+

JP2021055782A - Constant flow valve - Google Patents

Constant flow valve Download PDF

Info

Publication number
JP2021055782A
JP2021055782A JP2019180699A JP2019180699A JP2021055782A JP 2021055782 A JP2021055782 A JP 2021055782A JP 2019180699 A JP2019180699 A JP 2019180699A JP 2019180699 A JP2019180699 A JP 2019180699A JP 2021055782 A JP2021055782 A JP 2021055782A
Authority
JP
Japan
Prior art keywords
valve
groove
flow rate
constant flow
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019180699A
Other languages
Japanese (ja)
Other versions
JP7390701B2 (en
Inventor
岳人 葛原
Takehito Kuzuhara
岳人 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Co Ltd
Original Assignee
Nichirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Co Ltd filed Critical Nichirin Co Ltd
Priority to JP2019180699A priority Critical patent/JP7390701B2/en
Publication of JP2021055782A publication Critical patent/JP2021055782A/en
Application granted granted Critical
Publication of JP7390701B2 publication Critical patent/JP7390701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)

Abstract

To provide a constant flow valve which can control a deformation volume of a valve body according to a pressure of a fluid easily and which can control a flow rate corresponding to the pressure of the fluid in a wide range from a lower pressure to a high pressure to be constant.SOLUTION: A constant flow valve includes: a valve body 6 disposed in a fluid passage 4 and formed by an elastic body; and a valve support 7 having a seating surface 9 for supporting the valve body 6. The valve body 6 has: a pressure receiving surface 6a facing the passage 4; and a support surface 6b located at the opposite side of the pressure receiving surface 6a and supported by the seating surface 9. A groove 14 facing a part of the support surface 6b of the valve body 6 is formed on the seating surface 9 of the valve support 7. One end of the groove 14 communicates with an inflow port 10 formed at the valve support 7 and the other end of the groove 14 communicates with an outflow port 13 formed at the valve support 7.SELECTED DRAWING: Figure 2

Description

本発明は、トイレ等の給水管路に設けられ、水すなわち流体の圧力の変動に拘わらず、一定の流量で流体を供給することができる定流量弁に関する。 The present invention relates to a constant flow valve provided in a water supply pipeline such as a toilet and capable of supplying a fluid at a constant flow rate regardless of fluctuations in the pressure of water, that is, the fluid.

特許文献1には、流体の圧力変動に応じて伸縮動作するコイル状ばねを弁体とする定流量弁が記載されている。この定流量弁では、流体の圧力が増加すると、コイル状ばねが縮んで巻線の隙間が狭くなることで流量が減少し、流体の圧力が減少すると、コイル状ばねが伸びて巻線の隙間が広くなることで流量が増加する結果、定流量弁を流れる流量が圧力変動に拘わらず一定となる。 Patent Document 1 describes a constant flow rate valve whose valve body is a coiled spring that expands and contracts in response to pressure fluctuations of a fluid. In this constant flow valve, when the fluid pressure increases, the coiled spring contracts and the winding gap narrows, resulting in a decrease in flow rate. When the fluid pressure decreases, the coiled spring expands and the winding gap As a result of the increase in the flow rate, the flow rate flowing through the constant flow valve becomes constant regardless of the pressure fluctuation.

特許文献2には、ゴム等の弾力性のある材料からなり、中央に円孔からなる弁口が形成された円板状の弁体を弁箱に支持して、流体が弁体の弁口を通過するようにした定流量弁が記載されている。この定流量弁では、液体の圧力が高くなると、弁体が撓んで弁口の開度が狭まって流量が調節される。 In Patent Document 2, a disc-shaped valve body made of an elastic material such as rubber and having a valve port formed by a circular hole in the center is supported on the valve box, and a fluid flows through the valve port of the valve body. A constant flow valve is described so that it can pass through. In this constant flow rate valve, when the pressure of the liquid increases, the valve body bends, the opening degree of the valve opening narrows, and the flow rate is adjusted.

しかし、特許文献1の定流量弁では、弁体であるコイル状ばねの流体の圧力に対する伸縮量の調整が困難であり、特許文献2の定流量弁でも、ゴムからなる弁体の流体の圧力に対する変形量の調整が困難であるという問題があった。 However, with the constant flow valve of Patent Document 1, it is difficult to adjust the amount of expansion and contraction with respect to the pressure of the fluid of the coiled spring which is the valve body, and even with the constant flow valve of Patent Document 2, the pressure of the fluid of the valve body made of rubber. There was a problem that it was difficult to adjust the amount of deformation with respect to.

特許文献3には、配管の内径に対して隙間を設けて配設された弁体と、該弁体を弾性支持し、かつ、中央付近に流路を有するゴム等の弾性体からなる支持部材とを備えた定流量弁が記載されている。この定流量弁では、弁体と支持部材の当接面に凹み部が設けられ、この凹み部により弁体の外周面と支持部材の流路とを連通させる絞り流路が形成されている。給水源の圧力が上昇すると、弾性体からなる支持部材の一部が変形して凹み部に入り込み、絞り流路の流路面積が減少することで、流路が一定になるように制御されるとされている。 Patent Document 3 describes a support member composed of a valve body arranged with a gap with respect to the inner diameter of the pipe and an elastic body such as rubber that elastically supports the valve body and has a flow path near the center. A constant flow valve with and is described. In this constant flow valve, a recess is provided on the contact surface between the valve body and the support member, and the recess forms a throttle flow path for communicating the outer peripheral surface of the valve body and the flow path of the support member. When the pressure of the water supply source rises, a part of the support member made of an elastic body is deformed and enters the recessed portion, and the flow path area of the throttle flow path is reduced, so that the flow path is controlled to be constant. It is said that.

