+

JPH01253648A - biosensor - Google Patents

biosensor

Info

Publication number
JPH01253648A
JPH01253648A JP63080829A JP8082988A JPH01253648A JP H01253648 A JPH01253648 A JP H01253648A JP 63080829 A JP63080829 A JP 63080829A JP 8082988 A JP8082988 A JP 8082988A JP H01253648 A JPH01253648 A JP H01253648A
Authority
JP
Japan
Prior art keywords
electrode
hydrophilic polymer
electrode system
biosensor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080829A
Other languages
Japanese (ja)
Other versions
JP2502665B2 (en
Inventor
Shiro Nankai
史朗 南海
Mariko Kawaguri
真理子 河栗
Mayumi Fujita
真由美 藤田
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63080829A priority Critical patent/JP2502665B2/en
Priority to EP89904212A priority patent/EP0359831B2/en
Priority to PCT/JP1989/000337 priority patent/WO1989009397A1/en
Priority to DE68924026T priority patent/DE68924026T3/en
Publication of JPH01253648A publication Critical patent/JPH01253648A/en
Priority to US07445632 priority patent/US5120420B1/en
Application granted granted Critical
Publication of JP2502665B2 publication Critical patent/JP2502665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分について
、試料液を希釈することなく迅速かつ簡便に定量するこ
とのできるバイオセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that can quickly and easily quantify specific components in various minute amounts of biological samples without diluting the sample liquid.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などを行なう事なく簡易に定量しうる方
式として、特開昭61−294351号公報に記載のバ
イオセンサを提案した(第5図)。このバイオセンサは
、絶縁性の基板1上にスクリーン印刷等の方法でカーボ
ンなどからなる電極系8 (8’)、9 (9’ )、
10 (10’)を形成し、この上を酸化還元酵素と電
子受容体を担持した多孔体12で覆い保持枠11とカバ
ー13で全体を一体化したものである。試料液を多孔体
上へ滴下すると、多孔体に担持されている酸化還元酵素
と電子受容体が試料液に溶解し、試料液中の基質との間
で酵素反応が進行し電子受容体が還元される。反応終了
後、この還元された電子受容を電気化学的に酸化し、こ
のとき得られる酸化電流値から試料液中の基質濃度を求
める。
Conventional technology A biosensor described in Japanese Patent Application Laid-Open No. 61-294351 was proposed as a method that allows for easy quantitative determination of specific components in biological samples such as blood without diluting or stirring the sample solution. (Figure 5). This biosensor consists of electrode systems 8 (8'), 9 (9') made of carbon or the like, which are formed by screen printing or the like on an insulating substrate 1.
10 (10'), covered with a porous body 12 carrying an oxidoreductase and an electron acceptor, and integrated with a holding frame 11 and a cover 13. When the sample solution is dropped onto the porous material, the oxidoreductase and electron acceptor supported on the porous material are dissolved in the sample solution, and an enzymatic reaction proceeds with the substrate in the sample solution, causing the electron acceptor to be reduced. be done. After the reaction is completed, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample liquid is determined from the oxidation current value obtained at this time.

発明が解決しようとする課題 この様な従来の構成では、電極系を含む基板面の濡れが
必ずしも一様とならないため、多孔体と基板との間ここ
気泡が残り、応答電流に影響を与えたり反応速度が低下
する場合があった。また、試料液中に、電極に吸着しや
すい物質や電極活性な物質が存在するとセンサの応答こ
こ影響がみうけられた。
Problems to be Solved by the Invention In such a conventional configuration, the wetting of the substrate surface including the electrode system is not necessarily uniform, so air bubbles remain between the porous body and the substrate, which may affect the response current. There were cases where the reaction rate decreased. In addition, the presence of substances that easily adsorb to the electrode or substances that are active on the electrode in the sample liquid affected the response of the sensor.

課題を解決するための手段 本発明は上記課題を解決するため、絶縁性の基板上にカ
ーボンを主体とする少くとも測定極と対極からなる電極
系を設け、電極系トに親水性高分子と酸化還元酵素から
なる酵素反応層を備えたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an electrode system consisting of at least a measuring electrode and a counter electrode mainly made of carbon on an insulating substrate, and a hydrophilic polymer and a hydrophilic polymer are used in the electrode system. It is equipped with an enzyme reaction layer consisting of oxidoreductase.

