+

JPH04144533A - Endoscope - Google Patents

Endoscope

Info

Publication number
JPH04144533A
JPH04144533A JP2268866A JP26886690A JPH04144533A JP H04144533 A JPH04144533 A JP H04144533A JP 2268866 A JP2268866 A JP 2268866A JP 26886690 A JP26886690 A JP 26886690A JP H04144533 A JPH04144533 A JP H04144533A
Authority
JP
Japan
Prior art keywords
main body
capsule
endoscope
propelled
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268866A
Other languages
Japanese (ja)
Inventor
Hideyuki Adachi
英之 安達
Yasuhiro Ueda
康弘 植田
Takao Tabata
田畑 孝夫
Shoichi Gotanda
正一 五反田
Masahiro Kudo
正宏 工藤
Yutaka Oshima
豊 大島
Tsutomu Okada
勉 岡田
Akira Suzuki
明 鈴木
Eiichi Fuse
栄一 布施
Masaaki Hayashi
正明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2268866A priority Critical patent/JPH04144533A/en
Publication of JPH04144533A publication Critical patent/JPH04144533A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/0125Endoscope within endoscope

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To facilitate inspection, etc., to reduce intrusiveness, and to extend inspection range by controlling the main body for executing telemetry transmission of an image signal from an observing means so that the direction of inertia force can be switched to the different direction, floating it in a zero gravity space and using it. CONSTITUTION:In a minute gravity space or in a zero gravity space, this endoscope is inserted into a body-cavity of a patient. In the body-cavity, a main body 1 is in a floating state. In such a state, in the case it is desired to vary or advance the attitude of the main body 1, it is operated by operating an external transmitting part placed in the outside of the body and executing telemetry transmission of a signal to a receiving part 15 of the endoscope. In accordance with the contents of the signal received by the receiving part 15, a valve controller 16 opens a prescribed valve 9 repeatedly for a short time each, and emits singly and repeatedly compressed air from a tank 14. By a reaction at the time of emitting singly compressed air from a nozzle 12, inertia force works on the main body 1. In such a state, in accordance with the blowout direction from the nozzle 12, inertial navigation, that is, a conversion of the direction and a movement of the main body 1 can be executed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、特に微少重力空間または無重力空間において
使用する内視鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endoscope used particularly in a microgravity space or a zero gravity space.

[従来の技術] 体腔内やエンジン・配管等の内部を検査する内視鏡は、
これまで種々のものが提案され、かつ使用されてきた。
[Conventional technology] Endoscopes that inspect inside body cavities, engines, piping, etc.
Various methods have been proposed and used so far.

しかし、この従来の内視鏡は、いずれも地球上で使用さ
れることを前提としたものである。それ故、重力の影響
を受け、視野方向や移動方向を遠隔的に操作して変更す
るためには、大きな操作力を必要としていた。したがっ
て、大きな駆動力を有する動力源および操作伝達系等を
構成しなければならなかった。また、それに応じて構造
が複雑で大型化する。
However, all of these conventional endoscopes are intended to be used on Earth. Therefore, due to the influence of gravity, a large operating force is required to remotely control and change the viewing direction or moving direction. Therefore, it was necessary to construct a power source, an operation transmission system, etc. that have a large driving force. Additionally, the structure becomes more complex and larger accordingly.

[発明が解決しようとする課題] ところで、近年、ロケットや宇宙ステーション等を利用
して宇宙で人間が生活する機会が徐々に増えてきている
。宇宙空間においても、生体や機器内の検査が必要とな
ってくることが当然に予想される。
[Problems to be Solved by the Invention] In recent years, opportunities for humans to live in space using rockets, space stations, etc. have gradually increased. It is naturally expected that inspections of living organisms and equipment will become necessary in outer space as well.

この場合、地球の引力圏から遠ざかるにつれ、重力は小
さくなり、ついにはほぼ無重力空間になる。こうした環
境における内視鏡の操作は、これまでの内視鏡のものと
は異なる発想で考えなければならないが、未だ、そのよ
うな環境で使用されるべき内視鏡は、知られていない。
In this case, as you move away from the Earth's gravitational field, the gravity decreases until you reach an almost weightless space. The operation of an endoscope in such an environment requires a different concept from that of conventional endoscopes, but there is still no known endoscope that can be used in such an environment.

本発明は上記課題に着目してなされたもので、その目的
とするところは、2微少重力空間または無重力空間にお
いて、検査等の容易性、低侵襲性、検査範囲の拡大が図
れる内視鏡を提供することにある。
The present invention has been made with attention to the above-mentioned problems, and its purpose is to provide an endoscope that can facilitate examinations, etc., be minimally invasive, and expand the examination range in microgravity space or zero gravity space. It is about providing.

[課題を解決するための手段および作用コ上記課題を解
決するために本発明は、カプセル状の本体と、この本体
に設けられた観察用手段と、上記本体に設けられ異なる
方向の慣性力を選択的に発生する第1の手段と、この第
1の手段による慣性力の発生およびその慣性力の向きを
切り換える第2の手段と、この第2の手段を制御する信
号を受信する第3の手段と、この第3の手段への信号お
よび上記観察手段からの画像信号をテレメトリ伝送する
第4の手段とを具備し、上記本体を微少重力空間あるい
は無重力空間に浮遊させて使用されることを特徴とする
内視鏡である。
[Means and Actions for Solving the Problems] In order to solve the above problems, the present invention includes a capsule-shaped main body, an observation means provided on the main body, and an observation means provided on the main body to generate inertial forces in different directions. a first means for selectively generating an inertial force, a second means for generating an inertial force by the first means and switching the direction of the inertial force, and a third means for receiving a signal for controlling the second means. and a fourth means for telemetrically transmitting a signal to the third means and an image signal from the observation means, and the main body is used while floating in a microgravity space or a zero gravity space. This is a characteristic endoscope.

[実施例] 第1図ないし第3図は本発明の第1の実施例を示すもの
である。
[Embodiment] FIGS. 1 to 3 show a first embodiment of the present invention.

第1図中1は内視鏡の本体であり、これは先端壁部と後
端壁部とを球形、中間部を筒形としたカプセル形状とな
っている。この本体1の内部には後述するような種々の
必要な部品が組み込まれている。そして、この内視鏡は
微少重力空間または無重力空間において単独で浮遊する
ようになっている。
Reference numeral 1 in FIG. 1 is the main body of the endoscope, which has a capsule shape with a spherical tip wall and a rear wall, and a cylindrical middle portion. Inside the main body 1, various necessary parts as described below are incorporated. This endoscope is designed to float independently in a microgravity space or a zero gravity space.

本体1の先端壁部にはその中央に位置して観察手段の対
物レンズ2が設けられている。対物レンズ2の内側には
固体撮像素子、例えばCCD3が設置されており、この
CCD3には制御部4によって制御されるCCD駆動回
路5を備えている。
An objective lens 2 serving as an observation means is provided at the center of the front wall of the main body 1. A solid-state image sensor, for example a CCD 3, is installed inside the objective lens 2, and the CCD 3 is equipped with a CCD drive circuit 5 controlled by a control section 4.

そして、CCD3は対物レンズ2を通じて結像する視野
を撮像信号に変換する観察用手段を構成する。この信号
は画像送信部6を通じて体外受信部7へ送信するように
なっている。体外受信部7で受信した信号は映像回路8
で映像信号に変換され、モニタ9で内視鏡が観察する視
野像を写し出すようになっている。
The CCD 3 constitutes observation means that converts the field of view formed through the objective lens 2 into an imaging signal. This signal is transmitted to the extracorporeal receiving section 7 through the image transmitting section 6. The signal received by the extracorporeal receiver 7 is sent to the video circuit 8
The signal is converted into a video signal, and a visual field image observed by the endoscope is displayed on a monitor 9.

また、本体1の先端壁部において、対物レンズ2の上下
部位には照明手段としてのLEDllが設けられている
Further, in the tip wall portion of the main body 1, LEDs 11 as illumination means are provided above and below the objective lens 2.

さらに、本体1の後端壁部の周囲には等角間隔でそれぞ
れ斜め側後方へ向いた複数のノズル12を形成してなり
、この各ノズル12は個別にバルブ9を介してタンク1
4に接続されている。タンク14には圧縮空気が充填さ
れている。各バルブ9は、受信部15によって操作され
るバルブコントローラ16からの信号を受けて開閉する
ようになっている。受信部15は体外送信部17からの
送信を受けて作動するようになっている。
Furthermore, a plurality of nozzles 12 are formed at equal angular intervals around the rear end wall of the main body 1, and each nozzle 12 is connected to the tank 1 through a valve 9.
Connected to 4. Tank 14 is filled with compressed air. Each valve 9 is configured to open and close upon receiving a signal from a valve controller 16 operated by a receiving section 15. The receiving section 15 operates upon receiving transmission from the extracorporeal transmitting section 17.

上記画像送信部6から体外受信部7、または体外送信部
17から受信部15への信号のテレメトリ伝送は、その
環境に応じて使用可能な例えば無線や超音波等を利用し
た手段によって行われる。
Telemetry transmission of signals from the image transmitting section 6 to the extracorporeal receiving section 7 or from the extracorporeal transmitting section 17 to the receiving section 15 is performed by means using radio, ultrasound, etc., which can be used depending on the environment.

また、CCD駆動回路5、LEDll、各バルブ9、受
信部15、バルブコントローラ16などが必要とする電
力は、電源(蓄電池)13から供給を受けるようになっ
ている。
Further, power required by the CCD drive circuit 5, LEDll, each valve 9, receiving section 15, valve controller 16, etc. is supplied from a power source (storage battery) 13.

なお、第1図で示すように、上記タンク14は、本体1
内中央に配置されている。本体1内のタンク14より先
端側に位置して画像送信部6と制御部4が設置され、こ
れの上側部には電源13が設置されている。また、受信
部15は本体1の後端部内に設置されている。
Note that, as shown in FIG. 1, the tank 14 is connected to the main body 1.
It is placed in the center inside. An image transmitter 6 and a controller 4 are installed in the main body 1 at a position closer to the tip than the tank 14, and a power source 13 is installed above these. Further, the receiving section 15 is installed within the rear end of the main body 1.

次に、上記構成の内視鏡の作用を説明する。微少重力空
間あるいは無重力空間において、この内視鏡を患者の体
腔内に入れる。体腔内において本体1は浮遊状態にある
。この状態で本体1の姿勢を変えたり、前進させたりし
たい場合、体外にある体外送信部17を操作して内視鏡
の受信部15へ信号をテレメトリ伝送して操作する。受
信部15で受けた信号の内容に応じてバルブコントロー
ラ16は、所定のバルブ9の開放を短時間ずつ繰り返し
、タンク14からの圧縮空気を単発的に繰り返し放出す
る。ノズル12から圧縮空気を単発的に放出するときの
反動で本体1に慣性力(推進方)が働く。そして、ノズ
ル12からの噴出方向に応じて慣性航行、つまり、本体
1の向きの変換および移動を行うことができる。なお、
第3図はバルブ駆動信号、バルブの開放(圧縮空気の放
出時間)、本体1の移動量の関係を示している。
Next, the operation of the endoscope having the above configuration will be explained. This endoscope is inserted into the patient's body cavity in a microgravity space or zero gravity space. The main body 1 is in a floating state within the body cavity. If it is desired to change the posture of the main body 1 or move it forward in this state, the external transmitting section 17 located outside the body is operated to telemetry transmit a signal to the receiving section 15 of the endoscope. Depending on the content of the signal received by the receiver 15, the valve controller 16 repeatedly opens a predetermined valve 9 for a short period of time, and repeatedly discharges compressed air from the tank 14. Inertial force (propulsion) acts on the main body 1 due to the reaction when compressed air is released from the nozzle 12. According to the direction of the jet from the nozzle 12, inertial navigation, that is, the direction of the main body 1 can be changed and moved. In addition,
FIG. 3 shows the relationship among the valve drive signal, valve opening (compressed air release time), and the amount of movement of the main body 1.

しかして、この内視鏡によれば、微少重力空間または無
重力空間において、本体1の向きを変換したり移動した
りできるから、これによる検査の容易性、低侵襲性、検
査範囲の拡大等が図れる。
According to this endoscope, the direction of the main body 1 can be changed and moved in a microgravity space or a zero gravity space, which makes the examination easier, less invasive, and expands the examination range. I can figure it out.