しかし、特許文献3の定流量弁では、流体の圧力が弁体に作用したときに弁体が弾性体の支持部材を圧接する力によって、支持部材の一部が変形して凹み部に入り込むので、流体の圧力の変化は支持部材の変形に直接影響しない。流量が少ない低圧の領域には適しているが、流量が多い高圧の領域には適していない。 However, in the constant flow valve of Patent Document 3, when the pressure of the fluid acts on the valve body, a part of the support member is deformed and enters the recessed portion due to the force that the valve body presses against the support member of the elastic body. , Changes in fluid pressure do not directly affect the deformation of the support member. It is suitable for the low pressure region where the flow rate is low, but not suitable for the high pressure region where the flow rate is high.

特開平6−235470号公報Japanese Unexamined Patent Publication No. 6-235470 実開平3−4984号公報Jikkenhei No. 3-4984 特許第4348972号明細書Japanese Patent No. 4348972

本発明は、前記従来の問題点に鑑みてなされたもので、流体の圧力に対する弁体の変形量を容易に調整することができる定流量弁を提供することを課題とする。また、低圧から高圧まで流体の広範囲の圧力に対する流量を一定に制御することができる定流量弁を提供することを課題とする。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a constant flow rate valve capable of easily adjusting the amount of deformation of the valve body with respect to the pressure of a fluid. Another object of the present invention is to provide a constant flow rate valve capable of constantly controlling the flow rate of a fluid with respect to a wide range of pressures from low pressure to high pressure.

前記課題を解決するために、第1の手段では、
流体の流路に配置され、弾性体からなる弁体と、
前記弁体を支持する座面を有する弁支持体と、を備えた定流量弁であって、
前記弁体は、前記流路に面する受圧面と、前記受圧面と反対側にあって前記座面に支持される支持面とを有し、
前記弁支持体の前記座面に前記弁体の前記支持面の一部に面するように溝が形成され、
前記溝の一端は、前記弁支持体に形成された流入口と連通し、前記溝の他端は、前記弁支持体に形成された流出口に連通している。
In order to solve the above problem, the first means is
A valve body made of an elastic body, which is arranged in the fluid flow path,
A constant flow rate valve including a valve support having a seating surface for supporting the valve body.
The valve body has a pressure receiving surface facing the flow path and a supporting surface opposite to the pressure receiving surface and supported by the seat surface.
A groove is formed on the seat surface of the valve support so as to face a part of the support surface of the valve body.
One end of the groove communicates with the inflow port formed in the valve support, and the other end of the groove communicates with the outlet formed in the valve support.

弁筐体の流路を流れる流体の圧力は、弁体の受圧面に作用する。弁体は、弁支持体の座面に支持されているが、受圧面に作用する流体の圧力に応じて、座面の一部に形成された溝に向かって撓み変形する。この結果、溝の断面が変化し、流入口から溝に流入する流体の流量が変化する。溝の幅を変更することにより、流体の圧力に対する弁体の変形量を調整できる。 The pressure of the fluid flowing through the flow path of the valve housing acts on the pressure receiving surface of the valve body. The valve body is supported by the seat surface of the valve support, but bends and deforms toward the groove formed in a part of the seat surface in response to the pressure of the fluid acting on the pressure receiving surface. As a result, the cross section of the groove changes, and the flow rate of the fluid flowing into the groove from the inflow port changes. By changing the width of the groove, the amount of deformation of the valve body with respect to the pressure of the fluid can be adjusted.

第2の手段では、
前記弁支持体は、前記流路の壁面より小径の円柱状であり、
前記流路の上流側に位置する前記弁支持体の上流側端面に、前記弁体を収容する凹部が形成され、前記凹部の底に前記座面が形成され、
前記流路の下流側に位置する前記弁支持体の下流側端面に、前記流出口が形成され、
前記弁支持体の外周面に、前記流入口が形成されている。
In the second means
The valve support is a columnar shape having a diameter smaller than that of the wall surface of the flow path.
A recess for accommodating the valve body is formed on the upstream end surface of the valve support located on the upstream side of the flow path, and the seat surface is formed on the bottom of the recess.
The outlet is formed on the downstream end surface of the valve support located on the downstream side of the flow path.
The inflow port is formed on the outer peripheral surface of the valve support.

第3の手段では、
前記溝は、前記弁支持体の半径方向に延在し、
前記流出口は、前記弁支持体の軸方向に延在する流出路を介して前記溝に連通している。
In the third means
The groove extends in the radial direction of the valve support and
The outlet communicates with the groove through an outflow path extending in the axial direction of the valve support.

第4の手段では、前記弁支持体は、前記下流側端面の外周部で前記流路の壁面に支持されている In the fourth means, the valve support is supported on the wall surface of the flow path at the outer peripheral portion of the downstream end surface.

第5の手段では、前記流出口の断面積は、前記流入口の断面積より大きい。 In the fifth means, the cross-sectional area of the outlet is larger than the cross-sectional area of the inlet.

第6の手段では、前記溝は、前記弁支持体の前記座面に複数形成され、前記複数の溝は、それぞれ溝幅が異なる。 In the sixth means, a plurality of the grooves are formed on the seat surface of the valve support, and the plurality of grooves have different groove widths.

第7の手段では、前記複数の溝のうち、幅が最小の溝の深さは、他の溝の深さより深く形成されている。 In the seventh means, the depth of the groove having the smallest width among the plurality of grooves is formed deeper than the depth of the other grooves.

本発明によれば、溝の幅を変更するだけで、流体の圧力に対する弁体の変形量を容易に調整することができる。また、溝幅の異なる複数の溝を設けることで、低圧から高圧まで流体の広範囲の圧力に対する流量を一定に制御することができるという効果を有する。 According to the present invention, the amount of deformation of the valve body with respect to the pressure of the fluid can be easily adjusted only by changing the width of the groove. Further, by providing a plurality of grooves having different groove widths, there is an effect that the flow rate of the fluid with respect to a wide range of pressures from low pressure to high pressure can be controlled to be constant.

