+

JP2021169957A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2021169957A
JP2021169957A JP2020073007A JP2020073007A JP2021169957A JP 2021169957 A JP2021169957 A JP 2021169957A JP 2020073007 A JP2020073007 A JP 2020073007A JP 2020073007 A JP2020073007 A JP 2020073007A JP 2021169957 A JP2021169957 A JP 2021169957A
Authority
JP
Japan
Prior art keywords
light
distance
incident
receiving element
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020073007A
Other languages
Japanese (ja)
Other versions
JP7506998B2 (en
Inventor
章紘 木村
Akihiro Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2020073007A priority Critical patent/JP7506998B2/en
Publication of JP2021169957A publication Critical patent/JP2021169957A/en
Application granted granted Critical
Publication of JP7506998B2 publication Critical patent/JP7506998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】単一周波数の光を用いる場合に比べて、距離の算出の確実性を向上させること。【解決手段】光源11は、CWレーザーを発する光源である。ハーフミラー14は、CWレーザーの光路に設けられ、入射する光の一部を反射し、残りの一部を透過するミラーである。ハーフミラー15は、ハーフミラー14が反射した光の光路A1に設けられ、第1面151に入射する光を反射し、第2面152に入射する光を透過するミラーである。光スイッチ12は、ハーフミラー14を透過した光の光路に設けられた、光の通過及び遮断を切り替えるスイッチである。制御部16は、光源11から発せられた所定の周波数帯域の光の一部が受光素子13に入射し、その光の残りの一部が物体に反射して受光素子13に入射した場合に、入射した光の特性の経時変化に基づいて物体までの距離を算出する。【選択図】図1[Problem] To improve the reliability of distance calculation compared to the case where light of a single frequency is used. [Solution] A light source 11 is a light source that emits a CW laser. A half mirror 14 is a mirror that is provided in the optical path of the CW laser and reflects a part of the incident light and transmits the remaining part. A half mirror 15 is a mirror that is provided in an optical path A1 of the light reflected by the half mirror 14 and reflects the light incident on a first surface 151 and transmits the light incident on a second surface 152. An optical switch 12 is a switch that is provided in the optical path of the light that has transmitted through the half mirror 14 and switches between passing and blocking the light. A control unit 16 calculates the distance to an object based on the change over time in the characteristics of the incident light when a part of the light in a predetermined frequency band emitted from the light source 11 is incident on a light receiving element 13 and the remaining part of the light is reflected by the object and incident on the light receiving element 13. [Selected Figure] FIG.

Description

本発明は、物体までの距離を測定する技術に関する。 The present invention relates to a technique for measuring a distance to an object.

物体までの距離を測定する技術として、特許文献1には、パルスを放射して、空間に存在する物体で反射された反射波に周波数変換を施して受信信号を生成し、生成した受信信号に基づいてドップラー速度を算出する技術が開示されている。 As a technique for measuring the distance to an object, Patent Document 1 describes that a pulse is radiated to perform frequency conversion on a reflected wave reflected by an object existing in space to generate a received signal, and the generated received signal is used. A technique for calculating the Doppler speed based on this is disclosed.

特開2013−190349号公報Japanese Unexamined Patent Publication No. 2013-190349

光を照射して物体で反射した光を受光して距離を測定する測距装置においては、例えば物体までの距離が長いほど照射した光が減衰し、十分な光量の光が受光されずに距離の測定が困難になる場合がある。
本発明は、上記の背景に鑑み、距離の算出の確実性を向上させることを目的とする。
In a distance measuring device that irradiates light and receives the light reflected by an object to measure the distance, for example, the longer the distance to the object, the more the irradiated light is attenuated, and the distance is not received by a sufficient amount of light. May be difficult to measure.
In view of the above background, an object of the present invention is to improve the certainty of distance calculation.

上述した課題を解決するために、本発明は、光源から発せられた所定の周波数帯域の光の一部が受光素子に入射し、前記光の残りの一部が物体に反射して前記受光素子に入射した場合に、前記受光素子に入射する光の特性の経時変化に基づいて前記物体までの距離を算出する測距装置を第1の態様として提供する。 In order to solve the above-mentioned problems, in the present invention, a part of the light of a predetermined frequency band emitted from the light source is incident on the light receiving element, and the remaining part of the light is reflected by the object to be reflected on the light receiving element. As the first aspect, a distance measuring device for calculating the distance to the object based on the change with time of the characteristics of the light incident on the light receiving element when the light is incident on the light source is provided.

第1の態様の測距装置によれば、単一周波数の光を用いる場合に比べて、距離の算出の確実性を向上させることができる。 According to the distance measuring device of the first aspect, the certainty of the calculation of the distance can be improved as compared with the case of using the light of a single frequency.

上記の第1の態様の測距装置において、前記特性は周波数、強度又は周波数と強度の組み合わせである、という構成が第2の態様として採用されてもよい。 In the distance measuring device of the first aspect described above, the configuration that the characteristic is a frequency, an intensity or a combination of a frequency and an intensity may be adopted as the second aspect.

