JPH0670676B2 - Lightning strike prediction device - Google Patents
Lightning strike prediction deviceInfo
- Publication number
- JPH0670676B2 JPH0670676B2 JP1211667A JP21166789A JPH0670676B2 JP H0670676 B2 JPH0670676 B2 JP H0670676B2 JP 1211667 A JP1211667 A JP 1211667A JP 21166789 A JP21166789 A JP 21166789A JP H0670676 B2 JPH0670676 B2 JP H0670676B2
- Authority
- JP
- Japan
- Prior art keywords
- zero
- lightning strike
- waveform
- phase current
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
【産業上の利用分野】 この発明は配電系統の配電線を利用して雷雲の接近,落
雷等の雷の襲雷を予知する襲雷予知装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightning strike predicting device that predicts a lightning strike such as a thundercloud approaching or a lightning strike using a distribution line of a distribution system.
第6図はこの発明を適用し得る従来の故障検出を行うよ
うにした配電系統を示すブロック図であり、図におい
て、1は配電用変電所に設けられた主変圧器、2は主変
圧器1から出力される電力が供給される母線、L1〜Lnは
母線2を介して上記電力の供給を受ける配電線、GPTは
母線2に接続された接地用変圧器、OVGは接地用変圧器G
PTから得られる零相電圧V0により動作される地絡過電圧
リレーである。 CB1〜CBnは配電線L1〜Lnに設けられたしゃ断器、CTs1〜
CTsnは配電線L1〜Lnに設けられた変流器、S1〜Snは変流
器CTs1〜CTsnを流れる電流により動作される過電流リレ
ー、ZCT1〜ZCTnは配電線L1〜Lnに設けられた零相変流
器、G1〜Gnは上記零相変流器ZCT1〜ZCTnを流れる電流と
上記零相電圧V0とにより動作される地絡方向リレー、SS
11〜SSn1,SS12〜SSn2は配電線L1〜Lnの所定区間毎に設
けられた区分開閉器である。 第7図は上記しゃ断器CB1〜CBnを動作させる駆動回路を
示すブロック図であり、図において、AND1〜ANDnは、一
方の入力端子に上記地絡過電圧リレーOVGの動作時に得
られるOVG動作信号が加えられると共に、他方の入力端
子に上記地絡過方向リレーG1〜Gnの動作時に得られるG1
動作信号〜Gn動作信号がそれぞれ加えられるアンドゲー
ト、T1〜TnはアンドゲートAND1〜ANDnの出力で駆動され
て、しゃ断器CB1〜CBnへ一定時間後にCB1トリップ信号
〜CBnトリップ信号を出力するタイマー回路である。 次に動作について説明する。各配電線L1〜Lnには、母線
2を介して配電用変電所の主変圧器1より電力が供給さ
れ、この電力はしゃ断器CB1〜CBnを通じて各配電線L1〜
Lnの区分開閉器SS11〜SSn1,SS12〜SSn2で区分される各
区間に接続された負荷に供給される。この状態におい
て、例えば、配電線L1において地絡事故が生じたとす
る。これにより、接地用変圧器GPTに接続された限流抵
抗器より零相電圧V0が得られ、このため地絡過電圧リレ
ーOVGが動作して、OVG動作信号が出力される。これと共
に、例えば零相変流器XCT1からの零相電流により地絡方
向リレーG1が動作し、G1動作信号が出力される。上記OV
G動作信号及びG1動作信号は、第7図のアンドゲートAND
1に加えられ、そのアンド出力によりタイマー回路T1が
動作されて、CB1トリップ信号が出力される。このCB1ト
リップ信号はしゃ断器CB1に送られ、これによってしゃ
断器CB1が動作して、配電線L1が母線2から切り離され
る。FIG. 6 is a block diagram showing a conventional power distribution system to which the present invention can be applied, and in the figure, 1 is a main transformer provided in a distribution substation, and 2 is a main transformer. 1 is a bus to which the power output is supplied, L 1 to L n are distribution lines that receive the above power via the bus 2, GPT is a grounding transformer connected to the bus 2, OVG is a grounding transformer Bowl G
It is a ground fault overvoltage relay operated by zero-phase voltage V 0 obtained from PT. CB 1 to CB n are circuit breakers installed on distribution lines L 1 to L n , CT s1 to
CT sn is a current transformer provided on the distribution lines L 1 to L n , S 1 to S n is an overcurrent relay operated by the current flowing through the current transformer CT s1 to CT sn , and ZCT 1 to ZCT n are Zero-phase current transformers provided on the wires L 1 to L n , G 1 to G n are ground faults operated by the current flowing through the zero-phase current transformers ZCT 1 to ZCT n and the zero-phase voltage V 0. Directional relay, SS
