JPH05334726A - Optical recording medium and optical recording and reproducing method - Google Patents
Optical recording medium and optical recording and reproducing methodInfo
- Publication number
- JPH05334726A JPH05334726A JP4140500A JP14050092A JPH05334726A JP H05334726 A JPH05334726 A JP H05334726A JP 4140500 A JP4140500 A JP 4140500A JP 14050092 A JP14050092 A JP 14050092A JP H05334726 A JPH05334726 A JP H05334726A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- optical recording
- recording
- light
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、記録密度の高い光記録
媒体および光記録再生方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium having a high recording density and an optical recording / reproducing method.
【0002】[0002]
【従来の技術】光ビームを用いて情報の記録、再生を行
なうことが可能な光記録媒体は、高密度情報記録媒体と
して注目されている。このような光記録媒体は、予め形
成されている記録ピットの読み出しを行なう再生専用型
の光ディスクと、書き込み可能型の光ディスクに大別さ
れる。2. Description of the Related Art An optical recording medium capable of recording and reproducing information by using a light beam is drawing attention as a high density information recording medium. Such an optical recording medium is roughly classified into a read-only type optical disc for reading a previously formed recording pit and a writable type optical disc.
【0003】再生専用型の光ディスクとしては、VD
(ビデオディスク)や、CD(コンパクトディスク)が
ある。書き込み可能型の光ディスクとしては、基板上に
ピットとよばれる凹凸を形成するライトワンス型の光デ
ィスク、光磁気ディスク、フォトクロミック型ディス
ク、PHB型ディスク等が挙げられる。As a read-only type optical disk, VD
(Video disc) and CD (compact disc). Examples of the writable type optical disc include a write-once type optical disc that forms irregularities called pits on a substrate, a magneto-optical disc, a photochromic type disc, and a PHB type disc.
【0004】いずれの媒体においても、記録ピットの読
み出し(再生)を行なうときは、レーザー光の空間収束
性を利用して行っている。再生レーザー光の焦点面にお
けるスポット径によって、読み出すことの可能な記録ピ
ットの大きさが決まる。スポット径は、再生レーザー光
の波長及び集光光学系の特性に依存しており、従って、
光記録媒体の記録密度の上限はレーザー光の波長と集光
光学系の特性により決められていた。When reading (reproducing) recording pits in any medium, the spatial convergence of the laser light is utilized. The spot diameter on the focal plane of the reproduction laser beam determines the size of the record pit that can be read. The spot diameter depends on the wavelength of the reproducing laser beam and the characteristics of the condensing optical system.
The upper limit of the recording density of the optical recording medium has been determined by the wavelength of the laser beam and the characteristics of the focusing optical system.
【0005】[0005]
【発明が解決しようとする課題】上述したように、記録
密度を上げるためには、集光光学系の特性をかえる(例
えば集光光学系の開口数を高める)か、記録再生に用い
る再生レーザー光の波長を短くする必要がある。光学系
の開口数を上げれば、焦点面におけるスポット径は小さ
くなるが、同時に焦点深度が浅くなり、媒体の面ぶれ等
の機械的精度に対する要求は高くなる。As described above, in order to increase the recording density, the characteristics of the condensing optical system are changed (for example, the numerical aperture of the condensing optical system is increased) or the reproducing laser used for recording and reproducing. It is necessary to shorten the wavelength of light. When the numerical aperture of the optical system is increased, the spot diameter on the focal plane becomes smaller, but at the same time the depth of focus becomes shallower, and the demand for mechanical accuracy such as surface wobbling of the medium becomes higher.
【0006】一方、レーザー光の短波長化は、短期間に
は達成が困難であると予想されている。そこで、本発明
では、集光光学系の開口数、再生レーザー光の波長をか
えることなく焦点面におけるスポット径を従来より飛躍
的に縮小することを目的とする。On the other hand, it is expected that shortening the wavelength of laser light will be difficult in a short period of time. Therefore, an object of the present invention is to drastically reduce the spot diameter on the focal plane without changing the numerical aperture of the condensing optical system and the wavelength of the reproduction laser light.
