+

JPH0630390B2 - Method for manufacturing CMOS semiconductor device - Google Patents

Method for manufacturing CMOS semiconductor device

Info

Publication number
JPH0630390B2
JPH0630390B2 JP60105175A JP10517585A JPH0630390B2 JP H0630390 B2 JPH0630390 B2 JP H0630390B2 JP 60105175 A JP60105175 A JP 60105175A JP 10517585 A JP10517585 A JP 10517585A JP H0630390 B2 JPH0630390 B2 JP H0630390B2
Authority
JP
Japan
Prior art keywords
type
diffusion layer
semiconductor device
type diffusion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60105175A
Other languages
Japanese (ja)
Other versions
JPS61263258A (en
Inventor
隆 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60105175A priority Critical patent/JPH0630390B2/en
Publication of JPS61263258A publication Critical patent/JPS61263258A/en
Publication of JPH0630390B2 publication Critical patent/JPH0630390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、CMOS型半導体装置の製造方法、詳しくは
Nチャンネルトランジスタ(以下NchTr.と略す)
のドレイン領域での電界集中を緩和し、かつ、Pチャン
ネルトランジスタ(以下PchTr.と略す)のパンチ
スルー耐圧の向上をはかることのできるCMOS型半導
体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a CMOS semiconductor device, more specifically, an N-channel transistor (hereinafter abbreviated as NchTr.).
Of the CMOS type semiconductor device capable of alleviating the electric field concentration in the drain region and improving the punch-through breakdown voltage of a P-channel transistor (hereinafter abbreviated as PchTr.).

従来の技術 近年半導体装置は、低消費電力の要求からCMOS型半
導体装置の開発が活発に行なわれている。このCMOS
型半導体装置の微細化を行う場合、NchTr.のドレ
イン領域での電界集中に起因するホットキャリア効果
や、PchTr.のショートチャンネル効果などによる
特性劣化が問題となってくる。NchTr.のホットキ
ャリア効果を抑制するためには、ソース・ドレイン拡散
層のゲート側端部に低濃度拡散を設ける方法があり、例
えば、二重拡散ドレイン構造などが提案されている。ま
た、PchTr.のパンチスルー耐圧を向上させるため
には、基板不純物濃度を上げたり、高エネルギーでリン
イオンを注入することによってゲート絶縁膜下の深い領
域に比較的高濃度のn型領域を形成する方法がある。こ
れらの方法を組み合わせたCMOS構造を第2図に示
す。ここではP型ウエル構造について示している。図
中、1がn型基板、2がP型ウエル領域、3が素子分離
領域、4がゲート絶縁膜、5がポリシリコンゲートであ
る。6はリンイオンの深い注入によって形成されたn型
領域であり、これは、ゲート電極形成前にPch領域の
みに形成される。また、7は低濃度のn型拡散層であ
り、8は高濃度のn型拡散層である。これら低濃度およ
び高濃度の各n型拡散層7,8は、まず低濃度のリンイ
オンを注入し、ドライブインを行った後、高濃度のヒ素
を注入することによって形成される。しかし、この二重
拡散ドレイン構造を形成するためには、CMOSでは、
2回のマスク工程を必要とし、さらに深いイオン注入に
よるn型拡散層6の形成時にもマスクを必要とするた
め、工程が複雑となり、実用面からは大いに問題があ
る。なお、9はボロンによるP型拡散層である。
2. Description of the Related Art In recent years, for semiconductor devices, CMOS type semiconductor devices have been actively developed due to the demand for low power consumption. This CMOS
When miniaturizing a semiconductor device of the Nch Tr. Effect due to electric field concentration in the drain region of PchTr. Deterioration of the characteristics due to the short channel effect of the above becomes a problem. NchTr. In order to suppress the above hot carrier effect, there is a method of providing a low concentration diffusion at the gate side end of the source / drain diffusion layer, for example, a double diffusion drain structure has been proposed. In addition, PchTr. In order to improve the punch-through withstand voltage, there is a method of increasing the substrate impurity concentration or implanting phosphorus ions with high energy to form an n-type region having a relatively high concentration in a deep region under the gate insulating film. A CMOS structure combining these methods is shown in FIG. Here, a P-type well structure is shown. In the figure, 1 is an n-type substrate, 2 is a P-type well region, 3 is an element isolation region, 4 is a gate insulating film, and 5 is a polysilicon gate. Reference numeral 6 is an n-type region formed by deep implantation of phosphorus ions, which is formed only in the Pch region before forming the gate electrode. Further, 7 is a low concentration n-type diffusion layer, and 8 is a high concentration n-type diffusion layer. These low-concentration and high-concentration n-type diffusion layers 7 and 8 are formed by first implanting low-concentration phosphorus ions, performing drive-in, and then implanting high-concentration arsenic. However, in order to form this double diffused drain structure, in CMOS,
Since the mask process is required twice when forming the n-type diffusion layer 6 by deeper ion implantation, the process becomes complicated and there is a serious problem in practical use. Reference numeral 9 is a P-type diffusion layer made of boron.