11 to SS n1 and SS 12 to SS n2 are section switches provided at predetermined intervals of the distribution lines L 1 to L n . FIG. 7 is a block diagram showing a drive circuit for operating the circuit breakers CB 1 to CB n . In the figure, AND 1 to AND n are obtained when one of the input terminals operates the ground fault overvoltage relay OVG. with OVG operation signal is applied, G 1 obtained at the operation of the ground fault over-direction relay G 1 ~G n to the other input terminal
AND gate operation signal ~G n operation signals are applied respectively, T 1 through T n is driven by the output of the AND gate AND 1 ~AND n, CB 1 trip signal-after a certain time to breaker CB 1 to CB n CB n A timer circuit that outputs a trip signal. Next, the operation will be described. Each distribution line L 1 ~L n, the power from the main transformer 1 of distribution substation is supplied via the bus 2, the power in each distribution line L 1 ~ through breaker CB 1 to CB n
It is supplied to the load connected to each section divided by L n division switches SS 11 to SS n1 and SS 12 to SS n2 . In this state, for example, assume that a ground fault has occurred in the distribution line L 1 . As a result, the zero-phase voltage V 0 is obtained from the current limiting resistor connected to the grounding transformer GPT, so that the ground fault overvoltage relay OVG operates and the OVG operation signal is output. At the same time, the ground fault direction relay G 1 is operated by the zero-phase current from the zero-phase current transformer XCT 1 , for example, and the G 1 operation signal is output. Above OV
The G operation signal and the G 1 operation signal are the AND gate AND of FIG.
In addition to 1 , the AND circuit operates the timer circuit T 1 to output the CB 1 trip signal. The CB 1 trip signal is sent to the circuit breaker CB 1, which breaker CB 1 operates by power distribution line L 1 is disconnected from the bus 2.
従来の配電系統は以上のように構成されているので、地
絡、短絡等の故障を検出することはできるが、配電線に
雷が襲雷することを充分に予知することができない等の
問題点があった。 この発明は上記のような問題点を解消するために成され
たもので、配電系統に襲雷があり得る状態にあることを
予知することのできる襲雷予知装置を得ることを目的と
する。Since the conventional power distribution system is configured as described above, it is possible to detect faults such as ground faults and short circuits, but it is not possible to fully predict that lightning will strike the distribution line. There was a point. The present invention has been made to solve the above problems, and an object of the present invention is to obtain a lightning strike prediction apparatus capable of predicting that a power distribution system is in a state where a lightning strike may occur.
この発明に係る襲雷予知装置は、配電線に設けられた零
相電圧検出器及び零相電流検出器によりそれぞれ検出さ
れた零相電流,零相電圧の波形を解析した入力波形解析
データと、予め登録された襲雷時の零相電流,零相電圧
の波形解析データとを照合し、入力波形解析データが所
定の条件を満したとき、襲雷予知信号を出力するように
したものである。The lightning strike prediction apparatus according to the present invention is an input waveform analysis data obtained by analyzing the waveforms of a zero-phase current and a zero-phase voltage respectively detected by a zero-phase voltage detector and a zero-phase current detector provided on a distribution line, The pre-registered waveform analysis data of zero-phase current and zero-phase voltage at the time of a lightning strike is collated, and when the input waveform analysis data satisfies a predetermined condition, a lightning strike prediction signal is output. .