【0007】[0007]
【課題を解決するための手段】本発明では、媒体の記録
層と出射レンズ面の間に、図1に示すような配置で非線
形光吸収層(c)を挿入した。このとき、非線形光吸収
層の一面は焦点面と一致するように構成されている。こ
のような構成にすることによって、再生レーザー光のス
ポット径は非線形光吸収層を挿入しない場合に比べて小
さくすることが可能となる。In the present invention, a nonlinear light absorption layer (c) is inserted between the recording layer and the exit lens surface of the medium in the arrangement as shown in FIG. At this time, one surface of the non-linear light absorption layer is configured to coincide with the focal plane. With such a configuration, the spot diameter of the reproduction laser light can be made smaller than that in the case where the non-linear light absorption layer is not inserted.
【0008】よって、本発明は、再生レーザー光を空間
的に絞り込み、記録層を照射し、該記録層からの反射光
量変化、または透過光量変化、または発光量変化を検出
して記録を再生する光記録媒体において、再生レーザー
光強度の増大に伴い吸収係数が減少する非線形光吸収特
性を示す非線形光吸収層を有することを特徴とする光記
録媒体を提供する(請求項1)。Therefore, according to the present invention, the reproduction laser beam is spatially narrowed down, the recording layer is irradiated, and the change in the reflected light amount from the recording layer, the change in the transmitted light amount, or the change in the emitted light amount is detected to reproduce the record. Provided is an optical recording medium having a non-linear light absorption layer exhibiting a non-linear light absorption characteristic in which an absorption coefficient decreases with an increase in reproduction laser light intensity (claim 1).
【0009】さらに、本発明は、再生レーザー光が吸収
係数が再生レーザー光強度の増大に伴い減少する非線形
光吸収特性を示す非線形光吸収層を透過してから記録層
を照射することを特徴とする光記録再生方法を提供する
(請求項2)。Further, the present invention is characterized in that the reproducing laser beam is irradiated onto the recording layer after passing through the non-linear light absorbing layer exhibiting a non-linear light absorbing characteristic whose absorption coefficient decreases as the reproducing laser beam intensity increases. An optical recording / reproducing method is provided (claim 2).
【0010】[0010]
【作用】非線形光学現象の一つとして、非線形光吸収
(あるいは、吸収飽和という)が知られている。これ
は、媒質の吸収係数が入射光強度が増大するにつれ減少
する過程である。ここで、集光光学系が無収差で、瞳が
充分に大きいと仮定する。入射光がガウス形の強度分布
を持つ平面波ならば、焦点面における光強度分布もガウ
ス形となる。ここで更に、焦点面と出射レンズ面の間の
焦点面近傍に非線形光吸収体を挿入した場合を考える。
吸収飽和が効率的に起きる条件が満足されていれば、焦
点面近傍の集光スポットの強度の低い裾の部分では、線
形吸収が優勢となり、逆に強度の高いスポットの中心部
分は吸収飽和により線形吸収の場合よりも高い透過率を
示す。結果として、集光スポット径は非線形光吸収体を
挿入することにより縮小される。図2は非線形光吸収体
に入射する直前のレーザー光の光軸に垂直な断面におけ
る強度分布 (I1)及び非線形光吸収体を透過した直後の
強度分布 (I2)を示している。ここで、r0 、rはレー
ザービーム中心軸からの距離である。入射瞳が有限であ
る場合は、一般に集光スポットの周辺部分は強度的に振
動しながら広がるが、上記の効果によりスポット径は縮
小される。Operation As one of the nonlinear optical phenomena, nonlinear optical absorption (or absorption saturation) is known. This is the process by which the absorption coefficient of the medium decreases as the incident light intensity increases. Here, it is assumed that the condensing optical system has no aberration and the pupil is sufficiently large. If the incident light is a plane wave having a Gaussian intensity distribution, the light intensity distribution at the focal plane will also be Gaussian. Here, further consider a case where a non-linear light absorber is inserted near the focal plane between the focal plane and the exit lens surface.
If the condition that absorption saturation occurs efficiently is satisfied, linear absorption becomes dominant in the low-intensity skirt of the focused spot near the focal plane, and conversely, the central part of the high-intensity spot is absorbed by absorption saturation. It shows higher transmittance than in the case of linear absorption. As a result, the focused spot diameter is reduced by inserting a non-linear light absorber. FIG. 2 shows the intensity distribution (I 1 ) in a section perpendicular to the optical axis of the laser light immediately before entering the nonlinear optical absorber and the intensity distribution (I 2 ) immediately after passing through the nonlinear optical absorber. Here, r 0 and r are distances from the central axis of the laser beam. When the entrance pupil is finite, the peripheral portion of the focused spot generally expands while vibrating strongly, but the spot diameter is reduced by the above effect.