発明が解決しようとする問題点 本発明は、マスク工程を少なくしつつNchTr.のド
レイン領域の電界を緩和し、かつ、PchTr.のショ
ートチャンネル効果を抑制することのできるCMOS型
半導体装置の製造方法を提供するものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the present invention, the NchTr. Of the PchTr. The present invention provides a method of manufacturing a CMOS type semiconductor device capable of suppressing the short channel effect.

問題点を解決するための手段 本発明の方法は、一導電型を有する半導体基板内に、逆
導電型のウエル領域を形成し、前記半導体基板と前記ウ
エル領域内に一対のポリシリコンゲート電極を形成した
後、基板全面にセルフアラインでリンイオンの注入を行
い、N型拡散層を形成し、その後、同N型拡散層に重ね
て、Nチャンネル側へヒ素又はリン、Pチャンネル側へ
ボロンの注入を行い、前記N型拡散層よりも不純物濃度
の高いソース・ドレイン領域を形成するCMOS型半導
体装置の製造方法である。
Means for Solving the Problems According to the method of the present invention, a well region of opposite conductivity type is formed in a semiconductor substrate having one conductivity type, and a pair of polysilicon gate electrodes are formed in the semiconductor substrate and the well region. After the formation, phosphorus ions are self-alignedly implanted on the entire surface of the substrate to form an N-type diffusion layer, and then, arsenic or phosphorus is implanted on the N-channel side and boron is implanted on the P-channel side, overlapping the N-type diffusion layer. And a source / drain region having an impurity concentration higher than that of the N-type diffusion layer is formed.

作用 本発明の製造方法によると、プロセスが簡単であるにも
かかわらず、NchTr.のホットキャリア効果やPc
hTr.のショートチャンネル効果による特性劣化を抑
制したCMOS型半導体装置が得られる。
Effect According to the manufacturing method of the present invention, the NchTr. Hot carrier effect and Pc
hTr. It is possible to obtain the CMOS type semiconductor device in which the characteristic deterioration due to the short channel effect is suppressed.

実施例 次に本発明によるCMOS型半導体装置の製造方法を第
1図a〜cの図面を用いて説明する。ここでは、一実施
例としてPウエル型CMOS半導体装置の場合について
述べる。
EXAMPLE Next, a method for manufacturing a CMOS type semiconductor device according to the present invention will be described with reference to the drawings of FIGS. Here, a case of a P-well type CMOS semiconductor device will be described as an example.

まず第1図aのように通常の技術により、n型シリコン
基板1の中にPウエル2を形成し、素子分離用酸化膜3
を形成したのち、ゲート酸化膜4とポリシリコンゲート
5を形成する。この後、リンイオン10を、加速エネル
ギー80KeV,注入量5×1013cm-2の条件で基板全
面に注入する。次いで、窒素雰囲気中にて1000℃、
10分のドライブインを行い、第1図bのように、リン
拡散による低濃度n型拡散層7′を形成する。リンの低
濃度n型拡散層7′の拡散深さは約0.7μmである。
その後は従来通り第1図cのように、Nチャンネル,側
ソース・ドレインとなる高濃度n型拡散層8へは、ヒ素
又はリンイオンの注入を、例えばヒ素を40KeVで4
×1015cm-2の注入条件で行い、Pチャンネル側ソース
・ドレインとなる高濃度P型拡散層9へはボロンの注入
を25KeVで3×1015cm-2の注入条件で行うことに
よって、ソース・ドレイン拡散層の形成を完了する。以
降は既知の技術にて、層間絶縁膜形成、コンタクト用窓
開け、およびアルミ電極配線の形成を行うことにより、
CMOS型半導体装置が完成される。
First, as shown in FIG. 1A, a P well 2 is formed in an n-type silicon substrate 1 by a normal technique, and an oxide film 3 for element isolation is formed.
Then, the gate oxide film 4 and the polysilicon gate 5 are formed. After that, phosphorus ions 10 are implanted over the entire surface of the substrate under the conditions of an acceleration energy of 80 KeV and an implantation dose of 5 × 10 13 cm -2 . Then, 1000 ° C. in a nitrogen atmosphere,
Drive-in is performed for 10 minutes to form a low concentration n-type diffusion layer 7'by phosphorus diffusion as shown in FIG. 1b. The low-concentration n-type diffusion layer 7 ′ of phosphorus has a diffusion depth of about 0.7 μm.
Thereafter, as in the conventional case, as shown in FIG. 1c, arsenic or phosphorus ions are implanted into the high-concentration n-type diffusion layer 8 serving as the N-channel side source / drain, for example, arsenic is implanted at 40 KeV 4
By implanting under the condition of × 10 15 cm -2 , and by implanting boron into the high-concentration P-type diffusion layer 9 serving as the P-channel side source / drain under the condition of implanting 3 × 10 15 cm -2 at 25 KeV, The formation of the source / drain diffusion layer is completed. After that, by using a known technique, by forming an interlayer insulating film, opening a contact window, and forming an aluminum electrode wiring,
The CMOS semiconductor device is completed.