本発明の第1実施形態に係る定流量弁の平面図。The plan view of the constant flow rate valve which concerns on 1st Embodiment of this invention. 図1の定流量弁のII-II線断面図。FIG. 2 is a sectional view taken along line II-II of the constant flow valve of FIG. 図2の定流量弁のIII-III線断面図。FIG. 2 is a sectional view taken along line III-III of the constant flow valve of FIG. 定流量弁の溝の形状の変形例を示す断面図。The cross-sectional view which shows the modification of the shape of the groove of a constant flow valve. 弁支持体の平面図。Top view of the valve support. 弁支持体の正面図。Front view of the valve support. 弁支持体の底面図。Bottom view of the valve support. 弁支持体の左側面図。Left side view of the valve support. 流体圧力と溝に入り込む弁体の断面積との関係を示すグラフ。A graph showing the relationship between the fluid pressure and the cross-sectional area of the valve body entering the groove. 本発明の第2実施形態に係る定流量弁の平面図。The plan view of the constant flow rate valve which concerns on 2nd Embodiment of this invention. 図10の定流量弁のXI-XI線断面図。FIG. 10 is a sectional view taken along line XI-XI of the constant flow valve of FIG. 図10の定流量弁のXII-XII線断面図。FIG. 10 is a sectional view taken along line XII-XII of the constant flow valve of FIG. 図11の定流量弁のXIII-XIII線断面図。FIG. 11 is a sectional view taken along line XIII-XIII of the constant flow valve of FIG. 図11の定流量弁のXIV-XIV線断面図。FIG. 11 is a sectional view taken along line XIV-XIV of the constant flow valve of FIG. 図12の定流量弁のXV-XV線断面図。FIG. 12 is a cross-sectional view taken along the line XV-XV of the constant flow valve of FIG. 弁支持体の平面図。Top view of the valve support. 弁支持体の正面図。Front view of the valve support. 弁支持体の底面図。Bottom view of the valve support. 弁支持体の左側面図。Left side view of the valve support. 弁支持体の右側面図。Right side view of the valve support. 実施例1の定流量弁における流体圧力と流量の関係を示すグラフ(a)、及び、実施例2の定流量弁における流体圧力と流量の関係を示すグラフ(b)。A graph (a) showing the relationship between the fluid pressure and the flow rate in the constant flow valve of the first embodiment, and a graph (b) showing the relationship between the fluid pressure and the flow rate in the constant flow valve of the second embodiment.

以下、本発明の実施形態を添付図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

<第1実施形態>
図1、図2は、本発明の第1実施形態に係る定流量弁1を示す。定流量弁1は、図示しない給水源と供給先との間の配管の途中に配設される弁筐体2の内部に固定されている。弁筐体2の両端には、雄ねじ3が形成され、給水源と供給先との間の配管に接続可能になっている。弁筐体2の内部には、矢印方向に流れる流路4が形成されている。また、弁筐体2の内面には、定流量弁1を支持する段部5が形成されている。
<First Embodiment>
1 and 2 show a constant flow valve 1 according to the first embodiment of the present invention. The constant flow rate valve 1 is fixed inside a valve housing 2 arranged in the middle of a pipe between a water supply source and a supply destination (not shown). Male screws 3 are formed at both ends of the valve housing 2 so that they can be connected to a pipe between the water supply source and the supply destination. Inside the valve housing 2, a flow path 4 flowing in the direction of the arrow is formed. Further, a step portion 5 for supporting the constant flow rate valve 1 is formed on the inner surface of the valve housing 2.

定流量弁1は、弁体6と、弁支持体7とからなる。なお、定流量弁1は、弁筐体2を含めて定流量弁1ということがある。 The constant flow rate valve 1 includes a valve body 6 and a valve support 7. The constant flow rate valve 1 may be referred to as a constant flow rate valve 1 including the valve housing 2.

弁体6は、エチレン・プロピレン・ジエンゴム(EPDM)等の高分子化合物からなる高弾性体である。弁体6は、円板状で、流路4の上流側に面する円形の受圧面6aと、受圧面6aと反対側の円形の支持面6bと、外周面6cとを有する。 The valve body 6 is a highly elastic body made of a polymer compound such as ethylene, propylene, and diene rubber (EPDM). The valve body 6 has a disk shape and has a circular pressure receiving surface 6a facing the upstream side of the flow path 4, a circular support surface 6b opposite to the pressure receiving surface 6a, and an outer peripheral surface 6c.

弁支持体7は、流路4の壁面より小径の円柱状であり、流路4の上流側に位置する上流側端面7aと、流路4の下流側に位置する下流側端面7bと、流路4の壁面に面する外周面7cとを有する。弁支持体7の上流側端面7aには、図5に示すように、弁体6を収容する円形の凹部8が形成され、該凹部8の底に弁体6の支持面6bを支持する座面9が形成されている。弁支持体7の外周面7cには、図8に示すように、略三日月形の流入口10が形成されるとともに、Oリング11が収容される外周溝12が形成されている。弁支持体7の下流側端面7bには、図7に示すように、矩形の流出口13が形成されている。 The valve support 7 has a columnar diameter smaller than the wall surface of the flow path 4, and has an upstream end surface 7a located on the upstream side of the flow path 4 and a downstream end surface 7b located on the downstream side of the flow path 4. It has an outer peripheral surface 7c facing the wall surface of the road 4. As shown in FIG. 5, a circular recess 8 for accommodating the valve body 6 is formed on the upstream end surface 7a of the valve support body 7, and a seat for supporting the support surface 6b of the valve body 6 is formed on the bottom of the recess 8. The surface 9 is formed. As shown in FIG. 8, a substantially crescent-shaped inflow port 10 is formed on the outer peripheral surface 7c of the valve support 7, and an outer peripheral groove 12 in which the O-ring 11 is accommodated is formed. As shown in FIG. 7, a rectangular outlet 13 is formed on the downstream end surface 7b of the valve support 7.