なお、本体1の外面部にそれぞれ異なる向きの複数の測
長センサを設け、慣性航行を行う場合、この測長センサ
によって回りの壁から本体1までの距離を逐次測定して
位置を監視するようにしてもよい。また、例えば本体1
の側面の上下左右それぞれに設けた測長センサによって
各側方の障壁までの距離のそれぞれのデータの変化を求
め、変化がない場合にはそのまま維持し、変化がある場
合にはその変化データにより本体1の動く向きおよび程
度を求め、その動きとは逆の慣性力を与えるようにして
もよい。
When performing inertial navigation by installing a plurality of length measuring sensors in different directions on the outer surface of the main body 1, the position can be monitored by sequentially measuring the distance from the surrounding walls to the main body 1 using the length measuring sensors. You can also do this. Also, for example, main body 1
Changes in the distance to the barrier on each side are determined using the length measurement sensors installed on the top, bottom, left, and right sides of the . The direction and degree of movement of the main body 1 may be determined and an inertial force opposite to the movement may be applied.

第4図ないし第5図は本発明の第2の実施例を示すもの
である。この実施例では本体1の後部における上下左右
と後端の各部位それぞれに超音波を発振する圧電素子2
1を設け、その発振する超音波によって本体1に慣性力
(推進力)を与え得るようになっている。また、本体1
内には受信部15で受けた信号によって操作される圧電
素子駆動回路22が設けられ、上記圧電素子21を選択
的に駆動するようになっている。そして、この第2の実
施例においては、超音波によって推進力、姿勢制御を行
うことかできる。その他の構成や作用は上記第1の実施
例のものと略同じである。
4 and 5 show a second embodiment of the present invention. In this embodiment, piezoelectric elements 2 each emit ultrasonic waves at each of the upper, lower, left, right, and rear end portions of the rear portion of the main body 1.
1 is provided, and the inertial force (propulsive force) can be applied to the main body 1 by the ultrasonic waves oscillated by the ultrasonic wave. Also, main body 1
A piezoelectric element drive circuit 22 operated by a signal received by the receiving section 15 is provided inside, and is adapted to selectively drive the piezoelectric element 21. In this second embodiment, the propulsion force and attitude control can be performed using ultrasonic waves. Other configurations and operations are substantially the same as those of the first embodiment.

第6図ないし第7図は本発明の第3の実施例を示すもの
である。この実施例では本体1の後部における側面の3
方向以上の部位と後端部位のそれぞれにファン25を設
ける。この各ファン25はそれぞれのモータ26によっ
て駆動されるようになっている。また、本体1内には受
信部15で受けた信号によって操作されるモータ駆動回
路27が設けられている。
6 and 7 show a third embodiment of the present invention. In this embodiment, 3 side surfaces at the rear of the main body 1
A fan 25 is provided at each of the parts above the direction and the rear end part. Each fan 25 is driven by a respective motor 26. Further, a motor drive circuit 27 is provided within the main body 1 and is operated by a signal received by the receiving section 15.

この実施例ではファン25を選択的に駆動することによ
り周囲の流体を巻き込んで吹き出し、その反動で本体1
に対する推進力、姿勢制御を行うことができる。その他
の構成や作用は上記第1の実施例のものと略同じである
In this embodiment, by selectively driving the fan 25, surrounding fluid is drawn in and blown out, and the reaction causes the main body 1
Propulsive force and attitude control can be performed. Other configurations and operations are substantially the same as those of the first embodiment.

第8図ないし第9図は本発明の第4の実施例を示すもの
である。この実施例では本体1の後端から、可撓性チュ
ーブからなるケーブル31が導出し、このケーブル31
内にはエネルギ伝送ライン32および加圧チューブ33
が挿通案内されている。エネルギ伝送ライン32は本体
1内のエネルギ制御部34と体外電源部35とを接続し
ている。
FIGS. 8 and 9 show a fourth embodiment of the present invention. In this embodiment, a cable 31 made of a flexible tube is led out from the rear end of the main body 1.
There is an energy transmission line 32 and a pressure tube 33 inside.
is guided through. The energy transmission line 32 connects the energy control section 34 inside the main body 1 and the extracorporeal power supply section 35 .

加圧チューブ33は本体1内の予備タンク36と体外に
あるポンプ37とを接続している。さらに、本体1の外
面部にはそれぞれ異なる位置または向きの複数のノズル
38が設けられている。例えば本体1の比較的前部の外
面の上下左右部位には垂直方向へ向けたノズル38を設
け、本体1の比較的後部の外面には等角間隔で斜め側外
方へ向けた複数のノズル38を設けている。そして、こ
の各ノズル38はそれぞれの電磁バルブ39を介して上
記予備タンク36に接続されている。この予備タンク3
6には上記加圧チューブ33を通じて体外にあるポンプ
37から常に加圧された流体が供給補充されている。電
磁バルブ39は同じく本体1内に設置したバルブコント
ローラ40によって選択的に開放されるようになってい
る。また、バルブコントローラ40は、本体1内には受
信部15で受けた信号によって操作される。その他の構
成は上記実施例のものと略同様である。
The pressurizing tube 33 connects a reserve tank 36 inside the main body 1 and a pump 37 outside the body. Furthermore, a plurality of nozzles 38 are provided on the outer surface of the main body 1, each having a different position or orientation. For example, vertically oriented nozzles 38 are provided on the upper, lower, left, and right sides of the outer surface of the relatively front portion of the main body 1, and a plurality of nozzles 38 are provided on the outer surface of the relatively rear portion of the main body 1 at equal angular intervals and directed diagonally outward. There are 38. Each nozzle 38 is connected to the reserve tank 36 via a respective electromagnetic valve 39. This spare tank 3
6 is constantly replenished with pressurized fluid from a pump 37 located outside the body through the pressurizing tube 33. The electromagnetic valve 39 is selectively opened by a valve controller 40 also installed inside the main body 1. Further, the valve controller 40 is operated in response to a signal received by the receiving section 15 inside the main body 1 . The other configurations are substantially the same as those of the above embodiment.

この実施例では受信部15で受けた信号によって操作さ
れるバルブコントローラ40で所定ノミ磁バルブ39を
開放すると、予備タンク36からそれに対応したノズル
38に加圧流体を供給して噴出する。そして、このとき
の反動で本体1に対する推進力、姿勢制御を行うことが
できる。また、各部へのエネルギは体外電源部35から
エネルギ伝送ライン32を通じて受け、エネルギ制御部
34を通じて供給されている。その他の作用は上記第1
の実施例のものと略同じである。
In this embodiment, when a predetermined chisel magnetic valve 39 is opened by a valve controller 40 operated by a signal received by a receiving unit 15, pressurized fluid is supplied from a reserve tank 36 to a corresponding nozzle 38 and ejected. Then, the reaction force at this time can be used to control the propulsion force and attitude of the main body 1. Further, energy to each part is received from an extracorporeal power supply section 35 through an energy transmission line 32, and is supplied through an energy control section 34. Other effects are described in 1 above.
This is substantially the same as that of the embodiment.

なお、内視鏡の本体を磁力によって慣性力を与え、推進
や姿勢制御に利用することができる。つまり、本体に磁
性体を付設し、これを磁場中に浮遊させるとともに、そ
の磁場3次元的に変えることによって慣性力を与えるも
のである。
In addition, inertia force can be applied to the main body of the endoscope by magnetic force, which can be used for propulsion and posture control. That is, a magnetic body is attached to the main body, which is suspended in a magnetic field, and the magnetic field is changed three-dimensionally to provide inertial force.

第10図ないし第13図は本発明の第5の実施例を示す
ものである。この実施例は医療用マイクロロボットとし
ての血管内自走式検査装置に係る。
10 to 13 show a fifth embodiment of the present invention. This embodiment relates to an intravascular self-propelled testing device as a medical microrobot.

すなわち、この装置は第10図で示すように複数のカプ
セル部41,42.43を有し、−列に連結されている
。最先端のカプセル部41における本体41aの先端に
は前方の視野2次元像を得る超音波式撮像素子44を設
けている。中間のカプセル部42における周面には超音
波素子45を全周的に設けて血管46の断面方向の超音
波断層像を得るようになっている。最後端のカプセル部
43はテレメトリ機能部品を組み込んでいる。また、こ
の最後端のカプセル部43の後端からは回収用のケーブ
ル47が導出している。
That is, as shown in FIG. 10, this device has a plurality of capsule parts 41, 42, 43, which are connected in a negative row. At the tip of the main body 41a in the most advanced capsule section 41, an ultrasonic image sensor 44 is provided to obtain a two-dimensional forward visual field image. Ultrasonic elements 45 are provided all around the circumferential surface of the intermediate capsule portion 42 to obtain an ultrasonic tomographic image of the blood vessel 46 in the cross-sectional direction. The rearmost capsule portion 43 incorporates telemetry functional components. Further, a recovery cable 47 is led out from the rear end of the capsule portion 43 at the rearmost end.

さらに、最先端のカプセル部41の前部における周面か
ら斜め側前方へ向けて突き出す後述するような複数の自
走用脚48が全周にわたり等角間隔で取り付けられてる
。この自走用脚48は第12図ないし第13図で示すよ
うに2方向性の形状記憶合金で形成した帯状の部材51
の片面に通電加熱用の比較的電気的抵抗のある導電層5
2が貼り付けられている。導電層52は例えばニッケル
から形成され、一端から他端に向かって平行な部分52
a、52aの他端を連結してループ形状をなしている。
Further, a plurality of self-propelled legs 48, which will be described later, protrude diagonally forward from the peripheral surface of the front portion of the most advanced capsule portion 41, and are attached at equal angular intervals over the entire circumference. As shown in FIGS. 12 and 13, this self-propelled leg 48 is a band-shaped member 51 made of a bidirectional shape memory alloy.
A conductive layer 5 with relatively electrical resistance for electrical heating on one side of the
2 is attached. The conductive layer 52 is made of nickel, for example, and has a parallel portion 52 from one end to the other end.
The other ends of a and 52a are connected to form a loop shape.

また、上記部分52a、52aは一端側から他端側へそ
の幅を段階的に小さくしである。さらに、この導電層5
2の両面は電気的絶縁膜53によって被覆しである。そ
して、導電層52における部分52g、52aの幅が狭
い一端側を基端部としてこれを第11図■で示すように
折り曲げて上記最先端のカプセル部41に取り付ける。
Further, the width of the portions 52a, 52a is gradually reduced from one end side to the other end side. Furthermore, this conductive layer 5
Both sides of 2 are covered with an electrically insulating film 53. Then, one narrow end side of the conductive layer 52, 52g, 52a, is used as a proximal end, and this is bent as shown in FIG.

このような自走用脚48を作動させるには上記導電層5
2に通電し、これを電気的抵抗熱で発熱させると、導電
層52の先端側が先に高い温度で加熱され、最初に第1
1図■で示す状態に先端側のA部が屈曲する。ついで、
加熱が進むと、第11図■で示す状態にB部が屈曲する
。このようにA部からB部へ順に曲げることにより自走
用脚48の蹴り作用がなされるのである。また、自走用
脚48の蹴り作動後、上記通電を止めると自然放熱して
第11図■の状態に戻る。なお、上記部材51を1方向
性の形状記憶合金で形成した場合には上記通電を止めた
後、その部材51および絶縁膜53などの弾性復元力で
第11図■の状態に戻るようにする。
In order to operate such self-propelled legs 48, the conductive layer 5
2 is energized to generate heat using electrical resistance heat, the tip side of the conductive layer 52 is heated to a high temperature first, and the first
The A portion on the tip side is bent to the state shown in Figure 1 (■). Then,
As the heating progresses, part B bends into the state shown in Figure 11 (■). In this way, by sequentially bending from part A to part B, the kicking action of the self-propelled leg 48 is achieved. Further, after the kicking operation of the self-propelled legs 48, when the above-mentioned energization is stopped, heat is naturally dissipated and the state returns to the state shown in FIG. Note that when the member 51 is formed of a unidirectional shape memory alloy, the elastic restoring force of the member 51 and the insulating film 53 returns to the state shown in FIG. .