さらには、絶縁性の基板上に、カーボンを主体とする少
くとも測定極と対極からなる2絹の電極系を設け、一方
の電極系」二に親水性高分子と酸化還元酵素からなる酵
素反応層を備え、他方の電極系上に親水性高分子層ある
いは親水性高分子と失活させた酸化還元酵素からなる層
を備えたものである。
Furthermore, a two-silk electrode system consisting of at least a measuring electrode and a counter electrode, mainly made of carbon, was provided on an insulating substrate, and one electrode system was used for an enzymatic reaction consisting of a hydrophilic polymer and an oxidoreductase. A hydrophilic polymer layer or a layer consisting of a hydrophilic polymer and a deactivated oxidoreductase is provided on the other electrode system.

作用 本発明によれは、極めて容易に精度よく基質濃度を測定
することができ、かつ、保存性に優れたディスポーザア
ルタイブのバイオセンサを構成することができる。
Effect of the Invention According to the present invention, it is possible to construct a disposable biosensor that can extremely easily and accurately measure substrate concentration and has excellent storage stability.

実施例 以下、本発明を実施例により説明する。Example The present invention will be explained below using examples.

(実施例1) バイオセンサの一例として、グルコースセンサについて
説明する。
(Example 1) A glucose sensor will be described as an example of a biosensor.

第1図は本発明のバイオセンサの一実施例として作製し
たグルコースセンサの断面図であり、第2図はセンサ作
製に用いた電極部分を斜視図で示したものである。
FIG. 1 is a cross-sectional view of a glucose sensor produced as an example of the biosensor of the present invention, and FIG. 2 is a perspective view of the electrode portion used in the sensor production.

ポリエチレンテレフタレートからなる絶縁性の基板1に
、スクリーン印刷により銀ペーストを印刷しリード2.
3(3’)を形成する。次に、樹脂バインダーを含む導
電性カーボンペーストを印刷し、加熱乾燥ずろことによ
り、測定極4、対極5からなる電極系を形成する。さら
に、電極系を部分的に覆い、電極の露出部分の面積を一
定とし、かつリードの不要部を覆うように絶縁性ペース
トを印刷し、加熱処理をして絶f、tJW6を形成する
A silver paste is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing to form leads 2.
3 (3') is formed. Next, a conductive carbon paste containing a resin binder is printed and dried by heating to form an electrode system consisting of a measurement electrode 4 and a counter electrode 5. Furthermore, an insulating paste is printed so as to partially cover the electrode system, keep the area of the exposed part of the electrode constant, and cover unnecessary parts of the leads, and is heat-treated to form an insulating paste.

次に、4.5 (5′)の露出部分を研磨後、空気中で
100℃にて4時間熱処理を施した。このようにして電
極部分を構成した後、親水性高分子として、カルボキシ
メチルセルロース(以下CMCと略す)の0. 5wt
%水溶液を電極上へ展開、乾燥しCMC5を形成する。
Next, the exposed portion of 4.5 (5') was polished and then heat treated in air at 100° C. for 4 hours. After constructing the electrode portion in this way, 0.0% of carboxymethyl cellulose (hereinafter abbreviated as CMC) was used as a hydrophilic polymer. 5wt
% aqueous solution is spread on the electrode and dried to form CMC5.

次に、このCMC層を覆うように、酵素としてグルコー
スオキシダーゼ(COD)をリン酸緩衝液に溶解したも
のを展開し、乾燥させ、CMC−CoD層7を形成した
Next, a solution of glucose oxidase (COD) as an enzyme dissolved in a phosphate buffer solution was spread so as to cover this CMC layer, and dried to form a CMC-CoD layer 7.

この場合、CMCとCODは部分的に混合された状態で
厚さ数ミクロンの薄膜状となっている。
In this case, CMC and COD are partially mixed into a thin film having a thickness of several microns.

上記のように構成したグルコースセンサのCMC−GO
DHの上へ試料液としてグルコース標準液を10μm滴
下し、滴下1分後に電極間に1■のパルス電圧を印加す
ることにより、測定極なアノード方向へ分極した。
CMC-GO of the glucose sensor configured as above
A 10 μm glucose standard solution was dropped as a sample solution onto the DH, and 1 minute after the drop, a pulse voltage of 1 μm was applied between the electrodes to polarize it in the direction of the anode, which is the measurement pole.