弁支持体7の座面9には、図2、図5に示すように、弁体6の支持面6bの一部に面するように、溝14が形成されている。溝14は、弁支持体7の座面9の外周部から略中央部まで半径方向に延在している。溝14の底面は、図3に示すように、弁体6が変形して溝14内に入り込んだ時の弁体6の形状に倣うように湾曲した形状を有している。図2に示すように、溝14の半径方向外側の一端は、流入口10と連通し、溝14の半径方向内側の他端は、弁支持体7の軸方向に延在する流出路15を介して流出口13に連通している。 As shown in FIGS. 2 and 5, a groove 14 is formed in the seat surface 9 of the valve support body 7 so as to face a part of the support surface 6b of the valve body 6. The groove 14 extends in the radial direction from the outer peripheral portion of the seat surface 9 of the valve support 7 to the substantially central portion. As shown in FIG. 3, the bottom surface of the groove 14 has a curved shape that resembles the shape of the valve body 6 when the valve body 6 is deformed and enters the groove 14. As shown in FIG. 2, one end of the groove 14 on the outer side in the radial direction communicates with the inflow port 10, and the other end on the inner side in the radial direction of the groove 14 has an outflow path 15 extending in the axial direction of the valve support 7. It communicates with the outlet 13 through the outlet 13.

弁支持体7の流入口10は、溝14の断面積以上の断面積を有する。流出路15は、溝14の幅と略同じ幅を有し、溝14の断面積以上の断面積を有する。流出口13は、流出路15の断面積以上の断面積を有する。 The inflow port 10 of the valve support 7 has a cross-sectional area equal to or larger than the cross-sectional area of the groove 14. The outflow passage 15 has substantially the same width as the width of the groove 14, and has a cross-sectional area equal to or larger than the cross-sectional area of the groove 14. The outlet 13 has a cross-sectional area equal to or larger than the cross-sectional area of the outflow passage 15.

弁体6は、弁支持体7の座面9に接着されてもよいし、ねじ止めされてもよい。あるいは、弁支持体7の凹部8の外周縁に挿入したピンによって抜け止めされてもよい。 The valve body 6 may be adhered to the seat surface 9 of the valve support 7 or may be screwed. Alternatively, it may be prevented from coming off by a pin inserted into the outer peripheral edge of the recess 8 of the valve support 7.

弁支持体7は、上流側端面7aが流路の上流側を向くように、下流側端面7bの外周縁で、流路4の段部5に支持されている。弁支持体7は、外周溝7cに装着されたOリング11を介して流路4の壁面に対してシールされている。弁支持体7と流路4の壁面との間には隙間が形成され、該隙間は弁支持体7の外部流路16を形成している。 The valve support 7 is supported by the step portion 5 of the flow path 4 at the outer peripheral edge of the downstream end face 7b so that the upstream end face 7a faces the upstream side of the flow path. The valve support 7 is sealed to the wall surface of the flow path 4 via an O-ring 11 mounted on the outer peripheral groove 7c. A gap is formed between the valve support 7 and the wall surface of the flow path 4, and the gap forms an external flow path 16 of the valve support 7.

次に、第1実施形態の定流量弁1の作用について説明する。 Next, the operation of the constant flow valve 1 of the first embodiment will be described.

図2において、給水源から弁筐体2の流路4に流れてきた流体(本実施例では水)は、弁体6の受圧面6aに当たって、弁筐体2の内壁面と弁支持体7の外周面7cとの間の隙間の外部流路16を流れ、弁支持体7の流入口10から、溝14、流出路15を通過して、流出口13より弁筐体2の下流側へ流れて、図示しない供給先に供給される。 In FIG. 2, the fluid (water in this embodiment) flowing from the water supply source to the flow path 4 of the valve housing 2 hits the pressure receiving surface 6a of the valve body 6 and hits the inner wall surface of the valve housing 2 and the valve support 7. It flows through the external flow path 16 in the gap between the outer peripheral surface 7c and the valve support 7, passes through the groove 14 and the outflow path 15, and goes from the outflow port 13 to the downstream side of the valve housing 2. It flows and is supplied to a supply destination (not shown).

弁筐体2内の流体の圧力が上昇すると、図2及び図3中2点鎖線で示すように、弁体6の支持面6bに支持されていない溝14と対向する部分が、弁体6の受圧面6aに作用する流体の圧力に応じて、溝14に向かって撓み変形する。この結果、溝14の断面が変化し、流入口10から溝14に流入する流体の流量が変化する。 When the pressure of the fluid in the valve housing 2 rises, as shown by the alternate long and short dash line in FIGS. 2 and 3, the portion of the valve body 6 facing the groove 14 not supported by the support surface 6b becomes the valve body 6 It bends and deforms toward the groove 14 according to the pressure of the fluid acting on the pressure receiving surface 6a. As a result, the cross section of the groove 14 changes, and the flow rate of the fluid flowing into the groove 14 from the inflow port 10 changes.

弁体6の一部が、溝14に入り込んで流路を絞るので、溝14の部分をオリフィスとみなすことができる。このため、定流量弁1を流れる流量は、次のオリフィスの流量計算式により計算することができる。 Since a part of the valve body 6 enters the groove 14 and narrows the flow path, the portion of the groove 14 can be regarded as an orifice. Therefore, the flow rate flowing through the constant flow rate valve 1 can be calculated by the following flow rate calculation formula for the orifice.

Q=CA√(2P/ρ)
ここで、各記号は次の内容を示す。
Q:流量(m3/sec)
C:流量係数
A:流路面積(m2
P:流体圧力(Pa)
ρ:流体の密度(kg/m3
Q = CA√ (2P / ρ)
Here, each symbol indicates the following contents.
Q: Flow rate (m 3 / sec)
C: Flow coefficient A: Flow path area (m 2 )
P: Fluid pressure (Pa)
ρ: Fluid density (kg / m 3 )

流路面積Aは、次式によって算出することができる。 The flow path area A can be calculated by the following equation.