しかして、この血管内自走式検査装置において、最先端
のカプセル部41にある複数の自走用脚48に蹴り動作
を行わせると、この各自走用脚48で血管46の壁面を
後方へ蹴り、カプセル部41を前進させる。そして、最
先端のカプセル部41における超音波式撮像素子44に
より前方の視野2次元像を得て観察するとともに、中間
のカプセル部42における超音波素子45を使用して血
管46の断面方向の超音波断層像を得る。また、これら
の操作や観察等の情報は、最後端のカプセル部43のテ
レメトリ機能によって処理する。これらを回収するには
ケーブル47を引いて行うことができる。
In this intravascular self-propelled testing device, when the plurality of self-propelled legs 48 on the most advanced capsule section 41 perform a kicking motion, each self-propelled leg 48 pushes the wall surface of the blood vessel 46 backward. kick to move the capsule portion 41 forward. Then, an ultrasonic imaging device 44 in the most advanced capsule section 41 is used to obtain and observe a two-dimensional forward visual field image, and an ultrasonic device 45 in the middle capsule section 42 is used to obtain an ultrasonic image in the cross-sectional direction of the blood vessel 46. Obtain a sonic tomogram. Further, information on these operations, observations, etc. is processed by the telemetry function of the capsule section 43 at the rear end. These can be collected by pulling the cable 47.

なお、自走用脚48が蹴り動作をしていない場合には、
その自走用脚48が側斜め前方へ延びてそれぞれの先端
が血管46の内壁に当たり、カプセル部41.42.4
3を保持する。
Note that if the self-propelled legs 48 are not performing a kicking motion,
The self-propelled legs 48 extend diagonally forward and their respective tips touch the inner wall of the blood vessel 46, and the capsule portions 41, 42, 4
Hold 3.

この種の自走式検査装置としては簡単な構造で細くでき
るため、血管内はもちろんそれ以外の細い管腔内にも使
用できる。 また、自走用脚48の構造としては上記構
成のものに限らず、第14図ないし第16図で示すよう
なバイメタル原理のものであってもよい。すなわち、こ
れは帯状の樹脂製部材55の片面にループ状に形成した
通電加熱用のニッケル層56を貼り付けてなり、ニッケ
ル層56は電気的絶縁膜57によって覆われている。し
かして、ニッケル層56に通電することによりそれを発
熱させると、第14図■の直線的な状態から第14図■
の湾曲する状態に変化する。
This type of self-propelled testing device has a simple structure and can be made thin, so it can be used not only inside blood vessels but also inside other narrow lumens. Further, the structure of the self-propelled legs 48 is not limited to the above structure, but may be based on the bimetal principle as shown in FIGS. 14 to 16. That is, this is made by pasting a loop-shaped nickel layer 56 for electrical heating on one side of a belt-shaped resin member 55, and the nickel layer 56 is covered with an electrically insulating film 57. When the nickel layer 56 is made to generate heat by passing current through it, the linear state shown in FIG.
It changes to a curved state.

つまり、跳ね動作を行なわせることができる。また、上
記通電を停止することで第14図■の直線的な状態に復
帰する。これによれば、自走用脚48がマイクロ化する
ことにより高速な応答が実現する。
In other words, it is possible to perform a bouncing motion. Moreover, by stopping the above-mentioned energization, the linear state shown in FIG. 14 (3) is restored. According to this, high-speed response is realized by making the self-propelled legs 48 microscopic.

また、自走用脚としてバイモルフ圧電素子を利用して構
成するようにしてもよい。例えば、第17図ないし第1
9図は、その−例を示すものである。この例はバイモル
フ圧電素子58の片面に複数の脚部59を間隔をあけて
斜め後方へ向けて突設してなり、通常は第17図で示す
状態にあるが、そのバイモルフ圧電素子58を第18図
で示す湾曲状態と第19図で示す湾曲状態とを繰り返す
ことにより各脚部59を加振させる。しかして、この動
きを利用してカプセルを、いわゆる猫じゃらし式に前進
または後退させることができる。
Furthermore, the self-propelled legs may be constructed using bimorph piezoelectric elements. For example, Figures 17 to 1
Figure 9 shows an example of this. In this example, a plurality of legs 59 are provided on one side of a bimorph piezoelectric element 58 at intervals and protrude diagonally rearward, and the bimorph piezoelectric element 58 is normally in the state shown in FIG. Each leg 59 is vibrated by repeating the curved state shown in FIG. 18 and the curved state shown in FIG. 19. This movement can then be used to move the capsule forward or backward in a so-called cat-like manner.

第20図は本発明の第6の実施例を示すものである。こ
の実施例は医療用マイクロロボットとしての大腸用自走
式検査装置に係る。すなわち、この装置は複数のカプセ
ル部61,62.63を有し、これらは−列に連結され
ている。最先端のカプセル部61における本体61aの
先端には前方の視野を観察する対物レンズ64が設けら
れ、その内側に設けた図示しない撮像素子によって撮像
するようになっている。また、対物レンズ64の周りに
は照明用窓65と処置具導出用孔(図示しない。)か設
けられている。中間のカプセル部62は採取した試料を
格納するもので、この前端面部には試料を取り込む複数
の開孔66を有し、これより試料を吸引して採取するよ
うになっている。最後端のカプセル部63はテレメトリ
機能部品を組み込んでいる。
FIG. 20 shows a sixth embodiment of the present invention. This embodiment relates to a self-propelled colon inspection device as a medical microrobot. That is, this device has a plurality of capsule parts 61, 62, 63, which are connected in a negative row. An objective lens 64 for observing the front field of view is provided at the tip of the main body 61a in the most advanced capsule portion 61, and an image is taken by an image sensor (not shown) provided inside the objective lens 64. Further, around the objective lens 64, an illumination window 65 and a treatment instrument lead-out hole (not shown) are provided. The intermediate capsule section 62 is for storing the collected sample, and has a plurality of openings 66 on its front end surface for taking in the sample, through which the sample can be sucked and collected. The capsule portion 63 at the rearmost end incorporates telemetry functional components.

さらに、最先端のカプセル部61の下面には前進用の自
走用脚67が設けられ、最後端のカプセル部63の下面
には後退用の自走用脚68が設けられている。この各自
走用脚67.68としては前述したような種々のものが
利用できるが、その前進用と後退用のものとでは、その
蹴る向きを逆にして配設する。
Further, a self-propelled leg 67 for forward movement is provided on the lower surface of the capsule portion 61 at the most extreme end, and a self-propelled leg 68 for backward movement is provided on the lower surface of the capsule portion 63 at the rearmost end. Various self-propelled legs 67, 68 as described above can be used, but the forward and backward legs are arranged with their kicking directions reversed.

しかして、この大腸用自走式検査装置において、最先端
のカプセル部61にある自走用脚67に蹴り動作を行わ
せると、各カプセル部61,62゜63が前進する。最
後端のカプセル部63にある自走用脚68に蹴り動作を
行わせると、各カプセル部61,62.,63が後退す
る。また、最先端のカプセル部61によって照明しなが
ら観察できるとともに、処置具導出用孔からマニピュレ
ータ69を導出して処置できる。第20図ではスネアワ
イヤ70を利用してポリープ71を切除する状態を示し
ている。中間のカプセル部62では試料を吸引して採取
し、格納することができる。また、これらの操作や観察
等の情報は、最後端のカプセル部63のテレメトリ機能
によって処理する。なお、後退用自走用脚68を設けた
ので、これらを回収する溜めのケーブルを設けなくても
よい。
In this self-propelled large intestine testing device, when the self-propelled leg 67 of the most advanced capsule portion 61 performs a kicking motion, each of the capsule portions 61, 62 and 63 moves forward. When the self-propelled legs 68 on the rearmost capsule section 63 perform a kicking motion, each capsule section 61, 62 . , 63 retreat. Furthermore, observation can be performed while being illuminated by the most advanced capsule section 61, and treatment can be performed by leading out the manipulator 69 from the treatment instrument leading-out hole. FIG. 20 shows a state in which a polyp 71 is removed using a snare wire 70. In the intermediate capsule section 62, a sample can be collected by suction and stored. Further, information on these operations, observations, etc. is processed by the telemetry function of the capsule section 63 at the rear end. In addition, since the self-propelled legs 68 for retreating are provided, there is no need to provide a cable for collecting them.

第21図は本発明の第7の実施例を示すものである。こ
の実施例は医療用マイクロロボットとしての小腸用自走
式検査装置に係る。すなわち、この装置は前後2つのカ
プセル部72.73を有し、これらは連結されている。
FIG. 21 shows a seventh embodiment of the present invention. This embodiment relates to a self-propelled small intestine inspection device as a medical microrobot. That is, this device has two capsule parts 72 and 73, front and rear, which are connected.

最先端のカプセル部72における本体72aの先端には
前方の視野を観察する対物レンズ74が設けられ、その
内側に設けた図示しない撮像素子によって撮像するよう
になっている。また、対物レンズ74の周りには照明用
窓75と処置具導出用孔(図示しない。)が設けられて
いる。後方のカプセル部73の本体73aの周面には全
周的に配置した超音波素子76を設け、これによって周
囲の組織の超音波断層像を得るようになっている。また
、後方のカプセル部73には注排水用の孔77が設けら
れている。また、2つのカプセル部72.73の少なく
とも一方にはテレメトリ機能部品を組み込んでいる。
An objective lens 74 for observing the front field of view is provided at the tip of the main body 72a in the most advanced capsule portion 72, and an image is taken by an image sensor (not shown) provided inside the objective lens 74. Further, around the objective lens 74, an illumination window 75 and a treatment instrument lead-out hole (not shown) are provided. Ultrasonic elements 76 are provided around the entire circumference of the main body 73a of the rear capsule portion 73, thereby obtaining ultrasonic tomographic images of surrounding tissue. Further, the rear capsule portion 73 is provided with a hole 77 for pouring water. Moreover, a telemetry functional component is incorporated in at least one of the two capsule parts 72 and 73.

さらに、最先端のカプセル部72の下面には複数の位置
停止用脚78が設けられている。この位置停止用脚78
は、必要な位置で外方へ拡がり、カプセル部72をその
位置で停止させるようになっている。この脚78として
は前述したような種々のものが利用できる。後方のカプ
セル部73の周囲にはバルーン79が設けられていて、
膨らむことにより小腸80の壁に当たるようになってい
る。しかして、この小腸用自走式検査装置の各カプセル
部72.73は小腸80の蜆動運動で挿入されるもので
ある。
Furthermore, a plurality of position stopping legs 78 are provided on the lower surface of the capsule portion 72 at the most distal end. This position stop leg 78
expands outward at the required position to stop the capsule portion 72 at that position. As this leg 78, various types as mentioned above can be used. A balloon 79 is provided around the rear capsule portion 73,
By expanding, it comes into contact with the wall of the small intestine 80. Thus, each capsule portion 72, 73 of this self-propelled small intestine testing device is inserted by the sliding movement of the small intestine 80.

また、これらの操作や観察等の情報は、上記テレメトリ
機能によって処理する。
Further, information on these operations, observations, etc. is processed by the telemetry function described above.

第22図は本発明の第8の実施例を示すものである。こ
の実施例は医療用マイクロロボットとしての細管腔内用
自走カプセル81に係る。すなわち、この自走カプセル
81は可撓性のある長尺な本体82を有してなり、その
長尺な本体82の先端には観察用対物レンズ83aとそ
の照明窓83aを設けている。また、長尺な本体82の
周面の、前後にある間隔を置いて複数部位には上述した
ような構成の自走用脚84が全周囲にわたり設けられて
いる。そして、この自走用脚84を作動させることによ
り長尺な本体82を細管腔内で自走させながら挿入させ
ることができるようになっている。また、この自走カプ
セル81の後端には可撓性のケーブル86が接続されて
いる。このケーブル86を通じて照明光や撮像信号(ま
たは光像)等の伝送を行うようになっている。
FIG. 22 shows an eighth embodiment of the present invention. This embodiment relates to a self-propelled capsule 81 for use in a narrow lumen as a medical microrobot. That is, this self-propelled capsule 81 has a flexible and elongated main body 82, and an observation objective lens 83a and its illumination window 83a are provided at the tip of the elongated main body 82. Furthermore, self-propelled legs 84 having the above-mentioned configuration are provided at a plurality of locations on the circumferential surface of the elongated main body 82 at certain intervals in the front and back over the entire circumference. By operating the self-propelled legs 84, the elongated main body 82 can be inserted while being self-propelled within the narrow lumen. Further, a flexible cable 86 is connected to the rear end of the self-propelled capsule 81. Illumination light, imaging signals (or optical images), etc. are transmitted through this cable 86.