この発明における襲雷予知装置は、実際に配電系統に直
雷がある前に襲雷があり得る状況にあることを知ること
ができるので、事前に対策を講じることができる。The lightning strike prediction apparatus according to the present invention can know that there is a possibility of a lightning strike before there is a direct lightning strike in the distribution system, and therefore can take measures beforehand.
以下、この発明の一実施例を図について説明する。第1
図においては第6図と対応する部分には同一符号を付し
て説明を省略する。ZCT01〜ZCT0nは各配電線L1〜Lnに設
けられた襲雷予知検出用の零相電流検出器(以下零相変
流器と記す)で、それぞれ零相電流I01〜I0nを出力す
る。I1〜Inは線電流検出変流器CT1〜CTnの出力電流、3
は襲雷予知演算部で、上記各電流I01〜I0n,I1〜Inが加
えられると共に、零相電圧検出器(以下接地用変圧器と
記す)GPTから得られる零相電圧V0及び2次側の線間電
圧Vsが加えられる。14は襲雷演算部3の演算結果を表示
するCRT等から成る表示装置である。 第2図は襲雷予知演算部3の構成を示すブロック図であ
り、第2図において、4は上記各電流I01〜I0n,I1〜In
及び各電圧V0,Vsを所定周期でサンプリングして保持す
るサンプルホールド回路、5はサンプルホールド回路4
のサンプル値を順次に取り出すマルチプレクサ、6はマ
ルチプレクサ5から順次に得られる各サンプル値をディ
ジタルデータに変換するA/D変換器、7はRAMから成るメ
モリで、A/D変換器6から出力される各零相電流I01〜I
0n及び電圧V0,Vsの入力波形データと、この入力波形デ
ータを波形解析した入力波形解析データとから成る入力
データが書き込まれる。 8はROMから成るメモリで、襲雷時における各配電線L1
〜Lnの零相電流,零相電圧の特異波形データ及びその波
形解析データから成る襲雷時データが格納されている。 9はメモリ7のデータとメモリ8のデータとを照合し
て、所定の演算処理を行うCPU、10はCPU9の演算処理プ
ログラムが格納されたプログラムメモリ、11はCPU9と各
部とを接続するバスライン、12はCPU9の演算結果に基い
て表示装置14を制御するコントローラ、13はCPU9の演算
結果による襲雷予知信号を出力するためのプロセス入出
力回路である。 次に動作について説明する。各配電線L1〜Lnにおける零
相変流器ZCT01〜ZCT0nから得られる零相電流I01〜I
0nと、接地用変圧器GPTから得られる零相電圧V0、線間
電圧Vsは襲雷予知演算部3に送られ、サンプルホールド
回路4でサンプリングされる。第3図は零相電流I01,I
02を例として、サンプリングの様子を示すもので、それ
ぞれ所定周期でサンプリングされることにより、I01に
ついてはサンプル値D11〜D1nが得られ、I02については
サンプル値D21〜D2nが得られる。これらのサンプル値は
マルチプレクサ5により順次に取り出され、次にA/D変
換器6でディジタルデータに変換された後、メモリ7に
書き込まれる。 一方、メモリ8には、第4図に示すように襲雷時におけ
る各零相電流I01〜Ion,零相電圧V0,線間電圧Vsの波形
に基づいて得られる波形データとその波形解析データと
から成る襲雷時データが格納されている。襲雷時には、
一般に第4図(A)に示すように、I01〜Ionは略一定で、
V0のみが+側に現われて変化する場合と、同図(C)のよ
うに、I01〜Ionは略一定で、V0のみが−側で現われて変
化する場合と、同図(D)のようにI01〜IonとV0が共に変
化する場合とがある。上記襲雷時データは上記の3つの
場合について、I01〜Ion,V0及びVsの波形データとその
波形解析データとから成っている。波形解析データは波
形データの特徴を解析したもので、例えば、I01〜Ion,
I1〜In,V0の各波形の基本波実効値、継続時間、波高値
(p−p値)、直流分の大きさ、高調波f1〜fn成分の大
きさ、V0とI01〜Ionとの各位相角等の数項目について解
析したものである。なお、第4図(B)は同図(A)の具体
的な波形解析データを示す。 CPU9はメモリ7の入力データとメモリ8の襲雷時データ
とを照合し、第5図に示す予知検出ロジックを用いて襲
雷予知のための演算を行う。第5図において、先ず、入