添加された試料液は酵素、CMCを溶解し粘調な液体と
なりながら電極面上を速やかに拡がり、気泡の残留は認
められなかった。これは、電極上に予め形成された親水
性高分子層により電極面の濡れが向上したことによるも
のと考えられる。
The added sample solution dissolved the enzyme and CMC and quickly spread over the electrode surface while becoming a viscous liquid, and no bubbles remained. This is considered to be due to improved wettability of the electrode surface due to the hydrophilic polymer layer previously formed on the electrode.

一方、添加された試料液中のグルコースは電極上に担持
されたグルコースオキシダーゼの作用で酸素と反応して
過酸化水素を生成する。そこで、上記のアノード方向へ
の電圧印加により、生成し過酸化水素の酸化電流が得ら
れ、この電流値は基質であるグルコースの濃度に対応す
る。
On the other hand, the added glucose in the sample solution reacts with oxygen by the action of glucose oxidase supported on the electrode to generate hydrogen peroxide. Therefore, by applying the voltage in the direction of the anode, an oxidation current of the generated hydrogen peroxide is obtained, and this current value corresponds to the concentration of glucose, which is the substrate.

第3図は、上記構成になるセンサの応答特性の一例とし
て、電圧印加5秒後の電流値とグルコース濃度との関係
を示すものであり、極めて良好な応答性が得られた。
FIG. 3 shows, as an example of the response characteristics of the sensor configured as described above, the relationship between the current value and the glucose concentration 5 seconds after voltage application, and extremely good response was obtained.

(実施例2) 実施例1と同様にしてスクリーン印刷により、第2図に
示した電極部分と同しもの2組をポリエチレンテレフタ
レートからなる1枚の絶縁性の基板上に近接して形成し
た。次に、2組の電極系の上に実施例1と同様にしてC
MCNを形成した後、一方の電極系のCMC層の上にだ
け前記同様にしてCOD−CMCF’を形成した。
(Example 2) In the same manner as in Example 1, two sets of electrode portions identical to those shown in FIG. 2 were formed close to each other on a single insulating substrate made of polyethylene terephthalate by screen printing. Next, C was applied on the two sets of electrode systems in the same manner as in Example 1.
After forming MCN, COD-CMCF' was formed in the same manner as above only on the CMC layer of one electrode system.

上記の様にして得られた2組の電極系を有するグルコー
スセンサについて、各々の電極系の上へ種々の濃度のア
スコルビン酸を含むグルコース標準液(200mg/ 
d l )を滴下し、実施例1と同様に、1分後に1■
の電圧を印加し、5秒後の電流値を測定した。結果を第
4図に示す。CMC−C0D層の電極系の出力をAで、
また、CMC層だけの電極系の出力(ブランク出力)を
Bでそれぞれ示す。図より明らかなように、への出力は
アスコルビン酸の濃度増加とともに増大し、一方Bの出
力も同様な増加がみられる。これはアスコルビン酸に対
する各々の電極系の感度がほぼ等しいことを示している
。これより、両電極系の出力の差(A−B)を検出する
とグルコースに基く電流値が得られる。すなわち、2紺
の電極系を用いることにより電極活性な物質による誤差
を大幅に低減することができる。 この様な効果はアス
コルビン酸以外にも、尿酸などについても認められた。
Regarding the glucose sensor having two sets of electrode systems obtained as described above, a glucose standard solution containing various concentrations of ascorbic acid (200 mg/kg) was poured onto each electrode system.
dl) was added dropwise, and as in Example 1, after 1 minute, 1■
A voltage of 5 seconds was applied, and the current value was measured 5 seconds later. The results are shown in Figure 4. The output of the electrode system of the CMC-C0D layer is A,
Further, the output (blank output) of the electrode system including only the CMC layer is indicated by B. As is clear from the figure, the output of B increases with increasing concentration of ascorbic acid, while the output of B also shows a similar increase. This indicates that the sensitivity of each electrode system to ascorbic acid is approximately equal. From this, when the difference (A-B) between the outputs of both electrode systems is detected, a current value based on glucose can be obtained. That is, by using a two-dark blue electrode system, errors caused by electrode active substances can be significantly reduced. Such effects were observed not only with ascorbic acid but also with uric acid.

この様に、2組の電極系を設け、一方の電極系に親水性
高分子−酵素層、他方の電極系に親水性高分子層だけを
形成して、センサを構成することにより、妨害物質を含
む試料液中の基質濃度を精度よく測定することができる
In this way, two sets of electrode systems are provided, one electrode system is formed with a hydrophilic polymer-enzyme layer, and the other electrode system is formed with only a hydrophilic polymer layer to form a sensor. It is possible to accurately measure the substrate concentration in a sample solution containing .