A=Avalve−Arubber
ここで、各記号は次の内容を示す。
Avalve:溝の流路断面積(m2
Arubber:溝に入り込んだ弁体の断面積(m2
A = Avalve-Arubber
Here, each symbol indicates the following contents.
Avalve: Groove channel cross-sectional area (m 2 )
Arubber: Cross-sectional area of the valve body that has entered the groove (m 2 )

図9は、溝14の幅Wと流体圧力Pとを変化させたときの溝14に入り込んだ弁体6の断面積Arubberをコンピュータシミュレーションで求めて、溝14の幅Wごとに、流体圧力Pに対する弁体6の断面積Aの変化を表したものである。図9から、次のことが分かる。溝14の幅Wが大きい場合(W=10mm、9mm)、流体圧力Pが一定以上になると、弁体6が溝14の底に当接するので、弁体6の断面積Aは変化しない。また、溝14の幅Wが小さい場合(W=1mm、2mm)、流体圧力Pが増加しても弁体6の撓みが少ないので、弁体6の断面積Aは殆ど変化しない。したがって、溝14の幅を変更することにより、流体の圧力に対する弁体6の変形量を調整し、定流量弁1を流れる流量を制御することができる。 In FIG. 9, the cross-sectional area Arubber of the valve body 6 that has entered the groove 14 when the width W of the groove 14 and the fluid pressure P are changed is obtained by computer simulation, and the fluid pressure P is obtained for each width W of the groove 14. It shows the change of the cross-sectional area A of the valve body 6 with respect to. From FIG. 9, the following can be seen. When the width W of the groove 14 is large (W = 10 mm, 9 mm), when the fluid pressure P exceeds a certain level, the valve body 6 comes into contact with the bottom of the groove 14, so that the cross-sectional area A of the valve body 6 does not change. Further, when the width W of the groove 14 is small (W = 1 mm, 2 mm), the bending of the valve body 6 is small even if the fluid pressure P increases, so that the cross-sectional area A of the valve body 6 hardly changes. Therefore, by changing the width of the groove 14, the amount of deformation of the valve body 6 with respect to the pressure of the fluid can be adjusted, and the flow rate flowing through the constant flow rate valve 1 can be controlled.

弁体6が、溝14の底に完全に当接すると、流体の流れが阻止されるので、最小限の流量を確保するためにも、撓んだ弁体6の面と溝14の底との間に隙間が形成されるように、図4(a)に示すように、溝14の底を平坦にして、撓みが少ない弁体6の両端部と溝14の底の両側とに隙間が生じるようにしたり、図4(b)に示すように、溝14の底面を深くして、撓んだ弁体6が当たらないようにすることが好ましい。 When the valve body 6 completely abuts on the bottom of the groove 14, the flow of fluid is blocked, so that the surface of the valve body 6 and the bottom of the groove 14 are bent to ensure the minimum flow rate. As shown in FIG. 4A, the bottom of the groove 14 is flattened so that a gap is formed between the two, and a gap is formed between both ends of the valve body 6 having less bending and both sides of the bottom of the groove 14. It is preferable that the groove 14 is formed so that the groove 14 is formed, or that the bottom surface of the groove 14 is deepened so that the bent valve body 6 does not hit the groove 14.

<第2実施形態>
図10、図11、図12は、本発明の第2実施形態に係る定流量弁21を示す。この定流量弁21では、図16に示すように、弁支持体7の座面9に溝幅の異なる3つの溝、すなわち、第1溝14a、第2溝14b、第3溝14cを形成するとともに、各溝14a,14b,14cに連通する流入口10a,10b,10c(図17,19,20参照)、流出路15a,15b,15c(図13,14,15参照)、流出口13a,13b,13c(図18参照)が、それぞれ別箇に形成されている。これにより、第1溝14a、第2溝14b、第3溝14cの3つの溝を流通する独立した3つの内部流路17a,17b,17cが形成されている。
<Second Embodiment>
10, 11, and 12 show the constant flow valve 21 according to the second embodiment of the present invention. In the constant flow rate valve 21, as shown in FIG. 16, three grooves having different groove widths, that is, the first groove 14a, the second groove 14b, and the third groove 14c are formed on the seat surface 9 of the valve support 7. In addition, the inflow ports 10a, 10b, 10c (see FIGS. 17, 19, 20) communicating with the grooves 14a, 14b, 14c, the outflow passages 15a, 15b, 15c (see FIGS. 13, 14, 15), the outflow port 13a, 13b and 13c (see FIG. 18) are formed separately. As a result, three independent internal flow paths 17a, 17b, 17c that circulate through the three grooves of the first groove 14a, the second groove 14b, and the third groove 14c are formed.

第1溝14a、第2溝14b、第3溝14cは、図16に示すように、弁支持体7の座面9の中心から放射状に延在している。第1溝14a、第2溝14b、第3溝14cの各幅を、W1,W2,W3とすると、W1>W2>W3であり、互いに干渉しないように、周方向に間隔が開けられている。 As shown in FIG. 16, the first groove 14a, the second groove 14b, and the third groove 14c extend radially from the center of the seat surface 9 of the valve support 7. Assuming that the widths of the first groove 14a, the second groove 14b, and the third groove 14c are W1, W2, and W3, W1> W2> W3, and the intervals are spaced in the circumferential direction so as not to interfere with each other. ..