力データのI01〜I0nが変化しない場合について、入力デ
ータのV0が図示の(0)〜(4)の各条件を満たしているか
否かを調べる。即ち、(0)V0の波形のp−p値が一定値
以上となっているか、(1)V0の波形が一定時間以上継続
しているか、(2)V0の基本波の実効値が一定値以上とな
っているか、(3)V0の直流レベルが一定値以上となって
いるか、(4)V0のf1〜fnの各高調波の実効値がそれぞれ
設定範囲内にあるか、を調べる。そして上記(0)〜(4)
の各条件が全部YESであれば、襲雷があるものとしてOR
ゲートを通じて襲雷予知信号を出力する。 次に、I01〜I0nが変化した場合について、 V0が上記(0)〜(4)の各条件を満たしているか調べると
共に、I01〜I0nについて、それぞれ上記(0)〜(4)の条
件を満たしているか調べる。I01〜I0nについて各条件が
満たされていたときは、次にI01〜I0nの発生時にV0のdv
/dtが一定値以上で変化したか否かを判断し、V0の変化
が一定値より小さければ無処理とする。V0の変化が一定
値以上であり、且つV0の(0)〜(4)の各条件が全部YES
であれば襲雷があるものとして、ANDゲート及びORゲー
トを通じて襲雷予知信号を出力する。 また襲雷予知信号を出力するときは、その内容を表示装
置14で表示する。表示の内容としては、例えば電流,電
圧の波形,襲雷が予知される配電線名、予知検出時刻,
波形解析データ等が必要に応じて表示される。 尚、上記実施例では襲雷予知装置を配電用変電所に設け
た例を述べたが、配電線上例えば区分開閉器の設置箇所
に設けても、あるいは検出部のみを当該設置箇所に設け
ても同様の効果を奏する。 又、零相電圧、零相電流の検出器として専用の接地用変
圧器、零相変流器を用いたが既設設備を流用しても又、
光センサ等の他の検出方式の検出器を用いても同様の効
果を奏する。An embodiment of the present invention will be described below with reference to the drawings. First
In the figure, the portions corresponding to those in FIG. ZCT 01 ~ZCT 0n the zero-phase current detector for lightning strike prediction detection provided for each distribution line L 1 ~L n (hereinafter referred to as zero-phase current transformer), the zero-phase current, respectively I 01 ~I 0n Is output. I 1 ~I n is the line current detector current transformer CT 1 to CT n of the output current, 3
The lightning strike prediction computation unit, each of the current I 01 ~I 0n, I 1 ~I n together are added, (hereinafter referred to as grounding transformer) zero-phase voltage detector zero-phase voltage V 0 obtained from GPT And the secondary line voltage Vs is applied. Reference numeral 14 is a display device including a CRT or the like for displaying the calculation result of the lightning strike calculation unit 3. Figure 2 is a block diagram showing the structure of a lightning strike prediction computation unit 3 in FIG. 2, 4 each of the above current I 01 ~I 0n, I 1 ~I n
And a sample hold circuit 5 for sampling and holding each voltage V 0 , Vs at a predetermined cycle, and 5 is a sample hold circuit 4.