そして、これを例えば胆管87に挿入する場合、自走カ
プセル81を内視鏡88のチャンネル89を通じて導入
し、胆管87内に差し込んでから自走動作を行わせれば
、その胆管87内に自走挿入させることができる。
When inserting this into the bile duct 87, for example, the self-propelled capsule 81 is introduced through the channel 89 of the endoscope 88, inserted into the bile duct 87, and then allowed to self-propel. can be inserted.

第23図ないし第26図は、生体内部で治療を行うため
、生体内に長時間留置するマイクロロボットを示してい
る。第23図では2つの生体用マイクロロボット、つま
り、血液採集ロボット91と骨補修ロボット92の例を
示している。血液採集ロボット91は患者自身の血液を
採集してその成分を分離する機能を持っている。骨補修
ロボット92は上記成分を用いて骨を合成し、患者自身
の骨を補修する機能を持っている。
FIGS. 23 to 26 show a microrobot that is left in a living body for a long time in order to perform treatment inside the living body. FIG. 23 shows an example of two biological microrobots, that is, a blood collection robot 91 and a bone repair robot 92. The blood collection robot 91 has a function of collecting the patient's own blood and separating its components. The bone repair robot 92 has the function of synthesizing bone using the above components and repairing the patient's own bone.

具体的に述べれば、両方のロボット91.92とも、そ
のカプセル本体91a、92aには、前進用噴射口93
と姿勢制御用噴射口94を有した推進装置95が設けら
れている。さらに、カプセル本体91a、92aには、
照明窓96と観察窓97か設けられていて、生体内を観
察できるようになっている。この観察した情報、および
上記各噴射口93.94の噴射動作の制御は、その各カ
プセル本体91a、92aに組み込んだテレメトリ機能
で、生体外の外部操作装置98.99からの指令で逐行
されるようになっている。血液採集ロボット91には、
先端が注射針状にした血液採集用マニピュレータ101
が設けられ、さらに、そのカプセル本体91a内には血
液貯蔵タンク102、成分分離装置103が設けられて
いる。
Specifically, both robots 91 and 92 have forward injection ports 93 in their capsule bodies 91a and 92a.
A propulsion device 95 having an attitude control injection port 94 is provided. Furthermore, in the capsule bodies 91a and 92a,
An illumination window 96 and an observation window 97 are provided so that the inside of the living body can be observed. This observed information and control of the injection operation of each injection port 93.94 is carried out by a telemetry function built into each of the capsule bodies 91a, 92a, based on commands from an external operating device 98.99 outside the living body. It has become so. The blood collection robot 91 has
Blood collection manipulator 101 with a needle-shaped tip
Further, a blood storage tank 102 and a component separation device 103 are provided within the capsule body 91a.

上記推進装置95と血液採集用マニピュレータ101は
外部操作装置98によって無線等を利用したテレメトリ
伝送によって操作されるようになっている。成分分離装
置103は、血液中よりカルシウム、リン、酸素等を分
離する。
The propulsion device 95 and the blood collection manipulator 101 are operated by an external operating device 98 through telemetry transmission using wireless or the like. The component separation device 103 separates calcium, phosphorus, oxygen, etc. from blood.

骨補修ロボット92には、骨切除用マニピュレータ10
4、骨綴り用マニピュレータ105、人工骨出口106
とが設けられている。骨補修ロボット92のカプセル本
体92a内には骨合成装置107とポンプなどからなる
人工骨吐出装置108が設けられている。推進装置95
、骨切除用マニピュレータ104、骨綴り用マニピュレ
ータ105は、外部操作装置99によるテレメトリ伝送
によって操作されるようになっている。骨合成装置10
7では上記分離した元素からリン酸カルシウム系の物質
を作り人工骨とする。
The bone repair robot 92 includes a bone resection manipulator 10.
4. Bone fixing manipulator 105, artificial bone outlet 106
and is provided. In the capsule body 92a of the bone repair robot 92, a bone synthesis device 107 and an artificial bone discharging device 108 consisting of a pump and the like are provided. Propulsion device 95
, the bone resection manipulator 104 , and the bone correction manipulator 105 are operated by telemetry transmission from an external operating device 99 . Bone synthesis device 10
In step 7, a calcium phosphate-based substance is made from the separated elements and used as an artificial bone.

血液採集ロボット91の成分分離装置103と骨補修ロ
ボット92の骨合成装置107とは物質輸送パイプ10
9によって連結されている。
The component separation device 103 of the blood collection robot 91 and the bone synthesis device 107 of the bone repair robot 92 are the substance transport pipe 10.
connected by 9.

上記血液採集ロボット91と骨補修ロボット92とのシ
ステムをブロック的に示すと第24図で示すようになる
A system including the blood collection robot 91 and the bone repair robot 92 is shown in block form in FIG. 24.

しかして、この血液採集ロボット91と骨補修ロボット
92とは、第23図で示すように生体内に長期間留置さ
れ、血液採集ロボット91により患者の血管100から
血液を採取して貯蔵するとともに、その血液中から骨の
合成に必要な成分を分離し、これを骨補修ロボット92
の骨合成装置107に輸送し、補修に必要な人工骨を合
成する。
As shown in FIG. 23, the blood collection robot 91 and the bone repair robot 92 are left in the living body for a long period of time, and the blood collection robot 91 collects blood from the patient's blood vessel 100 and stores it. The components necessary for bone synthesis are separated from the blood and transferred to the bone repair robot 92.
The bone is transported to a bone synthesis device 107 in which artificial bone necessary for repair is synthesized.

また、骨補修ロボット92は骨切除用マニビュレ−タ1
04で患者の骨110の病変部を切除し、骨綴り用マニ
ピュレータ105で人工骨吐出装置108から受は取っ
た人工骨で補修する。
The bone repair robot 92 also includes a bone resection manibulator 1.
In step 04, the diseased part of the patient's bone 110 is excised and repaired with the artificial bone received from the artificial bone discharging device 108 using the bone manipulator 105.

上記各ロボット91.92の動力も生体中から得るよう
にする。この手段の1例を第25図で示す。すなわち、
血液採集ロボット91の成分分離装置111では、採集
した血液中より、ぶどう糖(C6H1206)と酸素(
0□)とを分離し、それぞれの貯蔵タンク112,11
3に分離貯蔵しておく。そして、エネルギが必要なとき
、酸化分解装置114で酸化し、電気エネルギを取り出
す。
The power for each of the robots 91 and 92 is also obtained from inside the living body. An example of this means is shown in FIG. That is,
The component separation device 111 of the blood collection robot 91 separates glucose (C6H1206) and oxygen (
0□) and separate the storage tanks 112 and 11.
3. Separate and store. Then, when energy is required, the oxidation decomposition device 114 oxidizes and extracts electrical energy.

この電気エネルギで例えばモータ115等を駆動し、例
えば推進装置116を操作駆動する。このように生体内
からエネルギ源を入手するので、外部からの補給をする
必要がなく、ロボットを長期に留置することが可能であ
る。
This electric energy drives, for example, the motor 115, etc., and operates, for example, the propulsion device 116. Since the energy source is obtained from within the body in this way, there is no need for external supplies, and the robot can be left in place for a long period of time.

また、生体から得る動力源として内燃機関であってもよ
い。第26図はこの場合の1例を示すものである。すな
わち、血液中から酸素を分離する成分分離装置121と
その酸素を貯蔵する酸素貯蔵タンク122とを設ける。
Moreover, an internal combustion engine may be used as the power source obtained from a living body. FIG. 26 shows an example of this case. That is, a component separation device 121 that separates oxygen from blood and an oxygen storage tank 122 that stores the oxygen are provided.

また、大便がらメタンガスを分離する成分分離装置12
3とそのメタンガスを貯蔵するメタンガス貯蔵タンク1
24とを設ける。その酸素とメタンガスを燃焼して動作
する内燃機関125を設けてなるものである。
In addition, a component separation device 12 that separates methane gas from stool
3 and a methane gas storage tank 1 that stores the methane gas.
24 is provided. It is provided with an internal combustion engine 125 that operates by burning the oxygen and methane gas.

そして、エネルギが必要なとき、その内燃機関125を
作動してメタンガスを酸化して熱エネルギを取り出す。
When energy is needed, the internal combustion engine 125 is operated to oxidize methane gas and extract thermal energy.

これで、例えば推進装置126を駆動する。This drives the propulsion device 126, for example.

なお、上記例では骨の補修についての場合であったが、
血管の補修についても同じように利用できる。第27図
はその場合の血管補修用ロボット130を示す。血液採
集用ロボット131については上記同様なものである。
Note that the above example was about bone repair, but
It can also be used in the same way for repairing blood vessels. FIG. 27 shows a blood vessel repair robot 130 in that case. The blood collection robot 131 is the same as described above.

この血管補修用ロボット130は、そのカプセル本体1
30aに人工シート132の把持および操作用マニピュ
レータ133、縫合針操作用マニピュレータ134、た
んばく糸135を繰り出す吐出口136、人工シート(
タンパク膜)132を出す取比し口137等が設けられ
ている。また照明窓138や観察窓139も設けられて
いる。
This blood vessel repair robot 130 has its capsule body 1
30a includes a manipulator 133 for gripping and manipulating the artificial sheet 132, a manipulator 134 for manipulating the suture needle, a discharge port 136 for feeding out the protein thread 135, and an artificial sheet (
A port 137 for taking out the protein film 132 is provided. Further, an illumination window 138 and an observation window 139 are also provided.

また、カプセル本体130aには前進用噴射口141と
姿勢制御用噴射口142を有した推進装置が設けられて
いる。
Further, the capsule body 130a is provided with a propulsion device having a forward jet nozzle 141 and an attitude control jet nozzle 142.

さらに、カプセル本体130aの内部には、第28図で
示すように、血液採集用ロボット131から輸送パイプ
143を通じて得た成分を利用してタンパク膜を合成す
るタンパク膜合成装置145、たんばく膜を吐出するポ
ンプ146、タンパク糸を合成するタンパク糸合成装置
147、タンパク糸を吐出するポンプ148が設けられ
ている。
Further, inside the capsule body 130a, as shown in FIG. 28, there is a protein membrane synthesis device 145 that synthesizes a protein membrane using components obtained from the blood collection robot 131 through the transport pipe 143, and a protein membrane. A pump 146 for discharging protein threads, a protein thread synthesis device 147 for synthesizing protein threads, and a pump 148 for discharging protein threads are provided.

しかして、血液採集用ロボット131ではその成分分離
装置149において、採集した血液中からタンパク質を
分離する。血管補修用ロボット130ではそのタンパク
質の輸送を受けてタンパク膜たる人工シート132とタ
ンパク糸135を合成し、ポンプ146,148でそれ
ぞれを必要に応じて送り出し、必要に供する。この動作
は無線等を利用したテレメトリ伝送によって制御される
Thus, in the blood collection robot 131, the component separation device 149 separates proteins from the collected blood. The blood vessel repair robot 130 receives the protein and synthesizes an artificial sheet 132, which is a protein membrane, and a protein thread 135, and pumps 146, 148 send out each as needed, and use them as needed. This operation is controlled by telemetry transmission using wireless or the like.

血管補修用ロボット130は、その操作用マニピュレー
タ133と縫合針操作用マニピュレータ134を用いて
血管150の例えば動脈瘤等に人工シート132を縫い
付けて補修する。  しがして、消費材である人工シー
ト132とタンパク糸135は生体内で入手でき、外部
がらの補給は不要である。したがって、長期間、生体内
で機能させることができる。エネルギ源についても上記
例の通りである。
The blood vessel repair robot 130 uses its operating manipulator 133 and suture needle operating manipulator 134 to sew and repair an artificial sheet 132 to, for example, an aneurysm of a blood vessel 150. However, the artificial sheet 132 and the protein thread 135, which are consumable materials, can be obtained in vivo, and there is no need for external supplies. Therefore, it can function in vivo for a long period of time. The energy source is also the same as the above example.

