絶縁層
の壁4上部のP!42シリコン半導体層2′に、第2の
熱酸化膜10を介してイオン注入し、熱拡散させ、P型
シリコン半導体層2′とは反対導電型の第2のN型拡散
層7′を形成する。この時、第2のポリシリコン層11
によって保護されてN型にドープされなかったP型シリ
コン半導体層2′はP型拡散層13として残る。このよ
うにして絶縁体層1中に形成された溝の側面、即ち、絶
縁層の壁4の側面に、N型拡散層7.7″、およびP型
拡散層13による素子領域が形成される。次に、RIE
法を用いて、第2のポリシリコン層11を所定形状にエ
ツチングし、ゲート電極11を形成する。
This second polysilicon layer 11 will become a gate electrode in a later step. Next, for example, an N-type impurity As (arsenic) is added to the upper part of the wall 4 of the insulating layer P! 42 Ions are implanted into the silicon semiconductor layer 2' through the second thermal oxide film 10 and thermally diffused to form a second N-type diffusion layer 7' having a conductivity type opposite to that of the P-type silicon semiconductor layer 2'. do. At this time, the second polysilicon layer 11
The P-type silicon semiconductor layer 2', which is protected by and is not doped to N-type, remains as a P-type diffusion layer 13. An element region is formed by the N-type diffusion layer 7.7'' and the P-type diffusion layer 13 on the side surface of the groove thus formed in the insulating layer 1, that is, on the side surface of the wall 4 of the insulating layer. .Next, RIE
The second polysilicon layer 11 is etched into a predetermined shape using a method to form a gate electrode 11.

最後に、第1図(f)において、CVD法を用いて、シ
リコン酸化膜14を堆積する。次に、第2のN型拡散層
7′が露出するように、シリコン酸化膜14、および第
2の熱酸化膜10を除去する。その後、全面にAI(ア
ルミニウム)を、例えばスパッタ法にて堆積し、所定形
状にバターニングしてビット線15を形成してこの発明
の実施例に係わる半導体記憶装置が製造される。
Finally, in FIG. 1(f), a silicon oxide film 14 is deposited using the CVD method. Next, the silicon oxide film 14 and the second thermal oxide film 10 are removed so that the second N-type diffusion layer 7' is exposed. Thereafter, AI (aluminum) is deposited on the entire surface by, for example, sputtering, and patterned into a predetermined shape to form bit lines 15, thereby manufacturing a semiconductor memory device according to an embodiment of the present invention.

このようなセル構造の半導体記憶装置によると、絶縁体
層1中に形成された溝の側面、即ち、絶縁体層の壁4の
側面に、単結晶シリコン層2″を設け、この単結晶シリ
コン層2−を横方向に分断してNIJ1拡散層7.7゛
、およびP重拡散層13を形成することにより、セルの
素子領域を溝の側面、即ち、絶縁体層の壁4の側面に形
成する。よって従来の1ビット分のセルの最小面積に、
2ビット分のセルを形成することができ、写真蝕刻技術
の大幅な改善にたよることなく、その時代の最高の技術
の常に2倍の現在の最高の技術以上の集積度、即ち、次
世代能みの集積度を有する半導体記憶装置の製造が可能
となる。
According to a semiconductor memory device having such a cell structure, a single crystal silicon layer 2'' is provided on the side surface of the groove formed in the insulator layer 1, that is, on the side surface of the wall 4 of the insulator layer, and the single crystal silicon layer 2'' By dividing the layer 2- in the horizontal direction to form the NIJ1 diffusion layer 7.7'' and the P heavy diffusion layer 13, the element region of the cell is placed on the side surface of the groove, that is, on the side surface of the wall 4 of the insulating layer. Therefore, the minimum area of a conventional 1-bit cell is
It is possible to form cells for 2 bits, and without relying on significant improvements in photo-etching technology, the degree of integration is always twice that of the best technology of the time, that is, the next generation. It becomes possible to manufacture a semiconductor memory device with an unprecedented degree of integration.

次に、上記実施例によって製造された半導体記憶装置に
ついて、第2図(a)、および第2図(b)を参照して
説明する。
Next, the semiconductor memory device manufactured according to the above embodiment will be explained with reference to FIGS. 2(a) and 2(b).