図13、図14に示すように、溝幅が大きい第1溝14aの底面と第2溝14bの底面とは、弁体6の撓みに沿う曲面に形成されている。これに対し、図15に示すように、最も小さいW3の幅を有する第3溝14cの底面は、撓んだ弁体6が当接しないように、深くかつ、平坦に形成されている。これにより、第1溝14aと第2溝14bとが、撓んだ弁体6で塞がれても、第3溝14cは、弁体6で塞がれないようにして、最小限の流量が確保されている。 As shown in FIGS. 13 and 14, the bottom surface of the first groove 14a and the bottom surface of the second groove 14b having a large groove width are formed on a curved surface along the bending of the valve body 6. On the other hand, as shown in FIG. 15, the bottom surface of the third groove 14c having the smallest width of W3 is formed deeply and flatly so that the bent valve body 6 does not abut. As a result, even if the first groove 14a and the second groove 14b are blocked by the bent valve body 6, the third groove 14c is not blocked by the valve body 6, and the minimum flow rate is maintained. Is secured.

次に、第2実施形態の定流量弁21の作用について説明する。 Next, the operation of the constant flow valve 21 of the second embodiment will be described.

図11、図12において、給水源から弁筐体2に流れてきた流体(本実施例では水)は、弁体6の受圧面6aに当たって、弁筐体2の壁面と弁支持体7の外周面7cとの間の隙間の外部流路16を流れ、弁支持体7の3つの流入口10a,10b,10cから、それぞれの溝14a,14b,14c、流出路15a,15b,15cを通過して、流出口13a,13b,13cより弁筐体2の下流側へ流れて、図示しない供給先に供給される。 In FIGS. 11 and 12, the fluid (water in this embodiment) flowing from the water supply source to the valve housing 2 hits the pressure receiving surface 6a of the valve body 6 and hits the wall surface of the valve housing 2 and the outer circumference of the valve support 7. It flows through the external flow path 16 in the gap between the surface 7c and passes through the grooves 14a, 14b, 14c and the outflow passages 15a, 15b, 15c from the three inlets 10a, 10b, 10c of the valve support 7. Then, the fluid flows from the outlets 13a, 13b, 13c to the downstream side of the valve housing 2 and is supplied to a supply destination (not shown).

弁筐体2内の流体の圧力が上昇すると、図13、図14、図15中2点鎖線で示すように、弁体6の座面9に支持されていない3つの溝14a,14b,14cと対向する部分が、弁体6の受圧面6aに作用する流体の圧力に応じて、3つの溝14a,14b,14cに向かって撓み変形する。この結果、3つの溝14a,14b,14cの断面が変化し、3つの流入口10a,10b,10cから溝14a,14b,14cに流入する流体の流量が変化する。 When the pressure of the fluid in the valve housing 2 rises, as shown by the alternate long and short dash line in FIGS. 13, 14, and 15, three grooves 14a, 14b, 14c not supported by the seat surface 9 of the valve body 6 The portion facing the valve body 6 bends and deforms toward the three grooves 14a, 14b, 14c according to the pressure of the fluid acting on the pressure receiving surface 6a of the valve body 6. As a result, the cross sections of the three grooves 14a, 14b, 14c change, and the flow rate of the fluid flowing into the grooves 14a, 14b, 14c from the three inlets 10a, 10b, 10c changes.

3つの内部流路を流れる流量は、前述の数式Q=CA√(2P/ρ)によって、それぞれ算出可能である。流体圧力の変化に対する流量の変化は、各溝14a,14b,14cによって異なる。 The flow rate flowing through the three internal flow paths can be calculated by the above-mentioned mathematical formula Q = CA√ (2P / ρ). The change in flow rate with respect to the change in fluid pressure is different for each groove 14a, 14b, 14c.

すなわち、溝幅が第3溝14cよりも大きい第1溝14aと第2溝14bとにおいて、低圧域では、弁体6の撓みが小さく、開口面積が大きいため、オリフィスの効果が小さく、圧力の増加に対して流量が大きく増加する。中圧域では、オリフィスの効果が大きくなるため、圧力の増加に対して流量の変化が少なく、定流量弁1としての効果が高い領域である。溝幅が大きい第1溝14aの定流量弁としての効果が高い定流量域は、第2溝14bの定流量域より、低圧側にある。高圧域では、弁体6が溝14a,14bの底に近接するため、圧力の増加に対して流量が減少し、弁体6が溝14a,14bの底に当接すると、流れが阻止されて流量はゼロになる。 That is, in the first groove 14a and the second groove 14b having a groove width larger than that of the third groove 14c, in the low pressure region, the valve body 6 has a small deflection and a large opening area, so that the effect of the orifice is small and the pressure is increased. The flow rate increases significantly with the increase. In the medium pressure region, since the effect of the orifice is large, the change in the flow rate is small with respect to the increase in pressure, and the effect as the constant flow valve 1 is high. The constant flow rate region in which the first groove 14a having a large groove width is highly effective as a constant flow rate valve is on the low pressure side of the constant flow rate region of the second groove 14b. In the high pressure region, since the valve body 6 is close to the bottoms of the grooves 14a and 14b, the flow rate decreases as the pressure increases, and when the valve body 6 comes into contact with the bottoms of the grooves 14a and 14b, the flow is blocked. The flow rate becomes zero.

溝幅が最も小さい第3溝14cにおいて、低圧域では、弁体6の撓みが小さく、開口面積が大きいため、第1溝14aと第2溝14bと同様に、オリフィスの効果が小さく、圧力の増加に対して流量が大きく増加する。中圧域では、オリフィスの効果が若干大きくなるが、弁体6と溝14cの底との間の隙間が大きいため、圧力の増加に対して流量が増加する。高圧域では、弁体6の撓み量としては、中圧域から殆ど変化しなくなるので、圧力の増加に対して流量が増加してゆく。 In the third groove 14c, which has the smallest groove width, the valve body 6 has a small deflection and a large opening area in the low pressure region, so that the effect of the orifice is small and the pressure is increased as in the first groove 14a and the second groove 14b. The flow rate increases greatly with the increase. In the medium pressure region, the effect of the orifice is slightly large, but since the gap between the valve body 6 and the bottom of the groove 14c is large, the flow rate increases with the increase in pressure. In the high pressure region, the amount of deflection of the valve body 6 hardly changes from the medium pressure region, so that the flow rate increases with the increase in pressure.