上述した本発明の方法は、先に示した従来の方法に比べ
て、プロセスが簡単であるにもかかわらず、NchT
r.については一回のヒ素のみの注入によるソース・ド
レイン構造のものより約2V耐圧が向上し、ホットキャ
リア発生を抑制できた。また、PchTr.について
は、従来のボロンのみの注入によるソース・ドレイン構
造のものがチャンネル長が1.5μm程度から、ショー
トチャンネル効果が顕著になっていたのに対して、本発
明の方法によって形成されたものは、チャンネル長1.
2μm程度までショートチャンネル効果を抑制すること
ができた。
Although the method of the present invention described above is simpler in process than the conventional method described above, the NchT
r. With respect to the above, the withstand voltage of about 2V was improved and the generation of hot carriers could be suppressed as compared with the case of the source / drain structure in which the implantation of only arsenic was performed once. In addition, PchTr. Regarding the above, the short-channel effect was remarkable in the conventional source / drain structure by implanting only boron from the channel length of about 1.5 μm, whereas the one formed by the method of the present invention is , Channel length 1.
The short channel effect could be suppressed to about 2 μm.

発明の効果 以上に説明したように、本発明の方法によると、プロセ
スが簡単であり、かつ、NchTr.のホットキャリア
効果およびPchTr.のショートチャンネル効果によ
る特性劣化を抑制することが可能になり、信頼性の高い
微細なCMOS型半導体装置を形成することができる。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, the process is simple and the NchTr. Hot carrier effect and PchTr. It is possible to suppress the characteristic deterioration due to the short channel effect, and it is possible to form a highly reliable fine CMOS type semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