第2図(a)は、上記の実施例に係わる半導体記憶装置
の製造方法によって製造された半導体記憶装置の平面図
である。
FIG. 2(a) is a plan view of a semiconductor memory device manufactured by the method of manufacturing a semiconductor memory device according to the above embodiment.

第2図(a)において、絶縁体層の壁4の周囲に、ゲー
ト絶縁膜10を介して、ゲート電極としてのワード線1
1が形成され、隣りの絶縁体層の壁4の周囲のゲート電
極としてのワード線11とは、絶縁体層14によって絶
縁されている。これらの上部にはビット線15が形成さ
れ、このビット線15と、絶縁体層の壁4の両側面に形
成されたゲート電極としてのワード線11が交差する領
域において、絶縁体層の壁4のに面にN型拡散層7″が
形成され、平面図には図示しないがP重拡散層13、お
よびN型拡散層7が形成されている。
In FIG. 2(a), a word line 1 as a gate electrode is formed around the wall 4 of the insulating layer through a gate insulating film 10.
1 is formed and is insulated from the word line 11 serving as a gate electrode around the wall 4 of the adjacent insulating layer by an insulating layer 14 . A bit line 15 is formed above these, and in a region where this bit line 15 intersects with a word line 11 serving as a gate electrode formed on both sides of the insulating layer wall 4, the insulating layer wall 4 An N-type diffusion layer 7'' is formed on the surface, and a P-heavy diffusion layer 13 and an N-type diffusion layer 7 are formed, although not shown in the plan view.

また、i2図(b)は、第2図(b)に示す断面A−A
に沿った断面図で、第1図(f)と同じ断面図である。
In addition, Figure i2 (b) is the cross section A-A shown in Figure 2 (b).
This is a sectional view taken along the same line as FIG. 1(f).

次にこの発明の実施例の第1の変形例として、第3図を
参照して説明する。
Next, a first modification of the embodiment of the present invention will be described with reference to FIG.

上記実施例では、絶縁体層1をエツチングして、絶縁体
層の壁4を形成したが、第3図に示すように、シリコン
半導体基板16上に絶縁体層を形成して、絶縁体層の壁
4を形成しても良い。
In the above embodiment, the insulating layer 1 was etched to form the insulating layer wall 4, but as shown in FIG. The wall 4 may also be formed.

このような構成によれば、このシリコン半導体基板16
を種結晶にして第2のシリコン層2″を単結晶として成
長させることができる。
According to such a configuration, this silicon semiconductor substrate 16
The second silicon layer 2'' can be grown as a single crystal using as a seed crystal.

次に、この発明の実施例の第2の変形例を第4図(a)
、および(b)を参照して説明する。
Next, a second modification of the embodiment of the present invention is shown in FIG. 4(a).
, and (b).

この第2の変形例では、上記第1の変形例と同様なシリ
コン半導体基板16上に絶縁体層を形成し、これをパタ
ーニングして、絶縁体層の壁4を形成するものであるが
、第4図(a)に示すように、絶縁体層をエツチングす
る際に、シリコン半導体基板16に接する部分において
、絶縁体層の壁4の間の溝内に、前記絶縁体層が残留す
るようにエツチングし、かつシリコン半導体基板16が
露出する部分17が形成されるようにエツチングする。
In this second modification, an insulator layer is formed on the silicon semiconductor substrate 16 similar to the first modification, and this is patterned to form the walls 4 of the insulator layer. As shown in FIG. 4(a), when etching the insulating layer, the insulating layer is left in the groove between the walls 4 of the insulating layer at the portion in contact with the silicon semiconductor substrate 16. The silicon semiconductor substrate 16 is etched to form a portion 17 where the silicon semiconductor substrate 16 is exposed.

その後、シリコン層2゛を形成する。このような構成に
よれば溝内のシリコン半導体基板が露出した部分17を
種結晶にして第2のシリコン層2゛を単結晶として成長
させることができる。
After that, a silicon layer 2' is formed. With this configuration, the second silicon layer 2' can be grown as a single crystal using the exposed portion 17 of the silicon semiconductor substrate in the trench as a seed crystal.

次に、第4図(b)において、このシリコン層2′を絶
縁体層の壁4の上面、および側面に残るようにエツチン
グする。
Next, in FIG. 4(b), this silicon layer 2' is etched so as to remain on the top and side surfaces of the wall 4 of the insulating layer.