【0011】このような単純な予想は、非線形光吸収体
が光ビームの波長程度の薄さで、しかも焦点面近傍に配
置したときに許される。出射レンズ面と焦点面との間
に、1面を焦点面と一致させた任意の厚さの非線形光吸
収体を挿入した場合には、Maxwell-Bloch 方程式と回折
の理論を矛盾なく展開する必要があり、定性的な結論を
だすことさえも非常に難しい。Such a simple prediction is allowed when the non-linear light absorber is as thin as the wavelength of the light beam and is arranged near the focal plane. If a nonlinear optical absorber with an arbitrary thickness, one of which matches the focal plane, is inserted between the exit lens surface and the focal plane, the Maxwell-Bloch equation and the theory of diffraction must be developed without contradiction. And it is very difficult to even make a qualitative conclusion.
【0012】先に述べたように、非線形光吸収は、入射
光強度に比例して媒体の吸収係数が減少する現象であ
る。従って、任意の厚さの非線形光吸収層を挿入した場
合でも、その焦点付近でのみ飽和吸収効果が著しく起こ
るように集光光学系の開口数、及び入射レーザー強度を
最適化することが可能である。一般の光記録媒体の記録
の読み出しは、図3に示すような反射光学系が用いられ
る。この場合、再生光は記録層で反射され再び非線形光
吸収層を透過することになる。この過程で再生光がどの
ように変化するかを正確に解析することは前述の過程と
同様に困難である。しかし、一般に再生光は連続光であ
ることを考慮すれば、記録層で反射した再生光は遅れて
入射した再生光により吸収係数の減少した部分を通り効
果的に光検出器に到達することが出来るといえる。As described above, non-linear light absorption is a phenomenon in which the absorption coefficient of the medium decreases in proportion to the intensity of incident light. Therefore, even when a non-linear light absorption layer with an arbitrary thickness is inserted, it is possible to optimize the numerical aperture of the focusing optical system and the incident laser intensity so that the saturation absorption effect remarkably occurs only near the focal point. is there. The reading of recording from a general optical recording medium uses a reflective optical system as shown in FIG. In this case, the reproduction light is reflected by the recording layer and again passes through the nonlinear light absorption layer. It is difficult to accurately analyze how the reproduction light changes in this process, as in the above process. However, considering that the reproduction light is generally continuous light, the reproduction light reflected by the recording layer can effectively reach the photodetector through the portion where the absorption coefficient is reduced by the reproduction light that has been delayed. You can say that you can.
【0013】非線形光吸収層は、記録層に隣接して形成
されると、効果的である(請求項3)。本発明の光記録
媒体の記録層としては、例えば、非線形光吸収層の片面
上に形成された記録ピットを、再生レーザー光を反射す
る反射層で被覆したもの(請求項4)や、非線形光吸収
層の片面上に再生レーザー光を反射する反射層を形成
し、記録信号に応じて反射層を部分的に除去したもの
(請求項5)である。The non-linear light absorption layer is effective when formed adjacent to the recording layer (claim 3). As the recording layer of the optical recording medium of the present invention, for example, a recording pit formed on one surface of a non-linear light absorbing layer is coated with a reflective layer that reflects a reproduction laser beam (claim 4), or a non-linear light A reflective layer that reflects a reproduction laser beam is formed on one surface of the absorbing layer, and the reflective layer is partially removed according to a recording signal (claim 5).
【0014】以下に実施例を挙げて本発明を説明する。The present invention will be described below with reference to examples.