第2の態様の測距装置によれば、受光素子で容易に測定可能な特性に基づき距離を測定することができる。 According to the distance measuring device of the second aspect, the distance can be measured based on the characteristics that can be easily measured by the light receiving element.

上記の第1又は第2の態様の測距装置において、前記特性は周波数差及び強度であり、前記強度の経時変化に基づいて前記物体までの距離を算出し、前記周波数の経時変化に基づいて前記物体の速度を算出する、という構成が第3の態様として採用されてもよい。 In the distance measuring device of the first or second aspect described above, the characteristics are frequency difference and intensity, the distance to the object is calculated based on the time-dependent change of the intensity, and the distance to the object is calculated based on the time-dependent change of the frequency. A configuration in which the velocity of the object is calculated may be adopted as the third aspect.

第3の態様の測距装置によれば、同一特性からの距離成分・速度成分の分離が不要なので、距離と速度の算出精度を高めることができる。 According to the distance measuring device of the third aspect, it is not necessary to separate the distance component and the speed component from the same characteristic, so that the calculation accuracy of the distance and the speed can be improved.

上記の第1乃至第3のいずれか1の態様の測距装置において、前記光源はCW(Continuous Wave)レーザーを発し、前記CWレーザーの光路に設けられたハーフミラーにより反射された光が前記光の一部として前記受光素子に入射し、前記ハーフミラーを透過した光が前記物体に反射して前記受光素子に入射する、という構成が第4の態様として採用されてもよい。 In the distance measuring device according to any one of the first to third aspects, the light source emits a CW (Continuous Wave) laser, and the light reflected by the half mirror provided in the optical path of the CW laser is the light. As a fourth aspect, a configuration in which the light incident on the light receiving element as a part of the light receiving element and the light transmitted through the half mirror is reflected by the object and incident on the light receiving element may be adopted.

第4の態様の測距装置によれば、単一周波数の光を用いる場合に比べて、部品点数を減らすことができる。 According to the distance measuring device of the fourth aspect, the number of parts can be reduced as compared with the case of using light of a single frequency.

上記の第4の態様の測距装置において、前記ハーフミラーを透過した光の光路に設けられた、光の通過及び遮断を切り替えるスイッチが通過に切り替わった時刻と前記物体に反射した光が前記受光素子に入射した時刻とに基づいて前記物体までの距離を算出する、という構成が第5の態様として採用されてもよい。 In the distance measuring device of the fourth aspect described above, the time when the switch for switching between passing and blocking the light provided in the optical path of the light transmitted through the half mirror is switched to passing and the light reflected by the object receives the light. A configuration in which the distance to the object is calculated based on the time of incidence on the element may be adopted as the fifth aspect.

第5の態様の測距装置によれば、光の特性に含まれる距離成分及び速度成分の分離を行う場合に比べて、算出される距離及び速度の精度を向上させることができる。 According to the distance measuring device of the fifth aspect, the accuracy of the calculated distance and speed can be improved as compared with the case where the distance component and the speed component included in the light characteristics are separated.

実施例に係る測距装置の構成を表す図The figure which shows the structure of the distance measuring apparatus which concerns on Example 光源が発する光の特性を表す図Diagram showing the characteristics of light emitted by a light source 発光及び受光する光の強度の経時変化の一例を表す図The figure which shows an example of the time-dependent change of the intensity of light emitted and received. 算出処理における動作手順の一例を表す図The figure which shows an example of the operation procedure in the calculation process 合成光の周波数の経時変化の一例を表す図The figure which shows an example of the time-dependent change of the frequency of synthetic light

[1]実施例
図1は実施例に係る測距装置10の構成を表す。測距装置10は、光を照射して、物体に反射して戻ってきた光に基づいて物体までの距離を測定する装置である。測距装置10は、光源11と、光スイッチ12と、受光素子13と、ハーフミラー14と、ハーフミラー15と、制御部16とを備える。
[1] Example FIG. 1 shows the configuration of the distance measuring device 10 according to the embodiment. The distance measuring device 10 is a device that irradiates light and measures the distance to the object based on the light reflected by the object and returned. The distance measuring device 10 includes a light source 11, an optical switch 12, a light receiving element 13, a half mirror 14, a half mirror 15, and a control unit 16.

光源11は、所定の周波数帯域の光を発する光源であり、本実施例ではCW(Continuous Wave:連続波)レーザーを発する光源である。CWレーザーとは、連続的に出力されたレーザー又は極めて短い時間間隔で断続的に出力されたレーザーである。ハーフミラー14は、CWレーザーの光路に設けられ、入射する光の一部を反射し、残りの一部を透過するミラーである。 The light source 11 is a light source that emits light in a predetermined frequency band, and in this embodiment, is a light source that emits a CW (Continuous Wave) laser. A CW laser is a laser that is continuously output or a laser that is intermittently output at extremely short time intervals. The half mirror 14 is a mirror provided in the optical path of the CW laser, which reflects a part of the incident light and transmits the remaining part.

ハーフミラー15は、ハーフミラー14が反射した光の光路A1に設けられ、第1面151に入射する光を反射し、第2面152に入射する光を透過するミラーである。ハーフミラー14が反射した光はハーフミラー15の第1面151に入射し、第1面151で反射した光は受光素子13に入射する。受光素子13は、受光した光の強度を電気信号に変換する素子であり、例えばPD(Photo Diode:フォトダイオード)である。 The half mirror 15 is a mirror provided in the optical path A1 of the light reflected by the half mirror 14, reflects the light incident on the first surface 151, and transmits the light incident on the second surface 152. The light reflected by the half mirror 14 is incident on the first surface 151 of the half mirror 15, and the light reflected by the first surface 151 is incident on the light receiving element 13. The light receiving element 13 is an element that converts the intensity of the received light into an electric signal, and is, for example, a PD (Photo Diode).

光スイッチ12は、ハーフミラー14を透過した光の光路に設けられた、光の通過及び遮断を切り替えるスイッチである。光スイッチ12を透過した光は、光路A2を進み、光路A2に物体が存在した場合は、その物体で反射する。物体で反射した光の一部は測距装置10に向かう光路A3を進んでハーフミラー15の第2面152に入射する。ハーフミラー15は第2面152に入射する光を透過するので、光路A3を進んできた光はハーフミラー15を透過して受光素子13に入射する。 The optical switch 12 is a switch provided in the optical path of light transmitted through the half mirror 14 to switch between passing and blocking light. The light transmitted through the optical switch 12 travels in the optical path A2, and if an object exists in the optical path A2, it is reflected by the object. A part of the light reflected by the object travels along the optical path A3 toward the distance measuring device 10 and is incident on the second surface 152 of the half mirror 15. Since the half mirror 15 transmits the light incident on the second surface 152, the light traveling through the optical path A3 passes through the half mirror 15 and is incident on the light receiving element 13.

上記のとおり、受光素子13には、光源11が発して光路A1を通過した光と、光スイッチ12を透過して物体で反射した光の2つの光が入射する。このように、測距装置10においては、光源11から発せられた所定の周波数帯域の光の一部が受光素子13に入射し、その光の残りの一部が物体に反射して受光素子13に入射する。また、ハーフミラー14により反射された光が光源11からの光の一部として受光素子13に入射し、ハーフミラー14を透過した光が物体に反射して受光素子13に入射するとも言える。 As described above, the light receiving element 13 is incident with two types of light: light emitted by the light source 11 and passing through the optical path A1, and light transmitted through the optical switch 12 and reflected by an object. As described above, in the distance measuring device 10, a part of the light of the predetermined frequency band emitted from the light source 11 is incident on the light receiving element 13, and the remaining part of the light is reflected on the object to be reflected on the light receiving element 13. Incident in. It can also be said that the light reflected by the half mirror 14 is incident on the light receiving element 13 as a part of the light from the light source 11, and the light transmitted through the half mirror 14 is reflected on the object and is incident on the light receiving element 13.

制御部16は、光源11及び光スイッチ12の動作を制御する。制御部16は、プロセッサ、メモリ及びストレージを備える。プロセッサは、例えば、CPU(Central Processing Unit)等の演算装置、レジスタ及び周辺回路等を有する。メモリは、プロセッサが読み取り可能な記録媒体であり、RAM(Random Access Memory)及びROM(Read Only Memory)等を有する。 The control unit 16 controls the operations of the light source 11 and the optical switch 12. The control unit 16 includes a processor, a memory, and a storage. The processor includes, for example, an arithmetic unit such as a CPU (Central Processing Unit), registers, peripheral circuits, and the like. The memory is a recording medium that can be read by a processor, and includes a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.

ストレージは、プロセッサが読み取り可能な記録媒体であり、例えば、ハードディスクドライブ又はフラッシュメモリ等を有する。プロセッサは、RAMをワークエリアとして用いてROMやストレージに記憶されているプログラムを実行することで光源11及び光スイッチ12の動作を制御する。制御部16は、具体的には、次のように光源(光源11及び光スイッチ12)の動作を制御する。 The storage is a recording medium that can be read by a processor, and includes, for example, a hard disk drive or a flash memory. The processor controls the operation of the light source 11 and the optical switch 12 by executing a program stored in the ROM or the storage using the RAM as a work area. Specifically, the control unit 16 controls the operation of the light source (light source 11 and optical switch 12) as follows.

図2は光源が発する光の特性を表す。図2では、横軸が周波数、縦軸が光量を示すグラフが表されている。制御部16は、光スイッチ12を遮断の状態に制御して、曲線B1が示すように、周波数f11から周波数f12までの周波数帯域(前述した所定の周波数帯域に相当)であり且つ最大光量C1の光を発するよう光源11を制御している。制御部16は、光源11の発光の制御を行った後、光スイッチ12を透過の状態に制御する。 FIG. 2 shows the characteristics of the light emitted by the light source. In FIG. 2, a graph showing a frequency on the horizontal axis and a light amount on the vertical axis is shown. The control unit 16 controls the optical switch 12 in a cut-off state, and as shown by the curve B1, has a frequency band from frequency f11 to frequency f12 (corresponding to the predetermined frequency band described above) and has a maximum light amount C1. The light source 11 is controlled so as to emit light. The control unit 16 controls the light emission of the light source 11 and then controls the optical switch 12 to be in a transmitted state.

制御部16は、上記の制御を行って光源11から発せられた所定の周波数帯域の光の一部が受光素子13に入射し、その光の残りの一部が物体に反射して受光素子13に入射した場合に、受光素子13に入射した2つの光の特性の経時変化に基づいて物体までの距離を算出する。制御部16は、本実施例では、光の強度を光の特性として用いて物体までの距離を算出する。距離の算出方法について、図3及び図4を参照して説明する。 The control unit 16 performs the above control, and a part of the light of a predetermined frequency band emitted from the light source 11 is incident on the light receiving element 13, and the remaining part of the light is reflected on the object and the light receiving element 13 The distance to the object is calculated based on the time course of the characteristics of the two lights incident on the light receiving element 13. In this embodiment, the control unit 16 calculates the distance to the object by using the intensity of light as a characteristic of light. The method of calculating the distance will be described with reference to FIGS. 3 and 4.

図3は発光及び受光する光の強度の経時変化の一例を表す。図3では、横軸が時刻を示し、縦軸が光量を示すグラフが表されている。制御部16は、まず、光スイッチ12を遮断にした状態で、上述した所定の周波数帯域の光を連続的に発するよう光源11を制御する。次に、制御部16は、光スイッチ12を遮断から透過の状態に切り替える制御を行う。この制御により、図3(a)に表すように発光量C11の光が時刻t1に測距装置10から発せられる。 FIG. 3 shows an example of changes in the intensity of light emitted and received with time. In FIG. 3, the horizontal axis represents the time and the vertical axis represents the amount of light. First, the control unit 16 controls the light source 11 so as to continuously emit the light in the predetermined frequency band described above with the optical switch 12 shut off. Next, the control unit 16 controls to switch the optical switch 12 from the cutoff state to the transmission state. By this control, as shown in FIG. 3A, light having a light emission amount C11 is emitted from the distance measuring device 10 at time t1.

測距装置10が発した光が物体に到達して反射されると、反射光の一部が測距装置10に向かい、その光と図1に表す光路A1を通過する光源11からの光とが合成された合成光が受光素子13に到達する。合成光が受光素子13に到達すると、制御部16は、受光素子13が受光した合成光の光量(以下「受光量」と言う)を測定する。制御部16は、例えば、所定の周波数帯域に含まれる2以上の周波数の光の強度の平均値を、合成光全体の受光量として算出する。 When the light emitted by the distance measuring device 10 reaches the object and is reflected, a part of the reflected light is directed to the distance measuring device 10 and the light and the light from the light source 11 passing through the optical path A1 shown in FIG. The combined light reaches the light receiving element 13. When the combined light reaches the light receiving element 13, the control unit 16 measures the amount of the combined light received by the light receiving element 13 (hereinafter referred to as “light receiving amount”). The control unit 16 calculates, for example, the average value of the intensities of light of two or more frequencies included in a predetermined frequency band as the amount of received light of the entire combined light.

図3の例では、制御部16が、図3(b)に表すように受光量C21の光を時刻t2に測定し、受光量C22の光を時刻t3に測定している。また、制御部16は、時刻t2以前にも、光路A1を通過した光の受光量C0を測定している。受光量C21、C22は、光路A1を通過した光と物体で反射して光スイッチ12からの光の反射光との合成光の光量を表している。受光量が段階的に増加しているのは、物体に起伏等があり、測距装置10からの距離が近い部分で反射した光が時刻t2に受光素子13に到達し、測距装置10からの距離が遠い部分で反射した光が時刻t3に受光素子13に到達したからである。 In the example of FIG. 3, the control unit 16 measures the light of the received light amount C21 at the time t2 and the light of the received light amount C22 at the time t3 as shown in FIG. 3 (b). Further, the control unit 16 measures the received amount C0 of the light passing through the optical path A1 even before the time t2. The received light amounts C21 and C22 represent the light amount of the combined light of the light passing through the optical path A1 and the reflected light of the light from the optical switch 12 reflected by the object. The amount of light received is gradually increasing because the object has undulations and the like, and the light reflected from the distance measuring device 10 reaches the light receiving element 13 at time t2 and is transmitted from the distance measuring device 10. This is because the light reflected at the portion where the distance is long reaches the light receiving element 13 at time t3.

制御部16は、光スイッチ12が透過に切り替わった時刻t1と、物体での反射光を含む合成光が受光された時刻t2、t3との時間差d2、d3に基づいて物体までの距離を算出する。具体的には、制御部16は、時間差d2、d3に光が空気中を進行する距離の2分の1を物体までの距離として算出する。以上のとおり、制御部16は、光スイッチ12が通過に切り替わった時刻と物体に反射した光が受光素子13に入射した時刻とに基づいて物体までの距離を算出する。制御部16は、2次元に配置された画素に対応する各方向の物体までの距離をそれぞれ算出し、立体物の画像を生成する。 The control unit 16 calculates the distance to the object based on the time difference d2 and d3 between the time t1 when the optical switch 12 is switched to transmission and the times t2 and t3 when the combined light including the reflected light of the object is received. .. Specifically, the control unit 16 calculates a half of the distance that light travels in the air with time differences d2 and d3 as the distance to the object. As described above, the control unit 16 calculates the distance to the object based on the time when the optical switch 12 is switched to pass and the time when the light reflected by the object is incident on the light receiving element 13. The control unit 16 calculates the distances to the objects in each direction corresponding to the pixels arranged in two dimensions, and generates an image of the three-dimensional object.

制御部16は、上記の構成に基づいて、物体までの距離を算出する算出処理を行う。
図4は算出処理における動作手順の一例を表す。まず、制御部16は、光源11による発光を開始させる(ステップS11)。次に、制御部16は、光源11からの光に基づくIF信号(Intermediate Frequency信号)を記録する(ステップS12)。続いて、制御部16は、光スイッチ12を遮断から通過に切り替える(ステップS13)。
The control unit 16 performs a calculation process for calculating the distance to the object based on the above configuration.
FIG. 4 shows an example of an operation procedure in the calculation process. First, the control unit 16 starts light emission by the light source 11 (step S11). Next, the control unit 16 records an IF signal (Intermediate Frequency signal) based on the light from the light source 11 (step S12). Subsequently, the control unit 16 switches the optical switch 12 from shut-off to passing (step S13).

次に、制御部16は、物体での反射光の一部を含む合成光の受光量の測定が開始された時刻を取得する(ステップS14)。続いて、制御部16は、ステップS12において光スイッチ12を切り替えた時刻(図3の例だと時刻t1)と、ステップS13において取得した受光量の測定開始時刻との時間差に基づいて物体までの距離を算出する(ステップS15)。そして、制御部16は、前述した全画素に対応する物体までの距離の算出が完了したか否かを判断し(ステップS16)、完了していない(NO)場合はステップS12に戻って動作を続け、完了した(YES)場合は算出処理を終了する。 Next, the control unit 16 acquires the time when the measurement of the received amount of the synthetic light including a part of the reflected light by the object is started (step S14). Subsequently, the control unit 16 reaches the object based on the time difference between the time when the optical switch 12 is switched in step S12 (time t1 in the example of FIG. 3) and the measurement start time of the received light amount acquired in step S13. Calculate the distance (step S15). Then, the control unit 16 determines whether or not the calculation of the distance to the object corresponding to all the pixels described above is completed (step S16), and if not completed (NO), returns to step S12 and operates. If it is completed (YES), the calculation process is terminated.

例えば単一の周波数の光を発して物体までの距離を測定する場合、反射光の特性が現れやすいようにするため、光アンプ等を用いて光の強度を高めることが行われている。本実施例では、所定の周波数帯域における2以上の周波数の光の強度に基づき距離を算出している。これにより、単一の周波数の光を発する場合に比べて受光する光の強度を高めることができ、距離の算出の確実性を向上させることができる。 For example, when light of a single frequency is emitted and the distance to an object is measured, the intensity of the light is increased by using an optical amplifier or the like so that the characteristics of the reflected light are likely to appear. In this embodiment, the distance is calculated based on the intensity of light of two or more frequencies in a predetermined frequency band. As a result, the intensity of the received light can be increased as compared with the case where the light of a single frequency is emitted, and the certainty of the calculation of the distance can be improved.

また、本実施例では、反射光の強度のように、受光素子13で容易に測定可能な特性に基づき距離を測定することができる。また、光源11はCWレーザーを出力するため、光アンプ等を用いなくても測定に十分な強度の光を発することができ、単一周波数の光を用いる場合に比べて、部品点数を減らすことができる。 Further, in this embodiment, the distance can be measured based on the characteristics that can be easily measured by the light receiving element 13, such as the intensity of the reflected light. Further, since the light source 11 outputs a CW laser, it is possible to emit light of sufficient intensity for measurement without using an optical amplifier or the like, and the number of parts can be reduced as compared with the case of using light of a single frequency. Can be done.

物体の表面の特性によっては、その表面での反射光の光量が光の周波数毎に異なる場合がある。その場合、単一の周波数の光を発すると、その周波数の反射光の光量が少ない物体については受光量が不十分になって距離の精度が低くなることがある。本実施例では、所定の周波数帯域における2以上の周波数の光の強度の平均値の経時変化に基づいて物体までの距離が算出されるので、単一の周波数の光を発する場合に比べて受光する光の強度が不足しにくくなり、距離の算出の精度を向上させることができる。 Depending on the characteristics of the surface of the object, the amount of reflected light on the surface may differ depending on the frequency of the light. In that case, when light of a single frequency is emitted, the amount of received light may be insufficient for an object having a small amount of reflected light of that frequency, and the accuracy of the distance may be lowered. In this embodiment, since the distance to the object is calculated based on the change over time of the average value of the light intensity of two or more frequencies in a predetermined frequency band, the light is received as compared with the case of emitting light of a single frequency. It becomes difficult for the intensity of the light to be insufficient to be insufficient, and the accuracy of calculating the distance can be improved.

[2]変形例
上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。また、実施例及び各変形例は必要に応じてそれぞれ組み合わせてもよい。
[2] Modifications The above-mentioned examples are merely examples of the implementation of the present invention, and may be modified as follows. Further, the examples and the modified examples may be combined as necessary.

[2−1]光の特性
制御部16は、実施例では、所定の周波数帯域における2以上の周波数の光の特性として光の強度を用いて物体までの距離を算出したが、これに限らない。制御部16は、例えば、受光素子13に入射したそれら2つの光(光源11からの光と光スイッチ12からの光)の周波数の経時変化に基づいて物体までの距離を算出してもよい。
[2-1] Light Characteristics In the embodiment, the control unit 16 calculates the distance to an object by using the light intensity as the characteristics of light having two or more frequencies in a predetermined frequency band, but the present invention is not limited to this. .. For example, the control unit 16 may calculate the distance to the object based on the time course of the frequencies of the two lights (light from the light source 11 and light from the optical switch 12) incident on the light receiving element 13.

制御部16は、実施例と同様に、所定の周波数帯域の光を連続的に発するよう光源11を制御し、次に、遮断から通過に切り替えるよう光スイッチ12を制御する。光路A1を通過してきた光源11からの光と物体で反射した光の一部との合成光が受光素子13に到達すると、制御部16は、受光素子13が受光した合成光の周波数を測定する。 Similar to the embodiment, the control unit 16 controls the light source 11 so as to continuously emit light in a predetermined frequency band, and then controls the optical switch 12 so as to switch from blocking to passing. When the combined light of the light from the light source 11 that has passed through the optical path A1 and a part of the light reflected by the object reaches the light receiving element 13, the control unit 16 measures the frequency of the combined light received by the light receiving element 13. ..

図5は合成光の周波数の経時変化の一例を表す。図5では、横軸が時刻を示し、縦軸が周波数を示すグラフが表されている。制御部16は、光路A1を通過してきた光だけが受光される期間は周波数f0を測定する。なお、制御部16は、受光する光が周波数帯域を有する場合、周波数帯域に含まれる各周波数に、その周波数の光の受光量の重み付けをして算出した周波数の平均値を、受光する光の周波数として測定する。 FIG. 5 shows an example of the time course of the frequency of the synthesized light. In FIG. 5, a graph is shown in which the horizontal axis represents time and the vertical axis represents frequency. The control unit 16 measures the frequency f0 during the period in which only the light passing through the optical path A1 is received. When the light to be received has a frequency band, the control unit 16 calculates the average value of the frequencies calculated by weighting the received amount of the light of that frequency to each frequency included in the frequency band. Measure as frequency.

制御部16は、図5に表すように周波数f21の光を時刻t2に測定し、周波数f22の光を時刻t3に測定している。周波数f21、f22は、光路A1を通過してきた光と物体で反射した光との合成光の周波数を表している。制御部16は、光スイッチ12が発光した時刻t1と、合成光が受光された時刻t2、t3との時間差d2、d3に基づいて物体までの距離を算出する。具体的には、制御部16は、時間差d2、d3に光が空気中を進行する距離の2分の1を物体までの距離として算出する。 As shown in FIG. 5, the control unit 16 measures the light of frequency f21 at time t2 and the light of frequency f22 at time t3. The frequencies f21 and f22 represent the frequencies of the combined light of the light that has passed through the optical path A1 and the light that is reflected by the object. The control unit 16 calculates the distance to the object based on the time difference d2 and d3 between the time t1 when the optical switch 12 emits light and the times t2 and t3 when the combined light is received. Specifically, the control unit 16 calculates a half of the distance that light travels in the air with time differences d2 and d3 as the distance to the object.

なお、制御部16は、受光素子13に入射したそれら2つの光(光路A1を通過してきた光と物体で反射した光)の光量及び周波数の組み合わせの経時変化に基づいて物体までの距離を算出してもよい。その場合、制御部16は、実施例と同様に合成光の光量を測定し、上記のように合成光の周波数を測定し、測定した光量及び周波数を例えば所定の関数に代入して組み合わせの値を算出する。 The control unit 16 calculates the distance to the object based on the change over time in the combination of the amount and frequency of the two lights (the light that has passed through the optical path A1 and the light that is reflected by the object) incident on the light receiving element 13. You may. In that case, the control unit 16 measures the amount of synthetic light as in the embodiment, measures the frequency of the synthetic light as described above, substitutes the measured amount of light and frequency into, for example, a predetermined function, and sets the value of the combination. Is calculated.

制御部16は、算出した組み合わせの値の経時変化に基づき、図3及び図5の例と同様に光スイッチ12が通過に切り替わった時刻と、合成光が受光された時刻との時間差を求めて物体までの距離を算出する。本変形例によれば、実施例と同様に、周波数又は周波数と強度の組み合わせのように受光素子で容易に測定可能な特性に基づき距離を測定することができる。 Based on the time-dependent change of the calculated combination value, the control unit 16 obtains the time difference between the time when the optical switch 12 is switched to pass and the time when the combined light is received, as in the examples of FIGS. 3 and 5. Calculate the distance to the object. According to this modification, the distance can be measured based on the characteristics that can be easily measured by the light receiving element, such as the frequency or the combination of frequency and intensity, as in the embodiment.

[2−2]距離と速度の測定
制御部16は、物体までの距離だけでなく、物体の移動する速度を測定してもよい。その際、制御部16は、例えば、光源11に単一の周波数の光を発するよう制御を行い、その制御の後に測定される強度の経時変化に基づいて物体までの距離を算出し、同じくその制御の後に測定される周波数の経時変化に基づいて前記物体の速度を算出する。制御部16は、物体までの距離の算出は、実施例と同様に行えばよい。
[2-2] Measurement of Distance and Speed The control unit 16 may measure not only the distance to the object but also the moving speed of the object. At that time, the control unit 16 controls, for example, to emit light of a single frequency to the light source 11, calculates the distance to the object based on the time course of the intensity measured after the control, and also the same. The velocity of the object is calculated based on the time course of the frequency measured after the control. The control unit 16 may calculate the distance to the object in the same manner as in the embodiment.

物体が測距装置10から遠ざかる方向又は近づく方向に移動している場合、ドップラー効果により反射光の周波数が変化する。物体が近づいている場合は周波数が高くなるように変化し、物体が遠ざかっている場合は周波数が低くなるように変化する。制御部16は、物体が動かない場合に測定される合成光の周波数と測定した合成光の周波数との差分に応じた速度を物体の速度として算出する。 When the object is moving away from or approaching the distance measuring device 10, the frequency of the reflected light changes due to the Doppler effect. When the object is approaching, the frequency changes to be high, and when the object is moving away, the frequency changes to be low. The control unit 16 calculates, as the speed of the object, a speed corresponding to the difference between the frequency of the synthetic light measured when the object does not move and the frequency of the measured synthetic light.

例えば測定される光の特性の経時変化に物体までの距離成分と物体の速度成分が含まれている場合、それらを分離して距離及び速度を算出することになる。その場合、分離の精度が悪ければ測定される距離及び速度の精度も悪くなる。本変形例では、光の特性に含まれる距離成分及び速度成分の分離が必要ないので、その分離を行う場合に比べて、算出される距離及び速度の精度を向上させることができる。 For example, when the time-dependent change of the measured light characteristics includes the distance component to the object and the velocity component of the object, the distance and the velocity are calculated by separating them. In that case, if the accuracy of separation is poor, the accuracy of the measured distance and velocity will also be poor. In this modification, it is not necessary to separate the distance component and the velocity component included in the light characteristics, so that the accuracy of the calculated distance and velocity can be improved as compared with the case where the separation is performed.

[2−3]発明のカテゴリ
本発明は、測距装置10の他、測距装置10の制御部16が実施する処理を実現するための情報処理方法としても捉えられるし、測距装置10を制御するコンピュータを機能させるためのプログラムとしても捉えられる。このプログラムは、それを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、それをインストールして利用可能にするなどの形態で提供されてもよい。
[2-3] Category of Invention The present invention can be regarded as an information processing method for realizing the processing performed by the control unit 16 of the distance measuring device 10 in addition to the distance measuring device 10, and the distance measuring device 10 can be used. It can also be regarded as a program for operating the controlling computer. This program may be provided in the form of a recording medium such as an optical disk that stores it, or may be provided in the form of being downloaded to a computer via a network such as the Internet and installed and made available. May be done.

10…測距装置、11…光源、12…光スイッチ、13…受光素子、14…ハーフミラー、15…ハーフミラー、16…制御部。 10 ... ranging device, 11 ... light source, 12 ... optical switch, 13 ... light receiving element, 14 ... half mirror, 15 ... half mirror, 16 ... control unit.

Claims (5)

光源から発せられた所定の周波数帯域の光の一部が受光素子に入射し、前記光の残りの一部が物体に反射して前記受光素子に入射した場合に、前記受光素子に入射する光の特性の経時変化に基づいて前記物体までの距離を算出する
測距装置。
When a part of the light of a predetermined frequency band emitted from a light source is incident on a light receiving element and the remaining part of the light is reflected by an object and is incident on the light receiving element, the light incident on the light receiving element A distance measuring device that calculates the distance to the object based on the change over time in the characteristics of.
前記特性は周波数、強度又は周波数と強度の組み合わせである
請求項1に記載の測距装置。
The distance measuring device according to claim 1, wherein the characteristic is frequency, intensity, or a combination of frequency and intensity.
前記特性は周波数差及び強度であり、前記強度の経時変化に基づいて前記物体までの距離を算出し、前記周波数の経時変化に基づいて前記物体の速度を算出する
請求項1又は2に記載の測距装置。
The characteristic is a frequency difference and an intensity, and according to claim 1 or 2, the distance to the object is calculated based on the time course of the intensity, and the speed of the object is calculated based on the time course of the frequency. Distance measuring device.
前記光源はCW(Continuous Wave)レーザーを発し、前記CWレーザーの光路に設けられたハーフミラーにより反射された光が前記光の一部として前記受光素子に入射し、前記ハーフミラーを透過した光が前記物体に反射して前記受光素子に入射する
請求項1から3のいずれか1項に記載の測距装置。
The light source emits a CW (Continuous Wave) laser, and the light reflected by the half mirror provided in the optical path of the CW laser is incident on the light receiving element as a part of the light, and the light transmitted through the half mirror is emitted. The distance measuring device according to any one of claims 1 to 3, which reflects on the object and is incident on the light receiving element.
前記ハーフミラーを透過した光の光路に設けられた、光の通過及び遮断を切り替えるスイッチが通過に切り替わった時刻と前記物体に反射した光が前記受光素子に入射した時刻とに基づいて前記物体までの距離を算出する
請求項4に記載の測距装置。
To the object based on the time when the switch for switching between passing and blocking the light provided in the optical path of the light transmitted through the half mirror is switched to passing and the time when the light reflected by the object is incident on the light receiving element. The distance measuring device according to claim 4, wherein the distance is calculated.
JP2020073007A 2020-04-15 2020-04-15 Distance measuring device Active JP7506998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020073007A JP7506998B2 (en) 2020-04-15 2020-04-15 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073007A JP7506998B2 (en) 2020-04-15 2020-04-15 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2021169957A true JP2021169957A (en) 2021-10-28
JP7506998B2 JP7506998B2 (en) 2024-06-27

Family

ID=78149646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073007A Active JP7506998B2 (en) 2020-04-15 2020-04-15 Distance measuring device

Country Status (1)

Country Link
JP (1) JP7506998B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184788A (en) * 1989-01-11 1990-07-19 Matsushita Electric Works Ltd Range-finding sensor
JPH03264887A (en) * 1990-03-15 1991-11-26 Matsushita Electric Works Ltd Optical displacement sensor
JP2017003461A (en) * 2015-06-11 2017-01-05 東芝テック株式会社 Distance measurement device
JP2018205227A (en) * 2017-06-08 2018-12-27 株式会社トプコン Phase difference frequency preparation method, phase difference frequency preparation device, and optical wave range-finder
WO2019130472A1 (en) * 2017-12-27 2019-07-04 三菱電機株式会社 Laser radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184788A (en) * 1989-01-11 1990-07-19 Matsushita Electric Works Ltd Range-finding sensor
JPH03264887A (en) * 1990-03-15 1991-11-26 Matsushita Electric Works Ltd Optical displacement sensor
JP2017003461A (en) * 2015-06-11 2017-01-05 東芝テック株式会社 Distance measurement device
JP2018205227A (en) * 2017-06-08 2018-12-27 株式会社トプコン Phase difference frequency preparation method, phase difference frequency preparation device, and optical wave range-finder
WO2019130472A1 (en) * 2017-12-27 2019-07-04 三菱電機株式会社 Laser radar device

Also Published As

Publication number Publication date
JP7506998B2 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
US20150204977A1 (en) Object detection device and sensing apparatus
US11828874B2 (en) Electronic apparatus and method
JP2008241535A (en) Laser monitoring device
US12111423B2 (en) Electronic apparatus and method
JP6493018B2 (en) Laser distance measuring device
JPH0589465A (en) Method and device for optical information recording and reproduction
JP2015049204A5 (en)
KR870008286A (en) Information reproduction system from optical memory
JP2008232800A (en) Laser monitor
WO2021065138A1 (en) Distance measurement device and control method
JP2021169957A (en) Distance measuring device
WO2020149080A1 (en) Optical distance measurement device and method for detecting occurrence of abnormality in optical distance measurement device
JP4204112B2 (en) Interferometer phase detection method for optical interferometer
JP2003281767A (en) Optical pickup, method for producing optical pickup, and optical disk system
JP2021169969A (en) Distance measuring device
JPWO2020022206A1 (en) Distance measuring device
KR20150018026A (en) 3 demensional camera
US20210405165A1 (en) Time-of-flight distance measuring method and related system
JP2000028720A (en) Distance measuring device
JP3249003B2 (en) Distance measuring device
JP7088494B2 (en) Substance detector
US20240094392A1 (en) Optical sensing system, optical sensing device, and optical sensing method
JP7736093B2 (en) Measurement device, measurement method, and program
US20250283981A1 (en) Measuring apparatus
JP7658473B1 (en) Measurement device, measurement method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617

R150 Certificate of patent or registration of utility model

Ref document number: 7506998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载