このような構成によれば、シリコン半導体基板16と、
シリコン層2゛との間に、絶縁体層が4′が介されるの
で、近接セル間のリークが少なくなる。
According to such a configuration, the silicon semiconductor substrate 16,
Since the insulator layer 4' is interposed between the silicon layer 2' and the silicon layer 2', leakage between adjacent cells is reduced.

尚、上記実施例、および変形例では、素子領域を形成す
る半導体層を単結晶シリコンで成長させたが、多結晶シ
リコンでも良いことは勿論である。
In the above embodiments and modifications, the semiconductor layer forming the element region was grown using single crystal silicon, but it goes without saying that polycrystalline silicon may also be used.

[発明の効果] 以上説明したようにこの発明によると、絶縁体層の壁を
形成し、この壁の側面および上面に素子領域を形成する
ことにより、その時代における写真蝕刻技術の最小寸法
をFとした時、1ビット分のセルの最小面積5.76F
2の面積に2ビット分のセルを形成することが可能とな
り、その時代における最高の写真蝕刻技術を用いて製造
した従来のセル構造を有する半導体記憶装置の常に2倍
の集積度を有することができる非常に画期的なセル構造
を持つ半導体記憶装置およびその製造方法が提供できる
[Effects of the Invention] As explained above, according to the present invention, by forming a wall of an insulating layer and forming an element region on the side and top surfaces of this wall, the minimum dimension of the photolithography technology of the time can be reduced to F. When, the minimum area of a cell for 1 bit is 5.76F
It became possible to form a cell for 2 bits in an area of 2.2 mm, and the integration density was always twice that of a semiconductor memory device with a conventional cell structure manufactured using the best photolithography technology of the time. A semiconductor memory device having a highly innovative cell structure and a method for manufacturing the same can be provided.

また、このようなセル構造を持つ半導体記憶装置の製造
方法にあっては、キャパシタ電極、およびゲート電極と
してのワード線を自己整合的に形実施例に係わる半導体
記憶装置の製造方法を製造工程順に示した断面図、第2
図(a)および第2図(b)は、第1図に製造工程を示
した半導体記憶装置の平面図および断面図、第3図は、
この発明の実施例の第1の変形例を示す断面図、第4図
(a)乃至第4図(b)は、この発明の実施例の第2の
変形例を示す断面図、第5図(a)乃至(b)は、従来
技術による半導体記憶装置の平面図および断面図、第6
図は、従来技術による1ビット分のセルの最小面積を説
明する平面図である。
In addition, in the method of manufacturing a semiconductor memory device having such a cell structure, the word line serving as the capacitor electrode and the gate electrode is formed in a self-aligned manner. Cross section shown, 2nd
Figures (a) and 2(b) are a plan view and a cross-sectional view of the semiconductor memory device whose manufacturing process is shown in Figure 1, and Figure 3 is a
4(a) to 4(b) are cross-sectional views showing a first modification of the embodiment of the present invention, and FIG. 5 is a cross-sectional view showing a second modification of the embodiment of the present invention. (a) to (b) are a plan view and a cross-sectional view of a semiconductor memory device according to the prior art;
The figure is a plan view illustrating the minimum area of a cell for one bit according to the prior art.

1・・・絶縁体層、2.2′・・・単結晶シリコン層、
3・・・ホトレジスト、4・・・絶縁体層の壁、4′・
・・半導体層と基板とを絶縁する領域、5・・・シリコ
ン酸化膜、6・・・保護膜、7・・・N型拡散層、8・
・・熱酸化膜、9・・・キャパシタ電極、10・・・熱
酸化膜、11・・・ゲート電極、13・・・P型拡散層
、14・・・絶縁体層、15・・・ビット線、16・・
・シリコン半導体基板、17・・・シリコン半導体基板
16が露出した部分、100・・・シリコン半導体基板
、101・・・ビット線、102・・・ワード線、10
3・・・トレンチ溝、104・・・P型拡散層、105
・・・P十型拡散層、106・・・ゲート絶縁膜、10
7・・・キャパシタ電極、108・・・埋込コンタクト
、109・・・キャパシタ絶縁膜。
1... Insulator layer, 2.2'... Single crystal silicon layer,
3... Photoresist, 4... Wall of insulator layer, 4'.
...Region for insulating the semiconductor layer and substrate, 5. Silicon oxide film, 6. Protective film, 7. N-type diffusion layer, 8.
... Thermal oxide film, 9... Capacitor electrode, 10... Thermal oxide film, 11... Gate electrode, 13... P-type diffusion layer, 14... Insulator layer, 15... Bit Line, 16...
- Silicon semiconductor substrate, 17... Portion where silicon semiconductor substrate 16 is exposed, 100... Silicon semiconductor substrate, 101... Bit line, 102... Word line, 10
3... Trench groove, 104... P-type diffusion layer, 105
... P ten type diffusion layer, 106 ... Gate insulating film, 10
7... Capacitor electrode, 108... Buried contact, 109... Capacitor insulating film.