第29図ないし第31図は他の方式の医療用体内ロボッ
トを示すものである。すなわち、この医療用体内ロボッ
トは分離された複数のマイクロロボット部151,15
2,153からなる。各マイクロロボット部151,1
52,153はその外面に前述したような走行用脚15
4がそれぞれ設けられていて、この走行用脚154を駆
動することにより管腔内を独立して走行できるようにな
っている。この走行用脚154として、例えばマイクロ
ロボット部本体の外周に環状に配置した圧型素子に斜め
に取り付けた剛毛からなり、その圧電素子の振動パター
ンに応じて前進または後退させ得るようになっている。
FIGS. 29 to 31 show another type of medical in-body robot. That is, this medical in-body robot has a plurality of separated microrobot parts 151, 15.
It consists of 2,153. Each micro robot part 151,1
52 and 153 have running legs 15 as described above on their outer surfaces.
4 are respectively provided, and by driving these traveling legs 154, they can travel independently within the lumen. The traveling legs 154 are, for example, bristles attached obliquely to a piezoelectric element arranged annularly around the outer periphery of the microrobot main body, and can be moved forward or backward according to the vibration pattern of the piezoelectric element.

また、前述したような走行用脚の方式を用いてもよい。Alternatively, the above-mentioned running leg system may be used.

また、各マイクロロボット部151.152153には
テレメトリ伝送用の受信装置155、走行用脚154の
ための駆動回路156が設けられている。さらに、第1
のマイクロロボット部151には、LED等からなる照
明手段157、対物レンズ158や撮像素子159等か
らなる観察手段1601送信装置161、誘導装置16
2か組み込まれている。撮像素子159で信号化した撮
像信号は送信装置161で体外の受信装置に伝送される
。また、誘導装置162は後続のマイクロロボット部1
52,153に、例えば電波を発して誘導信号を送る。
Further, each microrobot section 151.152153 is provided with a receiving device 155 for telemetry transmission and a drive circuit 156 for the running legs 154. Furthermore, the first
The microrobot section 151 includes an illumination means 157 including an LED, an observation means 1601 including an objective lens 158, an image sensor 159, etc., a transmitting device 161, and a guiding device 16.
2 are included. The imaging signal converted by the imaging device 159 is transmitted to a receiving device outside the body by a transmitting device 161. Further, the guidance device 162 is used for the subsequent microrobot section 1.
52 and 153, a guidance signal is sent, for example, by emitting radio waves.

第2のマイクロロボット部152には、生体処置用のマ
ニピュレータ163を導出自在に格納する格納室164
、マニピュレータ163を操作する駆動用モータ165
、格納室164の開口部を開閉自在に覆う開閉カバー1
68等が組み込まれている。第3のマイクロロボット部
153には、電源169等が組み込まれている。さらに
、これらのマイクロロボット部151.152,153
は通常独立して外部の制御手段からの無線等による信号
を受けて体腔内を移動するが、第30図で示すように互
いに連結して一体化(合体)できるようになっている。
The second microrobot unit 152 includes a storage chamber 164 in which a manipulator 163 for biological treatment is stored in a manner that allows the manipulator 163 to be freely drawn out.
, a drive motor 165 that operates the manipulator 163
, an opening/closing cover 1 that covers the opening of the storage chamber 164 so as to be openable and closable.
68 mag is incorporated. A power source 169 and the like are incorporated in the third microrobot section 153. Furthermore, these micro robot parts 151, 152, 153
Normally, they move independently within the body cavity in response to a wireless signal from an external control means, but as shown in FIG. 30, they can be connected and integrated (combined) with each other.

そして、エネルギや信号の交換ができるようになる。Then, energy and signals can be exchanged.

このための具体的な手段の一例を第31図で示す。すな
わち、斜めの各結合端面には3分割された電磁石171
が付設されており、それぞれの極性は対応するものと逆
になっている。したがって、ドツキングの際に位置ずれ
を起こさない。さらに前方側の結合端面には電気信号伝
送用コネクタ172、LED17B、電源コネクタ17
4が突出して設けられ、後方側の結合端面にはそれらに
対応した凹部コネクタ175,176.177が設けら
れている。電気信号伝送用コネクタ172は互いの駆動
回路を接続する。電源コネクタ174は互いの電源を接
続するようになっている。また、凹部コネクタ176に
は受光素子178が設けられていて、これらLED17
3と受光素子178により前側のマイクロロボット部1
51.152の誘導信号で後ろ側のマイクロロボット部
152,153の近距離になったとき、互いの軸線を合
わせて正確に位置決めするようになっている。
An example of a specific means for this purpose is shown in FIG. That is, each diagonal coupling end face has an electromagnet 171 divided into three parts.
are attached, each with the polarity opposite to its counterpart. Therefore, positional deviation does not occur during docking. Further, on the front coupling end surface, there is an electrical signal transmission connector 172, an LED 17B, and a power connector 17.
4 are provided protrudingly, and corresponding recessed connectors 175, 176, and 177 are provided on the rear coupling end surface. The electrical signal transmission connector 172 connects the drive circuits to each other. The power supply connectors 174 are adapted to connect the power supplies to each other. Further, a light receiving element 178 is provided in the recessed connector 176, and these LEDs 17
3 and the light receiving element 178, the front microrobot part 1
When the rear microrobot parts 152 and 153 come close to each other by the guidance signals 51 and 152, their axes are aligned with each other for accurate positioning.

しかして、これらを使用する場合、各マイクロロボット
部151,152,153は内視鏡181のチャンネル
182を通じて例えば胆管等の目標体腔183の入り口
に出る。そして、目標体腔183に最初のマイクロロボ
ット部151を遠隔操作で送り出し、自走させて挿入前
進させる。
Thus, when these are used, each of the microrobot parts 151, 152, 153 exits through the channel 182 of the endoscope 181 to the entrance of a target body cavity 183, such as a bile duct. Then, the first microrobot section 151 is sent out into the target body cavity 183 by remote control, and is allowed to self-propel to be inserted and advanced.

ここで、病変部を診断し、治療に適した次のマイクロロ
ボット部152を送り込む。さらに、治療に時間がかか
りそうな場合は、大容量の電源を供えたマイクロロボッ
ト部153を送り込む。
Here, the diseased area is diagnosed and the next microrobot unit 152 suitable for treatment is sent. Furthermore, if the treatment is likely to take a long time, a microrobot unit 153 equipped with a large capacity power source is sent.

なお、第32図と第33図は他の形式のマイクロロボッ
ト部を示す。第32図で示すマイクロロボット部は観察
や走行などの用途に使用する超音波振動子194と駆動
用モータ195を追加した構成のものである。第33図
で示すマイクロロボット部196は注射針197を備え
、これに連結されるマイクロロボット部198には薬液
タンク199を備えたものである。
Note that FIGS. 32 and 33 show other types of microrobot sections. The microrobot section shown in FIG. 32 has a configuration in which an ultrasonic transducer 194 and a drive motor 195 used for purposes such as observation and running are added. A microrobot section 196 shown in FIG. 33 is equipped with an injection needle 197, and a microrobot section 198 connected thereto is equipped with a drug tank 199.

[発明の効果コ 以上説明したように本発明の内視鏡によれば、微少重力
空間または無重力空間においての使用に適し、その検査
等の容易性、低侵襲性、検査範囲の拡大が図れる。
[Effects of the Invention] As explained above, the endoscope of the present invention is suitable for use in a microgravity space or a zero gravity space, and facilitates and minimizes invasiveness of inspection, and expands the inspection range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の第1の実施例を示し、第
1図はその内視鏡の概略的な斜視図、第2図はその構成
を示すブロック図、第3図は駆動時のタイムチャートで
ある。第4図は本発明の第2の実施例の内視鏡の概略的
な斜視図、第5図はその構成を示すブロック図である。 第6図は本発明の第3の実施例の内視鏡の概略的な斜視
図、第7図はその構成を示すブロック図である。第8図
は本発明の第4の実施例の内視鏡の概略的な斜視図、第
9図はその構成を示すブロック図である。 第10図ないし第13図は本発明の第5の実施例を示し
、第10図はその使用状態における側方から見た図、第
11図は走行用脚の動作説明図、第12図はその走行用
脚の平面図、第13図はその走行用脚の断面図である。 第14図ないし第16図はその走行用脚の変形例を示し
、第14図はその走行用脚の動作を示す斜視図、第15
図はその走行用脚の平面図、第16図はその走行用脚の
断面図である。第17図ないし第19図は他の走行用脚
の断面図である。第20図は他の例の使用状態を示す概
略的な斜視図である。第21図はさらに他の例の使用状
態を示す概略的な斜視図である。 第22図はさらに他の例の使用状態を示す概略的な斜視
図である。第23図は医療マイクロロボットの斜視図、
第24図ないし第25はそのブロック構成図である。第
26図は他の変形例を示すブロック構成図である。第2
7図は他の医療マイクロロボットの斜視図、第28図は
そのブロック構成図である。第29図および第30図は
さらに他の医療マイクロロボットの斜視図、第31図は
その端面部分の拡大した斜視図、第32図と第33図は
他の変形例を示すロボットの斜視図である。 1・・・本体、2・・・対物レンズ、11・・・LED
。 12・・ノズル、14・・・タンク、15・・・受信部
、21・・・圧電素子、25・・・ファン、26・・・
モータ、38・・ノズル。
1 to 3 show a first embodiment of the present invention, FIG. 1 is a schematic perspective view of the endoscope, FIG. 2 is a block diagram showing its configuration, and FIG. 3 is a drive This is a time chart of the time. FIG. 4 is a schematic perspective view of an endoscope according to a second embodiment of the present invention, and FIG. 5 is a block diagram showing its configuration. FIG. 6 is a schematic perspective view of an endoscope according to a third embodiment of the present invention, and FIG. 7 is a block diagram showing its configuration. FIG. 8 is a schematic perspective view of an endoscope according to a fourth embodiment of the present invention, and FIG. 9 is a block diagram showing its configuration. 10 to 13 show a fifth embodiment of the present invention, in which FIG. 10 is a view seen from the side in the state of use, FIG. 11 is an explanatory diagram of the operation of the running legs, and FIG. 12 is FIG. 13 is a plan view of the running leg, and FIG. 13 is a sectional view of the running leg. 14 to 16 show modified examples of the running legs, FIG. 14 is a perspective view showing the operation of the running legs, and FIG. 15 is a perspective view showing the operation of the running legs.
The figure is a plan view of the running leg, and FIG. 16 is a sectional view of the running leg. 17 to 19 are cross-sectional views of other running legs. FIG. 20 is a schematic perspective view showing another example in use. FIG. 21 is a schematic perspective view showing a usage state of still another example. FIG. 22 is a schematic perspective view showing a usage state of still another example. Figure 23 is a perspective view of a medical microrobot;
24 to 25 are block diagrams thereof. FIG. 26 is a block diagram showing another modification. Second
FIG. 7 is a perspective view of another medical microrobot, and FIG. 28 is a block diagram thereof. FIGS. 29 and 30 are perspective views of other medical microrobots, FIG. 31 is an enlarged perspective view of its end face, and FIGS. 32 and 33 are perspective views of other modified robots. be. 1... Main body, 2... Objective lens, 11... LED
. 12... Nozzle, 14... Tank, 15... Receiving section, 21... Piezoelectric element, 25... Fan, 26...
Motor, 38... nozzle.