上記において、両方の電極系にCMC−C0D層を形成
した後、一方の電極系についてのみレーザ照射による局
部加熱、紫外線照射などを施すことによりCODを失活
させて、ブランク出力用の電極系としても良い。こうす
ると酵素活性以外は両電極系の構成が同一となり、両電
極系の妨害物質による出力電流をざらによく一致させる
ことができ、センサ検出精度を向上することができる。
In the above, after forming a CMC-C0D layer on both electrode systems, only one electrode system is subjected to local heating by laser irradiation, ultraviolet irradiation, etc. to deactivate the COD, and then used as an electrode system for blank output. Also good. In this case, the configurations of both electrode systems are the same except for the enzyme activity, and the output currents of the two electrode systems due to the interfering substance can be roughly matched, and the sensor detection accuracy can be improved.

また、以上の実施例においては電極部分が測定極と対極
の2電極からなる電極系について述べたが、電極系を銀
/塩化銀を加えた3電極から構成することにより、さら
に精度を向上することができる。電極系を構成する方法
の一例としては、3本の銀リードを基板上に印刷した後
、2本のリード先端部の−Lにだけカーボンペーストを
印刷し、絶縁層をコートした後、銀が露出している残り
1本のリード先端部について、その表面を処理して塩化
銀を形成し、銀/塩化銀電極とするなどかある。
Furthermore, in the above embodiments, an electrode system was described in which the electrode part consisted of two electrodes, a measurement electrode and a counter electrode, but the accuracy could be further improved by configuring the electrode system from three electrodes including silver/silver chloride. be able to. An example of a method for constructing an electrode system is to print three silver leads on a substrate, print carbon paste only on the -L ends of the two leads, coat with an insulating layer, and then apply silver to the substrate. The surface of the remaining exposed lead tip may be treated to form silver chloride to form a silver/silver chloride electrode.

親水性高分子としてはCMCの他にゼラチンやメチルセ
ルロースなども使用でき、デンプン系、カルボキシメチ
ルセルロース系、ゼラチン系、アクリル酸塩系、ビニル
アルコール系、ビニルピロリドン系、無水マレイン酸系
のものが好ましい。
In addition to CMC, gelatin, methylcellulose, and the like can be used as the hydrophilic polymer, and starch, carboxymethylcellulose, gelatin, acrylate, vinyl alcohol, vinylpyrrolidone, and maleic anhydride are preferred.

これらの吸水性あるいは水溶性の親水性高分子を適当な
濃度の溶液にしたものを塗布、乾燥することにより、必
要な膜厚の親水性高分子層を電極上に形成することがで
きる。
By coating and drying a solution of these water-absorbing or water-soluble hydrophilic polymers at an appropriate concentration, a hydrophilic polymer layer with a required thickness can be formed on the electrode.