出願人代理人 弁理士 鈴江武彦 第1図 第1図 第5図 第 図Applicant's agent: Patent attorney Takehiko Suzue Figure 1 Figure 1 Figure 5 No. figure

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に絶縁体の対向した壁面を有するように形
成された少なくとも1本以上の溝と、この溝を挾んで対
向した壁面に形成された上部と下部が第1導電型、中央
部が第2導電型の半導体層と、下部の第1導電型の半導
体層に接して形成されたキャパシタ絶縁膜と、このキャ
パシタ絶縁膜に接して、かつ溝の底部に埋込まれて形成
されたキャパシタ電極と、中央部の第2導電型の半導体
層に接して形成されたゲート絶縁膜と、このゲート絶縁
膜に接して形成されたゲート電極と、上部の第1導電型
の半導体層に接して形成された導電層とを具備すること
を特徴とする半導体装置。
(1) At least one groove formed on the substrate so as to have opposing wall surfaces of an insulator, and the upper and lower portions formed on the opposing wall surfaces sandwiching the groove are of the first conductivity type, and the central portion is of the first conductivity type. a capacitor insulating film formed in contact with the semiconductor layer of the second conductivity type and the lower semiconductor layer of the first conductivity type, and a capacitor insulating film formed in contact with the capacitor insulating film and embedded in the bottom of the groove A capacitor electrode, a gate insulating film formed in contact with the semiconductor layer of the second conductivity type in the center, a gate electrode formed in contact with the gate insulating film, and a semiconductor layer of the first conductivity type in the upper part. What is claimed is: 1. A semiconductor device comprising: a conductive layer formed using a conductive layer;
(2)基板上に絶縁体の対向した壁面を有するように少
なくとも1本以上の溝を形成する工程と、この形成され
た溝を挾んで対向した壁面に上部と下部が第1導電型、
中央部が第2導電型の半導体層を形成する工程と、下部
の第1導電型の半導体層に接してキャパシタ絶縁膜を形
成する工程と、この形成されたキャパシタ絶縁膜に接し
て、かつ溝の底部に埋込むようにキャパシタ電極を形成
する工程と、中央部の第2導電型の半導体層に接してゲ
ート絶縁膜を形成する工程と、この形成されたゲート絶
縁膜に接してゲート電極を形成する工程と、上部の第1
導電型の半導体層に接して導電層を形成する工程とを具
備することを特徴とする半導体装置の製造方法。
(2) forming at least one groove on the substrate so as to have opposing wall surfaces of an insulator, and forming an upper and a lower portion of the first conductivity type on the opposing wall surfaces sandwiching the formed groove;
A step of forming a semiconductor layer having a second conductivity type in the center, a step of forming a capacitor insulating film in contact with the semiconductor layer of the first conductivity type in the lower part, and a step of forming a semiconductor layer in contact with the formed capacitor insulating film and in a groove. a step of forming a capacitor electrode so as to be buried in the bottom of the capacitor, a step of forming a gate insulating film in contact with the second conductivity type semiconductor layer in the center, and a step of forming a gate electrode in contact with the formed gate insulating film. The process of forming and the upper first
1. A method for manufacturing a semiconductor device, comprising the step of forming a conductive layer in contact with a conductive type semiconductor layer.
JP63252979A 1988-10-07 1988-10-07 Semiconductor memory device and manufacturing method thereof Expired - Lifetime JPH07109877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252979A JPH07109877B2 (en) 1988-10-07 1988-10-07 Semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252979A JPH07109877B2 (en) 1988-10-07 1988-10-07 Semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02100358A true JPH02100358A (en) 1990-04-12
JPH07109877B2 JPH07109877B2 (en) 1995-11-22