, 6 is an A / D converter that converts each sample value sequentially obtained from the multiplexer 5 into digital data, and 7 is a memory composed of RAM, which is output from the A / D converter 6. Zero-phase current I 01 to I
Input data composed of input waveform data of 0n and voltages V 0 and Vs and input waveform analysis data obtained by performing a waveform analysis of the input waveform data is written. 8 is a memory consisting of ROM, each distribution line L 1 at the time of a lightning strike
Stores the lightning strike data consisting of the unique waveform data of zero-phase current and zero-phase voltage of ~ L n and the waveform analysis data. 9 is a CPU that collates the data in the memory 7 with the data in the memory 8 to perform a predetermined arithmetic processing, 10 is a program memory in which the arithmetic processing program of the CPU 9 is stored, 11 is a bus line that connects the CPU 9 and each unit. , 12 is a controller for controlling the display device 14 based on the calculation result of the CPU 9, and 13 is a process input / output circuit for outputting a lightning strike prediction signal based on the calculation result of the CPU 9. Next, the operation will be described. Zero-phase currents I 01 to I obtained from zero-phase current transformers ZCT 01 to ZCT 0n in each distribution line L 1 to L n
0n , the zero-phase voltage V 0 and the line voltage Vs obtained from the grounding transformer GPT are sent to the lightning strike prediction calculation unit 3 and sampled by the sample hold circuit 4. Fig. 3 shows zero-phase currents I 01 , I
02 shows an example of sampling, and sampled values D 11 to D 1n for I 01 and sampled values D 21 to D 2n for I 02 are obtained by sampling at a predetermined cycle. can get. These sample values are sequentially taken out by the multiplexer 5, converted into digital data by the A / D converter 6, and then written in the memory 7. On the other hand, in the memory 8, as shown in FIG. 4, waveform data obtained based on the waveforms of the zero-phase currents I 01 to I on , the zero-phase voltage V 0 , and the line voltage Vs at the time of a lightning strike and the waveforms thereof. Lightning strike data consisting of analysis data is stored. During a lightning strike,
Generally, as shown in FIG. 4 (A), I 01 to I on are substantially constant,
In the case where only V 0 appears on the + side and changes, as in the same figure (C), I 01 to I on are substantially constant, and only V 0 appears and changes on the − side, the same figure ( In some cases, I 01 to I on and V 0 both change as in D). The above-mentioned lightning strike data is composed of waveform data of I 01 to I on , V 0 and Vs and waveform analysis data thereof for the above three cases. The waveform analysis data is obtained by analyzing the characteristics of the waveform data. For example, I 01 to I on ,
I 1 ~I n, the fundamental effective value of the waveform of V 0, duration, peak value (p-p value), the DC component size, harmonics f 1 ~f n component size, to V 0 It is an analysis of several items such as each phase angle of I 01 to I on . Note that FIG. 4 (B) shows the specific waveform analysis data of FIG. 4 (A). The CPU 9 collates the input data of the memory 7 with the data at the time of the lightning strike of the memory 8, and uses the prediction detection logic shown in FIG. In FIG. 5, first, when I 01 to I 0n of the input data does not change, it is examined whether or not V 0 of the input data satisfies the conditions (0) to (4) shown in the drawing. That is, whether the pp value of the waveform of (0) V 0 is a certain value or more, (1) the waveform of V 0 continues for a certain time or more, (2) the effective value of the fundamental wave of V 0 Is above a certain value, (3) The DC level of V 0 is above a certain value, (4) The effective value of each harmonic of f 1 to f n of V 0 is within the setting range. Check if there is. And the above (0) to (4)
If all of the conditions are YES, then there is a lightning strike and OR
A lightning strike prediction signal is output through the gate. Next, in the case where I 01 to I 0n are changed, it is checked whether V 0 satisfies each of the above conditions (0) to (4), and I 01 to I 0n are respectively described above (0) to (4). ) Check if the conditions are met. I 01 ~I when each condition is satisfied for 0n is then I 01 ~I 0n dv of V 0 at the time of the
It is determined whether or not / dt has changed by a certain value or more, and if the change in V 0 is less than the certain value, no processing is performed. The change in V 0 is more than a certain value, and all the conditions (0) to (4) of V 0 are YES.