本第2実施形態の定流量弁21は、第1溝14a、第2溝14b、第3溝14cを有するそれぞれ内部流路17a,17b,17cを有しているため、第1溝14aの弁体6による低圧域の定流量制御作用と、第2溝14の弁体6による中圧域の定流量制御作用と、第3溝14cの弁体6による高圧域の流量維持作用とにより、低圧域から高圧域までの広い圧力範囲で、定流量制御作用を有する。 Since the constant flow rate valve 21 of the second embodiment has internal flow paths 17a, 17b, and 17c having the first groove 14a, the second groove 14b, and the third groove 14c, respectively, the valve of the first groove 14a. Low pressure due to the constant flow rate control action in the low pressure range by the body 6, the constant flow rate control action in the medium pressure range by the valve body 6 in the second groove 14, and the flow rate maintenance action in the high pressure range by the valve body 6 in the third groove 14c. It has a constant flow rate control action in a wide pressure range from the range to the high pressure range.

径14mm、厚さ5mmのEPDM製の弁体を、溝幅の異なる3つの溝を有する外径16.8mmの弁支持体に装着した定流量弁を2種類作成した。 Two types of constant flow valves were prepared by mounting EPDM valves having a diameter of 14 mm and a thickness of 5 mm on a valve support having an outer diameter of 16.8 mm having three grooves having different groove widths.

図20(a)は、溝幅Wが10mm、7mm、4mmの3つの溝を有する定流量弁を用い、流体圧力を0から1.2MPaまで変化させて、流量を求めた。0.05MPaから1.2MPaまでの広い圧力範囲で、10.0〜16.0L/minの定流量を確保することができた。 In FIG. 20A, a constant flow rate valve having three grooves with groove widths W of 10 mm, 7 mm, and 4 mm was used, and the fluid pressure was changed from 0 to 1.2 MPa to obtain the flow rate. A constant flow rate of 10.0 to 16.0 L / min could be secured in a wide pressure range from 0.05 MPa to 1.2 MPa.

図20(b)は、溝幅Wが10mm、6mm、2mmの3つの溝を有する定流量弁を用い、流体圧力を0から1.2MPaまで変化させて、流量を求めた。0.05MPaから1.2MPaまでの広い圧力範囲で、10.0〜16.0L/minの定流量を確保することができた。 In FIG. 20B, a constant flow rate valve having three grooves with groove widths W of 10 mm, 6 mm, and 2 mm was used, and the fluid pressure was changed from 0 to 1.2 MPa to obtain the flow rate. A constant flow rate of 10.0 to 16.0 L / min could be secured in a wide pressure range from 0.05 MPa to 1.2 MPa.

前記実施例のように、3つの溝幅を調整することで、要求される流量の範囲内で、広範囲の圧力の変動に対して一定の流量を確保することができる。 By adjusting the three groove widths as in the above embodiment, it is possible to secure a constant flow rate against a wide range of pressure fluctuations within the required flow rate range.

本発明は、以上の実施形態に限るものではなく、特許請求の範囲に記載の発明の要旨から逸脱することなく、種々変更が可能である。例えば、弁支持体の溝の数は3つに限らず、2個、4個、あるいは、それ以上にすることができる。また、弁体は円形に限らず、溝の数に合わせて矩形、三角形、あるいは、多角形とすることができる。 The present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention described in the claims. For example, the number of grooves in the valve support is not limited to three, and may be two, four, or more. Further, the valve body is not limited to a circular shape, and may be a rectangular shape, a triangular shape, or a polygonal shape according to the number of grooves.

1…定流量弁
2…弁筐体
4…流路
6…弁体
6a…受圧面
6b…支持面
6c…外周面
7…弁支持体
7a…上流側端面
7b…下流側端面
7c…外周面
8…凹部
9…座面
10…流入口
13…流出口
14…溝
15…流出路
16…外部流路
17…内部流路
21…定流量弁


1 ... Constant flow valve 2 ... Valve housing 4 ... Flow path 6 ... Valve body 6a ... Pressure receiving surface 6b ... Support surface 6c ... Outer peripheral surface 7 ... Valve support 7a ... Upstream side end surface 7b ... Downstream side end surface 7c ... Outer peripheral surface 8 … Recess 9… Seat surface 10… Inlet 13… Outlet 14… Groove 15… Outflow path 16… External flow path 17… Internal flow rate 21… Constant flow valve


Claims (7)