Family

ID=17244815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252979A Expired - Lifetime JPH07109877B2 (en) 1988-10-07 1988-10-07 Semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07109877B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226762A (en) * 1989-02-28 1990-09-10 Hitachi Ltd Semiconductor storage devices and semiconductor devices
US8023885B2 (en) 2004-05-13 2011-09-20 Qualcomm Incorporated Non-frequency translating repeater with downlink detection for uplink and downlink synchronization
US8027642B2 (en) 2004-04-06 2011-09-27 Qualcomm Incorporated Transmission canceller for wireless local area network
US8059727B2 (en) 2005-01-28 2011-11-15 Qualcomm Incorporated Physical layer repeater configuration for increasing MIMO performance
US8089913B2 (en) 2002-10-24 2012-01-03 Qualcomm Incorporated Physical layer repeater with selective use of higher layer functions based on network operating conditions
US8095067B2 (en) 2004-06-03 2012-01-10 Qualcomm Incorporated Frequency translating repeater with low cost high performance local oscillator architecture
US8885688B2 (en) 2002-10-01 2014-11-11 Qualcomm Incorporated Control message management in physical layer repeater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229351A (en) * 1985-04-04 1986-10-13 Nec Corp Semiconductor memory device and manufacture thereof
JPS62190865A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Semiconductor memory
JPS6317553A (en) * 1986-07-10 1988-01-25 Nec Corp Semiconductor memory storage and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229351A (en) * 1985-04-04 1986-10-13 Nec Corp Semiconductor memory device and manufacture thereof
JPS62190865A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Semiconductor memory
JPS6317553A (en) * 1986-07-10 1988-01-25 Nec Corp Semiconductor memory storage and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226762A (en) * 1989-02-28 1990-09-10 Hitachi Ltd Semiconductor storage devices and semiconductor devices
US8885688B2 (en) 2002-10-01 2014-11-11 Qualcomm Incorporated Control message management in physical layer repeater
US8089913B2 (en) 2002-10-24 2012-01-03 Qualcomm Incorporated Physical layer repeater with selective use of higher layer functions based on network operating conditions
US8027642B2 (en) 2004-04-06 2011-09-27 Qualcomm Incorporated Transmission canceller for wireless local area network
US8023885B2 (en) 2004-05-13 2011-09-20 Qualcomm Incorporated Non-frequency translating repeater with downlink detection for uplink and downlink synchronization
US8095067B2 (en) 2004-06-03 2012-01-10 Qualcomm Incorporated Frequency translating repeater with low cost high performance local oscillator architecture
US8059727B2 (en) 2005-01-28 2011-11-15 Qualcomm Incorporated Physical layer repeater configuration for increasing MIMO performance

Also Published As

Publication number Publication date
JPH07109877B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
US5235199A (en) Semiconductor memory with pad electrode and bit line under stacked capacitor
US5091761A (en) Semiconductor device having an arrangement of IGFETs and capacitors stacked thereover
US5478768A (en) Method of manufacturing a semiconductor memory device having improved hold characteristic of a storage capacitor
US5460999A (en) Method for making fin-shaped stack capacitors on DRAM chips
KR100509210B1 (en) Dram cell arrangement and method for its production
JP2004505466A (en) Semiconductor memory cell structure and method of manufacturing the same
GB2288276A (en) Dram memory cell utilising surrounding gate transistor and method of manufacture
JPS61179568A (en) Manufacture of semiconductor memory device
JPH0496363A (en) Semiconductor storage device
JPH06204427A (en) Semiconductor memory device and formation method thereof
US5292679A (en) Process for producing a semiconductor memory device having memory cells including transistors and capacitors
US5164917A (en) Vertical one-transistor DRAM with enhanced capacitance and process for fabricating
KR930006729B1 (en) Semiconductor device and manufacturing method
JPH02100358A (en) Semiconductor storage device and its manufacturing method
KR960006718B1 (en) Memory capacitor in semiconductor device and the method for fabricating the same
JPS6156445A (en) semiconductor equipment
US5066606A (en) Implant method for advanced stacked capacitors
JPS6123360A (en) Semiconductor memory and manufacture of the same
US5663100A (en) Method for forming contact holes in semiconductor device
KR930004985B1 (en) Dram cell having a stacked capacitor and method of fabricating therefor
JP3177038B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0344068A (en) Manufacture of semiconductor device
KR0151192B1 (en) Semiconductor Memory Device Manufacturing Method
JPH0311550B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

EXPY Cancellation because of completion of term
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载