Claims (1)

【特許請求の範囲】[Claims]  カプセル状の本体と、この本体に設けられた観察用手
段と、上記本体に設けられ異なる方向の慣性力を選択的
に発生する第1の手段と、この第1の手段による慣性力
の発生およびその慣性力の向きを切り換える第2の手段
と、この第2の手段を制御する信号を受信する第3の手
段と、この第3の手段への信号および上記観察手段から
の画像信号をテレメトリ伝送する第4の手段とを具備し
、上記本体を微少重力空間あるいは無重力空間に浮遊さ
せて使用されることを特徴とする内視鏡。
a capsule-shaped main body, an observation means provided on the main body, a first means provided on the main body for selectively generating inertia forces in different directions, and generation of inertia forces by the first means; a second means for switching the direction of the inertial force; a third means for receiving a signal for controlling the second means; and telemetry transmission of the signal to the third means and the image signal from the observation means. an endoscope, characterized in that the endoscope is used with the main body floating in a microgravity space or a zero gravity space.
JP2268866A 1990-10-05 1990-10-05 Endoscope Pending JPH04144533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268866A JPH04144533A (en) 1990-10-05 1990-10-05 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268866A JPH04144533A (en) 1990-10-05 1990-10-05 Endoscope

Publications (1)

Publication Number Publication Date
JPH04144533A true JPH04144533A (en) 1992-05-19

Family

ID=17464352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268866A Pending JPH04144533A (en) 1990-10-05 1990-10-05 Endoscope

Country Status (1)

Country Link
JP (1) JPH04144533A (en)

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402686B1 (en) 1999-06-07 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Fully-swallowable endoscopic system
US6402687B1 (en) 1999-06-07 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Fully-swallowable endoscopic system
JP2003038425A (en) * 2001-07-30 2003-02-12 Olympus Optical Co Ltd Encapsulated endoscope
US6527705B1 (en) 1999-06-07 2003-03-04 Pentax Corporation Fully-swallowable endoscopic system
US6547723B1 (en) 1999-06-07 2003-04-15 Pentax Corporation Fully-swallowable endoscopic system
US6612982B1 (en) 1999-06-07 2003-09-02 Pentax Corporation Fully-swallowable endoscopic system
JP2003526268A (en) * 2000-03-08 2003-09-02 ギブン・イメージング・リミテツド Apparatus and system for in vivo imaging
JP2003526413A (en) * 2000-01-13 2003-09-09 カプセル ヴュー インク. Apparatus and method for encapsulated medical imaging
KR20040003739A (en) * 2002-07-04 2004-01-13 지인호 wireless controlled endoscope system
JP2004344216A (en) * 2003-05-20 2004-12-09 Olympus Corp Medical appliance control support system and medical appliance control support program
JP2005507687A (en) * 2001-09-24 2005-03-24 ギブン・イメージング・リミテッド System and method for controlling an in-vivo device
JP2005124708A (en) * 2003-10-22 2005-05-19 Olympus Corp Body inside observing device
US6939290B2 (en) 2002-02-11 2005-09-06 Given Imaging Ltd Self propelled device having a magnetohydrodynamic propulsion system
US6958034B2 (en) 2002-02-11 2005-10-25 Given Imaging Ltd. Self propelled device
US20050288555A1 (en) * 2004-06-28 2005-12-29 Binmoeller Kenneth E Methods and devices for illuminating, vievwing and monitoring a body cavity
US7001329B2 (en) 2002-07-23 2006-02-21 Pentax Corporation Capsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
US7109933B2 (en) 2004-03-08 2006-09-19 Pentax Corporation Wearable jacket having communication function, and endoscope system employing wearable jacket
JP2006334141A (en) * 2005-06-02 2006-12-14 Konica Minolta Medical & Graphic Inc Capsule endoscope
US7192397B2 (en) 2001-05-20 2007-03-20 Given Imaging Ltd. Floatable in vivo sensing device and method for use
JP2007136208A (en) * 2006-11-21 2007-06-07 Olympus Corp Capsule type endoscope for medical treatment
JP2007181682A (en) * 2005-12-29 2007-07-19 Given Imaging Ltd Device, system and method for intracorporeal sensing of intracorporeal lumen
JP2007521938A (en) * 2004-02-17 2007-08-09 コリア インスティテュート オブ サイエンス アンド テクノロジー Remotely controlled endoscope capsule with mobile motion system
US7295226B1 (en) 1999-11-15 2007-11-13 Given Imaging Ltd. Method for activating an image collecting process
JP2007534350A (en) * 2003-07-15 2007-11-29 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク Insertable device and system for minimal access procedures
US7327525B2 (en) 1999-06-15 2008-02-05 Given Imaging Ltd. Optical system
US7336833B2 (en) 2004-06-30 2008-02-26 Given Imaging, Ltd. Device, system, and method for reducing image data captured in-vivo
US7347817B2 (en) 2001-08-02 2008-03-25 Given Imaging Ltd. Polarized in vivo imaging device, system and method
JP2008194082A (en) * 2007-02-08 2008-08-28 Hoya Corp Intracelom mover
JP2008194080A (en) * 2007-02-08 2008-08-28 Hoya Corp Intracelom mover
JP2008539936A (en) * 2005-05-12 2008-11-20 コリア インスティテュート オブ サイエンス アンド テクノロジー Capsule type micro robot drive system
US7465271B2 (en) 2003-09-01 2008-12-16 Hoya Corporation Capsule endoscope
US7474327B2 (en) 2002-02-12 2009-01-06 Given Imaging Ltd. System and method for displaying an image stream
WO2009016748A1 (en) * 2007-08-01 2009-02-05 Olympus Medical Systems Corp. Medical equipment and endoscope
US7492935B2 (en) 2003-06-26 2009-02-17 Given Imaging Ltd Device, method, and system for reduced transmission imaging
US7505062B2 (en) 2002-02-12 2009-03-17 Given Imaging Ltd. System and method for displaying an image stream
US7553276B2 (en) 2001-01-16 2009-06-30 Given Imaging Ltd. Method and device for imaging body lumens
US7567692B2 (en) 2005-09-30 2009-07-28 Given Imaging Ltd. System and method for detecting content in-vivo
US7577283B2 (en) 2005-09-30 2009-08-18 Given Imaging Ltd. System and method for detecting content in-vivo
US7585283B2 (en) 2001-07-12 2009-09-08 Given Imaging Ltd. Device and method for examining a body lumen
US7596403B2 (en) 2004-06-30 2009-09-29 Given Imaging Ltd. System and method for determining path lengths through a body lumen
US7604589B2 (en) 2003-10-01 2009-10-20 Given Imaging, Ltd. Device, system and method for determining orientation of in-vivo devices
US7634305B2 (en) 2002-12-17 2009-12-15 Given Imaging, Ltd. Method and apparatus for size analysis in an in vivo imaging system
US7647090B1 (en) 2003-12-30 2010-01-12 Given Imaging, Ltd. In-vivo sensing device and method for producing same
JP2010005442A (en) * 2001-05-20 2010-01-14 Given Imaging Ltd In vivo image sensing device
US7650180B2 (en) 2003-07-02 2010-01-19 Given Imaging Ltd. Imaging sensor array and device and method for use therefor
US7662094B2 (en) 2002-05-14 2010-02-16 Given Imaging Ltd. Optical head assembly with dome, and device for use thereof
US7724928B2 (en) 2001-06-20 2010-05-25 Given Imaging, Ltd. Device, system and method for motility measurement and analysis
US7727169B1 (en) 2001-06-11 2010-06-01 Given Imaging, Ltd. Device for in vivo sensing
WO2010064662A1 (en) * 2008-12-04 2010-06-10 オリンパスメディカルシステムズ株式会社 Capsule propulsion device, medical treatment system and propulsion method using the same
JP2010142372A (en) * 2008-12-17 2010-07-01 Olympus Corp Guide tube, guide tube device and endoscope system
US7778356B2 (en) 2005-06-14 2010-08-17 Given Imaging Ltd. Modulator and method for producing a modulated signal
US7805178B1 (en) 2005-07-25 2010-09-28 Given Imaging Ltd. Device, system and method of receiving and recording and displaying in-vivo data with user entered data
JP2010536436A (en) * 2007-08-15 2010-12-02 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Modular and collaborative medical devices and related systems and methods
US7896805B2 (en) 2005-11-23 2011-03-01 Given Imaging Ltd. In-vivo imaging device and optical system thereof
JP4642941B2 (en) * 2009-05-29 2011-03-02 オリンパスメディカルシステムズ株式会社 Capsule medical device
US7931149B2 (en) 2009-05-27 2011-04-26 Given Imaging Ltd. System for storing and activating an in vivo imaging capsule
US7938775B2 (en) 2004-06-28 2011-05-10 Given Imaging, Ltd. Device, system, and method for in-vivo analysis
US7942811B2 (en) 2001-10-16 2011-05-17 Olympus Corporation Capsulated medical equipment
US7967745B2 (en) 2006-09-28 2011-06-28 Given Imaging, Ltd. In vivo imaging device and method of manufacture thereof
JP2011142951A (en) * 2010-01-12 2011-07-28 Olympus Medical Systems Corp Medical equipment
US7996067B2 (en) 1999-06-15 2011-08-09 Given Imaging Ltd. In-vivo imaging device, optical system and method
US8022980B2 (en) 2002-02-12 2011-09-20 Given Imaging Ltd. System and method for displaying an image stream
US8063933B2 (en) 2006-03-27 2011-11-22 Given Imaging Ltd. Battery contacts for an in-vivo imaging device
US8098295B2 (en) 2006-03-06 2012-01-17 Given Imaging Ltd. In-vivo imaging system device and method with image stream construction using a raw images
US8142350B2 (en) 2003-12-31 2012-03-27 Given Imaging, Ltd. In-vivo sensing device with detachable part
US8159549B2 (en) 2000-05-15 2012-04-17 Given Imaging Ltd. System and method for in-vivo imaging
US8164672B2 (en) 2003-12-31 2012-04-24 Given Imaging Ltd. System and method for displaying an image stream
US8185185B2 (en) 2006-03-31 2012-05-22 Given Imaging Ltd. System and method for assessing a patient condition using tertiles derived from capsule endoscope images of the small bowel
US8206285B2 (en) 2003-12-31 2012-06-26 Given Imaging Ltd. Apparatus, system and method to indicate in-vivo device location
US8262566B2 (en) 2008-07-14 2012-09-11 Given Imaging Ltd. Device and method for uniform in vivo illumination
US8290556B2 (en) 2004-05-21 2012-10-16 Given Imaging Ltd. Device, system and method for in-vivo analysis
US8348830B2 (en) 2007-04-11 2013-01-08 Given Imaging Ltd. In vivo sensing devices and methods of identification thereof
US8369589B2 (en) 2005-09-09 2013-02-05 Given Imaging Ltd. System and method for concurrent transfer and processing and real time viewing of in-vivo images
US8394034B2 (en) 2004-05-21 2013-03-12 Given Imaging Ltd. Device, system and method for in-vivo sampling
US8401262B2 (en) 2001-06-20 2013-03-19 Given Imaging, Ltd Device, system and method for motility measurement and analysis
US8406490B2 (en) 2008-04-30 2013-03-26 Given Imaging Ltd. System and methods for determination of procedure termination
US8430809B2 (en) * 2005-08-01 2013-04-30 G. I View Ltd. Capsule for use in small intestine
JP5334129B2 (en) * 2007-08-28 2013-11-06 国立大学法人 千葉大学 Laparoscopic surgery support robot
US8597286B2 (en) 2004-10-11 2013-12-03 Given Imaging Ltd Device, system and method for in-vivo cauterization
JP2014000434A (en) * 2007-11-08 2014-01-09 Olympus Medical Systems Corp apparatus
US8639314B2 (en) 2003-12-24 2014-01-28 Given Imaging Ltd. Device, system and method for in-vivo imaging of a body lumen
US8672863B2 (en) 2001-07-12 2014-03-18 Given Imaging Ltd. Device and method for examining a body lumen
US8682142B1 (en) 2010-03-18 2014-03-25 Given Imaging Ltd. System and method for editing an image stream captured in-vivo
US8696602B2 (en) 2009-03-31 2014-04-15 Given Imaging, Inc. Method of determining body exit of an ingested capsule
US8753262B2 (en) 2003-07-29 2014-06-17 Hoya Corporation Internal treatment apparatus having circumferential side holes
JP2014132967A (en) * 2013-01-09 2014-07-24 Toshifumi Hayakawa Advancing unit for endoscope
US8840551B2 (en) 2009-12-21 2014-09-23 Given Imaging, Inc. Tethering capsule system
US8911368B2 (en) 2009-01-29 2014-12-16 Given Imaging, Ltd. Device, system and method for detection of bleeding
US8911360B2 (en) 2009-11-20 2014-12-16 Given Imaging Ltd. System and method for controlling power consumption of an in vivo device
US8945010B2 (en) 2009-12-23 2015-02-03 Covidien Lp Method of evaluating constipation using an ingestible capsule
US9060673B2 (en) 2010-04-28 2015-06-23 Given Imaging Ltd. System and method for displaying portions of in-vivo images
US9078579B2 (en) 2009-06-24 2015-07-14 Given Imaging Ltd. In vivo sensing device with a flexible circuit board
US9084547B2 (en) 2006-03-30 2015-07-21 Given Imaging Ltd. System and method for checking the status of an in-vivo imaging device
US9107604B2 (en) 2011-09-26 2015-08-18 Given Imaging Ltd. Systems and methods for generating electromagnetic interference free localization data for an in-vivo device
US9113846B2 (en) 2001-07-26 2015-08-25 Given Imaging Ltd. In-vivo imaging device providing data compression
US9237839B2 (en) 2009-12-17 2016-01-19 Given Imaging Ltd. Device, system and method for activation, calibration and testing of an in-vivo imaging device
US9375202B2 (en) 2012-05-04 2016-06-28 Given Imaging Ltd. Device and method for in vivo cytology acquisition
US9560956B2 (en) 2006-08-24 2017-02-07 Given Imaging Ltd. Device, system and method of displaying in-vivo images at variable rate
CN107205623A (en) * 2014-09-09 2017-09-26 范德比尔特大学 Liquid-spraying type capsule endoscope and method for the gastric cancer screening in low-resource area
PL423831A1 (en) * 2017-12-12 2019-06-17 Politechnika Krakowska im. Tadeusza Kościuszki Endoscope navigation method, a system for navigation of endoscope and the endoscope that contains such a system
US10485409B2 (en) 2013-01-17 2019-11-26 Vanderbilt University Real-time pose and magnetic force detection for wireless magnetic capsule
CN110566751A (en) * 2019-08-20 2019-12-13 南京航空航天大学 Rigid/flexible pipeline crawling robot
CN112137568A (en) * 2020-10-27 2020-12-29 曹庆恒 Endoscopic robot and method of using the same
CN112137567A (en) * 2020-10-27 2020-12-29 曹庆恒 A kind of endoscope robot and its use method
US11122965B2 (en) 2017-10-09 2021-09-21 Vanderbilt University Robotic capsule system with magnetic actuation and localization
JP2022508537A (en) * 2018-09-28 2022-01-19 アルテドローン Medical devices and methods for performing surgery in the body
WO2022087915A1 (en) * 2020-10-28 2022-05-05 曹庆恒 Tract endoscope robot and method for using same
WO2022087918A1 (en) * 2020-10-28 2022-05-05 曹庆恒 Cavity endoscope robot and method for using same
WO2022259737A1 (en) * 2021-06-09 2022-12-15 弘幸 中西 Endoscope system, operating device for capsule endoscope, and capsule endoscope system
JP2023519519A (en) * 2020-04-01 2023-05-11 アルテドローン Medical device, device control method, system including device, and device manufacturing method
US11786334B2 (en) 2016-12-14 2023-10-17 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US11806097B2 (en) 2013-03-14 2023-11-07 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US11819299B2 (en) 2012-05-01 2023-11-21 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US11826014B2 (en) 2016-05-18 2023-11-28 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US11826032B2 (en) 2013-07-17 2023-11-28 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US11832871B2 (en) 2011-06-10 2023-12-05 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US11832902B2 (en) 2012-08-08 2023-12-05 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US11872090B2 (en) 2015-08-03 2024-01-16 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US11903658B2 (en) 2019-01-07 2024-02-20 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
US11909576B2 (en) 2011-07-11 2024-02-20 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US11950867B2 (en) 2018-01-05 2024-04-09 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US11974824B2 (en) 2017-09-27 2024-05-07 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
US12070282B2 (en) 2013-03-14 2024-08-27 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US12096999B2 (en) 2014-11-11 2024-09-24 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and related systems and methods
US12109079B2 (en) 2016-11-22 2024-10-08 Board Of Regents Of The University Of Nebraska Gross positioning device and related systems and methods
US12150722B2 (en) 2020-07-06 2024-11-26 Virtual Incision Corporation Surgical robot positioning system and related devices and methods
US12156710B2 (en) 2011-10-03 2024-12-03 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US12274517B2 (en) 2016-08-30 2025-04-15 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and an additional degree of freedom and related systems and methods
US12295680B2 (en) 2012-08-08 2025-05-13 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
US12390240B2 (en) 2014-09-12 2025-08-19 Virtual Incision Corporation Quick-release end effectors and related systems and methods