【0015】[0015]
【実施例1】633nmのHe−Neレーザーを再生光源
とし、開口数 0.5の集光光学系を用いて、図4に示す装
置系を構成した。媒体としては、図5に示す構造の光記
録媒体を用いた。ここで、非線形光吸収層として一般に
半導体ドープガラスと呼ばれている材料を用いた。この
材料は、CdSeやCdS等のII−VI化合物結晶やその
3元系結晶の微結晶をガラス中に分散させたもので、微
結晶の組成、粒径分布を制御することにより、所望の波
長域で大きな飽和吸収を示す。ここで用いた材料は、厚
さが 1.2mmで光学密度が 640nmで0.1 、 633nmで
1.0 、 625nmで2.0 であった。記録層は、金属膜(A
u、膜厚1000Å)をスパッタリング法により半導体ドー
プガラス上に成膜した後、記録信号の有無に従い、直径
約 0.3μmのスポット状に金属膜を剥離することにより
形成した。金属膜の剥離は、通常のフォトリソグラフィ
に従って行ない、露光光源としてArイオンレーザーの
457.9nm発振線を使った。露光光学系の開口数は0.93
であった。また、比較のため通常の透明ガラス基板上に
Auの薄膜をスパッタリングして全く同様の記録層を形
成した比較用サンプルも製作した。記録層はアクリル系
接着剤とアクリル板により封止した。Example 1 An apparatus system shown in FIG. 4 was constructed by using a He--Ne laser of 633 nm as a reproducing light source and using a focusing optical system having a numerical aperture of 0.5. As the medium, an optical recording medium having the structure shown in FIG. 5 was used. Here, a material generally called semiconductor-doped glass was used for the nonlinear light absorption layer. This material is prepared by dispersing II-VI compound crystals such as CdSe and CdS or ternary crystallites thereof in glass, and controlling the composition and particle size distribution of the crystallites to obtain the desired wavelength. It shows a large saturated absorption in the region. The material used here has a thickness of 1.2 mm and an optical density of 0.1 at 640 nm and 633 nm.
The values were 1.0 and 2.0 at 625 nm. The recording layer is a metal film (A
u, film thickness 1000Å) was formed on the semiconductor-doped glass by a sputtering method, and then the metal film was peeled off in a spot shape having a diameter of about 0.3 μm according to the presence or absence of a recording signal. The peeling of the metal film is performed according to ordinary photolithography, and an Ar ion laser is used as an exposure light source.
A 457.9 nm oscillation line was used. The numerical aperture of the exposure optical system is 0.93
Met. Also, for comparison, a comparative sample was prepared in which an Au thin film was sputtered on a normal transparent glass substrate to form an identical recording layer. The recording layer was sealed with an acrylic adhesive and an acrylic plate.
【0016】図4の装置を用いて、製作した光記録媒体
を周期的に微動し、光検出器(g)に現れる信号をオシ
ロスコープで観測した。本発明の光記録媒体では、再生
信号に対応する周期信号が観測できたが、ガラス基板上
に記録層を形成した比較用サンプルでは、記録の再生が
できないことがわかった(図6)。Using the apparatus shown in FIG. 4, the produced optical recording medium was periodically finely moved, and the signal appearing on the photodetector (g) was observed with an oscilloscope. In the optical recording medium of the present invention, a periodic signal corresponding to the reproduction signal could be observed, but it was found that the comparison sample in which the recording layer was formed on the glass substrate could not reproduce the recording (FIG. 6).
【0017】[0017]
【実施例2】620nmの色素レーザーを光源とし、その
他は図4と同じ装置を用い、光記録媒体として図7に示
すものを用いた。ここで、非線形光吸収層は亜鉛テトラ
フェニルポルフィンを0.05mol/l 添加したPMMAで形
成し、記録層は上記非線形光吸収層上に鋳型法により記
録ピットを形成しその後反射膜(Al)をスパッタリン
グで成膜し、作製した。記録層はアクリル系接着剤とア
クリル板により封止した。記録ピットの直径は、0.35μ
m、深さは約 150nmである。実施例1と同様に比較用
サンプルとして非線形光吸収層を透明な(亜鉛テトラフ
ェニルポルフィンを添加していない)PMMA基板に置
き換えたサンプルも製作した。Example 2 A dye laser having a wavelength of 620 nm was used as the light source, the same apparatus as that in FIG. 4 was used for the other components, and the optical recording medium shown in FIG. 7 was used. Here, the non-linear light absorption layer is formed of PMMA to which zinc tetraphenylporphine is added in an amount of 0.05 mol / l, and the recording layer is formed with recording pits on the above-mentioned non-linear light absorption layer by a template method, and then a reflective film (Al) is sputtered. Was formed into a film and manufactured. The recording layer was sealed with an acrylic adhesive and an acrylic plate. The diameter of the recording pit is 0.35μ
m, depth is about 150 nm. As in Example 1, as a comparative sample, a sample in which the non-linear light absorbing layer was replaced with a transparent PMMA substrate (without addition of zinc tetraphenylporphine) was also manufactured.