If there is a lightning strike, the lightning strike prediction signal is output through the AND gate and the OR gate. When outputting a lightning strike prediction signal, the content is displayed on the display device 14. The contents of the display include, for example, current and voltage waveforms, the name of the distribution line that predicts a lightning strike, the prediction detection time,
Waveform analysis data and the like are displayed as needed. In the above embodiment, an example in which the lightning strike prediction device is provided in the distribution substation has been described. Has the same effect. In addition, the dedicated grounding transformer and zero-phase current transformer were used as the zero-phase voltage and zero-phase current detectors, but the existing equipment can also be used.
The same effect can be obtained by using a detector of another detection method such as an optical sensor.
以上のように、この発明によれば、配電線系統の零相電
流,零相電圧の波形解析データと、予め登録されている
襲雷時の波形解析データとを照合して、所定の条件が揃
ったとき襲雷予知信号を出力するように構成したので、
襲雷を予知して対策を講じることができる効果がある。As described above, according to the present invention, the waveform analysis data of the zero-phase current and the zero-phase voltage of the distribution line system and the waveform analysis data of the pre-registered lightning strike are collated, and the predetermined condition is met. Since it is configured to output a lightning strike prediction signal when aligned,
It is effective in predicting a lightning strike and taking measures.
第1図はこの発明の一実施例による襲雷予知装置を示す
ブロック図、第2図は同装置の襲雷予知演算部のブロッ
ク図、第3図は同装置の電流のサンプリングの状態を示
す波形図、第4図(A),(C),(D)は同装置の襲雷時に
おける電流,電圧の波形図、第4図(B)は波形解析デー
タ図、第5図は同装置の予知検出ロジックを示すブロッ
ク図、第6図は従来の配電系統を示すブロック図、第7
図は同配電系統のしゃ断器の駆動回路を示すブロック図
である。 2は母線、L1〜Lnは配電線、GPTは接地用変圧器、ZCT01
〜ZCT0nは零相変流器、3は襲雷予知演算部、7,8はメモ
リ、9はCPU。 なお、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a block diagram showing a lightning strike prediction device according to an embodiment of the present invention, FIG. 2 is a block diagram of a lightning strike prediction calculation unit of the same device, and FIG. 3 is a current sampling state of the device. Waveform diagrams, FIGS. 4 (A), (C), and (D) are waveform diagrams of current and voltage at the time of lightning strike of the device, FIG. 4 (B) is waveform analysis data diagram, and FIG. 5 is the device. FIG. 6 is a block diagram showing the prediction detection logic of FIG. 6, FIG. 6 is a block diagram showing a conventional power distribution system, and FIG.
The figure is a block diagram showing a drive circuit of a circuit breaker of the same power distribution system. 2 is a bus bar, L 1 to L n are distribution lines, GPT is a grounding transformer, ZCT 01
~ ZCT 0n is a zero-phase current transformer, 3 is a lightning strike prediction calculation unit, 7 and 8 are memories, and 9 is a CPU. In the drawings, the same reference numerals indicate the same or corresponding parts.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 海老坂 敏信 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社制御製作所内 (72)発明者 諫早 啓司 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社制御製作所内 (56)参考文献 特開 昭57−145523(JP,A) 特開 平2−165092(JP,A) 実開 昭62−145179(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshinobu Ebisaka 1-2-2 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Electric Corporation Control Works (72) Inventor Keiji Isahaya Kazu, Hyogo-ku, Kobe-shi, Hyogo 1-2-1 Tasakicho Mitsubishi Electric Co., Ltd. Control Mfg. Co., Ltd. (56) Reference JP-A-57-145523 (JP, A) JP-A-2-165092 (JP, A) SAI-62-145179 (JP , U)
Claims (1)
する配電系統において、系統の零相電圧を検出する零相
電圧検出器と、系統の零相電流を検出する零相電流検出
器と、上記零相電圧検出器及び零相電流検出器の各出力
に基いて上記零相電圧及び零相電流の各波形を解析した
入力波形解析データが格納されるメモリと、配電系統へ
の襲雷時における上記零相電圧及び零相電流の各波形の
特徴が予め解析した襲雷時波形解析データとして、予め
格納されるメモリと、上記各メモリから読み出された上
記入力波形解析データと上記襲雷時波形データとを照合
し所定条件を満たしたとき襲雷予知信号を出力する襲雷