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402686B1 (en) 1999-06-07 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Fully-swallowable endoscopic system
US6402687B1 (en) 1999-06-07 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Fully-swallowable endoscopic system
US6527705B1 (en) 1999-06-07 2003-03-04 Pentax Corporation Fully-swallowable endoscopic system
US6547723B1 (en) 1999-06-07 2003-04-15 Pentax Corporation Fully-swallowable endoscopic system
US6612982B1 (en) 1999-06-07 2003-09-02 Pentax Corporation Fully-swallowable endoscopic system
US7433133B2 (en) 1999-06-15 2008-10-07 Given Imaging Ltd. Optical system
US7327525B2 (en) 1999-06-15 2008-02-05 Given Imaging Ltd. Optical system
US7996067B2 (en) 1999-06-15 2011-08-09 Given Imaging Ltd. In-vivo imaging device, optical system and method
US7295226B1 (en) 1999-11-15 2007-11-13 Given Imaging Ltd. Method for activating an image collecting process
JP2003526413A (en) * 2000-01-13 2003-09-09 カプセル ヴュー インク. Apparatus and method for encapsulated medical imaging
US7869856B2 (en) 2000-01-13 2011-01-11 Moshe Refael Encapsulated medical imaging device and method
JP2006239441A (en) * 2000-03-08 2006-09-14 Given Imaging Ltd Device and system for in-vivo imaging
JP2012232210A (en) * 2000-03-08 2012-11-29 Given Imaging Ltd Device and system for in vivo imaging
US8681209B2 (en) 2000-03-08 2014-03-25 Given Imaging Ltd. Device and system for in-vivo imaging
JP2013136004A (en) * 2000-03-08 2013-07-11 Given Imaging Ltd Device and system for in vivo imaging
JP2003526268A (en) * 2000-03-08 2003-09-02 ギブン・イメージング・リミテツド Apparatus and system for in vivo imaging
US8125516B2 (en) 2000-03-08 2012-02-28 Given Imaging, Ltd. Device and system for in vivo imaging
US7872667B2 (en) 2000-03-08 2011-01-18 Given Imaging Ltd. Device and system for in vivo imaging
US9386208B2 (en) 2000-03-08 2016-07-05 Given Imaging Ltd. Device and system for in vivo imaging
US9432562B2 (en) 2000-03-08 2016-08-30 Given Imaging Ltd. Device and system for in vivo imaging
US8159549B2 (en) 2000-05-15 2012-04-17 Given Imaging Ltd. System and method for in-vivo imaging
US7553276B2 (en) 2001-01-16 2009-06-30 Given Imaging Ltd. Method and device for imaging body lumens
US7192397B2 (en) 2001-05-20 2007-03-20 Given Imaging Ltd. Floatable in vivo sensing device and method for use
US8444554B2 (en) 2001-05-20 2013-05-21 Given Imaging Ltd. Floatable in vivo sensing device and method for use
JP2010005442A (en) * 2001-05-20 2010-01-14 Given Imaging Ltd In vivo image sensing device
US7727169B1 (en) 2001-06-11 2010-06-01 Given Imaging, Ltd. Device for in vivo sensing
US8401262B2 (en) 2001-06-20 2013-03-19 Given Imaging, Ltd Device, system and method for motility measurement and analysis
US7724928B2 (en) 2001-06-20 2010-05-25 Given Imaging, Ltd. Device, system and method for motility measurement and analysis
US7585283B2 (en) 2001-07-12 2009-09-08 Given Imaging Ltd. Device and method for examining a body lumen
US8672863B2 (en) 2001-07-12 2014-03-18 Given Imaging Ltd. Device and method for examining a body lumen
US9113846B2 (en) 2001-07-26 2015-08-25 Given Imaging Ltd. In-vivo imaging device providing data compression
JP2003038425A (en) * 2001-07-30 2003-02-12 Olympus Optical Co Ltd Encapsulated endoscope
US7347817B2 (en) 2001-08-02 2008-03-25 Given Imaging Ltd. Polarized in vivo imaging device, system and method
JP4796275B2 (en) * 2001-09-24 2011-10-19 ギブン イメージング リミテッド System and method for controlling an in-vivo device
JP2005507687A (en) * 2001-09-24 2005-03-24 ギブン・イメージング・リミテッド System and method for controlling an in-vivo device
US7942811B2 (en) 2001-10-16 2011-05-17 Olympus Corporation Capsulated medical equipment
US8100888B2 (en) 2001-10-16 2012-01-24 Olympus Corporation Capsulated medical equipment
US6958034B2 (en) 2002-02-11 2005-10-25 Given Imaging Ltd. Self propelled device
US6939290B2 (en) 2002-02-11 2005-09-06 Given Imaging Ltd Self propelled device having a magnetohydrodynamic propulsion system
US7474327B2 (en) 2002-02-12 2009-01-06 Given Imaging Ltd. System and method for displaying an image stream
US8022980B2 (en) 2002-02-12 2011-09-20 Given Imaging Ltd. System and method for displaying an image stream
US7505062B2 (en) 2002-02-12 2009-03-17 Given Imaging Ltd. System and method for displaying an image stream
US7662094B2 (en) 2002-05-14 2010-02-16 Given Imaging Ltd. Optical head assembly with dome, and device for use thereof
KR20040003739A (en) * 2002-07-04 2004-01-13 지인호 wireless controlled endoscope system
US7001329B2 (en) 2002-07-23 2006-02-21 Pentax Corporation Capsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
US7634305B2 (en) 2002-12-17 2009-12-15 Given Imaging, Ltd. Method and apparatus for size analysis in an in vivo imaging system
JP2004344216A (en) * 2003-05-20 2004-12-09 Olympus Corp Medical appliance control support system and medical appliance control support program
US7492935B2 (en) 2003-06-26 2009-02-17 Given Imaging Ltd Device, method, and system for reduced transmission imaging
US7650180B2 (en) 2003-07-02 2010-01-19 Given Imaging Ltd. Imaging sensor array and device and method for use therefor
JP2007534350A (en) * 2003-07-15 2007-11-29 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク Insertable device and system for minimal access procedures
US9730761B2 (en) 2003-07-15 2017-08-15 The Trustees Of Columbia University In The City Of New York Insertable device and system for minimal access procedure
US8753262B2 (en) 2003-07-29 2014-06-17 Hoya Corporation Internal treatment apparatus having circumferential side holes
US7465271B2 (en) 2003-09-01 2008-12-16 Hoya Corporation Capsule endoscope
US7604589B2 (en) 2003-10-01 2009-10-20 Given Imaging, Ltd. Device, system and method for determining orientation of in-vivo devices
JP2005124708A (en) * 2003-10-22 2005-05-19 Olympus Corp Body inside observing device
US8639314B2 (en) 2003-12-24 2014-01-28 Given Imaging Ltd. Device, system and method for in-vivo imaging of a body lumen
US7647090B1 (en) 2003-12-30 2010-01-12 Given Imaging, Ltd. In-vivo sensing device and method for producing same
US8206285B2 (en) 2003-12-31 2012-06-26 Given Imaging Ltd. Apparatus, system and method to indicate in-vivo device location
US8164672B2 (en) 2003-12-31 2012-04-24 Given Imaging Ltd. System and method for displaying an image stream
US8142350B2 (en) 2003-12-31 2012-03-27 Given Imaging, Ltd. In-vivo sensing device with detachable part
US9072442B2 (en) 2003-12-31 2015-07-07 Given Imaging Ltd. System and method for displaying an image stream
JP2007521938A (en) * 2004-02-17 2007-08-09 コリア インスティテュート オブ サイエンス アンド テクノロジー Remotely controlled endoscope capsule with mobile motion system
US8066632B2 (en) 2004-02-17 2011-11-29 Korea Institute Of Science And Technology Teleoperated endoscopic capsule equipped with active locomotion system
US7109933B2 (en) 2004-03-08 2006-09-19 Pentax Corporation Wearable jacket having communication function, and endoscope system employing wearable jacket
US8290556B2 (en) 2004-05-21 2012-10-16 Given Imaging Ltd. Device, system and method for in-vivo analysis
US8394034B2 (en) 2004-05-21 2013-03-12 Given Imaging Ltd. Device, system and method for in-vivo sampling
US20050288555A1 (en) * 2004-06-28 2005-12-29 Binmoeller Kenneth E Methods and devices for illuminating, vievwing and monitoring a body cavity
US7938775B2 (en) 2004-06-28 2011-05-10 Given Imaging, Ltd. Device, system, and method for in-vivo analysis
US7596403B2 (en) 2004-06-30 2009-09-29 Given Imaging Ltd. System and method for determining path lengths through a body lumen
US7336833B2 (en) 2004-06-30 2008-02-26 Given Imaging, Ltd. Device, system, and method for reducing image data captured in-vivo
US8597286B2 (en) 2004-10-11 2013-12-03 Given Imaging Ltd Device, system and method for in-vivo cauterization
JP2008539936A (en) * 2005-05-12 2008-11-20 コリア インスティテュート オブ サイエンス アンド テクノロジー Capsule type micro robot drive system
JP2006334141A (en) * 2005-06-02 2006-12-14 Konica Minolta Medical & Graphic Inc Capsule endoscope
US7778356B2 (en) 2005-06-14 2010-08-17 Given Imaging Ltd. Modulator and method for producing a modulated signal
US7805178B1 (en) 2005-07-25 2010-09-28 Given Imaging Ltd. Device, system and method of receiving and recording and displaying in-vivo data with user entered data
US8430809B2 (en) * 2005-08-01 2013-04-30 G. I View Ltd. Capsule for use in small intestine
US8369589B2 (en) 2005-09-09 2013-02-05 Given Imaging Ltd. System and method for concurrent transfer and processing and real time viewing of in-vivo images
US7567692B2 (en) 2005-09-30 2009-07-28 Given Imaging Ltd. System and method for detecting content in-vivo
US7577283B2 (en) 2005-09-30 2009-08-18 Given Imaging Ltd. System and method for detecting content in-vivo
US7896805B2 (en) 2005-11-23 2011-03-01 Given Imaging Ltd. In-vivo imaging device and optical system thereof
JP2007181682A (en) * 2005-12-29 2007-07-19 Given Imaging Ltd Device, system and method for intracorporeal sensing of intracorporeal lumen
US7678043B2 (en) 2005-12-29 2010-03-16 Given Imaging, Ltd. Device, system and method for in-vivo sensing of a body lumen
US8098295B2 (en) 2006-03-06 2012-01-17 Given Imaging Ltd. In-vivo imaging system device and method with image stream construction using a raw images
US8063933B2 (en) 2006-03-27 2011-11-22 Given Imaging Ltd. Battery contacts for an in-vivo imaging device
US9084547B2 (en) 2006-03-30 2015-07-21 Given Imaging Ltd. System and method for checking the status of an in-vivo imaging device
US8185185B2 (en) 2006-03-31 2012-05-22 Given Imaging Ltd. System and method for assessing a patient condition using tertiles derived from capsule endoscope images of the small bowel
US9560956B2 (en) 2006-08-24 2017-02-07 Given Imaging Ltd. Device, system and method of displaying in-vivo images at variable rate
US7967745B2 (en) 2006-09-28 2011-06-28 Given Imaging, Ltd. In vivo imaging device and method of manufacture thereof
JP2007136208A (en) * 2006-11-21 2007-06-07 Olympus Corp Capsule type endoscope for medical treatment
JP2008194082A (en) * 2007-02-08 2008-08-28 Hoya Corp Intracelom mover
JP2008194080A (en) * 2007-02-08 2008-08-28 Hoya Corp Intracelom mover
US8348830B2 (en) 2007-04-11 2013-01-08 Given Imaging Ltd. In vivo sensing devices and methods of identification thereof
WO2009016748A1 (en) * 2007-08-01 2009-02-05 Olympus Medical Systems Corp. Medical equipment and endoscope
JP2010536436A (en) * 2007-08-15 2010-12-02 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Modular and collaborative medical devices and related systems and methods
JP5334129B2 (en) * 2007-08-28 2013-11-06 国立大学法人 千葉大学 Laparoscopic surgery support robot
US9017248B2 (en) 2007-11-08 2015-04-28 Olympus Medical Systems Corp. Capsule blood detection system and method
JP2014000434A (en) * 2007-11-08 2014-01-09 Olympus Medical Systems Corp apparatus
US8406490B2 (en) 2008-04-30 2013-03-26 Given Imaging Ltd. System and methods for determination of procedure termination
US8262566B2 (en) 2008-07-14 2012-09-11 Given Imaging Ltd. Device and method for uniform in vivo illumination
US8147403B2 (en) 2008-12-04 2012-04-03 Olympus Medical Systems Corp. Capsule propulsion device and propulsion method
JP4718646B2 (en) * 2008-12-04 2011-07-06 オリンパスメディカルシステムズ株式会社 Capsule type propulsion device and operating method thereof
WO2010064662A1 (en) * 2008-12-04 2010-06-10 オリンパスメディカルシステムズ株式会社 Capsule propulsion device, medical treatment system and propulsion method using the same
US8556799B2 (en) 2008-12-17 2013-10-15 Olympus Corporation Guide tube, guide tube apparatus, and endoscope system
JP2010142372A (en) * 2008-12-17 2010-07-01 Olympus Corp Guide tube, guide tube device and endoscope system
US8911368B2 (en) 2009-01-29 2014-12-16 Given Imaging, Ltd. Device, system and method for detection of bleeding
US8696602B2 (en) 2009-03-31 2014-04-15 Given Imaging, Inc. Method of determining body exit of an ingested capsule
US7931149B2 (en) 2009-05-27 2011-04-26 Given Imaging Ltd. System for storing and activating an in vivo imaging capsule
JP4642941B2 (en) * 2009-05-29 2011-03-02 オリンパスメディカルシステムズ株式会社 Capsule medical device
US8480562B2 (en) 2009-05-29 2013-07-09 Olympus Medical Systems Corp. Capsule medical apparatus
US9078579B2 (en) 2009-06-24 2015-07-14 Given Imaging Ltd. In vivo sensing device with a flexible circuit board
US8911360B2 (en) 2009-11-20 2014-12-16 Given Imaging Ltd. System and method for controlling power consumption of an in vivo device
US9237839B2 (en) 2009-12-17 2016-01-19 Given Imaging Ltd. Device, system and method for activation, calibration and testing of an in-vivo imaging device
US8840551B2 (en) 2009-12-21 2014-09-23 Given Imaging, Inc. Tethering capsule system
US8945010B2 (en) 2009-12-23 2015-02-03 Covidien Lp Method of evaluating constipation using an ingestible capsule
JP2011142951A (en) * 2010-01-12 2011-07-28 Olympus Medical Systems Corp Medical equipment
US8682142B1 (en) 2010-03-18 2014-03-25 Given Imaging Ltd. System and method for editing an image stream captured in-vivo
US10101890B2 (en) 2010-04-28 2018-10-16 Given Imaging Ltd. System and method for displaying portions of in-vivo images
US9060673B2 (en) 2010-04-28 2015-06-23 Given Imaging Ltd. System and method for displaying portions of in-vivo images
US11832871B2 (en) 2011-06-10 2023-12-05 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US11909576B2 (en) 2011-07-11 2024-02-20 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US12323289B2 (en) 2011-07-11 2025-06-03 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9107604B2 (en) 2011-09-26 2015-08-18 Given Imaging Ltd. Systems and methods for generating electromagnetic interference free localization data for an in-vivo device
US12156710B2 (en) 2011-10-03 2024-12-03 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US12171512B2 (en) 2012-05-01 2024-12-24 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US11819299B2 (en) 2012-05-01 2023-11-21 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US9375202B2 (en) 2012-05-04 2016-06-28 Given Imaging Ltd. Device and method for in vivo cytology acquisition
US11832902B2 (en) 2012-08-08 2023-12-05 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US12295680B2 (en) 2012-08-08 2025-05-13 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
JP2014132967A (en) * 2013-01-09 2014-07-24 Toshifumi Hayakawa Advancing unit for endoscope
US10485409B2 (en) 2013-01-17 2019-11-26 Vanderbilt University Real-time pose and magnetic force detection for wireless magnetic capsule
US12336777B2 (en) 2013-03-14 2025-06-24 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US12070282B2 (en) 2013-03-14 2024-08-27 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US11806097B2 (en) 2013-03-14 2023-11-07 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US11826032B2 (en) 2013-07-17 2023-11-28 Virtual Incision Corporation Robotic surgical devices, systems and related methods
EP3190945A4 (en) * 2014-09-09 2018-06-27 Vanderbilt University Hydro-jet endoscopic capsule and methods for gastric cancer screening in low resource settings
CN107205623A (en) * 2014-09-09 2017-09-26 范德比尔特大学 Liquid-spraying type capsule endoscope and method for the gastric cancer screening in low-resource area
US10758111B2 (en) 2014-09-09 2020-09-01 Vanderbilt University Hydro-jet endoscopic capsule and methods for gastric cancer screening in low resource settings
US12390240B2 (en) 2014-09-12 2025-08-19 Virtual Incision Corporation Quick-release end effectors and related systems and methods
US12096999B2 (en) 2014-11-11 2024-09-24 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and related systems and methods
US11872090B2 (en) 2015-08-03 2024-01-16 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US11826014B2 (en) 2016-05-18 2023-11-28 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US12383355B2 (en) 2016-05-18 2025-08-12 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US12274517B2 (en) 2016-08-30 2025-04-15 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and an additional degree of freedom and related systems and methods
US12109079B2 (en) 2016-11-22 2024-10-08 Board Of Regents Of The University Of Nebraska Gross positioning device and related systems and methods
US11786334B2 (en) 2016-12-14 2023-10-17 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US11974824B2 (en) 2017-09-27 2024-05-07 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
US12343098B2 (en) 2017-09-27 2025-07-01 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
US11122965B2 (en) 2017-10-09 2021-09-21 Vanderbilt University Robotic capsule system with magnetic actuation and localization
PL423831A1 (en) * 2017-12-12 2019-06-17 Politechnika Krakowska im. Tadeusza Kościuszki Endoscope navigation method, a system for navigation of endoscope and the endoscope that contains such a system
US11950867B2 (en) 2018-01-05 2024-04-09 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US12303221B2 (en) 2018-01-05 2025-05-20 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
JP2022508537A (en) * 2018-09-28 2022-01-19 アルテドローン Medical devices and methods for performing surgery in the body
US11903658B2 (en) 2019-01-07 2024-02-20 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
CN110566751A (en) * 2019-08-20 2019-12-13 南京航空航天大学 Rigid/flexible pipeline crawling robot
JP2023519519A (en) * 2020-04-01 2023-05-11 アルテドローン Medical device, device control method, system including device, and device manufacturing method
US12150722B2 (en) 2020-07-06 2024-11-26 Virtual Incision Corporation Surgical robot positioning system and related devices and methods
CN112137568A (en) * 2020-10-27 2020-12-29 曹庆恒 Endoscopic robot and method of using the same
CN112137567A (en) * 2020-10-27 2020-12-29 曹庆恒 A kind of endoscope robot and its use method
WO2022087915A1 (en) * 2020-10-28 2022-05-05 曹庆恒 Tract endoscope robot and method for using same
WO2022087918A1 (en) * 2020-10-28 2022-05-05 曹庆恒 Cavity endoscope robot and method for using same
WO2022259737A1 (en) * 2021-06-09 2022-12-15 弘幸 中西 Endoscope system, operating device for capsule endoscope, and capsule endoscope system
JP2022188728A (en) * 2021-06-09 2022-12-21 弘幸 中西 Endoscope system, operating device for capsule endoscope and capsule endoscope system