【0018】実施例1の方法に従い再生信号の検出を行
なった。その結果、亜鉛テトラフェニルポルフィン/P
MMAを非線形光吸収材料として用いたサンプルでは記
録信号の再生ができたが、何も添加していないPMMA
基板上に記録層を形成した比較用サンプルでは再生信号
は得られなかった。The reproduction signal was detected according to the method of the first embodiment. As a result, zinc tetraphenylporphine / P
The recorded signal could be reproduced with the sample using MMA as the non-linear light absorbing material, but PMMA containing nothing was added.
No reproduced signal was obtained in the comparative sample in which the recording layer was formed on the substrate.
【0019】[0019]
【実施例3】実施例1と同じ装置を用い、光記録媒体と
しては図8に示すものを用いた。ここで、基板(r)は
透明なPMMAを用い、鋳型法により直径約0.35μmの
記録ピットを形成した。非線形光吸収層は実施例1で用
いた半導体ドープガラスをスパッタリング法により上記
PMMA基板のピットが形成されている面に成膜した。
膜厚は約3〜10μmである。但し、薄膜で充分な光学濃
度を得るために、CdSeあるいはCdSの濃度を非常
に高くしてある。光学濃度はそれぞれ、 620nmで 2.0
以上、 633nmで 1.0、 640nmで 0.1であった。その
後、反射膜(Al)を1000Å積層し、アクリル系接着剤
とアクリル板を用いて封止した。また、比較のため記録
ピットの形成の後、非線形光吸収層である半導体ドープ
ガラスの成膜をせずに反射膜の成膜及び封止を行なった
比較用サンプルを用意した。Example 3 The same apparatus as in Example 1 was used, and the optical recording medium shown in FIG. 8 was used. Here, the substrate (r) was made of transparent PMMA, and recording pits having a diameter of about 0.35 μm were formed by the casting method. The non-linear light absorption layer was formed by using the semiconductor-doped glass used in Example 1 on the surface of the PMMA substrate on which the pits were formed by a sputtering method.
The film thickness is about 3 to 10 μm. However, in order to obtain a sufficient optical density with a thin film, the concentration of CdSe or CdS is made extremely high. Optical density of 2.0 at 620 nm, respectively
As described above, the values were 1.0 at 633 nm and 0.1 at 640 nm. After that, a reflection film (Al) was laminated in 1000 liters and sealed with an acrylic adhesive and an acrylic plate. Further, for comparison, a comparative sample was prepared in which after the formation of the recording pits, the reflection film was formed and sealed without forming the semiconductor-doped glass as the nonlinear light absorption layer.
【0020】実施例1の方法に従い、記録信号の再生を
行なった。このとき再生用光源として 633nmHe−N
eレーザーを用いた。非線形光吸収層(l)を形成した
サンプルでは記録の再生ができたが、形成しなかった比
較用サンプルでは再生信号は得られなかった。なお、半
導体ドープガラスは、本実施例において行なったスパッ
タリング法のほか、ゾルゲル法によるスピンコート法な
どでも成膜される。The recorded signal was reproduced according to the method of the first embodiment. At this time, as a light source for reproduction, 633 nm He-N
An e-laser was used. Recording was able to be reproduced in the sample in which the non-linear light absorption layer (1) was formed, but no reproduced signal was obtained in the sample for comparison in which the nonlinear light absorption layer (l) was not formed. The semiconductor-doped glass can be formed by a spin coating method such as a sol-gel method in addition to the sputtering method performed in this embodiment.
【0021】[0021]
【発明の効果】以上のように、本発明の光記録媒体によ
れば、再生光学系の開口数、再生光源の波長をかえなく
ても、再生光のスポット光を小さくすることができ、従
来より高密度の記録が可能となる。また、本発明の光記
録再生方法によれば、フォトリソグラフィにおける解像
度を飛躍的に向上させることが可能となる。As described above, according to the optical recording medium of the present invention, the spot light of the reproducing light can be reduced without changing the numerical aperture of the reproducing optical system and the wavelength of the reproducing light source. Higher density recording is possible. Further, according to the optical recording / reproducing method of the present invention, the resolution in photolithography can be dramatically improved.