流体の流路に配置され、弾性体からなる弁体と、
前記弁体を支持する座面を有する弁支持体と、を備えた定流量弁であって、
前記弁体は、前記流路に面する受圧面と、前記受圧面と反対側にあって前記座面に支持される支持面とを有し、
前記弁支持体の前記座面に前記弁体の前記支持面の一部に面するように溝が形成され、
前記溝の一端は、前記弁支持体に形成された流入口と連通し、前記溝の他端は、前記弁支持体に形成された流出口に連通していることを特徴とする定流量弁。
A valve body made of an elastic body, which is arranged in the fluid flow path,
A constant flow rate valve including a valve support having a seating surface for supporting the valve body.
The valve body has a pressure receiving surface facing the flow path and a supporting surface opposite to the pressure receiving surface and supported by the seat surface.
A groove is formed on the seat surface of the valve support so as to face a part of the support surface of the valve body.
A constant flow valve characterized in that one end of the groove communicates with an inflow port formed in the valve support and the other end of the groove communicates with an outflow port formed in the valve support. ..
前記弁支持体は、前記流路の壁面より小径の円柱状であり、
前記流路の上流側に位置する前記弁支持体の上流側端面に、前記弁体を収容する凹部が形成され、前記凹部の底に前記座面が形成され、
前記流路の下流側に位置する前記弁支持体の下流側端面に、前記流出口が形成され、
前記弁支持体の外周面に、前記流入口が形成されていることを特徴とする請求項1に記載の定流量弁。
The valve support is a columnar shape having a diameter smaller than that of the wall surface of the flow path.
A recess for accommodating the valve body is formed on the upstream end surface of the valve support located on the upstream side of the flow path, and the seat surface is formed on the bottom of the recess.
The outlet is formed on the downstream end surface of the valve support located on the downstream side of the flow path.
The constant flow rate valve according to claim 1, wherein the inflow port is formed on the outer peripheral surface of the valve support.
前記溝は、前記弁支持体の半径方向に延在し、
前記流出口は、前記弁支持体の軸方向に延在する流出路を介して前記溝に連通していることを特徴とする請求項2に記載の定流量弁。
The groove extends in the radial direction of the valve support and
The constant flow rate valve according to claim 2, wherein the outflow port communicates with the groove through an outflow path extending in the axial direction of the valve support.
前記弁支持体は、前記下流側端面の外周部で前記流路の壁面に支持されていることを特徴とする請求項2から3のいずれかに記載の定流量弁。 The constant flow rate valve according to any one of claims 2 to 3, wherein the valve support is supported on the wall surface of the flow path at the outer peripheral portion of the downstream end surface. 前記流出口の断面積は、前記流入口の断面積より大きいことを特徴とする請求項1から4のいずれかに記載の定流量弁。 The constant flow rate valve according to any one of claims 1 to 4, wherein the cross-sectional area of the outflow port is larger than the cross-sectional area of the inflow port. 前記溝は、前記弁支持体の前記座面に複数形成され、前記複数の溝は、それぞれ溝幅が異なることを特徴とする請求項1から5のいずれかに記載の定流量弁。 The constant flow rate valve according to any one of claims 1 to 5, wherein a plurality of the grooves are formed on the seat surface of the valve support, and the plurality of grooves have different groove widths. 前記複数の溝のうち、幅が最小の溝の深さは、他の溝の深さより深く形成されていることを特徴とする請求項6に記載の定流量弁。

The constant flow rate valve according to claim 6, wherein the depth of the groove having the smallest width among the plurality of grooves is formed deeper than the depth of the other grooves.

JP2019180699A 2019-09-30 2019-09-30 constant flow valve Active JP7390701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180699A JP7390701B2 (en) 2019-09-30 2019-09-30 constant flow valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180699A JP7390701B2 (en) 2019-09-30 2019-09-30 constant flow valve

Publications (2)

Publication Number Publication Date
JP2021055782A true JP2021055782A (en) 2021-04-08
JP7390701B2 JP7390701B2 (en) 2023-12-04

Family

ID=75272421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180699A Active JP7390701B2 (en) 2019-09-30 2019-09-30 constant flow valve

Country Status (1)

Country Link
JP (1) JP7390701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136477A1 (en) * 2022-01-13 2023-07-20 주식회사 마이크로필터 Connection unit for controlling flow rate and water supply valve including same
KR20240009046A (en) * 2022-07-13 2024-01-22 주식회사 마이크로필터 Flow control module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084943A (en) * 1994-06-15 1996-01-12 Matsushita Electric Works Ltd Constant flow rate valve device
JP2006292115A (en) * 2005-04-13 2006-10-26 Nok Corp Flow control device
JP2009250290A (en) * 2008-04-03 2009-10-29 Nok Corp Constant flow rate valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084943A (en) * 1994-06-15 1996-01-12 Matsushita Electric Works Ltd Constant flow rate valve device
JP2006292115A (en) * 2005-04-13 2006-10-26 Nok Corp Flow control device
JP2009250290A (en) * 2008-04-03 2009-10-29 Nok Corp Constant flow rate valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136477A1 (en) * 2022-01-13 2023-07-20 주식회사 마이크로필터 Connection unit for controlling flow rate and water supply valve including same
KR20230109232A (en) * 2022-01-13 2023-07-20 주식회사 마이크로필터 Flow control connection unit and water supply valve including the same
KR102723721B1 (en) * 2022-01-13 2024-11-04 주식회사 마이크로필터 Flow control connection unit and water supply valve including the same
KR20240009046A (en) * 2022-07-13 2024-01-22 주식회사 마이크로필터 Flow control module
KR102698626B1 (en) * 2022-07-13 2024-08-26 주식회사 마이크로필터 Flow control module

Also Published As

Publication number Publication date
JP7390701B2 (en) 2023-12-04

Similar Documents

Publication Publication Date Title
CN110094526B (en) Balance internal part regulator
CN1952460B (en) Diffuser for fluid control valve and fluid control valve
CN100564970C (en) Constant current regulator device
JP2021055782A (en) Constant flow valve
JP2007333207A (en) Pressure control valve
JP2018509681A (en) Flow regulator unit
JPWO2018070464A1 (en) Fluid control device
KR20110121601A (en) Valve with flow restriction function and delta-function
US7011101B2 (en) Valve system
WO2013136914A1 (en) Control valve
JP2008232196A (en) Constant flow control device
JP7368588B2 (en) pressure valve for liquids
EP3362866B1 (en) Balanced regulator with targeted boost sensing tube
JP5575590B2 (en) Pressure reducing valve
JP4937670B2 (en) Equal differential pressure control pilot valve and foam mixing apparatus having the same
US20210165427A1 (en) Flow rate controller
WO2006015220A3 (en) Pressure independent control valve
TW202229753A (en) Fluid control valve, fluid control device, valve element, and method of manufacturing valve element
US7546999B2 (en) Solenoid valve for controlling water supply
CN215410335U (en) valve positioner
JP2006292115A (en) Flow control device
US6668857B2 (en) Flow reversal control valve
JP2009250290A (en) Constant flow rate valve
CN111141072A (en) Temperature type expansion valve unit and refrigeration cycle system provided with same
JP2600913Y2 (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231114

R150 Certificate of patent or registration of utility model

Ref document number: 7390701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载