さらに、酸化還元酵素としては上記実施例に示したグル
コースオキシダーゼに限定されることはなく、アルコー
ルオキシダーゼやコレステロールオキシダーゼなど種々
の酵素を用いることができ発明の効果 以上のように、本発明のバイオセンサは、電極系上に親
水性高分子と酸化還元酵素からなる酵素反応層を形成す
ることにより、また、さらには2糾の電極系を設け、一
方の電極系上に親水性高分子と酸化還元酵素からなる酵
素反応層を、他方の電極系上に親水性高分子層あるいは
親水性高分子と失活させた酸化還元酵素からなる層をそ
れぞれ形成することにより、信頼性の高い応答を得るこ
とができる。さらに、電子受容体を担持する必要がない
ため、簡略な構成とすることができ、安価で保存性に優
れたバイオセンサを提供することができる。
Furthermore, the oxidoreductase is not limited to the glucose oxidase shown in the above example, and various enzymes such as alcohol oxidase and cholesterol oxidase can be used. By forming an enzyme reaction layer consisting of a hydrophilic polymer and an oxidoreductase on an electrode system, and furthermore, by providing two electrode systems, a hydrophilic polymer and a oxidation-reduction enzyme are placed on one electrode system. A highly reliable response can be obtained by forming an enzyme reaction layer consisting of an enzyme and a hydrophilic polymer layer or a layer consisting of a hydrophilic polymer and an inactivated redox enzyme on the other electrode system. Can be done. Furthermore, since there is no need to carry an electron acceptor, the structure can be simplified, and a biosensor that is inexpensive and has excellent storage stability can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるバイオセンサの断面図
、第2図は電極部分の斜視図、第3図および第4図はバ
イオセンサの応答特性図、第5図は従来のバイオセンサ
の分解斜視図である。 1・・・・・・絶縁性の基板、2. 3. 3’・・・
・・・リード、/L、  9. 9’・・・・・・測定
極、5. 5’、  8. 8’・・・・・・対極、6
・・・・・・絶縁層、7・・・・・・CMC−(’;O
D層、10.10’・・・・・・参照極、11・・・・
・・保持枠、12・・・・・・多孔体、13・・・・・
・カバー。 代理人の氏名 弁理士 中尾敏男 はか1名第3図 第4図 第5図 0tθ   π   30   41)アスコルヒン欧
湯湾賓へη〃9 18・
Fig. 1 is a cross-sectional view of a biosensor that is an embodiment of the present invention, Fig. 2 is a perspective view of the electrode portion, Figs. 3 and 4 are response characteristic diagrams of the biosensor, and Fig. 5 is a conventional biosensor. FIG. 3 is an exploded perspective view of the sensor. 1...Insulating substrate, 2. 3. 3'...
...Lead, /L, 9. 9'...Measurement pole, 5. 5', 8. 8'・・・opposite, 6
...Insulating layer, 7...CMC-(';O
D layer, 10.10'...Reference electrode, 11...
... Holding frame, 12 ... Porous body, 13 ...
·cover. Name of agent Patent attorney Toshio Nakao 1 person Figure 3 Figure 4 Figure 5 0tθ π 30 41) Askolhin Oyuwanbin η〃9 18・

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性の基板上に、カーボンを主体とする少くと
も測定極と対極からなる電極系を設け、前記電極系上に
親水性高分子と酸化還元酵素からなる酵素反応層を備え
たことを特徴とするバイオセンサ。
(1) An electrode system consisting of at least a measurement electrode and a counter electrode mainly made of carbon is provided on an insulating substrate, and an enzyme reaction layer consisting of a hydrophilic polymer and an oxidoreductase is provided on the electrode system. A biosensor featuring:
(2)絶縁性の基板上に、カーボンを主体とする少くと
も測定極と対極からなる2組の電極系を設け、一方の電
極系上に親水性高分子と酸化還元酵素からなる酵素反応
層を備え、他方の電極系上に親水性高分子層あるいは親
水性高分子と失活させた酸化還元酵素からなる層を備え
たことを特徴とするバイオセンサ。
(2) Two sets of electrode systems consisting of at least a measurement electrode and a counter electrode mainly made of carbon are provided on an insulating substrate, and an enzyme reaction layer consisting of a hydrophilic polymer and an oxidoreductase is placed on one electrode system. A biosensor comprising: a hydrophilic polymer layer or a layer consisting of a hydrophilic polymer and an inactivated redox enzyme on the other electrode system.
(3)電極系が、カーボンを主体とする測定極と対極お
よび銀/塩化銀参照極からなる参照極であることを特徴
とする請求項1または2に記載のバイオセンサ。
(3) The biosensor according to claim 1 or 2, wherein the electrode system is a reference electrode consisting of a measurement electrode and a counter electrode mainly made of carbon, and a silver/silver chloride reference electrode.
JP63080829A 1988-03-31 1988-03-31 Biosensor Expired - Lifetime JP2502665B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63080829A JP2502665B2 (en) 1988-03-31 1988-03-31 Biosensor
EP89904212A EP0359831B2 (en) 1988-03-31 1989-03-30 Biosensor and process for its production
PCT/JP1989/000337 WO1989009397A1 (en) 1988-03-31 1989-03-30 Biosensor and process for its production
DE68924026T DE68924026T3 (en) 1988-03-31 1989-03-30 BIOSENSOR AND ITS MANUFACTURE.
US07445632 US5120420B1 (en) 1988-03-31 1989-11-27 Biosensor and a process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080829A JP2502665B2 (en) 1988-03-31 1988-03-31 Biosensor

Publications (2)

Publication Number Publication Date
JPH01253648A true JPH01253648A (en) 1989-10-09
JP2502665B2 JP2502665B2 (en) 1996-05-29

Family

ID=13729303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080829A Expired - Lifetime JP2502665B2 (en) 1988-03-31 1988-03-31 Biosensor

Country Status (1)