【図1】 本発明の光記録媒体の概念図である。FIG. 1 is a conceptual diagram of an optical recording medium of the present invention.
【図2】 非線形光吸収体に入射する直前及び入射した
直後のレーザー光のビーム内強度分布を示す図である。FIG. 2 is a diagram showing in-beam intensity distributions of laser light immediately before and immediately after entering a nonlinear light absorber.
【図3】 光記録媒体の記録読み出しに用いる反射光学
系を示す概念図である。FIG. 3 is a conceptual diagram showing a reflective optical system used for recording and reading on an optical recording medium.
【図4】 本発明の光記録媒体の再生に用いる装置系の
概念図である。FIG. 4 is a conceptual diagram of an apparatus system used for reproducing the optical recording medium of the present invention.
【図5】 本発明の光記録媒体の一実施例の構造を示す
説明図である。FIG. 5 is an explanatory diagram showing the structure of an embodiment of the optical recording medium of the present invention.
【図6】 媒体の変位に対する光検出量の変化を示すグ
ラフである。FIG. 6 is a graph showing changes in the amount of detected light with respect to the displacement of the medium.
【図7】 本発明の光記録媒体の一実施例の構造を示す
説明図である。FIG. 7 is an explanatory diagram showing the structure of an example of the optical recording medium of the present invention.
【図8】 本発明の光記録媒体の一実施例の構造を示す
説明図である。FIG. 8 is an explanatory diagram showing the structure of an example of the optical recording medium of the present invention.
a 再生レーザー光 b 集光レンズ c 非線形光吸収層 d 記録層 e ディスク基板 f 記録保護層 g 光検出器 h 圧電素子 i オシロスコープ j 圧電素子駆動電源 l 半導体ドープガラス m 金属膜 n 接着剤 o アクリル板 p 亜鉛テトラフェニルポルフィン/PMMA q Al膜 r PMMA a reproducing laser light b condensing lens c non-linear light absorption layer d recording layer e disk substrate f recording protection layer g photodetector h piezoelectric element i oscilloscope j piezoelectric element driving power source l semiconductor-doped glass m metal film n adhesive agent acrylic plate p Zinc tetraphenylporphine / PMMA q Al film r PMMA
Claims (5)
録層を照射し、該記録層からの反射光量変化、または透
過光量変化、または発光量変化を検出して記録を再生す
る光記録媒体において、 再生レーザー光強度の増大に伴い吸収係数が減少する非
線形光吸収特性を示す非線形光吸収層を有することを特
徴とする光記録媒体。1. An optical recording medium for reproducing a recording by spatially narrowing a reproduction laser beam, irradiating a recording layer, and detecting a change in the amount of reflected light from the recording layer, a change in the amount of transmitted light, or a change in the amount of emitted light. An optical recording medium having a non-linear light absorption layer exhibiting a non-linear light absorption characteristic in which an absorption coefficient decreases with an increase in intensity of a reproduction laser beam.
録層を照射し、該記録層からの反射光量変化、または透
過光量変化、または発光量変化を検出して記録を再生す
る光記録再生方法において、 前記再生レーザー光は、吸収係数が再生レーザー光強度
の増大に伴い減少する非線形光吸収特性を示す非線形光
吸収層を透過してから記録層を照射することを特徴とす
る光記録再生方法。2. An optical recording / reproducing method for reproducing a record by spatially narrowing a reproducing laser beam, irradiating a recording layer, and detecting a change in the amount of reflected light, a change in the amount of transmitted light, or a change in the amount of emitted light from the recording layer. In the optical recording / reproducing method, the reproducing laser light is transmitted through a non-linear light absorbing layer exhibiting a non-linear light absorbing property whose absorption coefficient decreases with an increase in the reproducing laser light intensity, and then irradiates the recording layer. ..
前記非線形光吸収層と記録層とが隣接して形成されるこ
とを特徴とする光記録媒体。3. The optical recording medium according to claim 1,
An optical recording medium, wherein the non-linear light absorbing layer and a recording layer are formed adjacent to each other.