第1図a〜cは本発明の製造方法を説明するための製作
過程に対応させて示した断面図、第2図は従来の方法に
よって形成されたCMOS型半導体装置の断面図であ
る。 1……シリコン基板、2……Pウエル領域、3……素子
分離用酸化膜、4……ゲート酸化膜、5……ポリシリコ
ンゲート、6……リンの深い注入によるn型拡散層、
7,7′……低濃度n型拡散層、8……高濃度n型拡散
層、9……高濃度P型拡散層、10……リンイオン。
1A to 1C are sectional views corresponding to the manufacturing process for explaining the manufacturing method of the present invention, and FIG. 2 is a sectional view of a CMOS semiconductor device formed by a conventional method. 1 ... Silicon substrate, 2 ... P well region, 3 ... Element isolation oxide film, 4 ... Gate oxide film, 5 ... Polysilicon gate, 6 ... N-type diffusion layer by deep implantation of phosphorus,
7, 7 '... low-concentration n-type diffusion layer, 8 ... high-concentration n-type diffusion layer, 9 ... high-concentration P-type diffusion layer, 10 ... phosphorus ion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型の半導体基板内にこれとは反対導
電型のウエル領域を形成し、前記半導体基板と前記ウエ
ル領域内に一対のゲート電極を形成した後、同ゲート電
極をマスクとしてN型不純物イオンを注入し、Nチャン
ネルおよびPチャンネルのソース・ドレイン領域となる
べき部分に、予めN型拡散層を形成し、この後、前記N
型拡散層中にこれよりも不純物濃度の高い前記ソース・
ドレイン領域を形成することを特徴とするCMOS型半
導体装置の製造方法。
1. A well region of opposite conductivity type is formed in a semiconductor substrate of one conductivity type, a pair of gate electrodes is formed in the semiconductor substrate and the well region, and the gate electrode is used as a mask. By implanting N-type impurity ions, an N-type diffusion layer is formed in advance in the portions to be the source / drain regions of the N-channel and P-channel, and then the N-type diffusion layer is formed.
The source having a higher impurity concentration in the type diffusion layer
A method of manufacturing a CMOS semiconductor device, comprising forming a drain region.
【請求項2】N型拡散層を形成するN型不純物イオンが
注入量1×1012〜5×1014cm-2のリンであることを
特徴とする特許請求の範囲第1項記載のCMOS型半導
体装置の製造方法。
2. The CMOS according to claim 1, wherein the N-type impurity ions forming the N-type diffusion layer are phosphorus with an implantation amount of 1 × 10 12 to 5 × 10 14 cm -2. Type semiconductor device manufacturing method.
JP60105175A 1985-05-17 1985-05-17 Method for manufacturing CMOS semiconductor device Expired - Lifetime JPH0630390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105175A JPH0630390B2 (en) 1985-05-17 1985-05-17 Method for manufacturing CMOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105175A JPH0630390B2 (en) 1985-05-17 1985-05-17 Method for manufacturing CMOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS61263258A JPS61263258A (en) 1986-11-21
JPH0630390B2 true JPH0630390B2 (en) 1994-04-20

Family

ID=14400339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105175A Expired - Lifetime JPH0630390B2 (en) 1985-05-17 1985-05-17 Method for manufacturing CMOS semiconductor device

Country Status (1)

Country Link
JP (1) JPH0630390B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102543A (en) * 1988-10-11 1990-04-16 Nec Corp Manufacture of insulated gate type field-effect transistor
JPH0770727B2 (en) * 1989-06-16 1995-07-31 日本電装株式会社 Method for manufacturing MIS transistor and complementary MIS transistor
JP2806234B2 (en) * 1993-12-13 1998-09-30 日本電気株式会社 Semiconductor device and manufacturing method thereof
EP1150348A1 (en) * 2000-04-26 2001-10-31 Lucent Technologies Inc. A process for fabricating an integrated circuit that has embedded dram and logic devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591180A (en) * 1978-12-27 1980-07-10 Seiko Epson Corp Non-volatile semiconductor memory
JPS57192063A (en) * 1981-05-20 1982-11-26 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591180A (en) * 1978-12-27 1980-07-10 Seiko Epson Corp Non-volatile semiconductor memory
JPS57192063A (en) * 1981-05-20 1982-11-26 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS61263258A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
US5359219A (en) Silicon on insulator device comprising improved substrate doping
KR920009745B1 (en) Manufacturing method of semiconductor
JP2897004B2 (en) CMOSFET manufacturing method
JPH0536917A (en) Manufacture of complementary semiconductor device
JPH11177083A (en) High speed / high performance MOS transistor and manufacturing method thereof
JPH03262130A (en) Method for manufacturing semiconductor devices
JPH05267327A (en) MISFET and manufacturing method thereof
JPH0630390B2 (en) Method for manufacturing CMOS semiconductor device
JP3144385B2 (en) Semiconductor device and manufacturing method thereof
JP4615755B2 (en) Manufacturing method of semiconductor device
JP2000068499A (en) Semiconductor device and manufacture of the same
CN1056470C (en) Manufacturing method of complementary metal oxide semiconductor field effect transistor
JP2900698B2 (en) Manufacturing method of insulated field effect transistor
JPH1065169A (en) Semiconductor device having double junction structure and method of manufacturing the same
JP2550691B2 (en) Method for manufacturing semiconductor device
JPH0575041A (en) Cmos semiconductor device
JPH07161978A (en) Buried channel mos transistor and its manufacture
JP3194805B2 (en) Semiconductor device
JP3014138B2 (en) Semiconductor device
JP2830366B2 (en) Method for manufacturing semiconductor device
JP2537649B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2000357792A (en) Manufacture of semiconductor device
JP3035915B2 (en) Semiconductor device and manufacturing method thereof
JPH02219237A (en) Mis type semiconductor device
JPH03120836A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载