Country Link
JP (1) JP2502665B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340915A (en) * 1991-10-18 1993-12-24 Matsushita Electric Ind Co Ltd Biosensor and measuring method using the same
JPH06109692A (en) * 1992-09-25 1994-04-22 A & D Co Ltd Oxygen electrode
US5332479A (en) * 1991-05-17 1994-07-26 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
JPH08327587A (en) * 1995-05-31 1996-12-13 Nec Corp Manufacture of biosensor element
US6997343B2 (en) 2001-11-14 2006-02-14 Hypoguard Limited Sensor dispensing device
JP2006275819A (en) * 2005-03-29 2006-10-12 Cci Corp Biosensor
US7250095B2 (en) * 2002-07-11 2007-07-31 Hypoguard Limited Enzyme electrodes and method of manufacture
US7264139B2 (en) 2003-01-14 2007-09-04 Hypoguard Limited Sensor dispensing device
US7431814B2 (en) 1995-11-16 2008-10-07 Lifescan, Inc. Electrochemical cell
US7604722B2 (en) 1995-06-19 2009-10-20 Lifescan, Inc. Electrochemical cell
USRE42567E1 (en) 1995-11-16 2011-07-26 Lifescan, Inc. Electrochemical cell
JP2013242171A (en) * 2012-05-18 2013-12-05 Tanita Corp Concentration measuring apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332479A (en) * 1991-05-17 1994-07-26 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5382346A (en) * 1991-05-17 1995-01-17 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5496453A (en) * 1991-05-17 1996-03-05 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
JPH05340915A (en) * 1991-10-18 1993-12-24 Matsushita Electric Ind Co Ltd Biosensor and measuring method using the same
JPH06109692A (en) * 1992-09-25 1994-04-22 A & D Co Ltd Oxygen electrode
JPH08327587A (en) * 1995-05-31 1996-12-13 Nec Corp Manufacture of biosensor element
US7608175B2 (en) 1995-06-19 2009-10-27 Lifescan, Inc. Electrochemical cell
US7604722B2 (en) 1995-06-19 2009-10-20 Lifescan, Inc. Electrochemical cell
USRE44330E1 (en) 1995-06-19 2013-07-02 Lifescan Inc. Electrochemical cell
US7431814B2 (en) 1995-11-16 2008-10-07 Lifescan, Inc. Electrochemical cell
USRE42567E1 (en) 1995-11-16 2011-07-26 Lifescan, Inc. Electrochemical cell
US9075004B2 (en) 1996-06-19 2015-07-07 Lifescan, Inc. Electrochemical cell
US6997343B2 (en) 2001-11-14 2006-02-14 Hypoguard Limited Sensor dispensing device
US7250095B2 (en) * 2002-07-11 2007-07-31 Hypoguard Limited Enzyme electrodes and method of manufacture
US7264139B2 (en) 2003-01-14 2007-09-04 Hypoguard Limited Sensor dispensing device
JP2006275819A (en) * 2005-03-29 2006-10-12 Cci Corp Biosensor
JP2013242171A (en) * 2012-05-18 2013-12-05 Tanita Corp Concentration measuring apparatus

Also Published As

Publication number Publication date
JP2502665B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP3297630B2 (en) Biosensor
JP3267936B2 (en) Biosensor
JP2838484B2 (en) Biosensor for gas measurement and method for producing the same
US6033866A (en) Highly sensitive amperometric bi-mediator-based glucose biosensor
JP2502635B2 (en) Biosensor
JPH01291153A (en) Biosensor
JP2001183330A (en) Biosensor
WO2002008743A1 (en) Biosensor
JPWO2002097418A1 (en) Biosensor
JPH02310457A (en) Biosensor
JPH1142098A (en) Substrate quantification method
JPWO2002093151A1 (en) Biosensor
JPH0262952A (en) Biosensor and its production
JPH01114746A (en) Biosensor
US20050164328A1 (en) Substrate determining method
JPH01253648A (en) biosensor
JPH0816664B2 (en) Biosensor and manufacturing method thereof
JP3267933B2 (en) Substrate quantification method
JPH06109693A (en) Biosensor and measuring method using the same
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
KR20210112008A (en) Biosensors and preparing method therefor
JPS63317096A (en) biosensor
JP2001249103A (en) Biosensor
JPH0820400B2 (en) Biosensor
JP3267907B2 (en) Biosensor and Substrate Quantification Method Using It

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载