前記記録層は前記非線形光吸収層の片面上に形成された
記録ピットを、再生レーザー光を反射する反射層で被覆
したものであることを特徴とする光記録媒体。4. The optical recording medium according to claim 1,
An optical recording medium, wherein the recording layer is formed by coating a recording pit formed on one surface of the nonlinear light absorbing layer with a reflective layer that reflects a reproduction laser beam.
前記記録層は前記非線形光吸収層の片面上に形成された
再生レーザー光を反射する反射層であり、記録信号に応
じて反射層を部分的に除去したものであることを特徴と
する光記録媒体。5. The optical recording medium according to claim 1,
The recording layer is a reflective layer formed on one surface of the non-linear light absorbing layer for reflecting a reproduction laser beam, and the reflective layer is partially removed according to a recording signal. Medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4140500A JPH05334726A (en) | 1992-06-01 | 1992-06-01 | Optical recording medium and optical recording and reproducing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4140500A JPH05334726A (en) | 1992-06-01 | 1992-06-01 | Optical recording medium and optical recording and reproducing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05334726A true JPH05334726A (en) | 1993-12-17 |
Family
ID=15270084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4140500A Pending JPH05334726A (en) | 1992-06-01 | 1992-06-01 | Optical recording medium and optical recording and reproducing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05334726A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06236578A (en) * | 1993-02-12 | 1994-08-23 | Nec Corp | optical disk |
JPH08263875A (en) * | 1995-03-24 | 1996-10-11 | Nec Corp | Optical recording medium and reproducing method |
KR20010055397A (en) * | 1999-12-10 | 2001-07-04 | 구자홍 | Optical recording medium |
US6606291B2 (en) | 1997-03-17 | 2003-08-12 | Kabushiki Kaisha Toshiba | Optical disk and optical disk drive |
-
1992
- 1992-06-01 JP JP4140500A patent/JPH05334726A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06236578A (en) * | 1993-02-12 | 1994-08-23 | Nec Corp | optical disk |
JPH08263875A (en) * | 1995-03-24 | 1996-10-11 | Nec Corp | Optical recording medium and reproducing method |
US6606291B2 (en) | 1997-03-17 | 2003-08-12 | Kabushiki Kaisha Toshiba | Optical disk and optical disk drive |
US6744717B2 (en) | 1997-03-17 | 2004-06-01 | Kabushiki Kaisha Toshiba | Optical disk and optical disk drive |
KR20010055397A (en) * | 1999-12-10 | 2001-07-04 | 구자홍 | Optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000163795A (en) | Information recording device and information reproducing device | |
GB2079031A (en) | Optical information record and a method of reversibly recording and erasing information thereon | |
JP3707812B2 (en) | Optical recording method, optical recording apparatus, and optical recording medium | |
US5089358A (en) | Optical recording medium | |
Watanabe et al. | New optical recording material for video disc system | |
JPH05242521A (en) | Optical disk player | |
JPS6326461B2 (en) | ||
JPH0628713A (en) | Optical disk | |
US5811217A (en) | Optical information recording medium and optical information recording/reproducing method | |
JPH05334726A (en) | Optical recording medium and optical recording and reproducing method | |
JPH0773506A (en) | Optical recording medium and its reproducing device | |
JP2586600B2 (en) | Optical head device | |
JP4199731B2 (en) | Optical recording medium, optical information processing apparatus, and optical recording / reproducing method | |
JP3287860B2 (en) | Optical information recording method and recording medium | |
JP4216665B2 (en) | Information recording medium, information recording apparatus, information recording method, information reproducing apparatus, information reproducing method, recording program, and reproducing program | |
JP3166238B2 (en) | Optical recording medium and method of manufacturing optical recording medium | |
JP3006645B2 (en) | Optical disk drive | |
JPH05242524A (en) | Optical recording medium | |
KR20010011518A (en) | Near field optical recording and reproducing apparatus | |
JP3068420B2 (en) | Reproducing method of optical information recording medium | |
JP3240040B2 (en) | Optical pickup device | |
JPH01315040A (en) | Optical head device and information recording and reproducing system | |
JPH09115185A (en) | Optical recording medium and optical information detection device | |
JP3306975B2 (en) | Optical disc reproducing method and optical disc | |
JP2776214B2 (en) | Recording and / or reproducing apparatus for optical recording medium |