Similar Documents

Publication Publication Date Title
JPH04144533A (en) Endoscope
JP4740515B2 (en) Device for performing minimally invasive diagnosis in a patient
Kassim et al. Locomotion techniques for robotic colonoscopy
JP4578740B2 (en) Capsule medical device
JP4416990B2 (en) System for operating a device in vivo
Dario et al. Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy
US6936003B2 (en) In-vivo extendable element device and system, and method of use
JP4472069B2 (en) Medical capsule endoscope
US6612982B1 (en) Fully-swallowable endoscopic system
JP3631265B2 (en) In-vivo observation device
US20210267438A1 (en) Miniaturized intra-body controllable medical device employing machine learning and artificial intelligence
Harada et al. A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results
Menciassi et al. Microrobotics for future gastrointestinal endoscopy
Caprara et al. A platform for gastric cancer screening in low-and middle-income countries
JPH0663045A (en) Ultrasonic endoscope
JP2005508687A (en) Self-propelled intraluminal device having electrode shape and method of use thereof
AU2020408567A1 (en) Systems and methods for modular endoscope
WO1998011816A1 (en) Imaging apparatus
JP2009045141A (en) Endoscope insertion aid and endoscope
JP3852033B2 (en) Active tube and active tube system
WO2007128084A2 (en) The controllable microcapsule type robot-endoscope
US20210060296A1 (en) Miniaturized intra-body controllable medical device
Kim et al. Prototype modular capsule robots for capsule endoscopies
JPH08322786A (en) In-vivo diagnostic treatment device
Quirini et al. An approach to capsular endoscopy with active motion
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载