予知演算部とを備えた襲雷予知装置。1. A zero-phase voltage detector for detecting a zero-phase voltage of the system and a zero-phase current detector for detecting a zero-phase current of the system in a distribution system for supplying power from a bus bar of an electric power station to a plurality of distribution lines. A memory for storing input waveform analysis data obtained by analyzing each waveform of the zero-phase voltage and zero-phase current based on each output of the zero-phase voltage detector and zero-phase current detector, and an attack on the distribution system. As a waveform analysis data at the time of lightning, in which the characteristics of each waveform of the zero-phase voltage and the zero-phase current at the time of lightning are previously analyzed, a memory stored in advance, the input waveform analysis data read from each memory, and the above A lightning strike prediction apparatus comprising: a lightning strike prediction calculation unit that collates with lightning strike waveform data and outputs a lightning strike prediction signal when a predetermined condition is satisfied.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1211667A JPH0670676B2 (en) | 1989-08-17 | 1989-08-17 | Lightning strike prediction device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1211667A JPH0670676B2 (en) | 1989-08-17 | 1989-08-17 | Lightning strike prediction device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03251790A JPH03251790A (en) | 1991-11-11 |
| JPH0670676B2 true JPH0670676B2 (en) | 1994-09-07 |
Family
ID=16609603
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1211667A Expired - Fee Related JPH0670676B2 (en) | 1989-08-17 | 1989-08-17 | Lightning strike prediction device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0670676B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20140082630A (en) * | 2012-10-27 | 2014-07-02 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Method, device, system and storage medium for implementing packet transmission in pcie switching network |
-
1989
- 1989-08-17 JP JP1211667A patent/JPH0670676B2/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20140082630A (en) * | 2012-10-27 | 2014-07-02 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Method, device, system and storage medium for implementing packet transmission in pcie switching network |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH03251790A (en) | 1991-11-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4276605A (en) | Method and apparatus for supervising a digital protective relaying system | |
| US11143715B2 (en) | Broken conductor detection in a multiple-phase electric power delivery system | |
| EP3299828B1 (en) | Electrical fault detection | |
| JPS6360610B2 (en) | ||
| US5475556A (en) | Apparatus for detecting high impedance fault | |
| US4577279A (en) | Method and apparatus for providing offset compensation | |
| US5325061A (en) | Computationally-efficient distance relay for power transmission lines | |
| JPH05328739A (en) | Power conversion equipment and detection ground fault method thereof | |
| JPH0670676B2 (en) | Lightning strike prediction device | |
| JP2635177B2 (en) | Failure prediction device for distribution system | |
| JP2561734B2 (en) | Transformer internal failure prediction device | |
| JP2635176B2 (en) | Circuit breaker / switch operation detector | |
| AU643792B2 (en) | Apparatus for detecting high impedance fault | |
| CN111751659B (en) | Zero-phase current wiring method and system for judging wave recorder based on power grid fault wave recording diagram | |
| JP2596671B2 (en) | Digital ground fault overvoltage relay for high voltage distribution lines. | |
| JPH05164807A (en) | Power main circuit checker | |
| JPH06284551A (en) | Overcurrent protection device test circuit | |
| JP2717320B2 (en) | Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method | |
| JP2008067434A (en) | Distribution system ground fault protective relay device | |
| JP2000184573A (en) | Protective relay | |
| JPH06121454A (en) | Ground fault accident detection device | |
| JP3266925B2 (en) | Distribution line ground fault relay | |
| JPH0638094B2 (en) | Improvement of disconnection failure detection method | |
| JPH0769436B2 (en) | Lightning Prediction Device Using Distribution Line | |
| JP2915106B2 (en) | Distribution line monitoring method and device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |