JP2021082373A - Diselectrification tube and method for manufacturing the same - Google Patents
Diselectrification tube and method for manufacturing the same Download PDFInfo
- Publication number
- JP2021082373A JP2021082373A JP2018021648A JP2018021648A JP2021082373A JP 2021082373 A JP2021082373 A JP 2021082373A JP 2018021648 A JP2018021648 A JP 2018021648A JP 2018021648 A JP2018021648 A JP 2018021648A JP 2021082373 A JP2021082373 A JP 2021082373A
- Authority
- JP
- Japan
- Prior art keywords
- static elimination
- fluororesin
- ptfe
- tube
- elimination tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000003068 static effect Effects 0.000 claims abstract description 118
- 230000008030 elimination Effects 0.000 claims abstract description 100
- 238000003379 elimination reaction Methods 0.000 claims abstract description 100
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 70
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 65
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 59
- 239000012530 fluid Substances 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 238000012546 transfer Methods 0.000 claims abstract description 13
- 239000007921 spray Substances 0.000 claims abstract description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 83
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 83
- 239000000203 mixture Substances 0.000 claims description 69
- 239000002245 particle Substances 0.000 claims description 42
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 claims description 39
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 claims description 39
- -1 polytetrafluoroethylene Polymers 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 26
- 229920001577 copolymer Polymers 0.000 claims description 16
- 239000002033 PVDF binder Substances 0.000 claims description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 11
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 7
- 239000005977 Ethylene Substances 0.000 claims description 7
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 3
- 229940079593 drug Drugs 0.000 claims description 3
- 238000007905 drug manufacturing Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 2
- 238000010828 elution Methods 0.000 abstract description 10
- 239000012535 impurity Substances 0.000 abstract description 7
- 229910021645 metal ion Inorganic materials 0.000 abstract description 7
- 239000011347 resin Substances 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 abstract description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract 3
- 229910052731 fluorine Inorganic materials 0.000 abstract 3
- 239000011737 fluorine Substances 0.000 abstract 3
- 239000011342 resin composition Substances 0.000 abstract 2
- 239000011368 organic material Substances 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 238000000748 compression moulding Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920006361 Polyflon Polymers 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 241001466543 Neophron Species 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- 229920004428 Neoflon® PCTFE Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/12—Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F1/00—Preventing the formation of electrostatic charges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F3/00—Carrying-off electrostatic charges
- H05F3/02—Carrying-off electrostatic charges by means of earthing connections
Landscapes
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Elimination Of Static Electricity (AREA)
Abstract
Description
本発明は、除電管及びその製造方法に関し、さらに詳しくは優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す除電管及びその製造方法に関する。 The present invention relates to a static eliminator tube and a method for manufacturing the same, and more specifically, the static eliminator tube and its manufacture which have excellent antistatic performance and exhibit excellent static eliminator performance while preventing elution of impurities (metal ions, organic substances, etc.). Regarding the method.
フッ素樹脂は、耐薬品性及び耐汚染性等に優れるので、半導体製造装置、医薬品製造装置等に腐食性流体、純水及び薬液等を流通させるための部品等の材料としてしばしば使用される。
しかし、フッ素樹脂は、一般的に絶縁性材料に分類されるので、フッ素樹脂を用いて製造された部品と流体が接触すると、摩擦による帯電を生じ得る。
そこで、カーボンブラック及び鉄粉等の導電性物質をフッ素樹脂に混合してフッ素樹脂に導電性を付与することが知られているが、導電性物質と流体が接触するので、金属イオン、有機物等が流体に流出して、流体が汚染されることが知られている。
Since fluororesin is excellent in chemical resistance, stain resistance, and the like, it is often used as a material for parts and the like for distributing corrosive fluids, pure water, chemical solutions, and the like to semiconductor manufacturing equipment, pharmaceutical manufacturing equipment, and the like.
However, since fluororesin is generally classified as an insulating material, when a fluid comes into contact with a component manufactured by using fluororesin, it may be charged by friction.
Therefore, it is known that a conductive substance such as carbon black and iron powder is mixed with the fluororesin to impart conductivity to the fluororesin. However, since the conductive substance and the fluid come into contact with each other, metal ions, organic substances, etc. Is known to flow out into the fluid and contaminate the fluid.
特許文献1は、導電性物質を含むフッ素樹脂組成物をストライプ状の導電性部分として、透明なフッ素樹脂のチューブの外周面に長手方向に沿って埋め込んだ、帯電防止フッ素樹脂チューブを開示する(特許文献1要約、図1〜3等参照)。 Patent Document 1 discloses an antistatic fluororesin tube in which a fluororesin composition containing a conductive substance is embedded in the outer peripheral surface of a transparent fluororesin tube as a striped conductive portion along the longitudinal direction (). Patent Document 1 Summary, see FIGS. 1 to 3 etc.).
特許文献2は、導電性物質を含有するフッ素樹脂組成物からなる導電性部分とフッ素樹脂からなる透明部分が交互に配置されて、中空のチューブ形状に形成された帯電防止チューブを開示する(特許文献2要約、図1、4、6等参照)。 Patent Document 2 discloses an antistatic tube formed in a hollow tube shape by alternately arranging a conductive portion made of a fluororesin composition containing a conductive substance and a transparent portion made of a fluororesin (Patent). Reference 2 Summary, see FIGS. 1, 4, 6 etc.).
特許文献3は、50μm以上150μm以下の繊維長及び5nm以上20nm以下の繊維径等を有するカーボンナノチューブ(Carbon Nano Tube、以下「CNT」ともいう)を、0.020重量%以上0.030重量%以下の割合で含むフッ素樹脂材料によって形成された流体流路を備えた流体機器は、流体流路と流体との摩擦による帯電と、流体流路と流体との接触による流体の汚染とを抑制できることを開示する(特許文献3請求項1、[0008]〜[0009]、[0033]等参照)。 Patent Document 3 describes carbon nanotubes (Carbon Nano Tube, hereinafter also referred to as “CNT”) having a fiber length of 50 μm or more and 150 μm or less and a fiber diameter of 5 nm or more and 20 nm or less in an amount of 0.020% by weight or more and 0.030% by weight. A fluid device provided with a fluid flow path formed of a fluororesin material containing the following proportions can suppress charging due to friction between the fluid flow path and the fluid and contamination of the fluid due to contact between the fluid flow path and the fluid. (See Patent Document 3, claim 1, [0008] to [0009], [0033], etc.).
特許文献1のチューブは、流体と導電性物質が接触しないので、流体が汚染されることはないが、帯電防止性能が期待できないという問題がある。 Since the tube of Patent Document 1 does not come into contact with the fluid and the conductive substance, the fluid is not contaminated, but there is a problem that antistatic performance cannot be expected.
特許文献2のチューブは、流体と導電性物質が接触するので、帯電防止性能は得られるが、流体の汚染も生じ得るという問題がある。 Since the tube of Patent Document 2 comes into contact with the fluid and the conductive substance, antistatic performance can be obtained, but there is a problem that the fluid may be contaminated.
特許文献3の流体流路は、流体の帯電防止と、流体の汚染防止に優れるが、近年の更なる性能向上の要求に対応することが困難であるという問題がある。 The fluid flow path of Patent Document 3 is excellent in preventing fluid from being charged and contaminating the fluid, but has a problem that it is difficult to meet the demand for further performance improvement in recent years.
更に、近年、流体の「帯電防止」と流体の「汚染防止」に加えて、既に帯電した流体の「除電」も要求されている。ここで、「帯電防止」とは、帯電していない電気絶縁性物質に静電気が発生して、静電気を帯びることを防止することをいうのに対し、「除電」とは、既に静電気を帯びている電気絶縁性物質から、その静電気を除去することをいう点で相違する。「除電」方法として、アースの設置、 イオナイザー、加湿等が知られている。
特許文献1〜3は、それらのチューブ及び流体流路の除電については、何ら開示も教示もしていない。
Further, in recent years, in addition to "antistatic" of a fluid and "contamination prevention" of a fluid, "static elimination" of an already charged fluid is also required. Here, "antistatic" means to prevent static electricity from being generated in an electrically insulating material that is not charged and to be charged with static electricity, whereas "static electricity elimination" is already charged with static electricity. It differs in that it removes the static electricity from the electrically insulating material. Known "static elimination" methods include grounding, ionizers, and humidification.
Patent Documents 1 to 3 do not disclose or teach static elimination of those tubes and fluid flow paths.
そこで、本発明は、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す除電管及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a static elimination tube having excellent antistatic performance and exhibiting excellent static elimination performance while preventing the elution of impurities (metal ions, organic substances, etc.) and a method for producing the same. ..
本発明者等は、鋭意検討を重ねた結果、フッ素樹脂に特定量のカーボンナノチューブを分散させたフッ素樹脂組成物を使用すると、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す除電管が得られることを見出した。更に、そのような除電管は、流体搬送装置に好適に使用可能であることを見出して、本発明を完成させるに至った。 As a result of diligent studies, the present inventors have excellent antistatic performance when using a fluororesin composition in which a specific amount of carbon nanotubes is dispersed in a fluororesin, and impurities (metal ions, organic substances, etc.) It was found that a static elimination tube showing excellent static elimination performance can be obtained while preventing the elution of the resin. Furthermore, they have found that such a static elimination tube can be suitably used for a fluid transfer device, and have completed the present invention.
すなわち、本明細書は、以下の態様を含む。
[1]フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、
フッ素樹脂組成物は、カーボンナノチューブを、0.01〜2.0重量%含む、除電管。
[2]カーボンナノチューブは、50μm以上の平均長さを有する、上記1に記載の除電管。
[3]1×10−1〜1×106Ω・cmの体積抵抗率を有する、上記1又は2に記載の除電管。
[4]フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)から選択される少なくとも1種を含む、上記1〜3のいずれかに記載の除電管。
[5]フッ素樹脂組成物のフッ素樹脂は、500μm以下の平均粒子径を有する、上記1〜4のいずれかに記載の除電管。
[6]流体が通る管、ノズル、シャワーヘッド、スプレーノズル、回転ノズル、液体吐出部、配管部材、液体搬送チューブ、液体搬送継手、及びライニング配管に使用される、上記1〜5のいずれかに記載の除電管。
[7]上記1〜6のいずれかに記載の除電管を含む、流体搬送装置。
[8]上記7に記載の搬送装置を含む、半導体製造装置、医薬品製造装置、医薬品搬送装置、化学薬品製造装置又は化学薬品搬送装置。
[9]フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を、圧縮成形することを含む、上記1〜6のいずれかに記載の除電管の製造方法。
[10]PTFE及び変性PTFEから選択されるフッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
フッ素樹脂組成物を、金型に入れて、加圧して圧縮して、予備成形体を製造すること;
予備成形体を、フッ素樹脂組成物の融点以上の温度で焼成して、成形体を製造すること;
成形体を加工して除電管を製造すること
を含む、上記1〜6のいずれかに記載の除電管の製造方法。
[11]PTFE及び変性PTFE以外のフッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
フッ素樹脂組成物を加熱後、加圧して圧縮して、成形体を得ること;及び
成形体を加工して除電管を得ること
を含む、上記1〜6のいずれかに記載の除電管の製造方法。
That is, the present specification includes the following aspects.
[1] It is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
The fluororesin composition is a static elimination tube containing 0.01 to 2.0% by weight of carbon nanotubes.
[2] The static elimination tube according to 1 above, wherein the carbon nanotube has an average length of 50 μm or more.
[3] The static elimination tube according to 1 or 2 above, which has a volume resistivity of 1 × 10 -1 to 1 × 10 6 Ω · cm.
[4] The fluororesin is polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer. (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF). ), The static elimination tube according to any one of 1 to 3 above.
[5] The static elimination tube according to any one of 1 to 4 above, wherein the fluororesin of the fluororesin composition has an average particle size of 500 μm or less.
[6] Any of the above 1 to 5 used for pipes through which fluids pass, nozzles, shower heads, spray nozzles, rotary nozzles, liquid discharge parts, piping members, liquid transfer tubes, liquid transfer joints, and lining pipes. The described static elimination pipe.
[7] A fluid transfer device including the static elimination pipe according to any one of 1 to 6 above.
[8] A semiconductor manufacturing device, a drug manufacturing device, a drug transport device, a chemical manufacturing device, or a chemical transport device, including the transport device according to 7 above.
[9] The method for producing a static elimination tube according to any one of 1 to 6 above, which comprises compression molding a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
[10] Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin selected from PTFE and modified PTFE;
The fluororesin composition is placed in a mold, pressed and compressed to produce a preformed body;
To produce a molded product by firing the preformed product at a temperature equal to or higher than the melting point of the fluororesin composition;
The method for manufacturing a static elimination tube according to any one of 1 to 6 above, which comprises processing a molded body to manufacture a static elimination tube.
[11] Preparing a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin other than PTFE and modified PTFE;
The production of the static elimination tube according to any one of 1 to 6 above, which comprises heating the fluororesin composition and then pressurizing and compressing to obtain a molded body; and processing the molded body to obtain a static elimination tube. Method.
本発明の実施形態の除電管は、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す。従って、例えば、半導体製造装置、医薬品製造装置、化学薬品製造装置等の流体が通る管(又はチューブ)、ノズル、シャワーヘッド、回転洗浄ノズル、液体吐出部、配管部材、液体(又は薬液)搬送チューブ、液体搬送継手、及びライニング配管等に好適に使用することができる。 The static elimination tube of the embodiment of the present invention has excellent antistatic performance, and exhibits excellent static elimination performance while preventing the elution of impurities (metal ions, organic substances, etc.). Therefore, for example, pipes (or tubes) through which fluids such as semiconductor manufacturing equipment, pharmaceutical manufacturing equipment, and chemical manufacturing equipment pass, nozzles, shower heads, rotary cleaning nozzles, liquid discharge parts, piping members, liquid (or chemical liquid) transport tubes. , Liquid transport joints, lining pipes, etc. can be suitably used.
本発明は、新たな除電管を提供し、それは、
フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、
フッ素樹脂組成物は、カーボンナノチューブを、0.01〜2.0重量%含む。
The present invention provides a new static elimination tube, which is:
It is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
The fluororesin composition contains 0.01 to 2.0% by weight of carbon nanotubes.
本発明の実施形態の除電管は、フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできている。
本明細書において、フッ素樹脂組成物とは、フッ素樹脂とカーボンナノチューブを含み、必要に応じて他の成分を含んでよく、本発明が目的とする除電管を得ることができる限り、特に制限されることはない。
The static elimination tube of the embodiment of the present invention is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
In the present specification, the fluororesin composition contains a fluororesin and carbon nanotubes, and may contain other components as necessary, and is particularly limited as long as the static elimination tube of the present invention can be obtained. There is nothing.
本明細書において、「フッ素樹脂」とは、通常フッ素樹脂と理解される樹脂であって、本発明が目的とする除電管を得ることができる限り、特に制限されることはない。
そのようなフッ素樹脂として、例えば、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)から選択される少なくとも1種を例示することができる。
In the present specification, the "fluororesin" is a resin usually understood as a fluororesin, and is not particularly limited as long as the static elimination tube intended by the present invention can be obtained.
Examples of such a fluororesin include polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene. Polymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) and polyvinylidene fluoride At least one selected from (PVF) can be exemplified.
フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)が好ましく、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)がより好ましい。 As the fluororesin, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) , Ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF) are preferred, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetra. Fluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) and polychlorotrifluoroethylene (PCTFE) are more preferable.
フッ素樹脂は、市販品を使用することができる。例えば、
ポリテトラフルオロエチレン(PTFE)として、ダイキン工業株式会社製のM-12(商品名)、M-11(商品名)、及びポリフロンPTFE-M(商品名)、
変性ポリテトラフルオロエチレン(変性PTFE)として、ダイキン工業株式会社製のM-112(商品名)、M-111(商品名)、及びポリフロンPTFE-M(商品名)、
ポリクロロトリフルオロエチレン(PCTFE)として、ダイキン工業株式会社製のM-300PL(商品名)、M-300H(商品名)、及びネオフロンPCTFE(商品名)
テトラフルオロエチレン/パーフルオロアルキルビニルエーテル(PFA)として、ダイキン工業株式会社製のAP-230(商品名)、AP−210(商品名)、及びネオフロンPFA(商品名)等を例示できる。
フッ素樹脂は、単独で又は組み合わせて使用できる。
As the fluororesin, a commercially available product can be used. For example
As polytetrafluoroethylene (PTFE), M-12 (trade name), M-11 (trade name), and Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.,
As modified polytetrafluoroethylene (modified PTFE), M-112 (trade name), M-111 (trade name), and Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.,
As polychlorotrifluoroethylene (PCTFE), M-300PL (trade name), M-300H (trade name), and Neophron PCTFE (trade name) manufactured by Daikin Industries, Ltd.
Examples of the tetrafluoroethylene / perfluoroalkyl vinyl ether (PFA) include AP-230 (trade name), AP-210 (trade name), and neophron PFA (trade name) manufactured by Daikin Industries, Ltd.
Fluororesin can be used alone or in combination.
本発明の実施形態において、フッ素樹脂組成物のフッ素樹脂は、粒子形態を有し、500μm以下の平均粒子径を有することが好ましく、8〜250μmの平均粒子径を有することがより好ましく、10〜50μmの平均粒子径を有することが更により好ましく、10〜25μmの平均粒子径を有することが特に好ましい。
フッ素樹脂組成物のフッ素樹脂は、500μm以下の平均粒子径を有する場合、フッ素樹脂とカーボンナノチューブがより均一に混合できるので、導電性がより向上する。
In the embodiment of the present invention, the fluororesin of the fluororesin composition has a particle morphology, preferably has an average particle size of 500 μm or less, more preferably 8 to 250 μm, and more preferably 10 to 10 μm. It is even more preferable to have an average particle size of 50 μm, and particularly preferably to have an average particle size of 10 to 25 μm.
When the fluororesin of the fluororesin composition has an average particle size of 500 μm or less, the fluororesin and the carbon nanotubes can be mixed more uniformly, so that the conductivity is further improved.
本明細書において、粒子の平均粒子径とは、レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)を用いて、粒度分布を測定して得られる、平均粒子径D50を(レーザー回折散乱法によって求められる粒度分布における積算値50%での粒子径を意味するメジアン径)いう。 In the present specification, the average particle size of the particles is the average particle size D 50 (laser diffraction scattering) obtained by measuring the particle size distribution using a laser diffraction scattering type particle size distribution device (“MT3300II” manufactured by Nikkiso). The median diameter, which means the particle size at an integrated value of 50% in the particle size distribution obtained by the method).
本明細書において、「カーボンナノチューブ」とは、通常カーボンナノチューブと理解される物質であって、本発明が目的とする除電管を得ることができる限り、特に制限されることはない。 In the present specification, the "carbon nanotube" is a substance usually understood as a carbon nanotube, and is not particularly limited as long as the static elimination tube intended by the present invention can be obtained.
そのようなカーボンナノチューブ(「CNT」ともいう)として、例えば、単層のCNT、多層のCNT、2層のCNT等を例示できる。カーボンナノチューブとして市販品を使用することができ、例えば、大陽日酸社製のCNT-uni(商品名)シリーズを使用することができる。
CNTは、単独又は組み合わせて使用することができる。
Examples of such carbon nanotubes (also referred to as “CNTs”) include single-walled CNTs, multi-walled CNTs, and two-walled CNTs. Commercially available products can be used as carbon nanotubes, and for example, the CNT-uni (trade name) series manufactured by Taiyo Nippon Sanso Co., Ltd. can be used.
CNTs can be used alone or in combination.
本発明の実施形態において、カーボンナノチューブは、50μm以上の平均長さを有することが好ましく、70〜250μmの平均長さを有することがより好ましく、100〜200μmの平均長さを有することが更により好ましく、150〜200μmの平均長さを有することが特に好ましく。
CNTは、50μm以上の平均長さを有する場合、導電パスが繋がりやすいである点から、導電性がより向上し、好ましい。
In the embodiment of the present invention, the carbon nanotubes preferably have an average length of 50 μm or more, more preferably 70 to 250 μm, and even more preferably 100 to 200 μm. It is preferable to have an average length of 150 to 200 μm, particularly preferably.
When the CNT has an average length of 50 μm or more, the conductivity is further improved from the viewpoint that the conductive paths are easily connected, which is preferable.
本明細書において、CNTの平均長さ(又は平均繊維長)とは、実施例で詳細に記載するように、SEMで撮影した画像から得られる平均長さをいう。即ち、除電管の一部を、300℃〜600℃に加熱して、灰化し、残渣物(SEM撮影用サンプル)を得る。その残渣物のSEM画像を撮影する。そのSEM画像に含まれる各カーボンナノチューブの長さを画像処理によって求める。その画像処理によって得た長さの平均値を計算によって求め、その平均値をCNTの平均長さという。 In the present specification, the average length (or average fiber length) of CNT means the average length obtained from an image taken by SEM, as described in detail in Examples. That is, a part of the static elimination tube is heated to 300 ° C. to 600 ° C. and incinerated to obtain a residue (sample for SEM photography). An SEM image of the residue is taken. The length of each carbon nanotube included in the SEM image is obtained by image processing. The average value of the lengths obtained by the image processing is calculated, and the average value is called the average length of CNTs.
本発明の実施形態において、フッ素樹脂組成物は、カーボンナノチューブを、0.01〜2.0重量%含み、0.04〜1.5重量%含むことが好ましく、0.05〜1.0重量%含むことがより好ましく、0.05〜0.5重量%含むことが特に好ましい。
フッ素樹脂組成物が、カーボンナノチューブを、0.05〜0.5重量%含む場合、導電パスを形成するために十分な量なので、導電性がより向上し、好ましい。
In the embodiment of the present invention, the fluororesin composition contains 0.01 to 2.0% by weight of carbon nanotubes, preferably 0.04 to 1.5% by weight, and preferably 0.05 to 1.0% by weight. It is more preferable to contain%, and it is particularly preferable to contain 0.05 to 0.5% by weight.
When the fluororesin composition contains 0.05 to 0.5% by weight of carbon nanotubes, the amount is sufficient to form a conductive path, so that the conductivity is further improved, which is preferable.
本発明の実施形態の除電管は、1×10−1〜1×107Ω・cmの体積抵抗率を有することが好ましく、1×100〜1×105Ω・cmの体積抵抗率を有することがより好ましく、1×101〜1×103Ω・cmの体積抵抗率を有することが特に好ましい。
体積抵抗率の測定については、実施例に記載した。
The static elimination tube of the embodiment of the present invention preferably has a volume resistivity of 1 × 10 -1 to 1 × 10 7 Ω · cm, and has a volume resistivity of 1 × 10 0 to 1 × 10 5 Ω · cm. It is more preferable to have a volume resistivity of 1 × 10 1 to 1 × 10 3 Ω · cm.
The measurement of volume resistivity is described in Examples.
本発明の実施形態の除電管は、実施例に記載した方法を用いて評価して、電荷残存率が、70%以下であることが好ましく、50%以下であることがより好ましく、30%以下であることが更により好ましく、20%以下であることが特に好ましい。
電荷残存率が、20%以下である場合、静電気が抑えられているので、非集塵性の性質がより向上し、好ましい。
The static elimination tube of the embodiment of the present invention is evaluated using the method described in Examples, and the charge residual ratio is preferably 70% or less, more preferably 50% or less, and 30% or less. Is even more preferable, and 20% or less is particularly preferable.
When the residual charge ratio is 20% or less, static electricity is suppressed, so that the non-dust collecting property is further improved, which is preferable.
本発明の実施形態の除電管は、10cmの長さの抵抗が、1×106Ω以下であることが好ましく、8×105Ω以下であることがより好ましく、5×105Ω以下であることが更により好ましく、1×105Ω以下であることが特に好ましい。
10cmの長さの抵抗が、1×105Ω以下である場合、導通が十分に取れているので、流体除電性がより向上し、好ましい。
In the static elimination tube of the embodiment of the present invention, the resistance having a length of 10 cm is preferably 1 × 10 6 Ω or less, more preferably 8 × 10 5 Ω or less, and 5 × 10 5 Ω or less. It is even more preferable that there is 1 × 10 5 Ω or less.
When the resistance having a length of 10 cm is 1 × 10 5 Ω or less, the conduction is sufficiently obtained, so that the fluid static elimination property is further improved, which is preferable.
本発明の実施形態の除電管に関し、本明細書の実施例に記載の方法で評価して、汚染防止性は、全ての金属の溶出量が、5ppb未満であることが好ましく、1ppb未満であることがより好ましく、0.5ppb未満であることが更に好ましい。
また、全有機体炭素の溶出量が、50ppb未満であることが好ましく、40ppb未満であることがより好ましく、30ppb未満であることが更に好ましい。
The static elimination pipe of the embodiment of the present invention is evaluated by the method described in the examples of the present specification, and the contamination prevention property is preferably less than 5 ppb and less than 1 ppb in the elution amount of all metals. More preferably, it is more preferably less than 0.5 ppb.
Further, the elution amount of total organic carbon is preferably less than 50 ppb, more preferably less than 40 ppb, and further preferably less than 30 ppb.
本発明の実施形態の除電管は、その用途に応じて種々の寸法を有することができ、本発明が目的とする除電管を得ることができる限り、その寸法は特に制限されることはない。
除電管は、例えば、円筒形(又はチューブ状)を有し、外径は、4〜500mmであることが好ましく、6〜250mmであることがより好ましく、6〜75mmであることが更により好ましく、6〜50mmであることが特に好ましい。肉厚は、0.5〜50mmであることが好ましく、1〜20mmであることがより好ましく、1〜10mmであることが更により好ましく、1〜5mmであることが特に好ましい。
The static eliminator tube of the embodiment of the present invention can have various dimensions depending on its use, and the dimensions are not particularly limited as long as the static eliminator tube of the present invention can be obtained.
The static elimination tube has, for example, a cylindrical shape (or a tubular shape), and the outer diameter is preferably 4 to 500 mm, more preferably 6 to 250 mm, and even more preferably 6 to 75 mm. , 6 to 50 mm is particularly preferable. The wall thickness is preferably 0.5 to 50 mm, more preferably 1 to 20 mm, even more preferably 1 to 10 mm, and particularly preferably 1 to 5 mm.
本発明に実施形態の除電管は、本発明が目的とする除電管を得ることができる限り、いずれの方法を用いて製造してもよい。
本発明に実施形態の除電管は、フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物を、圧縮成形することを含む製造方法で製造することが好ましい。
The static eliminator of the embodiment of the present invention may be manufactured by any method as long as the static eliminator of the present invention can be obtained.
The static elimination tube of the embodiment of the present invention is preferably manufactured by a manufacturing method including compression molding of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
本発明の実施形態の除電管の製造方法は、PTFE及び変性PTFEに関する除電管の製造方法と、その他のフッ素樹脂(例えば、PFA、FEP、ETFE、ECTFE、PCTFE、PVDF及びPVF)に関する除電管の製造方法は、一部相違する。 The method for producing a static eliminator according to an embodiment of the present invention is a method for producing a static eliminator for PTFE and modified PTFE, and a method for producing a static eliminator for other fluororesins (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF). The manufacturing method is partially different.
PTFE及び変性PTFEに関する除電管の製造方法は、
フッ素樹脂(好ましくは粒子状フッ素樹脂)にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
フッ素樹脂組成物を、(必要に応じて適切な前処理(予備乾燥、造粒等)を行った後、)金型に入れて、好ましくは0.1〜100MPa、より好ましくは1〜80MPa、さらにより好ましくは5〜50MPaの圧力で加圧して圧縮して、予備成形体を製造すること;
予備成形体を、フッ素樹脂組成物の融点以上の温度(好ましくは345〜400℃、より好ましくは360〜390℃の温度)で、好ましくは2時間以上焼成して、成形体を製造すること;
成形体を加工(好ましくは切削加工)して除電管を製造すること
を含む。
The method for manufacturing a static elimination tube for PTFE and modified PTFE is as follows.
To prepare a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably particulate fluororesin);
The fluororesin composition is placed in a mold (after appropriate pretreatment (pre-drying, granulation, etc.) as necessary), preferably 0.1 to 100 MPa, more preferably 1 to 80 MPa. Even more preferably, the preformed body is produced by pressurizing and compressing at a pressure of 5 to 50 MPa;
The premolded article is fired at a temperature equal to or higher than the melting point of the fluororesin composition (preferably at a temperature of 345 to 400 ° C., more preferably 360 to 390 ° C.) for 2 hours or more to produce a molded article;
This includes processing (preferably cutting) a molded body to produce a static elimination tube.
PTFE及び変性PTFE以外のフッ素樹脂(例えば、PFA、FEP、ETFE、ECTFE、PCTFE、PVDF及びPVF)に関する除電管の製造方法は、
フッ素樹脂(好ましくは粒子状フッ素樹脂)にカーボンナノチューブが分散したフッ素樹脂組成物を準備すること;
フッ素樹脂組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)をした後、例えば、150〜400℃の温度で1〜5時間加熱後、例えば、0.1〜100MPa(好ましくは、1〜80MPa、より好ましくは、5〜50MPa)の圧力で圧縮して、成形体を得ること;及び
成形体を加工(好ましくは切削加工)して除電管を得ること
を含む。
A method for manufacturing a static elimination tube for fluororesins other than PTFE and modified PTFE (for example, PFA, FEP, ETFE, ECTFE, PCTFE, PVDF and PVF) is described.
To prepare a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin (preferably particulate fluororesin);
The fluororesin composition is placed in a mold, appropriately pretreated (pre-drying, etc.) as necessary, and then heated at a temperature of 150 to 400 ° C. for 1 to 5 hours, for example, 0.1 to 1. It includes compressing at a pressure of 100 MPa (preferably 1 to 80 MPa, more preferably 5 to 50 MPa) to obtain a molded product; and processing (preferably cutting) the molded product to obtain a static elimination tube. ..
本実施形態の除電管は、種々の用途に使用することができ、本発明が目的とする除電管を使用することができる限り、その用途は特に制限されることはないが、例えば、流体が通る管、ノズル、シャワーヘッド、スプレーノズル、回転ノズル、液体吐出部、配管部材、液体搬送チューブ、液体搬送継手、及びライニング配管等に使用することができる。 The static eliminator of the present embodiment can be used for various purposes, and as long as the static eliminator of the present invention can be used, the use is not particularly limited, but for example, a fluid can be used. It can be used for passing pipes, nozzles, shower heads, spray nozzles, rotary nozzles, liquid discharge parts, piping members, liquid transfer tubes, liquid transfer joints, lining pipes and the like.
本発明は、本発明の実施形態の除電管を含む、流体搬送装置を提供する。
更に、本発明は、そのような流体搬送装置を含む、種々の設備、例えば、半導体製造装置、医薬品製造装置、医薬品搬送装置、化学薬品製造装置及び化学薬品搬送装置等を提供する。
The present invention provides a fluid transfer device including a static elimination tube according to an embodiment of the present invention.
Furthermore, the present invention provides various equipment including such a fluid transfer device, for example, a semiconductor manufacturing device, a drug manufacturing device, a drug transport device, a chemical manufacturing device, a chemical transport device, and the like.
以下、本発明を実施例及び比較例により具体的かつ詳細に説明するが、これらの実施例は本発明の一態様にすぎず、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these Examples are only one aspect of the present invention, and the present invention is not limited to these Examples.
本実施例で使用した成分を以下に示す。
(A)フッ素樹脂
(A1)ポリクロロトリフルオロエチレン(ダイキン工業株式会社製のネオフロンPCTFE(商品名))(「(A1)PCTFE」ともいう)
(A2)ポリテトラフルオロエチレン(ダイキン工業株式会社製のポリフロンPTFE-M(商品名))(「(A2)PTFE」ともいう)
(A3)変性ポリテトラフルオロエチレン(ダイキン工業株式会社製のポリフロンPTFE-M(商品名))(「(A3)変性PTFE」ともいう)
(A4)テトラフルオロエチレン/パーフルオロアルキルビニルエーテル(ダイキン工業株式会社製のネオフロンPFA(商品名)(「(A4)PFA」ともいう)
The components used in this example are shown below.
(A) Fluororesin (A1) Polychlorotrifluoroethylene (Neoflon PCTFE (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as "(A1) PCTFE")
(A2) Polytetrafluoroethylene (Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as "(A2) PTFE")
(A3) Modified polytetrafluoroethylene (Polyflon PTFE-M (trade name) manufactured by Daikin Industries, Ltd.) (also referred to as "(A3) modified PTFE")
(A4) Tetrafluoroethylene / Perfluoroalkyl Vinyl Ether (Neoflon PFA (trade name) manufactured by Daikin Industries, Ltd. (also referred to as "(A4) PFA"))
(B)カーボンナノチューブ
(B1)カーボンナノチューブ(平均繊維長=約150μm、大陽日酸社製のCNT-uni(商品名))(「(B1)CNT」ともいう)
(B2)カーボンナノチューブ(平均繊維長=約400μm、大陽日酸社製のCNT-uni(商品名))(「(B2)CNT」ともいう)
(B3)カーボンナノチューブ(平均繊維長=約90μm、大陽日酸社製のCNT-uni(商品名))(「(B3)CNT」ともいう)
(B4)カーボンナノチューブ(平均繊維長=約600μm、大陽日酸社製のCNT-uni(商品名))(「(B4)CNT」ともいう)
(B5)’カーボンナノチューブ(平均繊維長=約30μm、大陽日酸社製のCNT-uni(商品名))(「(B5)’CNT」ともいう)
カーボンファイバー入りフッ素樹脂
(C1)カーボンファイバー入りPTFE(旭硝子製のPB2515(商品名))
(B) Carbon nanotubes (B1) Carbon nanotubes (average fiber length = about 150 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B1) CNT”)
(B2) Carbon nanotubes (average fiber length = about 400 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B2) CNT”)
(B3) Carbon nanotubes (average fiber length = about 90 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B3) CNT”)
(B4) Carbon nanotubes (average fiber length = about 600 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as “(B4) CNT”)
(B5)'Carbon nanotubes (average fiber length = about 30 μm, CNT-uni (trade name) manufactured by Taiyo Nippon Sanso Co., Ltd.) (also referred to as'(B5)'CNT')
Fluororesin containing carbon fiber (C1) PTFE containing carbon fiber (PB2515 made by Asahi Glass (trade name))
<実施例1>
(A1)ポリクロロトリフルオロエチレン(PCTFE)を、粉砕機を用いて粉砕し、振動篩機等で分級して、(A1)PCTFE粒子を準備した。レーザー回折散乱式粒度分布装置(日機装製「MT3300II」)を用いて、(A1)PCTFE粒子の粒度分布を測定して、(A1)PCTFE粒子の平均粒子径(D50)を得た。(A1)PCTFE粒子の平均粒子径(D50)は、11.5μmであった。
<Example 1>
(A1) Polychlorotrifluoroethylene (PCTFE) was pulverized using a pulverizer and classified by a vibrating sieve or the like to prepare (A1) PCTFE particles. The particle size distribution of (A1) PCTFE particles was measured using a laser diffraction / scattering type particle size distribution device (“MT3300II” manufactured by Nikkiso) to obtain the average particle size (D 50) of (A1) PCTFE particles. (A1) The average particle size (D 50 ) of the PCTFE particles was 11.5 μm.
水を溶媒とする(B1)カーボンナノチューブ分散液(分散剤=0.15質量%、(B1)カーボンナノチューブ=0.1質量%)500gにエタノールを3,500g加えて希釈した。更に、上述の(A1)PCTFE粒子を1000g添加して混合スラリーを作製した。
混合スラリーを耐圧容器に供給し、耐圧容器内の混合スラリーに含まれる分散剤1mgに対して0.03g/分の供給速度で液化二酸化炭素を供給し、耐圧容器内の圧力が20MPa、温度が50℃になるまで、昇圧及び昇温した。上記圧力および温度を3時間保持しながら、二酸化炭素中に溶け込んだ溶媒(水、エタノール)および分散剤と共に、二酸化炭素を耐圧容器から排出した。
耐圧容器内の圧力及び温度を、大気圧及び常温に各々下げて、耐圧容器内の二酸化炭素を除去して、(B1)カーボンナノチューブを0.1重量%含む(A1)PCTFE組成物を得た。
3,500 g of ethanol was added to 500 g of a (B1) carbon nanotube dispersion liquid (dispersant = 0.15% by mass, (B1) carbon nanotube = 0.1% by mass) using water as a solvent to dilute the mixture. Further, 1000 g of the above-mentioned (A1) PCTFE particles were added to prepare a mixed slurry.
The mixed slurry is supplied to the pressure-resistant container, and liquefied carbon dioxide is supplied at a supply rate of 0.03 g / min to 1 mg of the dispersant contained in the mixed slurry in the pressure-resistant container. The pressure was increased and the temperature was raised to 50 ° C. While maintaining the above pressure and temperature for 3 hours, carbon dioxide was discharged from the pressure-resistant container together with the solvent (water, ethanol) dissolved in carbon dioxide and the dispersant.
The pressure and temperature in the pressure-resistant container were lowered to atmospheric pressure and room temperature, respectively, to remove carbon dioxide in the pressure-resistant container to obtain a (A1) PCTFE composition containing 0.1% by weight of (B1) carbon nanotubes. ..
圧縮成形法を使用して、(A1)PCTFE組成物を成形して、円柱状成形体を得た。即ち、(A1)PCTFE組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)を行った。その後、200℃以上の温度で2時間以上、(A1)PCTFE組成物を加熱後、5MPa以上の圧力で、(A1)PCTFE組成物を圧縮しながら、常温まで冷却して(A1)PCTFE成形体を得た。
(A1)PCTFE成形体を切削加工して、円筒状(又は管状)成形体として、実施例1の除電管を得た。実施例1の除電管は、約40mmの直径(外径)、約15mmの肉厚、約100mmの長さを有した。
The (A1) PCTFE composition was molded using a compression molding method to obtain a columnar molded product. That is, the (A1) PCTFE composition was placed in a mold, and if necessary, appropriate pretreatment (pre-drying, etc.) was performed. Then, the (A1) PCTFE composition is heated at a temperature of 200 ° C. or higher for 2 hours or longer, and then cooled to room temperature while compressing the (A1) PCTFE composition at a pressure of 5 MPa or higher (A1) PCTFE molded product. Got
(A1) The PCTFE molded body was cut to obtain a static elimination tube of Example 1 as a cylindrical (or tubular) molded body. The static elimination tube of Example 1 had a diameter (outer diameter) of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
<実施例2>
(B1)カーボンナノチューブを0.05重量%含むように変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例2の除電管を製造した。
<Example 2>
(B1) The static elimination tube of Example 2 was manufactured by the same method as that described in Example 1 except that the carbon nanotubes were changed to contain 0.05% by weight.
<実施例3>
(B1)カーボンナノチューブを、(B2)カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例3の除電管を製造した。
<Example 3>
The static elimination tube of Example 3 was manufactured by using the same method as that described in Example 1 except that the carbon nanotube (B1) was changed to the carbon nanotube (B2).
<実施例4>
(B1)カーボンナノチューブを、(B3)カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、実施例4の除電管を製造した。
<Example 4>
The static elimination tube of Example 4 was manufactured by the same method as that described in Example 1 except that the carbon nanotube (B1) was changed to the carbon nanotube (B3).
<実施例5>
(A2)ポリテトラフルオロエチレン(PTFE)は、粒状で市販されており、その平均粒子径(D50)は50.4μmであった。(A2)PTFE粒子の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Example 5>
(A2) Polytetrafluoroethylene (PTFE) was commercially available in the form of granules, and its average particle size (D 50 ) was 50.4 μm. (A2) The average particle size (D 50 ) of the PTFE particles was measured using the same method as that described in Example 1.
(A1)PCTFE粒子を、(A2)PTFE粒子に変更した以外は、実施例1に記載の方法と同様の方法を用いて、(B1)カーボンナノチューブを0.1重量%含む(A2)PTFE組成物を得た。 (A2) PTFE composition containing 0.1% by weight of (B1) carbon nanotubes using the same method as described in Example 1 except that the (A1) PCTFE particles were changed to (A2) PTFE particles. I got something.
圧縮成形法を使用して、(A2)PTFE組成物を成形して、円柱状成形体を得た。即ち、(A2)PTFE組成物を、必要に応じて前処理(予備乾燥等)後、(A2)PTFE組成物を金型に一定量、均一に充填した。(A2)PTFE組成物を15MPaで加圧し、一定時間保持することで、(A2)PTFE組成物を圧縮して、(A2)PTFE予備成形体を得た。(A2)PTFE予備成形体を金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷後電気炉から取り出し、(A2)PTFE成形体を得た。(A2)PTFE成形体の切削加工を行い、円筒状成形体として、実施例5の除電管を得た。実施例5の除電管は、約40mmの直径、約15mmの肉厚、約100mmの長さを有した。 The (A2) PTFE composition was molded using the compression molding method to obtain a columnar molded product. That is, the (A2) PTFE composition was pretreated (pre-dried, etc.) as necessary, and then the (A2) PTFE composition was uniformly filled in a mold in a fixed amount. The (A2) PTFE composition was pressurized at 15 MPa and held for a certain period of time to compress the (A2) PTFE composition to obtain a (A2) PTFE preformed body. The (A2) PTFE preformed body was taken out from the mold, fired in a hot air circulation type electric furnace set at 345 ° C. or higher for 2 hours or more, slowly cooled, and then taken out from the electric furnace to obtain a (A2) PTFE molded body. (A2) The PTFE molded body was cut to obtain a static elimination tube of Example 5 as a cylindrical molded body. The static elimination tube of Example 5 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
<実施例6>
(B1)カーボンナノチューブを0.025重量%含むように変更した以外は、実施例5に記載の方法と同様の方法を用いて、実施例6の除電管を製造した。
<Example 6>
(B1) The static elimination tube of Example 6 was manufactured by the same method as that described in Example 5 except that the carbon nanotubes were changed to contain 0.025% by weight.
<実施例7>
(A3)変性ポリテトラフルオロエチレン(変性PTFE)は、粒状で市販されており、その平均粒子径(D50)は19.6μmであった。(A3)PTFE粒子の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Example 7>
(A3) Modified polytetrafluoroethylene (modified PTFE) was commercially available in the form of granules, and its average particle size (D 50 ) was 19.6 μm. (A3) The average particle size (D 50 ) of the PTFE particles was measured using the same method as that described in Example 1.
(A1)PCTFE粒子を、(A3)変性PTFE粒子に変更した以外は、実施例1に記載の方法と同様の方法を用いて、(B1)カーボンナノチューブを0.1重量%含む(A3)変性PTFE組成物を得た。 Using the same method as that described in Example 1 except that the (A1) PCTFE particles were changed to (A3) modified PTFE particles, the (B1) carbon nanotubes were contained in an amount of 0.1% by weight (A3). A PTFE composition was obtained.
圧縮成形法を使用して、(A3)変性PTFE組成物を成形して、円柱状成形体を得た。即ち、(A3)変性PTFE組成物を、必要に応じて前処理(予備乾燥等)後、(A3)変性PTFE組成物を金型に一定量、均一に充填した。(A3)変性PTFE組成物を15MPaで加圧し、一定時間保持することで、(A3)変性PTFE組成物を圧縮して、(A3)変性PTFE予備成形体を得た。(A3)変性PTFE予備成形体を金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷後電気炉から取り出し、(A3)変性PTFE成形体を得た。(A3)変性PTFE成形体の切削加工を行い、円筒状成形体として、実施例7の除電管を得た。実施例7の除電管は、約40mmの直径、約15mmの肉厚、約100mmの長さを有した。 The (A3) modified PTFE composition was molded using a compression molding method to obtain a columnar molded product. That is, the (A3) modified PTFE composition was pretreated (pre-dried, etc.) as necessary, and then the (A3) modified PTFE composition was uniformly filled in a mold in a fixed amount. The (A3) modified PTFE composition was pressurized at 15 MPa and held for a certain period of time to compress the (A3) modified PTFE composition to obtain a (A3) modified PTFE preformed body. The (A3) modified PTFE preformed body is taken out from the mold, fired in a hot air circulation type electric furnace set at 345 ° C. or higher for 2 hours or more, slowly cooled, and then taken out from the electric furnace to obtain a (A3) modified PTFE molded product. It was. (A3) The modified PTFE molded body was cut to obtain a static elimination tube of Example 7 as a cylindrical molded body. The static elimination tube of Example 7 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
<実施例8>
(A4)テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)を、粉砕機を用いて粉砕し、振動篩機等で分級して、(A4)PFA粒子を準備した。(A4)PFA粒子の、平均粒子径(D50)は121.7μmであった。(A4)PFA粒子の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Example 8>
The (A4) tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) was pulverized using a pulverizer and classified by a vibrating sieve or the like to prepare (A4) PFA particles. The average particle size (D 50 ) of the (A4) PFA particles was 121.7 μm. (A4) The average particle size (D 50 ) of the PFA particles was measured using the same method as that described in Example 1.
(A1)PCTFE粒子を、(A4)PFA粒子に変更した以外は、実施例1に記載の方法と同様の方法を用いて、(B1)カーボンナノチューブを0.1重量%含む(A4)PFA組成物を得た。 (A4) PFA composition containing 0.1% by weight of (B1) carbon nanotubes using the same method as described in Example 1 except that the (A1) PCTFE particles were changed to (A4) PFA particles. I got something.
圧縮成形法を使用して、(A4)PFA組成物を成形して、円柱状成形体を得た。即ち、(A4)PFA組成物を、金型に入れ、必要に応じて適切な前処理(予備乾燥等)を行った。その後、300℃以上の温度で2時間以上、(A4)PFA組成物を加熱後、5MPa以上の圧力で、(A4)PFA組成物を圧縮しながら、常温まで冷却して(A4)PFA成形体を得た。
(A4)PFA成形体を切削加工して、円筒状(又は管状)成形体として、実施例8の除電管を得た。実施例8の除電管は、約40mmの直径(外径)、約15mmの肉厚、約100mmの長さを有した。
The (A4) PFA composition was molded using a compression molding method to obtain a columnar molded product. That is, the (A4) PFA composition was placed in a mold, and if necessary, appropriate pretreatment (pre-drying, etc.) was performed. Then, the (A4) PFA composition is heated at a temperature of 300 ° C. or higher for 2 hours or longer, and then cooled to room temperature while compressing the (A4) PFA composition at a pressure of 5 MPa or higher to cool the (A4) PFA molded product. Got
(A4) The PFA molded body was cut to obtain a static elimination tube of Example 8 as a cylindrical (or tubular) molded body. The static elimination tube of Example 8 had a diameter (outer diameter) of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
<比較例1>
溶融混練法を使用して、(B1)カーボンナノチューブを0.1重量%含む(A1)PCTFE組成物を成形して、円筒状成形体を得た。即ち、(A1)PCTFE組成物を押出機に入れ、必要に応じて適切な前処理(予備乾燥等)を行い、シリンダー温度200℃以上の温度でスクリューで押し出し、サイジングダイを用いて形を整えて、(A1)PCTFE成形体を得た。(A1)PCTFE成形体の切削加工を行い円筒状成形体として、比較例1の除電管を製造した。比較例1の除電管は約40mmの直径、約15mmの肉厚、約100mmの長さを有する。
<Comparative example 1>
Using the melt-kneading method, a (A1) PCTFE composition containing 0.1% by weight of (B1) carbon nanotubes was molded to obtain a cylindrical molded product. That is, (A1) the PCTFE composition is put into an extruder, appropriately pretreated (pre-drying, etc.) as necessary, extruded with a screw at a cylinder temperature of 200 ° C. or higher, and shaped using a sizing die. (A1) PCTFE molded product was obtained. (A1) The PCTFE molded body was cut to produce a static elimination tube of Comparative Example 1 as a cylindrical molded body. The static elimination tube of Comparative Example 1 has a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
<比較例2>
(B1)カーボンナノチューブを、(B4)カーボンナノチューブに変更した以外は、実施例1に記載の方法と同様の方法を用いて、比較例2除電管を製造した。
<Comparative example 2>
Comparative Example 2 static elimination tube was manufactured by using the same method as that described in Example 1 except that the carbon nanotube (B1) was changed to the carbon nanotube (B4).
<比較例3>
(C1)カーボンファイバー入りPTFE(カーボンファイバー15重量%)組成物は、粒状で市販されており、その平均粒子径(D50)は630μmであった。そのPTFE組成物の平均粒子径(D50)は、実施例1に記載の方法と同様の方法を用いて測定した。
<Comparative example 3>
The (C1) carbon fiber-containing PTFE (carbon fiber 15% by weight) composition was commercially available in the form of granules, and the average particle size (D 50 ) was 630 μm. The average particle size (D 50 ) of the PTFE composition was measured using the same method as described in Example 1.
圧縮成形法を使用して、このPTFE組成物を成形して、円柱状成形体を得た。即ち、PTFE組成物を、必要に応じて前処理(予備乾燥等)後、PTFE組成物を金型に一定量、均一に充填した。PTFE組成物を15MPaで加圧し、一定時間保持することで、PTFE組成物を圧縮して、PTFE予備成形体を得た。PTFE予備成形体を金型から取り出して、345℃以上に設定した熱風循環式電気炉で2時間以上焼成し、徐冷後電気炉から取り出し、PTFE成形体を得た。PTFE成形体の切削加工を行い、円筒状成形体として、比較例3の除電管を得た。比較例3の除電管は、約40mmの直径、約15mmの肉厚、約100mmの長さを有した。 This PTFE composition was molded using a compression molding method to obtain a columnar molded body. That is, the PTFE composition was pretreated (preliminarily dried, etc.) as necessary, and then the PTFE composition was uniformly filled in a mold in a fixed amount. By pressurizing the PTFE composition at 15 MPa and holding it for a certain period of time, the PTFE composition was compressed to obtain a PTFE preformed body. The PTFE preformed body was taken out from the mold, fired in a hot air circulation type electric furnace set at 345 ° C. or higher for 2 hours or more, slowly cooled, and then taken out from the electric furnace to obtain a PTFE molded body. The PTFE molded body was cut to obtain a static elimination tube of Comparative Example 3 as a cylindrical molded body. The static elimination tube of Comparative Example 3 had a diameter of about 40 mm, a wall thickness of about 15 mm, and a length of about 100 mm.
<平均繊維長>
除電管に含まれるカーボンナノチューブの平均繊維長を、SEM(KEYENCE社製のVE−9800(商品名))を用いて、除電管の画像を撮影して、評価した。灰化法を用いて、除電管の一部を灰化して、画像撮影用サンプルを、作製した。即ち、除電管の一部を300℃〜600℃に加熱し、灰化して、残渣物を得た。その残渣物を画像撮影用サンプルとして、SEM(走査電子顕微鏡)観察をおこなった。例えば、実施例1の除電管のSEM画像を、図1に示した。その画像に含まれる各カーボンナノチューブの繊維の繊維長を画像処理によって求めて、その繊維長の値の平均値を計算して得た。結果は、表1に示した。
<Average fiber length>
The average fiber length of the carbon nanotubes contained in the static elimination tube was evaluated by taking an image of the static elimination tube using SEM (VE-9800 (trade name) manufactured by KEYENCE). A part of the static elimination tube was incinerated by using the ashing method to prepare a sample for imaging. That is, a part of the static elimination tube was heated to 300 ° C. to 600 ° C. and incinerated to obtain a residue. The residue was used as a sample for imaging, and SEM (scanning electron microscope) observation was performed. For example, an SEM image of the static elimination tube of Example 1 is shown in FIG. The fiber length of the fiber of each carbon nanotube contained in the image was obtained by image processing, and the average value of the fiber length values was calculated and obtained. The results are shown in Table 1.
<抵抗値に基づく除電性>
抵抗値に基づく除電性及び帯電防止性は、ISO8031:2009に基づいて評価した。即ち、除電管の両端の各々に金属継手を接続した。2つの金属継手間の抵抗値を、絶縁抵抗計(ムサシ電機計器製作所製の3レンジ絶縁抵抗計(商品名))を用いて測定した。例えば、実施例2の除電管の抵抗値は、2×104Ωであった。
<Static elimination based on resistance>
The static elimination property and antistatic property based on the resistance value were evaluated based on ISO8031: 2009. That is, metal joints were connected to each of both ends of the static elimination pipe. The resistance value between the two metal joints was measured using an insulation resistance meter (3-range insulation resistance meter (trade name) manufactured by Musashi Denki Keiki Seisakusho). For example, the resistance value of the static elimination tube of Example 2 was 2 × 10 4 Ω.
除電性の評価基準は、下記の通りである。
○:10cmの間の抵抗値が1×106Ω以下である。
×:10cmの間の抵抗値が1×106Ωを超える。
実施例1の除電管は、良好な除電性を有すると評価された。結果は、表1に示した。
The evaluation criteria for static elimination are as follows.
◯: The resistance value between 10 cm is 1 × 10 6 Ω or less.
X: The resistance value between 10 cm exceeds 1 × 10 6 Ω.
The static elimination pipe of Example 1 was evaluated to have good static elimination properties. The results are shown in Table 1.
<汚染防止性>
除電管の金属溶出量の測定
除電管における金属汚染の程度を、ICP質量分析装置(パーキンエルマー製「ELAN DRCII」)を用いて金属系17元素(Li、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Cd及びPb)の金属溶出量を測定することで、評価した。
圧縮成形して得た円筒状成形体から、10mm×20mm×50mmの試験片を切削取得した。試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬後、超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行った。更に、3.6%塩酸0.1Lに、試験片全体を浸漬して、室温環境で24時間及び168時間保存した。規定時間経過後に浸漬液を全量回収し(浸漬した塩酸を全量集めて)、浸漬液の金属不純物濃度を分析した。試験片を3つ準備して、その最大値を検出量とした。
評価基準は下記の通りである。
◎:全ての金属の検出量が、5ppb未満である。
○:Al、Cr、Cu、Fe、Ni、Zn、Ca、K及びNaの検出量が、5ppb未満である。
△:Al、Cr、Cu、Fe、Ni及びZnの検出量が、5ppb未満である。
×:Al、Cr、Cu、Fe、Ni及びZnのいずれか1種の検出量が、5ppb以上である。
結果は、表1に示した。数値は、表2に示した。
<Pollution prevention>
Measurement of the amount of metal elution in the static elimination tube The degree of metal contamination in the static elimination tube was measured using an ICP mass spectrometer (“ELAN DRCII” manufactured by PerkinElmer) with 17 metal elements (Li, Na, Mg, Al, K, Ca, It was evaluated by measuring the metal elution amount of Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd and Pb).
A test piece having a size of 10 mm × 20 mm × 50 mm was cut and obtained from a cylindrical molded body obtained by compression molding. The test piece was immersed in 0.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical Co., Inc.) for about 1 hour, and then washed with ultrapure water (specific resistance value: ≧ 18.0 MΩ · cm). .. Further, the entire test piece was immersed in 0.1 L of 3.6% hydrochloric acid and stored in a room temperature environment for 24 hours and 168 hours. After the lapse of the specified time, the entire amount of the immersion liquid was recovered (the entire amount of the immersed hydrochloric acid was collected), and the concentration of metal impurities in the immersion liquid was analyzed. Three test pieces were prepared, and the maximum value was used as the detection amount.
The evaluation criteria are as follows.
⊚: The detected amount of all metals is less than 5 ppb.
◯: The detected amounts of Al, Cr, Cu, Fe, Ni, Zn, Ca, K and Na are less than 5 ppb.
Δ: The amount of Al, Cr, Cu, Fe, Ni and Zn detected is less than 5 ppb.
X: The detection amount of any one of Al, Cr, Cu, Fe, Ni and Zn is 5 ppb or more.
The results are shown in Table 1. The numerical values are shown in Table 2.
除電管の炭素脱落の測定
除電管からのカーボンナノチューブの脱離の程度を、全有機体炭素計(島津製作所製「TOCvwp」)を用いてTOC(全有機体炭素)を測定することにより評価した。具体的には、圧縮成形して得た円筒状成形体から切削取得した10mm×20mm×50mmの試験片を、3.6%塩酸(関東化学製EL-UMグレード)0.5Lに1時間程度浸漬し、1時間浸漬後に取出して超純水(比抵抗値:≧18.0MΩ・cm)で掛け流し洗浄を行い、超純水に試験片全体を浸漬して室温環境下で24時間および168時間保存した。規定時間経過後に浸漬液を全量回収し(浸漬した超純水を全量集めて)、浸漬液について全有機体炭素分析をした。試験片を3つ準備して、その最大値を検出量とした。
評価基準は下記の通りである。
○:全有機体炭素の検出量が、50ppb未満である。
×:全有機体炭素の検出量が、50ppb以上である。
Measurement of carbon loss in static elimination tube The degree of carbon nanotube detachment from the static elimination tube was evaluated by measuring TOC (total organic carbon) using a total organic carbon meter (“TOCvww” manufactured by Shimadzu Corporation). .. Specifically, a test piece of 10 mm × 20 mm × 50 mm obtained by cutting from a cylindrical molded body obtained by compression molding is placed in 3.5 L of 3.6% hydrochloric acid (EL-UM grade manufactured by Kanto Chemical Co., Inc.) for about 1 hour. Immerse it, soak it for 1 hour, take it out, flush it with ultrapure water (specific resistance value: ≧ 18.0 MΩ · cm), wash it, and immerse the entire test piece in ultrapure water for 24 hours and 168 at room temperature. Saved time. After the lapse of the specified time, the entire immersion liquid was recovered (the entire amount of the immersed ultrapure water was collected), and the immersion liquid was subjected to total organic carbon analysis. Three test pieces were prepared, and the maximum value was used as the detection amount.
The evaluation criteria are as follows.
◯: The amount of total organic carbon detected is less than 50 ppb.
X: The amount of total organic carbon detected is 50 ppb or more.
<流体除電性>
流体除電性評価装置の概略を模式的に図2に示す。純水製造装置からの純水配管は、PFA配管と接続されている。PFA配管の末端部分に除電管を接続した。除電管はアースに接続されている。除電管の末端部分にノズルを接続した。ノズルはPCTFEを加工したもので、中心に穴が開いている。ノズルの穴は内径3mm、長さ10mmである。ノズルの下のレシーバーはファラデーケージを構成している。レシーバーは、二重円筒構造をしており、外側が外径14cm、高さ20cmの円筒容器で、内側は直径10cm、高さ15cmの円筒容器である。材質は共にステンレスである。内側の円筒容器はPTFEによりアースから絶縁されている。シールドは底辺が50cm×50cmで高さが1mの直方体で、アングルの骨組みに真鍮製の金網を張りつけたものである。PFA配管とレシーバーは、シールド内に配置され、レシーバーはシールド内のほぼ中央に設置した。
ノズルとレシーバーの上蓋との距離を10cmとし、上蓋の穴は正方形で5cm×5cmとした。
除電管を接続していない状態でノズルを通過した純水の電荷量と、各除電管を接続した状態でノズルを通過した純水の電荷量を測定した。純水の流速は2m/secである。
除電管を接続していない状態でノズルを通過した純水の電荷量(Q1)と、除電管を接続した状態でノズルを通過した純水の電荷量(Q)を測定した。
電荷量は、はエレクトロメーター(KEYTHLEY社製の6514型(商品名))を用いて測定した。
電荷残存率:(Q/Q1)×100を求めた。
評価基準は、下記の通りである。
◎:電荷残存率が、30%以下である。
○:電荷残存率が、30%を超え、50%以下である。
△:電荷残存率が、50%を超え、70%以下である。
×:電荷残存率が、70%を超える。
<Fluid static elimination>
The outline of the fluid static elimination evaluation device is schematically shown in FIG. The pure water pipe from the pure water production apparatus is connected to the PFA pipe. A static elimination pipe was connected to the end of the PFA pipe. The static eliminator is connected to ground. A nozzle was connected to the end of the static elimination tube. The nozzle is a processed PCTFE and has a hole in the center. The nozzle hole has an inner diameter of 3 mm and a length of 10 mm. The receiver under the nozzle constitutes a Faraday cage. The receiver has a double cylindrical structure, and is a cylindrical container having an outer diameter of 14 cm and a height of 20 cm on the outside and a cylindrical container having a diameter of 10 cm and a height of 15 cm on the inside. Both materials are stainless steel. The inner cylindrical container is insulated from the ground by PTFE. The shield is a rectangular parallelepiped with a base of 50 cm x 50 cm and a height of 1 m, and a brass wire mesh is attached to the frame of the angle. The PFA piping and receiver were placed inside the shield, and the receiver was placed approximately in the center of the shield.
The distance between the nozzle and the upper lid of the receiver was 10 cm, and the hole in the upper lid was square and 5 cm × 5 cm.
The amount of electric charge of pure water that passed through the nozzle without the static elimination pipe connected and the amount of electric charge of pure water that passed through the nozzle with each static elimination pipe connected were measured. The flow rate of pure water is 2 m / sec.
The amount of electric charge (Q1) of pure water that passed through the nozzle without the static elimination pipe connected and the amount of electric charge (Q) of pure water that passed through the nozzle with the static elimination tube connected were measured.
The amount of charge was measured using an electrometer (6514 type (trade name) manufactured by KEYTHLEY).
Charge residual rate: (Q / Q1) × 100 was determined.
The evaluation criteria are as follows.
⊚: The residual charge rate is 30% or less.
◯: The residual charge rate exceeds 30% and is 50% or less.
Δ: The residual charge rate exceeds 50% and is 70% or less.
X: The residual charge rate exceeds 70%.
<体積抵抗率>
上述した圧縮成形法と同様の方法を用いて、各実施例及び比較例について、φ110×10mmの試験片を作製し、測定試料とした。
体積抵抗率の測定は、JIS K6911に従い、抵抗率計(三菱化学アナリテック製「ロレスター」または「ハイレスター」)を用いて行った。
評価基準は下記の通りである。
◎:体積抵抗率が、1×103Ω・cm以下である。
○:体積抵抗率が、1×103Ω・cmを超え、1×105Ω・cm以下である。
△:体積抵抗率が、1×105Ω・cmを超え、1×107Ω・cm以下である。
×:体積抵抗率が、1×107Ω・cmを超える。
<Volume resistivity>
Using the same method as the compression molding method described above, a test piece having a diameter of 110 × 10 mm was prepared for each Example and Comparative Example, and used as a measurement sample.
The volume resistivity was measured using a resistivity meter (“Lorester” or “High Lester” manufactured by Mitsubishi Chemical Analytech) according to JIS K6911.
The evaluation criteria are as follows.
⊚: The volume resistivity is 1 × 10 3 Ω · cm or less.
◯: The volume resistivity exceeds 1 × 10 3 Ω · cm and is 1 × 10 5 Ω · cm or less.
Δ: The volume resistivity exceeds 1 × 10 5 Ω · cm and is 1 × 10 7 Ω · cm or less.
×: volume resistivity greater than 1 × 10 7 Ω · cm.
b)体積抵抗率が、測定上限を超えた為、測定できなかった。
b) The volume resistivity exceeded the upper limit of measurement and could not be measured.
本発明は、フッ素樹脂にカーボンナノチューブが分散したフッ素樹脂組成物でできており、フッ素樹脂組成物は、カーボンナノチューブを、0.01〜2.0重量%含む、新たな除電管を提供する。
その除電管は、優れた帯電防止性能を有し、不純物(金属イオン及び有機物等)の溶出を防止しながら、優れた除電性能を示す。従って、例えば、半導体製造装置、医薬品製造装置、化学薬品製造装置等の流体が通る管(又はチューブ)、ノズル、シャワーヘッド、回転洗浄ノズル、液体吐出部、配管部材、液体(又は薬液)搬送チューブ、液体搬送継手、及びライニング配管等に好適に使用することができる。
The present invention is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin, and the fluororesin composition provides a new static elimination tube containing 0.01 to 2.0% by weight of carbon nanotubes.
The static elimination tube has excellent antistatic performance, and exhibits excellent static elimination performance while preventing the elution of impurities (metal ions, organic substances, etc.). Therefore, for example, pipes (or tubes) through which fluids such as semiconductor manufacturing equipment, pharmaceutical manufacturing equipment, and chemical manufacturing equipment pass, nozzles, shower heads, rotary cleaning nozzles, liquid discharge parts, piping members, liquid (or chemical liquid) transport tubes. , Liquid transport joints, lining pipes, etc. can be suitably used.
Claims (11)
フッ素樹脂組成物は、カーボンナノチューブを、0.01〜2.0重量%含む、除電管。 It is made of a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin.
The fluororesin composition is a static elimination tube containing 0.01 to 2.0% by weight of carbon nanotubes.
フッ素樹脂組成物を、金型に入れて、加圧して圧縮して、予備成形体を製造すること;
予備成形体を、フッ素樹脂組成物の融点以上の温度で焼成して、成形体を製造すること;
成形体を加工して除電管を製造すること
を含む、請求項1〜6のいずれかに記載の除電管の製造方法。 To prepare a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin selected from PTFE and modified PTFE;
The fluororesin composition is placed in a mold, pressed and compressed to produce a preformed body;
To produce a molded product by firing the preformed product at a temperature equal to or higher than the melting point of the fluororesin composition;
The method for manufacturing a static elimination tube according to any one of claims 1 to 6, which comprises processing a molded body to manufacture a static elimination tube.
フッ素樹脂組成物を加熱後、加圧して圧縮して、成形体を得ること;及び
成形体を加工して除電管を得ること
を含む、請求項1〜6のいずれかに記載の除電管の製造方法。 To prepare a fluororesin composition in which carbon nanotubes are dispersed in a fluororesin other than PTFE and modified PTFE;
The static elimination tube according to any one of claims 1 to 6, wherein the fluororesin composition is heated and then pressurized and compressed to obtain a molded body; and the molded body is processed to obtain a static elimination tube. Production method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018021648A JP2021082373A (en) | 2018-02-09 | 2018-02-09 | Diselectrification tube and method for manufacturing the same |
PCT/JP2019/003350 WO2019155975A1 (en) | 2018-02-09 | 2019-01-31 | Static elimination tube and method for producing same |
TW108104200A TW201936657A (en) | 2018-02-09 | 2019-02-01 | Anti-static tube and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018021648A JP2021082373A (en) | 2018-02-09 | 2018-02-09 | Diselectrification tube and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021082373A true JP2021082373A (en) | 2021-05-27 |
Family
ID=67548460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018021648A Pending JP2021082373A (en) | 2018-02-09 | 2018-02-09 | Diselectrification tube and method for manufacturing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021082373A (en) |
TW (1) | TW201936657A (en) |
WO (1) | WO2019155975A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114556539A (en) * | 2019-10-23 | 2022-05-27 | 大金工业株式会社 | Member for semiconductor cleaning device |
CN113053713B (en) * | 2019-12-26 | 2023-03-24 | 中微半导体设备(上海)股份有限公司 | Plasma processing apparatus |
EP4089145B1 (en) * | 2020-01-07 | 2024-10-16 | NOK Corporation | Fluororubber composition |
CN113141696A (en) * | 2020-01-20 | 2021-07-20 | 北京富纳特创新科技有限公司 | Method for removing static electricity |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5193083B2 (en) * | 2009-02-04 | 2013-05-08 | 日立電線ファインテック株式会社 | Engineering plastic composition and molded article thereof |
MX348171B (en) * | 2011-01-17 | 2017-06-01 | Kuraray Co | Resin composition and molded article including same. |
JP5756338B2 (en) * | 2011-05-09 | 2015-07-29 | 三菱電線工業株式会社 | Manufacturing method of sealing member and sealing member produced by the method |
JP5987100B1 (en) * | 2015-10-16 | 2016-09-06 | サーパス工業株式会社 | Fluid equipment |
JP6353599B1 (en) * | 2017-12-27 | 2018-07-04 | リックス株式会社 | Two-fluid nozzle |
-
2018
- 2018-02-09 JP JP2018021648A patent/JP2021082373A/en active Pending
-
2019
- 2019-01-31 WO PCT/JP2019/003350 patent/WO2019155975A1/en active Application Filing
- 2019-02-01 TW TW108104200A patent/TW201936657A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2019155975A1 (en) | 2019-08-15 |
TW201936657A (en) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019155975A1 (en) | Static elimination tube and method for producing same | |
US20220127487A1 (en) | Composition for fluororesin-containing coating, coating film, and substrate | |
JP7202082B2 (en) | Hot-melt fluororesin molded product | |
JP2021006648A (en) | Fluoropolymer composition, molded article, and injection molded article | |
WO2019017489A1 (en) | Semiconductor element manufacturing device and semiconductor element manufacturing method | |
TWI772468B (en) | Tank and chemical liquid supply system | |
TW201938939A (en) | Conductive welding material and method of manufacturing the same | |
TWI699397B (en) | Composite resin material and molded article | |
WO2020230472A1 (en) | Filter housing and filter comprising same | |
JP6539426B1 (en) | Conductive welding material and method of manufacturing the same | |
WO2021166743A1 (en) | Fluororesin molded article and device including same | |
JP7381498B2 (en) | Composite secondary particles containing carbon nanotubes and their manufacturing method | |
JP2020119923A (en) | Member for conveying semiconductor substrate and manufacturing apparatus of semiconductor device having the same | |
JP7588485B2 (en) | Membrane Structure | |
WO2018237297A1 (en) | Melt processible fluororesin molded article | |
JP2013136675A (en) | Conductive fluororesin composition and molded product thereof | |
WO2020149371A1 (en) | Electrical resistance measuring instrument, and electrical resistance measuring method employing same |